The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue. The surgical instruments may be configured for use in open surgical procedures, but have applications in other types of surgery, such as laparoscopic, endoscopic, and robotic-assisted procedures and may include end effectors that are articulatable relative to a shaft portion of the instrument to facilitate precise positioning within a patient.
The novel features of the various aspects are set forth with particularity in the appended claims. The described aspects, however, both as to organization and methods of operation, may be best understood by reference to the following description, taken in conjunction with the accompanying drawings in which:
Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 28, 2021 and which are each herein incorporated by reference in their respective entireties:
Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
References to items in the singular should be understood to include items in the plural, and vice versa, unless explicitly stated otherwise or clear from the text. Grammatical conjunctions are intended to express any and all disjunctive and conjunctive combinations of conjoined clauses, sentences, words, and the like, unless otherwise stated or clear from the context. Thus, the term “or” should generally be understood to mean “and/or”, etc.
Recitation of ranges of values herein are not intended to be limiting, referring instead individually to any and all values falling within the range, unless otherwise indicated herein, and each separate value within such a range is incorporated into the disclosure as if it were individually recited herein. The words “about,” “approximately” or the like, when accompanying a numerical value, are to be construed as indicating a deviation as would be appreciated by one of ordinary skill in the art to operate satisfactorily for an intended purpose. Similarly, words of approximation such as “approximately” or “substantially” when used in reference to physical characteristics, should be construed to contemplate a range of deviations that would be appreciated by one of ordinary skill in the art to operate satisfactorily for a corresponding use, function, purpose or the like.
The use of any and all examples, or exemplary language (“e.g.,” “such as,” or the like) provided herein, is intended merely to better illuminate the embodiments and does not pose a limitation on the scope of the embodiments. No language in the specification should be construed as indicating any unclaimed element as essential to the practice of the embodiments.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
It is common practice during various laparoscopic surgical procedures to insert a surgical end effector portion of a surgical instrument through a trocar that has been installed in the abdominal wall of a patient to access a surgical site located inside the patient's abdomen. In its simplest form, a trocar is a pen-shaped instrument with a sharp triangular point at one end that is typically used inside a hollow tube, known as a cannula or sleeve, to create an opening into the body through which surgical end effectors may be introduced. Such arrangement forms an access port into the body cavity through which surgical end effectors may be inserted. The inner diameter of the trocar's cannula necessarily limits the size of the end effector and drive-supporting shaft of the surgical instrument that may be inserted through the trocar.
Regardless of the specific type of surgical procedure being performed, once the surgical end effector has been inserted into the patient through the trocar cannula, it is often necessary to move the surgical end effector relative to the shaft assembly that is positioned within the trocar cannula in order to properly position the surgical end effector relative to the tissue or organ to be treated. This movement or positioning of the surgical end effector relative to the portion of the shaft that remains within the trocar cannula is often referred to as “articulation” of the surgical end effector. A variety of articulation joints have been developed to attach a surgical end effector to an associated shaft in order to facilitate such articulation of the surgical end effector. As one might expect, in many surgical procedures, it is desirable to employ a surgical end effector that has as large a range of articulation as possible.
Due to the size constraints imposed by the size of the trocar cannula, the articulation joint components must be sized so as to be freely insertable through the trocar cannula. These size constraints also limit the size and composition of various drive members and components that operably interface with the motors and/or other control systems that are supported in a housing that may be handheld or comprise a portion of a larger automated system. In many instances, these drive members must operably pass through the articulation joint to be operably coupled to or operably interface with the surgical end effector. For example, one such drive member is commonly employed to apply articulation control motions to the surgical end effector. During use, the articulation drive member may be unactuated to position the surgical end effector in an unarticulated position to facilitate insertion of the surgical end effector through the trocar and then be actuated to articulate the surgical end effector to a desired position once the surgical end effector has entered the patient.
Thus, the aforementioned size constraints form many challenges to developing an articulation system that can effectuate a desired range of articulation, yet accommodate a variety of different drive systems that are necessary to operate various features of the surgical end effector. Further, once the surgical end effector has been positioned in a desired articulated position, the articulation system and articulation joint must be able to retain the surgical end effector in that locked position during the actuation of the end effector and completion of the surgical procedure. Such articulation joint arrangements must also be able to withstand external forces that are experienced by the end effector during use.
A variety of surgical end effectors exist that are configured to cut and staple tissue. Such surgical end effectors commonly include a first jaw feature that supports a surgical staple cartridge and a second jaw that comprises an anvil. The jaws are supported relative to each other such that they can move between an open position and a closed position to position and clamp target tissue therebetween. Many of these surgical end effectors employ an axially moving firing member. In some end effector designs, the firing member is configured to engage the first and second jaws such that as the firing member is initially advanced distally, the firing member moves the jaws to the closed position. Other end effector designs employ a separate closure system that is independent and distinct from the system that operates the firing member.
The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
Further to the above, in these surgical end effectors, the sled is moved distally by the firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
Many surgical end effectors employ an axially movable firing beam that is attached to the firing member and is used to apply axial firing and retraction motions to the firing member. Many of such firing beams comprise a laminated construction that affords the firing beam with some degree of flexure about the articulation joint. As the firing beam traverses the articulation joint, the firing beam can apply de-articulation forces to the joint and can cause the beam to buckle. To prevent the firing beam from buckling under pressure, the articulation joint is commonly provided with lateral supports or “blow-out” plate features to support the portion of the beam that traverses the articulation joint. To advance the firing beam through an angle of greater than sixty degrees, for example, a lot of axial force is required. This axial force must be applied to the firing member in a balanced manner to avoid the firing member from binding with the jaws as the firing member moves distally. Any binding of the firing member with the jaws can lead to component damage and wear as well as require an increased amount of axial drive force to drive the firing member through the clamped tissue.
Other end effector designs employ a firing member that is rotary powered. In many of such designs, a rotary drive shaft extends through the articulation joint and interfaces with a rotatable firing member drive shaft that is rotatably supported within one of the jaws. The firing member threadably engages the rotatable firing member drive shaft and, as the rotatable firing member drive shaft is rotated, the firing member is driven through the end effector. Such arrangements require the supporting jaw to be larger to accommodate the firing member drive shaft. In such devices, a lower end of the firing member commonly operably interfaces with the drive shaft which can also result in an application of forces that tend to unbalance the firing member as it is driven distally.
