Surgical instrument and medical manipulator

Information

  • Patent Grant
  • 9161772
  • Patent Number
    9,161,772
  • Date Filed
    Friday, August 3, 2012
    12 years ago
  • Date Issued
    Tuesday, October 20, 2015
    9 years ago
Abstract
A surgical instrument for performing treatment to a treatment target portion includes a cylindrical elongated member; a treatment part, and a connection part. The connection part includes a first turning axis part provided to the elongated member, a second turning axis part provided to the treatment part, a first rolling guide part that is provided to the elongated member and includes a circular-arc-shaped part coaxial with the first turning axis part, a second rolling guide part that is provided to the treatment part and includes a rolling guide part including a circular-arc-shaped part coaxial with the second turning axis part, the rolling guide part rollingly contacting the first rolling guide part, and an engaging part that brings the treatment part and the elongated member into an engaging state. The connection part is detachable between the first turning axis part and the second turning axis part.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a surgical instrument and a medical manipulator.


2. Description of Related Art


A conventionally known medical manipulator is a master-slave type medical manipulator including a master manipulator operated by an operator and a slave manipulator that operates on the basis of signals sent from the master manipulator. A surgical instrument has a treatment part for treating a treatment target portion by remote-control operation, and is attached to the medical manipulator.


For example, Japanese Unexamined Patent Application, First Publication No. 2001-277157 discloses a medical manipulator that enables a plurality of treatment parts appropriate for treatment to be switchingly attached to the arm of one slave manipulator.


SUMMARY OF THE INVENTION

According to a first aspect of the present invention, a surgical instrument for performing treatment to a treatment target portion includes: a cylindrical elongated member with a long axis, a treatment part connected to the elongated member, and a connection part that detachably connects the elongated member to the treatment part. The connection part includes a first turning axis part provided to the elongated member, a second turning axis part provided to the treatment part, a first rolling guide part that is provided to the elongated member and includes a circular-arc-shaped part coaxial with the first turning axis part, a second rolling guide part that is provided to the treatment part and includes a rolling guide part having a circular-arc-shaped part coaxial with the second turning axis part, the rolling guide part rollingly contacting the first rolling guide part, and an engaging part that brings the treatment part and the elongated member into an engaging state. The connection part is detachable between the first turning axis part and the second turning axis part.


The engaging part may include a main unit that is connected to the first turning axis part and is capable of engaging with the second turning axis part, a ring-shaped member that is provided separately from the main unit, and binds the main unit together with the second turning axis part, and a locking member that switches between a bound state and a released state, wherein in the bound state, the ring-shaped member is arranged in a position where it binds the main unit and the second turning axis part, and in the released state, the ring-shaped member is arranged in a position deviated from the position where it binds the main unit and the second turning axis part.


The main unit may include a groove that engages with the ring-shaped member and defines its movement direction. The locking member may include a groove and is capable of moving relative to the main unit. When the groove provided in the ring-shaped member and the groove provided in the main unit are in a communicating state, the locking member is capable of switching between the bound state and the released state. When the groove provided in the locking member and the groove provided in the main unit are in a non-communicating state, the treatment part is held in the bound state with respect to the elongated member.


The surgical instrument of the above aspect may further include: a treatment tool piece provided on the treatment part and is capable of operating, a joint for operating treatment tool piece that connects the elongated member to the treatment tool piece, and a moving member that is connected to the joint for operating treatment tool piece in order to operate the treatment tool piece. The joint for operating treatment tool piece may include a first operation turning member that is connected to the moving member and turns around a predetermined center of turning, a second operation turning member that is connected to the first operation turning member such that it turns in the opposite direction relative to the first operation turning member coaxial with the second turning axis part or around a center of turning that is nearer to the first turning axis part than the second turning axis part, and a link that converts the rotational force of the second operation turning member to an operation of the treatment tool piece. The joint for operating treatment tool piece is detachable between the first operation turning member and the second operation turning member by being detachable from the connection part.


The surgical instrument may include a pair of the treatment tool pieces, the operation of the treatment tool pieces being an operation of opening and closing them.


According to a second aspect of the present invention, a medical manipulator includes: the surgical instrument described above, a slave manipulator including at least one joint, the surgical instrument being attached to the slave manipulator, and a master manipulator that sends operating commands for driving the joint of the slave manipulator.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an overall view of a medical manipulator including a surgical instrument according to one embodiment of the present invention.



FIG. 2 is a perspective view of the configuration of one part of the surgical instrument.



FIG. 3 is an explanatory view of the configuration of one part of the surgical instrument.



FIG. 4 is an explanatory view of the configuration of one part of the surgical instrument.



FIG. 5 is an explanatory view of the configuration of one part of the surgical instrument.



FIG. 6 is an exploded perspective view of the configuration of a treatment part of the surgical instrument.



FIG. 7 is an explanatory view of a bend operation of a treatment part of the surgical instrument.



FIG. 8 is an explanatory view of a bend operation of a treatment part of the surgical instrument.



FIG. 9 is an explanatory view of a bend operation of a treatment part of the surgical instrument.



FIG. 10 is an explanatory perspective view of an operation of attaching and detaching a treatment part provided to the surgical instrument.



FIG. 11 is an explanatory perspective view of an operation of attaching and detaching a treatment part provided to the surgical instrument.



FIG. 12 is an explanatory perspective view of an operation of attaching and detaching a treatment part provided to the surgical instrument.



FIG. 13 is an explanatory perspective view of an operation of attaching and detaching a treatment part provided to the surgical instrument.



FIG. 14 is an explanatory perspective view of an operation of attaching and detaching a treatment part provided to the surgical instrument.



FIG. 15 is a perspective view of the configuration of a modified example of the embodiment.



FIG. 16 is an explanatory perspective view of an effect of the modified example.



FIG. 17 is a perspective view of the configuration of another modified example of the embodiment.



FIG. 18 is a cross-sectional view of the configuration of the modified example.





DETAILED DESCRIPTION OF THE INVENTION

A surgical instrument 1 and a medical manipulator 100 according to one embodiment of the present invention will be explained. FIG. 1 is an overall view of a medical manipulator including a surgical instrument of the embodiment. FIG. 2 is a perspective view of the configuration of one part of the surgical instrument. FIGS. 3 to 5 are explanatory views of the configuration of one part of the surgical instrument. FIG. 6 is an exploded perspective view of the configuration of a treatment part on the surgical instrument. FIGS. 7 to 9 are explanatory views of a bend operation of a treatment part on the surgical instrument. FIGS. 3 to 5 and FIGS. 7 to 9 are explanatory schematic views of the configuration of the embodiment, and in some cases do not accurately depict the shapes of the members.


The surgical instrument 1 is attached to the medical manipulator 100 as one part thereof.


Firstly, the configuration of the medical manipulator 100 of the embodiment will be explained. As shown in FIG. 1, the medical manipulator 100 includes a master manipulator 101, a control device 110, and a slave manipulator 120.


The master manipulator 101 functions as a master for transmitting the movements of the operations performed by the surgeon to the slave manipulator 120, and includes a master display unit 102 such as a liquid crystal display device, and an operation unit 103 which the surgeon grasps and operates. Operations performed to the operation unit 103 of the master manipulator 101 are input to the control device 110.


The control device 110 includes a master-side control device 111 that receives the input from the master manipulator 101, and a slave-side control device 112 that outputs a drive signal to the slave manipulator 120.


Based on the input from the master manipulator 101, the master-side control device 111 generates an operating command for operating the slave manipulator 120, and outputs it to the slave-side control device 112.


Based on the operating command from the master-side control device 111, the slave-side control device 112 generates a drive signal for driving the slave manipulator 120, and outputs it to the slave manipulator 120.


The slave manipulator 120 includes a slave arm 121 that operates in compliance with the drive signal from the slave-side control device 112. The surgical instrument 1 of this embodiment is attached to this slave arm 121. In addition to the surgical instrument 1 of this embodiment, a treatment instrument for performing surgery, an endoscope, and such like, can be attached to the slave manipulator 120.


Subsequently, the configuration of the surgical instrument 1 will be explained.


The surgical instrument 1 is a medical instrument for performing treatment to a treatment target portion. As shown in FIGS. 1 and 2, the surgical instrument 1 includes an elongated member 2, a treatment part 6, a connection part 10, and a drive control unit 45.


In the explanation hereinafter, the side of the surgical instrument 1 including the treatment part 6 will be referred to as the distal side, and the side of the surgical instrument 1 including the drive control unit 45 will be referred to as the proximal side.


The elongated member 2 is a cylindrical member with a long axis. The elongated member 2 may be flexible or rigid depending on the configuration of the slave arm 121 that it is attached to. In the embodiment, the elongated member 2 is rigid.


As shown in FIGS. 3 and 7, a connecting rod 3 (moving member) for moving the treatment part 6 is disposed inside the elongated member 2. The connecting rod 3 includes a rod for bending 4, one end of which is connected to a double joint for bending 11 described below and another end of which is connected to the drive control unit 45, and a rod for opening-closing 5, one end of which is connected to a joint for opening-closing 27 described below and another end of which is connected to the drive control unit 45.


The treatment part 6 is provided for treating the treatment target portion. In the embodiment, as shown in FIGS. 2 and 6, the treatment part 6 is a forceps including a pair of forceps pieces 7a and 7b capable of opening and closing, and a cover 8 that holds the forceps pieces 7a and 7b. The pair of forceps pieces 7a and 7b are connected to each other by a shaft-shaped member 9 that forms their turning axis.


The connection part 10 connects the elongated member 2 and the treatment part 6. The connection part 10 includes a double joint for bending 11 for bending the treatment part 6 with respect to the elongated member 2, and a joint for opening-closing 27 (joint for operating treatment tool piece) for opening and closing the forceps pieces 7a and 7b.


The double joint for bending 11 includes a first fitting-cogs part 12 (first rolling guide part) fixed to the distal end of the elongated member 2, a first turning axis part 13 connected to the distal end of the elongated member 2, a second turning axis part 14 that extends parallel with the first turning axis part 13 and is connected to the treatment part 6, a second fitting-cogs part 15 (rolling guide part; second rolling guide part) fixed to the treatment part 6, and an engaging part 16 that switches the connecting state of the treatment part 6 and the elongated member 2.


The first fitting-cogs part 12 has gear-like dent provided in a circle around (circular-arc-shaped part) the center of turning of the first turning axis part 13. The second fitting-cogs part 15 has gear-like dent provided in a circle around (circular-arc-shaped part) the center of turning of the second turning axis part 14, and interlocks with the first fitting-cogs part 12. The cogs of the first fitting-cogs part 12 and the second fitting-cogs part 15 are provided in circles of equal radii, so that their relationship is set at a ratio of 1:1.


The second fitting-cogs part 15 can rotate while moving along the circumference of the first fitting-cogs part 12. Incidentally, plate-like members that move relatively with contact between their outer peripheral parts due to friction may be provided instead of the first fitting-cogs part 12 and the second fitting-cogs part 15.


While in the embodiment, the configuration is one where the first fitting-cogs part 12 and the second fitting-cogs part 15 are brought into frictional contact through the interlocking of cogs, the configuration need not be limited to this. For example, instead of frictional contact through interlocking of cogs, the configuration can be a mechanism that enables two rotating bodies to rotate and roll smoothly, such as one where two rubber rollers with no interlocking cogs (and large friction) are brought into frictional contact.


The first turning axis part 13 and the second turning axis part 14 are parallel with each other and have centers of turning that extend orthogonal to the extension line of the long axis of the elongated member 2.


As shown in FIG. 2, the engaging part 16 includes a main unit 17, a ring-shaped member 19, and a locking member 21.