In one form, the surgical end effector 1000 comprises a first jaw 1100 and a second jaw 1200. In the illustrated arrangement, the first jaw 1100 comprises an elongate channel 1110 that comprises a proximal end 1112 and a distal end 1114 and is configured to operably support a surgical staple cartridge 1300 therein. The surgical staple cartridge 1300 comprises a cartridge body 1302 that has an elongate slot 1304 therein. A plurality of surgical staples or fasteners (not shown) are stored therein on drivers (not shown) that are arranged in rows on each side of the elongate slot 1304. The drivers are each associated with corresponding staple cavities 1308 that open through a cartridge deck surface 1306. The surgical staple cartridge 1300 may be replaced after the staples/fasteners have been discharged therefrom. Other embodiments are contemplated wherein the elongate channel 1110 and/or the entire surgical end effector 1000 may is discarded after the surgical staple cartridge 1300 has been used. Such end effector arrangements may be referred to as “disposable loading units”, for example.
In the illustrated arrangement, the second jaw 1200 comprises an anvil 1210 that comprises an elongate anvil body 1212 that comprises a proximal end 1214 and a distal end 1216. In one arrangement, a pair of stiffening rods or members 1213 may be supported in the anvil body 1212 to provide the anvil body 1212 with added stiffness and rigidity. The anvil body 1212 comprises a staple-forming undersurface 1218 that faces the first jaw 1100 and may include a series of staple-forming pockets (not shown) that corresponds to each of the staples or fasteners in the surgical staple cartridge 1300. The anvil body 1212 may further include a pair of downwardly extending tissue stop features 1220 that are formed adjacent the proximal end 1214 of the anvil body 1212. One tissue stop feature 1220 extends from each side of the anvil body 1212 such that a distal end 1222 on each tissue stop corresponds to the proximal-most staples/fasteners in the surgical staple cartridge 1300. When the anvil 1210 is moved to a closed position onto tissue positioned between the staple-forming undersurface 1218 of the anvil 1210 and the cartridge deck surface 1306 of the surgical staple cartridge 1300, the tissue contacts the distal ends 1222 of the tissue stop features 1220 to prevent the tissue from migrating proximally past the proximal-most staples/fasteners to thereby ensure that the tissue that is cut is also stapled. When the surgical staple cartridge is “fired” as will be discussed in further detail below, the staples/fasteners supported within each staple cavity are driven out of the staple cavity 1308 through the clamped tissue and into forming contact with the staple-forming undersurface 1218 of the anvil 1210.
As can be seen in
In the illustrated arrangement, the elongate shaft assembly 2000 defines a shaft axis SA and comprises a proximal shaft portion 2100 that may operably interface with a housing of the control portion (e.g., handheld unit, robotic tool driver, etc.) of the surgical instrument 10. The elongate shaft assembly 2000 further comprises an articulation joint 2200 that is attached to the proximal shaft portion 2100 and the surgical end effector 1000. In various instances, the proximal shaft portion 2100 comprises a hollow outer tube 2110 that may be operably coupled to a housing 2002. See
As was discussed above, many surgical end effectors employ a firing member that is pushed distally through a surgical staple cartridge by an axially movable firing beam. The firing beam is commonly attached to the firing member in the center region of the firing member body. This attachment location can introduce an unbalance to the firing member as it is advanced through the end effector. Such unbalance can lead to undesirable friction between the firing member and the end effector jaws. The creation of this additional friction may require an application of a higher firing force to overcome such friction as well as can cause undesirable wear to portions of the jaws and/or the firing member. An application of higher firing forces to the firing beam may result in unwanted flexure in the firing beam as it traverses the articulation joint. Such additional flexure may cause the articulation joint to de-articulate—particularly when the surgical end effector is articulated at relatively high articulation angles. The surgical instrument 10 employs a firing system 2300 that may address many if not all of these issues as well as others.
As can be seen in
Traditional firing member arrangements employ long flexible cantilever wings that extend from a top portion and a bottom portion of the firing member. These cantilever wings slidably pass through slots in the anvil and channel that are commonly cut with a rectangular t-cutter which tended to produce higher friction surfaces. Such long cantilever wings have minimum surface area contact with the anvil and channel and can result in galling of those components. The keyhole-shaped channel slot 1140 and keyhole-shaped anvil slot 1240 may be cut with a round t-cutter and may be finished with a reamer/borer which will result in the creation of a lower friction surface. In addition, the top tubular body 2322 and the bottom tubular body 2352 tend to be stiffer than the prior cantilever wing arrangements and have increased surface area contact with the anvil and channel, respectively which can reduce galling and lead to a stronger sliding connection. Stated another way, because the anvil slot 1240 and the channel slot 1140 are keyhole-shaped and have less material removed than a traditional rectangular slot, the geometry and increased material may result in a stiffer anvil and channel when compared to prior arrangements.
Turning to
As can be seen in
Similarly, in at least one embodiment, the lower flexible spine assembly 2500 comprises a lower series 2510 of lower vertebra members 2520 that are loosely coupled together by a lower flexible coupler member 2502 that is attached to the bottom firing member feature 2350. The lower flexible coupler member 2502 may comprises a lower cable 2504 that extends through the bottom axial passage 2354 in the bottom firing member feature 2350 and a distal end 2506 of the bottom cable 2504 is attached to a retainer ferrule 2508 that is secured with the bottom axial passage 2354.
As can be seen in
Now turning to
The proximal rotary drive shaft 2610 is operably supported within the elongate shaft assembly 2000 in a location that is proximal to the articulation joint 2200 and operably interfaces with a constant velocity (CV) drive shaft assembly 2620 that spans or extends axially through the articulation joint 2200. As can be seen in
As can be seen in
In at least one arrangement, the distal CV drive shaft 2670 comprises a proximal sphere portion 2672 that is sized to be movably received in the socket cavity 2662D in the distal-most drive joint 2650D. The proximal sphere portion 2672 includes joint pins 2674 that are movably received in the pin slots 2664D in the distal-most drive joint 2650D. The distal CV drive shaft 2670 further comprises a distally extending shaft stem 2676 that is configured to be non-rotatably coupled to the rotary drive screw 2700 that is positioned distal to the articulation joint 2200. The distal CV drive shaft 2670 includes a flange 2677 and a mounting barrel portion 2678 for receiving a thrust bearing housing 2680 thereon.