The main unit 17 maintains a constant distance between the first fitting-cogs part 12 and the second fitting-cogs part 15. The rod for bending 4 of the connecting rod 3 is connected to the main unit 17. When the rod for bending 4 is advanced and retracted in the long-axis direction of the elongated member 2, the main unit 17 turns around the first turning axis part 13. As a result, the second turning axis part 14 swings around the first turning axis part 13.


The main unit 17 is connected to the first turning axis part 13 such that it can turn relative thereto and cannot be disconnected.


Moreover, the main unit 17 can engage with the second turning axis part 14 such that the treatment part 6 reaches a predetermined attachment direction with respect to the main unit 17, and can be attached and detached to/from the second turning axis part 14.


The main unit 17 is provided with a guide 18 for limiting the movement direction of the ring-shaped member 19. In the embodiment, the guide 18 has a groove formed in the outer face of the main unit 17 and extending in one direction. A protrusion 20 is formed on the ring-shaped member 19 and fits into the groove that forms the guide 18. The ring-shaped member 19 thus moves along the groove.


The ring-shaped member 19 is provided separately from the main unit 17, and binds it and the second turning axis part 14. That is, one part of the main unit 17 and one part of the second turning axis part 14 are inserted into the ring-shaped member 19, and the ring-shaped member 19 binds the main unit 17 and the second turning axis part 14 together. The protrusion 20 is provided on the ring-shaped member 19, and fits into the groove (guide 18) formed in the main unit 17.


When the ring-shaped member 19 is arranged in a position where it binds the main unit 17 and the second turning axis part 14, the treatment part 6 is in a state of being connected to the elongated member 2 (hereinafter ‘bound state’). When the ring-shaped member 19 is arranged in a position deviated from the position where it binds the main unit 17 and the second turning axis part 14, the treatment part 6 is in a state where it can be detached from the elongated member 2 (hereinafter ‘released state’).


The locking member 21 is provided for switching between the bound state and the released state. The locking member 21 includes a groove 22 that can communicate with the groove (guide 18) formed in the main unit 17. As one part of the guide 18 formed in the main unit 17, the groove 22 formed in the locking member 21 has the function of limiting the movement direction of the ring-shaped member 19.


The locking member 21 can turn around the center of turning of the first turning axis part 13. When a rotational force around the center of turning of the first turning axis part equal to or greater than a predetermined level has acted as an external force against the locking member 21, the locking member 21 can turn around the center of turning of the first turning axis part 13 relative to the main unit 17. That is, by rotating the locking member 21, an operator can rotate the locking member 21 relative to the main unit 17, and switch the communicating state between the groove 22 formed in the locking member 21 and the guide 18 formed in the main unit 17. In a state where the abovementioned external force for rotating the locking member 21 is not being applied, the locking member 21 integrally operates the main unit 17.


When the groove 22 formed in the locking member 21 and the guide 18 formed in the main unit 17 are in the communicating state, the ring-shaped member 19 can move freely along the groove 22 formed in the locking member 21 and the guide 18 formed in the main unit 17. When the groove 22 formed in the locking member 21 and the guide 18 formed in the main unit 17 are in a non-communicating state, the ring-shaped member 19 cannot enter the groove 22 formed in the locking member 21. Therefore, when the groove 22 formed in the locking member 21 and the guide 18 formed in the main unit 17 are in the non-communicating state in the bound state mentioned above, the treatment part 6 is held in the bound state with respect to the elongated member 2.


As shown in FIGS. 6 to 9, the joint for opening-closing 27 includes a first gear for opening-closing 23 (first rolling guide part; first operation turning member) that is connected to the rod for opening-closing 5 and turns coaxially with the first turning axis part 13, a second gear for opening-closing 24 (rolling guide part; second rolling guide part; second operation turning member) that interlocks with the first gear for opening-closing 23 and turns coaxially with the second turning axis part 14, a rack 25 connected to the second gear for opening-closing 24, a link element 26a that connects the rack 25 to the forceps piece 7a, and a link element 26b that connects the rack 25 to the forceps piece 7b.


While in the embodiment, the first gear for opening-closing 23 and the second gear for opening-closing 24 are brought into frictional contact through the interlocking of cogs, the configuration need not be limited to this. For example, instead of frictional contact through interlocking of cogs, the configuration may be a mechanism that enables two rotating bodies to rotate and roll smoothly, such as one where two rubber rollers with no interlocking cogs (and large friction) are brought into frictional contact.


The link elements 26a and 26b shown in FIG. 6 transmit a pulling force, which comes from the rod for opening-closing 5 via first gear for opening-closing 23 and the second gear for opening-closing 24 shown in FIG. 7, through the rack 25. The link elements 26a and 26b convert the advancing-retracting operation of the rack 25 to an opening-closing operation of the forceps pieces 7a and 7b.


In the embodiment, the link element 25 of the joint for opening-closing 27 constitutes a toggle mechanism, with the grasping force of the forceps pieces 7a and 7b increasing exponentially as they move in the closing direction.


The drive control unit 45 shown in FIG. 1 includes an actuator 46 that advances and retracts the connecting rod 3 (rod for bending 4 and rod for opening-closing 5) in the long-axis direction of the elongated member 2, and a detection unit 47 that detects the amount of movement of the actuator 46. The drive control unit 45 operates in compliance with a drive signal output from the slave-side control device 112. The detection unit 47 detects the amount of movement of the actuator 46 and outputs to the slave-side control device 112. Thus the movement of the actuator 46 of the drive control unit 45 is feedback-controlled.


Subsequently, the effects of the surgical instrument 1 and the medical manipulator 100 of this embodiment will be explained, focusing on the operating principles and effects of the surgical instrument 1.


The surgical instrument 1 is used in the state where the treatment part 6 and the elongated member 2 are connected at the double joint for bending 11 and the joint for opening-closing 27. It is also possible to detach the treatment part 6 from the elongated member 2, and to attach another treatment part 6 to the elongated member 2. For example, treatment can be performed while switching among different types of treatment parts 6, and a treatment part 6 that has suffered an operational malfunction or the like can be replaced with a new treatment part 6 so that treatment can be continued.


The effects when using the surgical instrument 1 will be explained.


The double joint for bending 11 can be operated by using the actuator 46 to advance and retract the rod for bending 4. The joint for opening-closing 27 can be operated independently from the double joint for bending 11 by using the actuator 46 to advance and retract the rod for opening-closing 5.


The effects of the double joint for bending 11 will be explained.


If the rod for bending 4 is advanced and retracted without advancing and retracting the rod for opening-closing 5, as shown in FIGS. 3 and 5, the second turning axis part 14 turns around the first turning axis part 13. At this time, since the second fitting-cogs part 15 is interlocked with the first fitting-cogs part 12 provided on the double joint for bending 11, the second fitting-cogs part 15 turns around the second turning axis part 14. As the second turning axis part 14 swings around the first turning axis part 13 and the second fitting-cogs part 15 turns around the second turning axis part 14, the direction of the pair of forceps pieces 7a and 7b on the treatment part 6 changes. The pair of forceps pieces 7a and 7b do not open or close at this time.


In this case, at the double joint for bending 11, the main unit 17 is moved at an angle corresponding to the ratio between the radius of the first fitting-cogs part 12 and the radius of the second fitting-cogs part 15.


For example, when r1 is the radius of the first fitting-cogs part 12, r2 is the radius of the second fitting-cogs part 15, φ is the rotation angle of the main unit 17, and φ is the rotation angle of the treatment part 6, then

r2(φ−θ)=r10  (1)
φ={(r1+r2)/r2}θ  (2)


For example, when the ratio between radius r1 of the first fitting-cogs part 12 and the radius r2 of the second fitting-cogs part 15 is 1:1 (r1=r2) as it is in this embodiment, this gives:

θ=2θ.


Therefore, when the main unit 17 is moved 45-degrees around the first turning axis part 13, the second fitting-cogs part 15 provided on the treatment part 6 side tilts 90-degrees with regard to the first fitting-cogs part 12. That is, this is an acceleration mechanism that makes it possible to reduce the amount of angular movement of the main unit 17 with respect to the amount of angular movement of the treatment part 6.


Subsequently, the effects when the treatment part 6 is made detachable from the elongated member 2 will be explained.



FIGS. 10 to 14 are explanatory perspective views of an operation of attaching and detaching the treatment part 6.


When it becomes necessary to detach the treatment part 6 from the elongated member 2, the locking member 21 is rotated relative to the main unit 17, whereby the groove 22 formed in the locking member 21 and the guide 18 formed in the main unit 17 are changed from the non-communicating state (see FIG. 10) to the communicating state (see FIG. 11). This has an effect of, for example, making it easier to insert a flat-blade screwdriver into the groove 22 formed in the locking member 21 and rotating the locking member 21.


When the groove 22 formed in the locking member 21 and the guide 18 formed in the main unit 17 are in the communicating state, the ring-shaped member 19 can move along the groove 22 in the locking member 21 from the second turning axis part 14 side to the first turning axis part 13 side. As shown in FIG. 12, when the operator moves the ring-shaped member 19 to the first turning axis part 13 side, the second turning axis part 14 and the main unit 17 are unbound, and, as shown in FIGS. 13 and 14, the second turning axis part 14 and the treatment part 6 connected to the second turning axis part 14 are detached from the main unit 17.


In the embodiment, whatever the bend state of the double joint for bending 11, and whatever the open-close state of the joint for opening-closing 27, the treatment part 6 can be detached from the elongated member 2.


Another treatment part 6 can then be attached, or the detached treatment part 6 can be cleaned before re-attaching it.


When attaching the treatment part 6 to the elongated member 2, the treatment part 6 is positioned such that the first fitting-cogs part 12 interlocks with the second fitting-cogs part 15 and the first gear for opening-closing 23 interlocks with the second gear for opening-closing 24, the second turning axis part 14 is made to engage with the main unit 17, and the ring-shaped member 19 is used to bind the second turning axis part 14 and the main unit 17 together. Thereafter, the locking member 21 is rotated with respect to the main unit 17 so that the groove 22 formed in the locking member 21 and the guide 18 formed in the main unit 17 are in the non-communicating state.


It thus becomes possible to use the treatment part 6 attached to the elongated member 2.


Generally, to prevent infection, a medical manipulator is washed and disinfected each time surgery is performed.


For example, in the case of the medical manipulator described in Japanese Unexamined Patent Application, First Publication No. 2001-277157, the treatment part can be made detachable from the slave manipulator, and maintenance such as washing and disinfection is therefore easy. However, since a great many components are required to realize a configuration that enables the treatment part to be made detachable, the treatment part of the medical manipulator described in Japanese Unexamined Patent Application, First Publication No. 2001-277157 has a complex structure, and cannot be said to be easier to wash.


In contrast, according to the surgical instrument 1 and the medical manipulator 100 of this embodiment, since the main unit 17 and the second turning axis part 14 are bound by the ring-shaped member 19, the treatment part 6 can be made detachable from the elongated member 2 with a simple configuration.


Also, according to the surgical instrument 1 and the medical manipulator 100 of this embodiment, the increase in the number of components for attaching and detaching the treatment part 6 is less than that of the art described in surgical instrument 1.


Since the treatment part 6 is made detachable from the elongated member 2 by attaching and detaching the first turning axis part 13 to and from the second turning axis part 14, the components of the joint section for changing the direction of the treatment part 6 with respect to the elongated member 2 can be for making the treatment part 6 detachable. Therefore, in the surgical instrument 1 and the medical manipulator 100 of the embodiment, the number of components is not considerably greater than a configuration where the treatment part 6 is not detachable.