In the illustrated arrangement, when the series 2640 of movably coupled drive joints 2650 articulates, the joint pins 2674 remain in the corresponding pin slots 2664 of an adjacent drive joint 2650. In the example illustrated in
In the illustrated arrangement, the articulation joint 2200 comprises an articulation joint spring 2230 that is supported within an outer elastomeric joint assembly 2210. The outer elastomeric joint assembly 2210 comprises a distal end 2212 that is attached to the proximal end 1112 of the elongate channel 1110. For example, as can be seen in
To prevent the drive joints 2650 from buckling during articulation, the series 2640 of movably coupled drive joints 2650 extend through at least one low friction articulation joint spring 2730 that is supported within the outer elastomeric joint assembly 2210. See
To further ensure that the drive joints 2650 are always engaged with each other, a proximal drive spring 2740 is employed to apply an axial biasing force to the series 2640 of drive joints 2650. For example, as can be seen in
As can be seen in
As indicated above, each of the upper vertebra members 2520 is movably received on an upper flexible coupler member 2402 in the form of a top cable 2404. As was described above, the distal end 2406 of the top cable 2404 is secured to the top firing member feature 2320 of the firing member 2310. Similarly, each of the lower vertebra members 2520 is movably received on a lower flexible coupler member 2502 in the form of a lower cable 2504. A distal end 2506 of the lower cable 2504 is secured to the bottom firing member feature 2350 of the firing member 2310. In at least one arrangement, the top cable 2404 and the bottom cable 2504 extend through the proximal shaft portion 2100 and, as will be discussed in further detail below, may interface with a bailout arrangement supported in the housing for retracting the firing member 2310 back to its home or starting position should the firing member drive system fail.
Turning again to
When the upper vertebra members 2420 and the lower vertebra members 2520 angle through the articulation joint (after the end effector has been positioned in an articulated position), the gaps between the respective vertebra members 2420, 2520 increase in each series 2410, 2510 which causes the springs 2421, 2521 to become tighter. The compression limiting springs 2421, 2521 provide enough slack in the cables 2404, 2504, respectively to enable the vertebra members 2420, 2520 angle through the most extreme articulation angles. If the cables 2404, 2504 are pulled too tight, the spring holders 2423, 2523 will contact their respective proximal-most vertebra members 2420P, 2520P. Such compression limiting arrangements ensure that the vertebra members 2420, 2520 in their respective series 2410, 2510 always remain close enough together so that the rotary drive screw 2700 will always drivingly engage them in the manner discussed in further detail below. When the vertebra members 2420, 2520 are aligned straight again, the compression limiting springs 2421, 2521 may partially relax while still maintaining some compression between the vertebra members.
As indicated above, when the upper vertebra members 2420 are arranged in the upper series 2410 and lower vertebra members 2520 are arranged in the lower series 2510, the convex mounds and concave recesses in each vertebra member as well as the compression limiter springs serve to maintain the upper and lower vertebra members in relatively linear alignment for driving engagement by the rotary drive screw 2700. As can be seen in
Turning to
As can be seen in
A power screw is a threaded rod with a full three hundred sixty degree nut around it. Rotation of the power screw causes the nut to advance or move longitudinally. In the present arrangements, however, due to space constraints, a full three hundred sixty degree nut cannot fit inside the end effector. In a general sense, the upper flexible spine assembly 2400 and the lower flexible spine assembly 2500 comprise a radially/longitudinally segmented “power screw nut” that is rotatably driven by the rotary drive screw 2700. When the rotary drive screw is rotated in a first rotary direction, the rotary drive screw 2700 drives one or more vertebra members in each of the upper series and lower series of vertebra members longitudinally while the vertebra members 2420, 2520 stay in the same locations radially. The upper series 2410 and lower series 2510 are constrained from rotating around the rotary drive screw 2700 and can only move longitudinally. In one arrangement, the upper vertebra members 2420 in the upper series 2410 and the lower vertebra members 2520 in the lower series 2510 only surround the rotary drive screw 2700 with less than ten degrees each.
The surgical instrument 10 also comprises an articulation system 2240 that is configured to apply articulation motions to the surgical end effector 1000 to articulate the surgical end effector relative to the elongate shaft assembly 2000. In at least one arrangement, for example, the articulation system comprises four articulation cables 2242, 2246, 2250, and 2254 that extend through the elongate shaft assembly 2000. See
Because the radially/longitudinally segmented power screw nut arrangement disclosed herein does not have the same constraints as a three hundred sixty degree nut, the upper vertebra members 2420 in the upper series 2410 and the lower vertebra members 2520 in the lower series 2510 are constrained to ensure that their loads are transferred to the firing member in a longitudinal direction. To maintain each of the upper vertebra members 2420 in the desired orientation and to prevent the upper vertebra members 2420 from becoming snagged or disoriented when traversing through the articulation joint 2200, the upper vertebra members 2420 are aligned to pass through an upper sleeve 2470 that extends through an upper portion of the outer elastomeric joint assembly 2210 of the articulation joint 2200. See
Similarly, a lower sleeve 2570 is employed to support the lower vertebra members 2520 as they pass through the articulation joint 2200. A distal end 2572 of the lower sleeve 2570 is supported in the proximal end of the elongate channel and a proximal end of the lower sleeve 2570 is supported in the distal end of the proximal support shaft 2120. Like the upper sleeve 2470, the lower sleeve 2570 is fabricated from a polymer or plastic material that has a low coefficient of friction and is flexible to enable the lower sleeve 2570 to flex with the outer elastomeric joint assembly 2210. The lower sleeve 2570 protects the lower vertebra members 2520 from contacting the outer elastomeric joint assembly 2210 as they pass through the articulation joint 2200. Stated another way, the lower sleeve 2570 forms a low friction, flexible, continuous, uninterrupted, and fully encapsulating path for the lower vertebra members 2520 as they traverse the articulation joint 2200. In various embodiments, the upper sleeve 2470 and the lower sleeve 2570 are configured to bend freely without creating a kink. To prevent the formation of kinks in the sleeves, in at least one arrangement, the sleeves 2470, 2570 are supported within the outer elastomeric joint assembly 2210 such that the sleeves may move axially. For example, when the articulation joint angles up, the lower sleeve 2570 may slide distally and have a large bend radius; the upper sleeve 2470 in the same example, may slide proximally and have a tighter bend radius. By moving axially, the amount of material exposed outside of the joint assembly 2210 which might otherwise be susceptible to kinking under a tight bend radius is reduced. In at least one arrangement, the distal end 2472 of the upper sleeve 2470 is formed with an upper scoop 2476 that is configured to funnel the upper vertebra members 2420 into the anvil cap 1260. Similarly, the distal end of the lower sleeve 2570 may be formed with a lower scoop that is configured to funnel the lower vertebra members 2520 into the channel slot 1140 in the elongate channel 1110.