MODIFIED EXAMPLE 1

Subsequently, a modified example of the embodiment will be explained. FIG. 15 is a perspective view of the configuration of the modified example. FIG. 16 is an explanatory perspective view of the effects of the modified example.


As shown in FIG. 15, in the modified example, instead of a configuration where the main unit 17 and the second turning axis part 14 can be attached and detached, the main unit 17 can be divided into distal members 17A and proximal members 17B.


As shown in FIGS. 15 and 16, claw parts 48 for engaging with the distal members 17A are formed on the distal members 17A. Recessed parts 49 for fitting the claw parts 48 therein are formed in the proximal members 17B. The claw parts 48 and the recessed parts 49 constitute an engaging part 16 that brings the first turning axis part 13 and the treatment part 6 into an engaged state, in the same manner as the engaging part 16 described in the embodiment above.


When the claw parts 48 of the distal members 17A are pressed into the recessed parts 49 of the proximal members 17B, the proximal members 17B and the distal members 17A elastically deform slightly, and the claw parts 48 enter the recessed parts 49. The treatment part 6 is thus engaged with the elongated member 2.


This configuration achieves effects similar to those of the embodiment described above.


In addition, the modified example has fewer components than the embodiment described above.


While in the embodiment including the modified example described above, the example of an operation of a treatment tool piece is one of opening and closing a pair of treatment tool pieces, namely the forceps pieces 7a and 7b, the configuration is not limited to that. For example, the operation can be one which is bending (turning) a single treatment tool piece. The treatment tool piece can be a medical instrument other than forceps pieces.


MODIFIED EXAMPLE 2

Subsequently, another modified example of the embodiment will be explained. FIG. 17 is a perspective view of the configuration of the modified example. FIG. 18 is an explanatory cross-sectional view of the configuration of the modified example.


As shown in FIGS. 17 and 18, instead of the treatment part 6 having the forceps pieces 7a and 7b, the modified example includes a treatment part 6 having an electric scalpel electrode 50.


The elongated member 2 includes a lead wire 51 that is electrically connected to the electric scalpel electrode 50. The lead wire 51 and the electrode 50 are detachably connected via a plug 52. The treatment part 6 of the modified example need not be connected to the joint for opening-closing 27, and need not include the joint for opening-closing 27. Also, in the modified example, the joint for opening-closing 27 and the rod for opening-closing 5 need not be provided.


This type of configuration achieves effects similar to those of the embodiment described above.


While an embodiment of the invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment.


For example, it is acceptable to use a treatment part that bends at the first turning axis part and does not include the second turning axis part described above.


Various other additions, omissions, substitutions, and other changes can be made to the configuration without deviating from the main points of the invention.


The invention is not limited to the forgoing description, and is limited only by the accompanying claims.

Claims
  • 1. A surgical instrument for performing treatment to a treatment target portion, the surgical instrument comprising: a cylindrical elongated member having a long axis;a treatment part connected to the elongated member; anda connection part that detachably connects the elongated member to the treatment part, whereinthe connection part comprises:a first turning axis part provided to the elongated member;a second turning axis part provided to the treatment part;a first rolling guide part that is provided to the elongated member and includes a circular-arc-shaped part coaxial with the first turning axis part;a second rolling guide part that is provided to the treatment part and includes a rolling guide part having a circular-arc-shaped part coaxial with the second turning axis part, the rolling guide part rollingly contacting the first rolling guide part;an engaging part that brings the treatment part and the elongated member into an engaging state, andthe connection part is detachable between the first turning axis part and the second turning axis part;wherein the engaging part comprises:a main unit that is connected to the first turning axis part and is capable of engaging with the second turning axis part;a ring-shaped member that is provided separately from the main unit, and binds the main unit together with the second turning axis part; anda locking member that switches between a bound state and a released state, wherein in the bound state, the ring-shaped member is arranged in a position where it binds the main unit and the second turning axis part, and in the released state, the ring-shaped member is arranged in a position deviated from the position where it binds the main unit and the second turning axis part.
  • 2. The surgical instrument according to claim 1, wherein the main unit is provided with a groove that engages with the ring-shaped member and defines its movement direction;the locking member is provided with a groove and is capable of moving relative to the main unit;when the groove provided in the locking member and the groove provided in the main unit are in a communicating state, the ring-shaped member is capable of switching between the released state and the bound state; andwhen the groove provided in the locking member and the groove provided in the main unit are in a non-communicating state, the treatment part is held in the bound state with respect to the elongated member.
  • 3. The surgical instrument according to claim 1, further comprising: a treatment tool piece provided on the treatment part and is capable of operating;a joint for operating the treatment tool piece that connects the elongated member to the treatment tool piece; anda moving member that is connected to the joint for operating the treatment tool piece in order to operate the treatment tool piece, whereinthe joint for operating the treatment tool piece comprises:a first operation turning member that is connected to the moving member and turns around a predetermined center of turning;a second operation turning member that is connected to the first operation turning member such that it turns in the opposite direction relative to the first operation turning member coaxial with the second turning axis part or around a center of turning that is nearer to the first turning axis part than the second turning axis part; anda link that converts a rotational force of the second operation turning member to an operation of the treatment tool piece;the joint for operating treatment tool piece is detachable between the first operation turning member and the second operation turning member by being detachable from the connection part.
  • 4. The surgical instrument according to claim 3, wherein the treatment tool piece comprises a pair of treatment tool pieces, andthe operation of the treatment tool pieces is an operation of opening and closing the pair of treatment tool pieces.
  • 5. A medical manipulator comprising: the surgical instrument according to claim 1;a slave manipulator including at least one joint, the surgical instrument being attached to the slave manipulator; anda master manipulator that generates operating commands for driving the joint of the slave manipulator.
  • 6. The surgical instrument according to claim 2, further comprising: a treatment tool piece provided on the treatment part and is capable of operating;a joint for operating the treatment tool piece that connects the elongated member to the treatment tool piece; anda moving member that is connected to the joint for operating the treatment tool piece in order to operate the treatment tool piece, whereinthe joint for operating the treatment tool piece comprises:a first operation turning member that is connected to the moving member and turns around a predetermined center of turning;a second operation turning member that is connected to the first operation turning member such that it turns in the opposite direction relative to the first operation turning member coaxial with the second turning axis part or around a center of turning that is nearer to the first turning axis part than the second turning axis part; anda link that converts a rotational force of the second operation turning member to an operation of the treatment tool piece;the joint for operating treatment tool piece is detachable between the first operation turning member and the second operation turning member by being detachable from the connection part.
  • 7. The surgical instrument according to claim 6, wherein the treatment tool piece comprises a pair of treatment tool pieces, andthe operation of the treatment tool pieces is an operation of opening and closing the pair of treatment tool pieces.
  • 8. A medical manipulator comprising: the surgical instrument according to claim 1;a slave manipulator including at least one joint, the surgical instrument being attached to the slave manipulator; anda master manipulator that generates operating commands for driving the joint of the slave manipulator.
  • 9. A medical manipulator comprising: the surgical instrument according to claim 2;a slave manipulator including at least one joint, the surgical instrument being attached to the slave manipulator; anda master manipulator that generates operating commands for driving the joint of the slave manipulator.
  • 10. A medical manipulator comprising: the surgical instrument according to claim 3;a slave manipulator including at least one joint, the surgical instrument being attached to the slave manipulator; anda master manipulator that generates operating commands for driving the joint of the slave manipulator.
  • 11. A medical manipulator comprising: the surgical instrument according to claim 4;a slave manipulator including at least one joint, the surgical instrument being attached to the slave manipulator; anda master manipulator that generates operating commands for driving the joint of the slave manipulator.
Parent Case Info

Priority is claimed on U.S. Provisional Patent Application No. 61/515,203 filed Aug. 4, 2011, the content of which is incorporated herein by reference.

US Referenced Citations (184)
Number Name Date Kind
4830569 Jannborg May 1989 A
5214969 Adkins et al. Jun 1993 A
5603723 Aranyi et al. Feb 1997 A
5632432 Schulze et al. May 1997 A
5649956 Jensen et al. Jul 1997 A
5656903 Shui et al. Aug 1997 A
5712543 Sjostrom Jan 1998 A
5762458 Wang et al. Jun 1998 A
5836869 Kudo et al. Nov 1998 A
5855583 Wang et al. Jan 1999 A
5871493 Sjostrom et al. Feb 1999 A
6007550 Wang et al. Dec 1999 A
6063095 Wang et al. May 2000 A
6090122 Sjostrom et al. Jul 2000 A
6102850 Wang et al. Aug 2000 A
6132368 Cooper Oct 2000 A
6132441 Grace Oct 2000 A
6206903 Ramans Mar 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
6328752 Sjostrom et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6430473 Lee et al. Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6441577 Blumenkranz et al. Aug 2002 B2
6557558 Tajima et al. May 2003 B1
6574355 Green Jun 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6602185 Uchikubo Aug 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666876 Kawai et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6685698 Morley et al. Feb 2004 B2
6699177 Wang et al. Mar 2004 B1
6746443 Morley et al. Jun 2004 B1
6783524 Anderson et al. Aug 2004 B2
6853879 Sunaoshi Feb 2005 B2
6866671 Tierney et al. Mar 2005 B2
6905460 Wang et al. Jun 2005 B2
6913613 Schwarz et al. Jul 2005 B2
7083571 Wang et al. Aug 2006 B2
7101363 Nishizawa et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7118582 Wang et al. Oct 2006 B1
7273488 Nakamura et al. Sep 2007 B2
7295893 Sunaoshi Nov 2007 B2
7313464 Perreault et al. Dec 2007 B1
7331967 Lee et al. Feb 2008 B2
7357774 Cooper Apr 2008 B2
7422592 Morley et al. Sep 2008 B2
7476237 Taniguchi et al. Jan 2009 B2
7549998 Braun Jun 2009 B2
7608083 Lee et al. Oct 2009 B2
7654431 Hueil et al. Feb 2010 B2
7666191 Orban, III et al. Feb 2010 B2
7674255 Braun Mar 2010 B2
7695481 Wang et al. Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699855 Anderson et al. Apr 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7819884 Lee et al. Oct 2010 B2
7819885 Cooper Oct 2010 B2
7862579 Ortiz et al. Jan 2011 B2
7865266 Moll et al. Jan 2011 B2
7955321 Kishi et al. Jun 2011 B2
8105320 Manzo Jan 2012 B2
8155479 Hoffman et al. Apr 2012 B2
8267958 Braun Sep 2012 B2
8350806 Nagasaka et al. Jan 2013 B2
8423186 Itkowitz et al. Apr 2013 B2
8496647 Blumenkranz et al. Jul 2013 B2
8540748 Murphy et al. Sep 2013 B2
8845681 Grace Sep 2014 B2
8876858 Braun Nov 2014 B2
8903549 Itkowitz et al. Dec 2014 B2
8906002 Kishi et al. Dec 2014 B2
20010021859 Kawai et al. Sep 2001 A1
20010055062 Shioda et al. Dec 2001 A1
20020072736 Tierney et al. Jun 2002 A1
20020091374 Cooper Jul 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20030033024 Sunaoshi Feb 2003 A1
20030060927 Gerbi et al. Mar 2003 A1
20030069471 Nakanishi et al. Apr 2003 A1
20030083648 Wang et al. May 2003 A1
20030100817 Wang et al. May 2003 A1
20030216723 Shinmura et al. Nov 2003 A1
20040092912 Jinno et al. May 2004 A1
20040111113 Nakamura et al. Jun 2004 A1
20040140787 Okamoto et al. Jul 2004 A1
20040186345 Yang et al. Sep 2004 A1
20040186624 Oda et al. Sep 2004 A1
20040243147 Lipow Dec 2004 A1
20050020876 Shioda et al. Jan 2005 A1
20050021050 Cooper Jan 2005 A1
20050033117 Ozaki et al. Feb 2005 A1
20050125027 Knodel et al. Jun 2005 A1
20050149003 Tierney et al. Jul 2005 A1
20050228365 Wang et al. Oct 2005 A1
20050273086 Green et al. Dec 2005 A1
20060052664 Julian et al. Mar 2006 A1
20060074408 Jinno et al. Apr 2006 A1
20060079865 Jinno et al. Apr 2006 A1
20060079866 Jinno et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060116973 Okamoto et al. Jun 2006 A1
20060155262 Kishi et al. Jul 2006 A1
20060161138 Orban, III et al. Jul 2006 A1
20060190031 Wales et al. Aug 2006 A1
20060235436 Anderson et al. Oct 2006 A1
20070012135 Tierney et al. Jan 2007 A1
20070089557 Solomon et al. Apr 2007 A1
20070119274 Devengenzo et al. May 2007 A1
20070137372 Devengenzo et al. Jun 2007 A1
20070167679 Miyamoto et al. Jul 2007 A1
20070167680 Miyamoto et al. Jul 2007 A1