As indicated above, the anvil mounting portion 1230 comprises a pair of laterally extending mounting pins 1232 that are configured to be received in corresponding mounting cradles or pivot cradles 1120 that are formed in the proximal end 1112 of the elongate channel 1110. The mounting pins 1232 are pivotally retained within the mounting cradles 1120 by an anvil cap 1260 that is attached to the proximal end 1112 of the elongate channel 1110 in the above-described manners. The anvil cap 1260 comprises a proximal end 1262 and a distal end 1264 and has a keyhole-shaped vertebra passage 1266 extending therethrough to accommodate passage of the top firing member feature 2320 and upper vertebra members 2420 therethrough.
In the illustrated arrangement, the anvil 1210 is moved to the open position by a pair of anvil springs 1270 that are supported within the proximal end of the elongate channel. See
In general, the highest firing forces established in an endocutter are associated with cutting and stapling tissue. If those same forces can be used to close the anvil, then the forces generated during pre-clamping and grasping of tissue can be high as well. In at least one arrangement, the firing member body 2312 further comprises a firing member wing or tab 2355 that extends laterally from each lateral side of the firing member body 2312. See
The firing member 2310 may be moved in the proximal direction PD by rotating the rotary drive screw 2700 in a second rotary direction. Thus, when the firing member 2310 is in the “home” or starting position, the anvil 1210 may be biased into the fully open position by the anvil springs 1270. Activation of the rotary drive system 2600 to apply a rotary motion to the rotary drive screw 2700 in a first rotary direction will cause the firing member 2310 to be advanced distally from the home or starting position to apply an anvil closure motion to the anvil 1210 to move the anvil closed to clamp the target tissue between the anvil 1210 and the surgical staple cartridge 1300. Continued rotation of the rotary drive screw in the first rotary direction will cause the firing member 2310 to continue to distally advance through the surgical end effector 1000. As the firing member 2310 moves distally, the firing member 2310 contacts a sled 1312 (
If during the firing process, the rotary drive system 2600 quits rotating, the firing member 2310 may become stuck within the surgical end effector. In such instance, the top firing member feature 2320 may remain engaged with the anvil 1210 and the bottom firing member feature 2350 may remain engaged with the elongate channel 1110 and thereby prevent the surgeon from moving the anvil 1210 to an open position to release the tissue clamped between anvil 1210 and surgical staple cartridge 1300. This could occur, for example, if the motor or other control arrangement supplying the rotary drive motions to the rotary drive shaft 2610 fails or otherwise becomes inoperative. In such instances, the firing member 2310 may be retracted back to the home or starting position within the surgical end effector 1000 by pulling the top cable 2404 and the lower cable 2504 in a proximal direction. For example, a proximal portion of the top cable 2404 and a proximal portion of the lower cable 2505 may be spooled on a rotary spool or cable-management system 2009 (
The following equation may be used to determine whether the rotary drive screw 2700 will spin in reverse depending upon the lead (L), pitch diameter (dp), tooth angle (α) and friction (μ):
The rotary drive screw 2700 may self-lock if the above equation is true. For the most part, in many instances, the pitch diameter is mostly fixed for an endocutter, but the lead and tooth angle are variable. Because the upper vertebra member teeth 2450 and lower vertebra member teeth 2550 are mostly square, the rotary drive screw 2700 is more likely to be back drivable (cos (90)=1). The leads of the upper vertebra member teeth 2450 and lower vertebra member teeth 2550 may also be advantageous in that the rolling friction between the vertebra members 2420, 2520 and the rotary drive screw 2700 is more likely to enable the rotary drive screw 2700 to be back driven. Thus, in the event of an emergency, the surgeon can pull on the upper and lower cables 2404, 2504 in the proximal direction to cause the firing member 2310 to fully retract for a quick “bailout”.
As indicated above, the relative control motions for the rotary drive system 2600, as well as the various cable-management systems employed in connection with the firing system 2300 and the articulation control system 2240, may be supported within a housing 2002 which may be handheld or comprise a portion of a larger automated surgical system. The firing system 2300, articulation control system 2240, and the rotary drive system 2600 may, for example, be motor-controlled and operated by one or more control circuits.
One method of using the surgical instrument 10 may involve the use of the surgical instrument 10 to cut and staple target tissue within a patient using laparoscopic techniques. For example, one or more trocars may have been placed through the abdominal wall of a patient to provide access to a target tissue within the patient. The surgical end effector 1000 may be inserted through one trocar and one or more cameras or other surgical instruments may be inserted through the other trocar(s). To enable the surgical end effector 1000 to pass through the trocar cannula, the surgical end effector 1000 is positioned in an unarticulated orientation and the jaws 1100 and 1200 must be closed. To retain the jaws 1100 and 1200 in the closed position for insertion purposes, for example, the rotary drive system 2600 may be actuated to apply the second rotary motion to the rotary drive screw 2700 to cause the firing member 2310 to move proximally from the starting position to move the anvil 1210 (jaw 1200) to the closed position. See
Once inside the abdomen and before engaging the target tissue, the surgeon may need to articulate the surgical end effector 1000 into an advantageous position. The articulation control system 2240 is then actuated to articulate the surgical end effector in one or more planes relative to a portion of the elongate shaft assembly 2000 that is received within the cannula of the trocar. Once the surgeon has oriented the surgical end effector 1000 in a desirable position, the articulation control system 2240 is deactivated to retain the surgical end effector 1000 in the articulated orientation. The surgeon may then use the surgical end effector to grasp the target tissue or adjacent tissue by activating the rotary drive system to rotate the rotary drive screw in the second rotary direction to move the firing member proximally to cause the anvil 1210 to rapidly close to grasp the tissue between the anvil 1210 and the surgical staple cartridge 1300. The anvil 1210 may be opened by reversing the rotation of the rotary drive screw 2700. This process may be repeated as necessary until the target tissue has be properly positioned between the anvil 1210 and the surgical staple cartridge 1300.
Once the target tissue has been positioned between the anvil 1210 and the surgical staple cartridge, the surgeon may commence the closing and firing process by activating the rotary drive system 2600 to drive the firing member 2310 distally from the starting position. As the firing member 2310 moves distally from the starting position, the firing member 2310 applies a closure motion to the anvil 1210 and moves the anvil 1210 from the open position to the closed position in the manners discussed above. As the firing member 2310 moves distally, the firing member 2310 retains the anvil 1210 in the closed position thereby clamping the target tissue between the anvil 1210 and the surgical staple cartridge 1300. As the firing member 2310 moves distally, the firing member 2310 contacts a sled 1312 supported in the surgical staple cartridge 1300 and also drives the sled 1312 distally through the staple cartridge body 1302. The sled 1312 serially drives rows of drivers supported in the staple cartridge toward the clamped target tissue. Each driver has supported thereon one or more surgical staples or fasteners which are then driven through the target tissue and into forming contact with the underside of the anvil 1210. As the firing member 2310 moves distally, the tissue cutting edge 2314 thereon cuts through the stapled tissue.
After the firing member 2310 has been driven distally to the ending position within the surgical end effector 1000 (
As can be seen in
In the illustrated arrangement, the anvil 23210 is moved to the open position by a pair of anvil springs 23270 that are supported within the proximal end 23112 of the elongate channel 23110. See
In the illustrated arrangement, the elongate shaft assembly 24000 defines a shaft axis SA and comprises a proximal shaft portion 24100 that may operably interface with a housing of the control portion (e.g., handheld unit, robotic tool driver, etc.) of the surgical instrument 22010. The elongate shaft assembly 24000 further comprises an articulation joint 24200 that is attached to the proximal shaft portion 24100 and the surgical end effector 23000. In various instances, the proximal shaft portion 24100 comprises a hollow outer tube 24110 that may be operably coupled to a housing in the various manners discussed above. As can be seen in
As was discussed above, many surgical end effectors employ a firing member that is pushed distally through a surgical staple cartridge by an axially movable firing beam. The firing beam is commonly attached to the firing member in the center region of the firing member body. This attachment location can introduce an unbalance to the firing member as it is advanced through the end effector. Such unbalance can lead to undesirable friction between the firing member and the end effector jaws. The creation of this additional friction may require an application of a higher firing force to overcome such friction as well as can cause undesirable wear to portions of the jaws and/or the firing member. An application of higher firing forces to the firing beam may result in unwanted flexure in the firing beam as it traverses the articulation joint. Such additional flexure may cause the articulation joint to de-articulate—particularly when the surgical end effector is articulated at relatively high articulation angles. The surgical instrument 22010 employs a firing system 24300 that is identical to or very similar in many aspects as firing system 2300 described above. As such, only those aspects of the firing system 24300 needed to understand the operation of the surgical instrument 22010 will be discussed below.
As can be seen in
In the illustrated arrangement, the firing system 24300 comprises an upper flexible spine assembly 24400 that is operably coupled to the top firing member feature 24320 of the firing member 24310. In at least one embodiment, the upper flexible spine assembly 24400 comprises an upper series 24410 of upper vertebra members 24420 that are loosely coupled together by an upper flexible coupler member 24440 that extends through each of the upper vertebra members 24420 and is attached to the top firing member feature 24320.
As can be seen in
In at least one embodiment, an upper alignment member 24480 is employed to assist with the alignment of the upper vertebra members 24420 in the upper series 24410. In one arrangement, the alignment member 24480 comprises a spring member or metal cable which may be fabricated from Nitinol wire, spring steel, etc., and be formed with a distal upper looped end 24482 and two upper leg portions 24484 that extend through corresponding upper passages 24425 in each upper vertebra body portion 24422. The upper flexible coupler member 24440 extends through an upper passage 24429 in each of the upper vertebra members 24420 to be attached to the firing member 24310. In particular, a distal end portion 24442 extends through the top axial passage 24324 in the top firing member feature 24320 and is secured therein by an upper retention lug 24444. A proximal portion of the upper flexible coupler member 24440 may interface with a corresponding rotary spool or cable-management system of the various types and designs disclosed herein that serve to payout and take up the upper flexible coupler member 24440 to maintain a desired amount of tension therein during operation and articulation of the surgical end effector 23000. The cable management system may be motor powered or manually powered (ratchet arrangement, etc.) to maintain a desired amount of tension in the upper flexible coupler member 24440. The amount of tension in each flexible coupler member may vary depending upon the relative positioning of the surgical end effector 23000 to the elongate shaft assembly 24000.
The firing system 24300 further comprises a lower flexible spine assembly 24500 that is operably coupled to the bottom firing member feature 24350. The lower flexible spine assembly 24500 comprises a lower series 24510 of lower vertebra members 24520 that are loosely coupled together by a lower flexible coupler member 24540 that extends through each of the lower vertebra members 24520 and is attached to the bottom firing member feature 24350. As can be seen in
In at least one embodiment, a lower alignment member 24580 is employed to assist with the alignment of the lower vertebra members 24520 in the lower series 24510. In one arrangement, the lower alignment member 24580 comprises a spring member or metal cable which may be fabricated from Nitinol wire, spring steel, etc., and be formed with a distal lower looped end 24582 and two lower leg portions 24584 that extend through corresponding lower passages 24525 in each lower vertebra body portion 24522. The lower flexible coupler member 24540 extends through the bottom axial passage 24529 in each of the lower vertebra members 24520 to be attached to the firing member 24310. In particular, a distal end portion 24542 of the lower flexible coupler member 24540 extends through the bottom axial passage 24354 in the bottom firing member feature 24350 and is secured therein by a lower retention lug 24544. A proximal portion of the lower flexible coupler member 24540 may interface with a corresponding rotary spool or cable-management system of the various types and designs disclosed herein that serve to payout and take up the lower flexible coupler member 24540 to maintain a desired amount of tension therein during operation and articulation of the surgical end effector 23000. The cable management system may be motor powered or manually powered (ratchet arrangement, etc.) to maintain a desired amount of tension in the lower flexible coupler member 24540. The amount of tension in each flexible coupler member may vary depending upon the relative positioning of the surgical end effector 23000 to the elongate shaft assembly 24000.
In accordance with at least one aspect, a large surface area is advantageous for distributing the force between the vertebra members when they push so that the vertebra members cannot twist relative to each other. The available area in the anvil and channel is limited and the anvil and channel must remain stiff. The T-shaped upper vertebra members 24420 and the T-shaped lower vertebra members 24520 are designed to fit in the limited spaces available in the anvil 23210 and the elongate channel 23110 while ensuring that there is a large amount of area to distribute the firing loads. The curved surfaces on each upper vertebra member 24420 and each lower vertebra member 24520 allow each of those vertebras to better transfer loads between themselves even when they tilt. The upper alignment member 24480 and the lower alignment member 24580 may also serve to prevent the upper vertebra members 24420 and the lower vertebra members 24520 from twisting relative to each other. The large surface area may also help to prevent galling of the vertebra members and/or the anvil and channel. The upper flexible spine assembly 24400 and the lower flexible spine assembly 24500 otherwise operably interface with the rotary drive screw 2700 arrangements as disclosed herein. The upper flexible coupler member 24440 and the lower flexible coupler member 24540 may also be used in the manners discussed above to retract the firing member 24310 back to its starting position if, during a firing stroke, the firing drive system 24300 fails.