20070173689 Ozaki et al. Jul 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070208375 Nishizawa et al. Sep 2007 A1
20070219668 Takahashi et al. Sep 2007 A1
20070225550 Gattani et al. Sep 2007 A1
20070249897 Miyamoto et al. Oct 2007 A1
20070265638 Lipow Nov 2007 A1
20080015611 Jinno et al. Jan 2008 A1
20080033240 Hoffman et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080051631 Dejima et al. Feb 2008 A1
20080059131 Tokita et al. Mar 2008 A1
20080103524 Grace May 2008 A1
20080140088 Orban, III Jun 2008 A1
20080147091 Cooper Jun 2008 A1
20080177285 Brock et al. Jul 2008 A1
20080204425 Nagasaka et al. Aug 2008 A1
20080215065 Wang et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080234866 Kishi et al. Sep 2008 A1
20080243142 Gildenberg Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080287735 Takemoto et al. Nov 2008 A1
20080312668 Grace Dec 2008 A1
20090018700 Okamoto et al. Jan 2009 A1
20090022262 Ohishi et al. Jan 2009 A1
20090030273 Murakami Jan 2009 A1
20090034820 Sugiyama Feb 2009 A1
20090036736 Dejima et al. Feb 2009 A1
20090036902 DiMaio et al. Feb 2009 A1
20090046146 Hoyt Feb 2009 A1
20090057369 Smith et al. Mar 2009 A1
20090088634 Zhao et al. Apr 2009 A1
20090088773 Zhao et al. Apr 2009 A1
20090088897 Zhao et al. Apr 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090193299 Sekiguchi et al. Jul 2009 A1
20090204911 Sekiguchi et al. Aug 2009 A1
20090247877 Tanaka et al. Oct 2009 A1
20090326318 Tognaccini et al. Dec 2009 A1
20100010673 Wang et al. Jan 2010 A1
20100013812 Gu et al. Jan 2010 A1
20100087835 Blumenkranz et al. Apr 2010 A1
20100163057 Anderson et al. Jul 2010 A1
20100174293 Orban, III et al. Jul 2010 A1
20100217284 Grace Aug 2010 A1
20100217528 Sato et al. Aug 2010 A1
20100228264 Robinson et al. Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100234857 Itkowitz et al. Sep 2010 A1
20100274087 Diolaiti et al. Oct 2010 A1
20100291520 Kurenov et al. Nov 2010 A1
20100317965 Itkowitz et al. Dec 2010 A1
20100318099 Itkowitz et al. Dec 2010 A1
20100318101 Choi et al. Dec 2010 A1
20100332031 Itkowitz et al. Dec 2010 A1
20110015650 Choi et al. Jan 2011 A1
20110050852 Lamprecht et al. Mar 2011 A1
20110118707 Burbank May 2011 A1
20110118748 Itkowitz May 2011 A1
20110118753 Itkowitz et al. May 2011 A1
20110137337 van den Dool et al. Jun 2011 A1
20110230894 Simaan et al. Sep 2011 A1
20110238079 Hannaford et al. Sep 2011 A1
20110282493 Ortmaier Nov 2011 A1
20110288579 Hyodo Nov 2011 A1
20120165828 Duque et al. Jun 2012 A1
20120191245 Fudaba et al. Jul 2012 A1
Foreign Referenced Citations (103)
Number Date Country
101167658 Apr 2008 CN
101426412 May 2009 CN
10 2008 041 867 Mar 2010 DE
0 677 278 Oct 1995 EP
1 728 475 Dec 2006 EP
2 092 875 Aug 2009 EP
2 298 220 Mar 2011 EP
2 332 484 Jun 2011 EP
63-29810 Feb 1988 JP
64-34688 Feb 1989 JP
1-271185 Oct 1989 JP
2-71980 Mar 1990 JP
2-292193 Dec 1990 JP
3-161289 Jul 1991 JP
5-96477 Apr 1993 JP
5-329784 Dec 1993 JP
7-1366 Jan 1995 JP
7-194609 Aug 1995 JP
7-241300 Sep 1995 JP
7-246578 Sep 1995 JP
7-96182 Oct 1995 JP
8-66883 Mar 1996 JP
8-215204 Aug 1996 JP
8-243080 Sep 1996 JP
10-128538 May 1998 JP
11-300662 Nov 1999 JP
2000-312684 Nov 2000 JP
2001-113481 Apr 2001 JP
2001-277157 Oct 2001 JP
2001-309920 Nov 2001 JP
2002-14287 Jan 2002 JP
2002-59380 Feb 2002 JP
2002-102248 Apr 2002 JP
2002-272758 Sep 2002 JP
2002-537884 Nov 2002 JP
2003-24336 Jan 2003 JP
2003-53685 Feb 2003 JP
2003-250812 Sep 2003 JP
2003-265500 Sep 2003 JP
2003-340752 Dec 2003 JP
2004-105451 Apr 2004 JP
2005-511185 Apr 2005 JP
2005-192743 Jul 2005 JP
3686947 Aug 2005 JP
2005-261827 Sep 2005 JP
2005-312991 Nov 2005 JP
2006-61272 Mar 2006 JP
2006-167867 Jun 2006 JP
2006-288955 Oct 2006 JP
2006-321027 Nov 2006 JP
2007-29274 Feb 2007 JP
2007-38315 Feb 2007 JP
2007-98507 Apr 2007 JP
2007-105485 Apr 2007 JP
3999816 Oct 2007 JP
2008-282 Jan 2008 JP
2008-36793 Feb 2008 JP
4058113 Mar 2008 JP
2008-93270 Apr 2008 JP
2008-173724 Jul 2008 JP
4129313 Aug 2008 JP
4176126 Nov 2008 JP
2009-028157 Feb 2009 JP
2009-56164 Mar 2009 JP
2009-512514 Mar 2009 JP
2009-520573 May 2009 JP
2009-178230 Aug 2009 JP
2009-178541 Aug 2009 JP
2009-530037 Aug 2009 JP
2009-195694 Sep 2009 JP
2009-226093 Oct 2009 JP
2009-269127 Nov 2009 JP
2010-504127 Feb 2010 JP
2010-76012 Apr 2010 JP