As can be seen in
Turning now to
As can be seen in
The surgical instrument 22010 also comprises an articulation system 24240 that is configured to apply articulation motions to the surgical end effector 23000 to articulate the surgical end effector 23000 relative to the elongate shaft assembly 24000. In at least one arrangement, for example, as mentioned above, the articulation system 24240 comprises four articulation cables 24242, 24246, 24250, and 24254 that extend through the elongate shaft assembly 2400. See
In one arrangement, each of the articulation cables 24242, 24246, 24250, and 24254 extend through corresponding coil springs 24896 that are supported in cavities 24125 in the distal end 24124 of the rigid proximal support shaft 24120. In addition, each coil spring 24896 is associated with a tensioning lug 24897 that is also journaled onto each respective articulation cable 24242, 24246, 24250, and 24524 and is secured thereon to attain a desired amount of compression in each spring 24896 which serves to retain the annular rib members 24810P, 24810, and 24810D in movable engagement with each other and with the proximal attachment rib 24870 and the distal attachment rib 24890. The cables 24242, 24246, 24250, and 24254 operably interface with an articulation control system that is supported in the housing of the surgical instrument 22010. For example, as was discussed above, a proximal portion of each cable 24242, 24246, 24250, and 24254 may be spooled on a corresponding rotary spool or cable-management system 2007 (
As can be seen in
To further prevent the drive joints 2650 from buckling during articulation, the series 2640 of movably coupled drive joints 2650 extend through at least one low friction drive cover 24730 that extends through the central drive passage 24860 in each of the annular rib members 24810. In the arrangement depicted in
Various embodiments of the present disclosure provide advantages over previous surgical endocutter configurations that are capable of articulation. For example, pushing a firing member forward in an articulating end effector generally requires a lot of force and that force must be balanced. For example, when firing the firing member at an angle of greater than sixty degrees, it becomes very difficult to push a beam through the articulation joint. The joint also experiences significant loads which may cause the articulation joint to de-articulate. By employing an upper flexible drive arrangement and a lower flexible drive arrangement that are each flexible through the articulation joint, but then become rigid when they are distal to the articulation joint can allow for a large degree of articulation (e.g., articulation angles over seventy degrees) while applying balanced loads to the firing member that are constrained to the firing member and not to the articulation joint. Stated another way, torsional loads are applied proximal to the articulation joint instead of longitudinal loads which could lead to de-articulation of the end effector. The torsional loads are converted to longitudinal loads at a position that is distal to the articulation joint. Thus, the rotary drive screw serves to actually convert torsional motion or loads to longitudinal loads that are applied to the firing member at a location that is distal to the articulation joint.
Further, by longitudinally breaking up the threaded drive arrangements, the threaded drive arrangements pass through the articulation joint while also effectively decreasing the length of the surgical end effector. For example, each single vertebra tooth is significantly shorter than multiple pitches rigidly connected. The vertebra can angle as they pass through the articulation joint. This flexible interconnection enables the rotary drive screw to be closely positioned to the articulation joint as compared to being significantly spaced therefrom if all of the pitches were rigidly connected.
In at least one form, the surgical end effector 4000 comprises a first jaw 4100 and a second jaw 4200. In the illustrated arrangement, the first jaw 4100 comprises an elongate channel 4110 that comprises a proximal end 4112 and a distal end 4114 and is configured to operably support a surgical staple cartridge 1300 therein. In the illustrated arrangement, the second jaw 4200 comprises an anvil 4210 that may be similar to anvil 1210 described above. In the illustrated arrangement, the elongate shaft assembly 5000 defines a shaft axis SA and comprises a proximal shaft segment that operably interfaces with a housing of the control portion (e.g., handheld unit, robotic tool driver, etc.) of the surgical instrument 3010. The elongate shaft assembly 5000 further comprises an articulation joint 5200 that is attached to a proximal shaft portion and the surgical end effector 4000.
The elongate shaft assembly 5000 may comprise a distal spine assembly 5010 that is attached to the proximal end 4112 of the elongate channel 4110 and the articulation joint 5200. See
The surgical instrument 3010 employs a firing drive system 4300 that comprises a firing member 4310 that includes a vertically-extending firing member body 4312 that comprises a top firing member feature and a bottom firing member feature. A tissue cutting blade 4314 is attached to or formed in the vertically-extending firing member body 4312. The firing drive system 4300 comprises a rotary drive nut 4400 that is configured to rotatably drive a series 4600 of drive components 4610 that operably interface with the firing member 4310. The rotary drive nut 4400 comprises a flexible proximal segment 4410 that spans the articulation joint 5200 and a threaded distal segment 4420 that is distal to the articulation joint 5200. The threaded distal segment 4420 comprises a series of variable pitched threads 4430, with coarse spacing 4432 at the proximal end, and tighter spacing 4434 at the distal or exit end. See
The rotary drive nut 4400 comprises a proximal segment 4410 and a threaded distal segment 4420. The threaded distal segment 4420 is located distal to the articulation joint 5200 and is configured to threadably engage a series 4600 of drive components 4610 that are loosely linked together by flexible tethers 4640. In at least one arrangement, for example, each drive component 4610 comprises a vertically extending plate member 4612 that each includes a top end 4614 and a bottom end 4618. The top end 4614 includes a top thread segment 4616 and the bottom end 4418 includes a bottom thread segment 4620. The top thread segment 4616 and the bottom thread segment 4620 are configured to threadably engage the threads 4430 of the rotary drive nut 4400. The series 4600 of drive components 4610 is configured to flexibly pass through the articulation joint 5200 and into a vertical passage 5012 in the distal spine assembly 5010. Rotation of the rotary drive nut 4400 in a first rotary direction causes the series 4600 of drive components 4610 to move axially in the distal direction and rotation of the rotary drive nut 4400 in a second rotary direction will cause the series 4600 of drive components 4610 to move axially in the proximal direction.
Turning to
In the illustrated example, the drive components 4610 in the series 4600 of drive components are flexibly linked together such that they can move relative to each other to accommodate the articulation joint and without the need for reinforcing and support plates that are commonly required when pushing a firing beam through an articulated joint. As the series of drive components 4610 enters and is drivingly engaged by the threaded distal segment 4420 which is distal to the articulation joint, the drive components 4610 form the axially rigid series of drive components for driving the firing member 4310 through the surgical end effector 4000. The anvil 4210 may be pivoted into an open position by a spring or other arrangement in the various manners disclosed herein and then closed by the firing member 4310 as the firing member 4310 is driven distally from a starting position to an ending position in the various manners discussed herein. Other jaw control arrangements may also be employed to control the opening and closing of the jaws.
Turning to
As can be seen in
Torsional loads that are applied to firing system components as they traverse the articulation joint are less likely to de-articulate the articulation joint than axial loads. Various embodiments disclosed herein transfer torsional loads to longitudinal loads in a location that is distal of the articulation joint. Because the longitudinal loads are contained in the end effector, de-articulation is prevented.
Pushing a firing beam forward in an articulating end effector generally requires a lot of force and such force needs to be balanced. For example, it is generally difficult to push a firing beam through an articulation joint that has been articulated to angles of greater than sixty degrees. As the firing beam traverses through the articulation joint, the firing beam can apply significant loads onto the articulation joint components which can cause the articulation joint to de-articulate.
The rotary drive nut 7340 is received on a flexible rotary drive shaft 7350 that is centrally disposed between the flexible upper drive band 7320 and the flexible lower drive band 7330 and traverses through the articulation joint area generally designated as 7200. The flexible rotary drive shaft 7350 may be rotated by a motor/gear arrangement supported in a housing of a surgical instrument. As the flexible rotary drive shaft 7350 rotates in a first direction, the flexible upper drive band 7320 and the flexible lower drive band 7330 will drive the firing member 7310 distally. Rotation of the flexible rotary drive shaft 7350 in a second direction will cause the flexible upper drive band 7320 and the flexible lower drive band 7330 to pull the firing member 7310 proximally. In at least one arrangement, flexible upper drive band 7320 and the flexible lower drive band 7330 pass through a guide member 7360 that surrounds the rotary drive nut 7340 to prevent the flexible upper drive band 7320 and the flexible lower drive band 7330 from bypassing the rotary drive nut 7340 during actuation of the flexible rotary drive shaft 7350. See
In the illustrated arrangement, the firing member 7310 is configured to move through the surgical end effector 7000 that comprises a first jaw 7010 and a second jaw 7030 that is configured to move relative to the first jaw 7010. In one embodiment, the first jaw 7010 comprises an elongate channel 7012 that is configured to operably support a surgical staple cartridge therein. See
In the illustrated example, the firing drive system 7300 may also be employed to apply opening and closing motions to the anvil 7032. As can be seen in
The firing drive system 7300 serves to apply a uniform drive motion to the firing member 7310 and can accommodate articulation angles that may be greater than seventy degrees, for example. In addition, because the rotary drive nut 7340 engages the flexible upper drive band 7320 and flexible lower drive band 7330 at a location that is distal to the articulation joint area 7200, the linear firing loads are confined to the end effector and do not go through the articulation joint.
In one form, the surgical end effector 10000 comprises a first jaw 10100 and a second jaw 10200. In the illustrated arrangement, the first jaw 10100 comprises an elongate channel 10110 that comprises a proximal end 10112 and a distal end 10114 and is configured to operably support a surgical staple cartridge 10300 therein. The surgical staple cartridge 10300 comprises a cartridge body 10302 that has an elongate slot 10304 therein. A plurality of surgical staples or fasteners (not shown) are stored therein on drivers (not shown) that are arranged in rows on each side of the elongate slot 10304. The drivers are each associated with corresponding staple cavities 10308 that open through a cartridge deck surface 10306. The surgical staple cartridge 10300 may be replaced after the staples/fasteners have been discharged therefrom. Other embodiments are contemplated wherein the elongate channel 10110 and/or the entire surgical end effector 10000 is discarded after the surgical staple cartridge 10300 has been used.
In the illustrated arrangement, the second jaw 10200 comprises an anvil 10210 that comprises an elongate anvil body 10212 that has a proximal end 10214 and a distal end 10216. The anvil body 10212 comprises a staple-forming undersurface 10218 that faces the first jaw 10100 and may include a series of staple-forming pockets (not shown) that correspond to each of the staples or fasteners in the surgical staple cartridge 10300. The anvil body 10212 may further include a pair of downwardly extending tissue stop features 10220 that are formed adjacent the proximal end 10214 of the anvil body 10212. One tissue stop feature 10220 extends from each side of the anvil body 10212 such that a distal end 10222 on each tissue stop 10220 corresponds to the proximal-most staples/fasteners in the surgical staple cartridge 10300. When the anvil 10200 is moved to a closed position onto tissue positioned between the staple-forming undersurface 10218 of the anvil 10200 and the cartridge deck surface 10306 of the surgical staple cartridge 10300, the tissue contacts the distal ends 10222 of the tissue stops 10220 to prevent the tissue from migrating proximally past the proximal-most staples/fasteners to thereby ensure that the tissue that is cut is also stapled. When the surgical staple cartridge is “fired” as will be discussed in further detail below, the staples/fasteners supported within each staple cavity are driven out of the staple cavity 10308 through the clamped tissue and into forming contact with the staple forming undersurface 10218 of the anvil 10200.
As can be seen in
In the illustrated arrangement, the elongate shaft assembly 12000 defines a shaft axis SA and comprises a hollow outer tube (omitted for clarity) that operably interfaces with a housing of the control portion (e.g., handheld unit, robotic tool driver, etc.) of the surgical instrument 9010. The elongate shaft assembly 12000 further comprises an articulation joint 12200 that may be attached to the hollow outer tube as well as the surgical end effector 10000 to facilitate selective articulation of the surgical end effector 10000 relative to the elongate shaft assembly 12000 about multiple articulation axes in multiple articulation planes. In at least one arrangement, for example, the articulation joint 12200 comprises a proximal joint member 12210, a central joint member 12230, and a distal joint member 12250. In one example, the central joint member 12230 operably interfaces with the proximal joint member 12210 such that the central joint member 12230 is selectively articulatable through a first or proximal articulation plane that is defined by a first or proximal articulation axis AA1 that is transverse to the shaft axis SA. Also in one example, the distal joint member 12250 operably interfaces with the central joint member 12230 such that the distal joint member 12250 is selectively articulatable through a second or distal articulation plane that is defined by a second or distal articulation axis AA2 that is transverse to the shaft axis SA and transverse to the first or proximal articulation axis AA1.