2010-524548 Jul 2010 JP
2011-509112 Mar 2011 JP
2001-087281 Apr 2011 JP
2001-277157 Oct 2011 JP
2011-206213 Oct 2011 JP
2012-12104 Jan 2012 JP
2012-91310 May 2012 JP
9716123 May 1997 WO
9716124 May 1997 WO
9729690 Aug 1997 WO
9825666 Jun 1998 WO
0051486 Sep 2000 WO
0060421 Oct 2000 WO
03049596 Jun 2003 WO
WO 2007047782 Apr 2007 WO
2007075864 Jul 2007 WO
WO 2007111955 Oct 2007 WO
WO 2007126443 Nov 2007 WO
2007138674 Dec 2007 WO
2008038184 Apr 2008 WO
2008108289 Sep 2008 WO
2009034477 Mar 2009 WO
2009-089614 Jul 2009 WO
2010006057 Jan 2010 WO
2010109932 Sep 2010 WO
2011060139 May 2011 WO
2011060185 May 2011 WO
2011085815 Jul 2011 WO
WO 2012042949 Apr 2012 WO
Non-Patent Literature Citations (31)
Entry
International Search Report dated Oct. 23, 2012 from related International Application No. PCT/JP2012/070414.
International Search Report dated Sep. 4, 2012 from related International Application No. PCT/JP2012/070408.
International Search Report dated Aug. 28, 2012 from related International Application No. PCT/JP2012/069927.
International Search Report dated Sep. 4, 2012 from related International Application No. PCT/JP2012/070415.
International Search Report dated Oct. 16, 2012 from related International Application No. PCT/JP2012/070581.
International Search Report dated Nov. 13, 2012 from related International Application No. PCT/JP2012/070576.
International Search Report dated Sep. 18, 2012 from related International Application No. PCT/JP2012/070417.
International Search Report dated Oct. 30, 2012 from related International Application No. PCT/JP2012/070418.
International Search Report dated Sep. 11, 2012 from related International Application No. PCT/JP2012/070416.
International Search Report dated Sep. 18, 2012 from related International Application No. PCT/JP2012/070407.
International Search Report dated Sep. 18, 2012 from related International Application No. PCT/JP2012/069868.
International Search Report dated Nov. 6, 2012 from related International Application No. PCT/JP2012/069919.
International Search Report dated Sep. 11, 2012 from related International Application No. PCT/JP2012/069696.
English language abstract only of JP 01-234140 published Sep. 19, 1989.
Notice of Allowance dated Jan. 29, 2015 from related U.S. Appl. No. 14/168,551.
Extended Supplementary European Search Report dated Feb. 12, 2015 from related European Application No. 12 81 9447.9.
Extended Supplementary European Search Report dated Feb. 13, 2015 from related European Application No. 12 82 0679.4.
Supplementary European Search Report dated Feb. 18, 2015 from related European Application No. 12 82 0758.6.
Extended Supplementary European Search Report dated Feb. 23, 2015 from related European Application No. 12 81 9877.7.
Extended Supplementary European Search Report dated Feb. 23, 2015 from related European Application No. 12 82 0239.7.
Partial Supplementary European Search Report dated Feb. 26, 2015 from related European Application No. 12 82 0666.4.
Partial Supplementary European Search Report dated Feb. 27, 2015 from related European Application No. 12 81 9672.2.
Extended Supplementary European Search Report dated Mar. 2, 2015 from related European Application No. 12 82 0017.7.
Extended Supplementary European Search Report dated Mar. 16, 2015 from related European Application No. 12 82 0479.9.
Extended Supplementary European Search Report dated Mar. 16, 2015 from related European Application No. 12 81 9504.7.
Extended Supplementary European Search Report dated Mar. 16, 2015 from related European Application No. 12 81 9398.4.
Office Action dated Mar. 25, 2015 received in related U.S. Appl. No. 14/169,321.
Extended Supplementary European Search Report dated Mar. 27, 2015 from related European Application No. 12 82 0056.5.
U.S. Office Action dated Apr. 9, 2015 received in related U.S. Appl. No. 14/169,675.
Office Action dated May 8, 2015 received in related U.S. Appl. No. 14/157,920.
Chinese Office Action dated Jul. 1, 2015 from related Chinese Application No. 201280037244.6, together with an English language translation.
Related Publications (1)
Number Date Country
20130066333 A1 Mar 2013 US
Provisional Applications (1)
Number Date Country
61515203 Aug 2011 US