As can be seen in
The central joint member 12230 further comprises a central joint distal face 12240 that defines a centrally disposed upper apex portion 12242 that forms an upper radial surface 12244 and a lower apex portion 12246 that forms a lower radial surface 12248. See
The distal joint member 12250 is configured to articulate through a second or distal articulation plane defined by the second or distal articulation axis AA2 that extends between a point where the upper apex portion 12252 on the distal joint member 12250 contacts or confronts the upper apex portion 12242 on the central joint member 12230 and the point where the lower apex portion 12256 on the distal joint member 12250 contacts or confronts the lower apex portion 12246 on the central joint member 12230. See
Returning to
As can be seen in
As can be seen in
Each of the first and second lateral alpha wrap pulleys 12620, 12630 also comprises a corresponding spiral closure cam that is configured to apply closure motions to the anvil 10210. As can be seen in
Referring now to
In the illustrated example, the third cable 12530 extends from the cable control system 9030 through the elongate shaft assembly 12000 and through a corresponding passages in the proximal joint member 12210, the central joint member 12230, and the distal joint member 12250 to be received within a corresponding circumferential groove in the second lateral alpha wrap pulley 12630 where it is attached thereto. In addition, a fourth cable 12540 extends from the cable control system 9030 through the elongate shaft assembly 12000 and through corresponding passages in the proximal joint member 12210, the central joint member 12230, and the distal joint member 12250 to be received within a corresponding circumferential groove in the second lateral alpha wrap pulley 12630 where it is attached thereto.
In at least one example, to articulate the surgical end effector 10000 relative to the elongate shaft assembly 12000 through a first articulation plane that is defined by the first articulation axis AA1, the cable control system 9030 is actuated to pull on the second cable 12520 and the fourth cable 12540 simultaneously with a same amount of tension being applied to each cable 12520 and 12540. Because the cables 12520, 12540 apply equal amounts of tension on both sides of the pulley unit 12610, the pulley unit 12610 does not rotate. However, the pulling action of the cables 12520 and 12540 is translated through the articulation joint 12200 to the surgical end effector 10000 which results in the articulation of the central joint member 12230 relative to the proximal joint member 12210 about the first articulation axis AA1. See
The cable control system 9030 may also be used to control the opening and closing of the anvil 10210 in the following manner. As indicated above, when the spiral cams 10626 on the first lateral alpha wrap pulley 10620 and the second lateral alpha wrap pulley 10630 are in the position shown in
The above-described articulation joint 12200 and cable controlled system 9030 can facilitate two plane articulation while also supplying an additional actuation motion to the surgical end effector 10000 while keeping the central area of the articulation joint 12200 free for other control systems as will be discussed in further detail below. The articulation joint 12200 uses the last degree of freedom to actuate the jaw closure of the surgical end effector. In one aspect, the articulation joint 12200 comprises an N+1 joint, meaning that for N degrees of freedom, the joint requires N+1 cables to actuate it. Thus, in the above-described example, the articulation joint 12200 employs four actuation cables.
As can be seen in
As shown in
Similarly, in at least one embodiment, the lower flexible chain drive assembly 13500 comprises a lower series 13510 of lower chain link features 13520 that are loosely coupled together by a lower flexible coupler member 13502 that is attached to the bottom portion 13313 of the firing member 13310. In at least one example, each lower chain link feature 13520 comprises a lower ball or sphere 13522 that has a lower hollow passage 13524 therein that is configured to permit the lower flexible coupler member 13502 to pass therethrough. The lower flexible chain drive assembly 13500 further comprises an upper compression assembly 13530 for compressing the lower balls 13522 in the lower series 13510 together. In one arrangement, the lower compression assembly 13530 comprises a hollow flexible compression tube 13532 that is received on the lower flexible coupler member 13502. A lower ferrule 13540 is crimped onto the lower flexible coupler member 13502 and a lower compression spring 13542 is journaled between the lower ferrule 13540 and the lower flexible compression tube 13532 to distally bias the lower flexible compression tube 13532 into contact with the proximal-most lower ball 13522P in the lower series 13510 of lower chain link features 13520.
Now turning to
In the illustrated example, the rotary drive screw 13700 is driven by a rotary drive system 13600 that comprises a proximal rotary drive shaft 13610 that is rotatably supported within an axial passage 12225 within the proximal joint member 12210. As can be seen in
As can be seen in
The double joint rotary drive maintains a linear velocity output by using the angle constraint of the joint members of the articulation joint. This universal rotary joint arrangement on its own may have a sinusoidal output based on the angle of the joint. If the angles are equal and the phases are aligned correctly, the sine output of the first universal joint will be canceled out by the second universal joint, producing a linear rotational velocity. This is an advantage to putting a constraint in the rotary drive because it decreases the complexity of the components and prevents the need to remove material from the components to attain the requisite clearance. Thus, the components of this embodiment are more robust and stronger than prior arrangements. Further, the constant velocity of the rotary drive system will allow for smoother firing and reduced wear that may be otherwise caused by vibration.
Returning to
This arrangement enables two degrees of articulation freedom for a few reasons. For example, the upper flexible chain drive assembly 13400 and lower flexible chain drive assembly 13500 can bend freely both in the pitch and yaw axes. Thus, the upper flexible chain drive assembly 13400 and lower flexible chain drive assembly 13500 can assume a variety of configurations that can accommodate various articulated positions that are attainable with the articulation joint 12200. Once the firing member 13310 has traveled through the surgical end effector 10000 distally to an ending position therein, the rotary drive system 13600 is actuated to apply a second rotary drive motion to the rotary drive screw 13700 to cause the rotary drive screw 13700 to rotate about the shaft axis in a second rotary direction. As the rotary drive screw 13700 rotates in the second rotary direction, the upper flexible chain drive assembly 13400 and the lower flexible chain drive assembly 13500 serve to retract the firing member 13310 in the proximal direction back to the starting position. As the upper flexible chain drive assembly 13400 and the lower flexible chain drive assembly 13500 retract the firing member 13310 proximally, a portion of the upper flexible chain drive assembly 13400 and the lower flexible chain drive assembly 13500 traverse back through the articulation joint 12200 and into the elongate shaft. Such arrangement allows the firing member 13310 to translate a long distance, without increasing the length of the end effector joint. Additionally, because the rotary drive screw 13700 drivingly engages the upper flexible chain drive assembly 13400 and the lower flexible chain drive assembly 13500 at a location that is distal to the articulation joint 12200, the high compressive loads are contained within the surgical end effector 10000 and do not create a moment on the articulation joint 12200. This arrangement may greatly reduce the strength requirements of the articulation joint. See
In at least one arrangement, the surgical instrument 9010 may further comprise a cable tensioning system 13800 that is configured to maintain a desired amount of tension on the upper flexible chain drive assembly 13400 and the lower flexible chain drive assembly 13500 as they bend through the articulation joint 12200. Keeping the upper flexible chain drive assembly 13400 and the lower flexible chain drive assembly 13500 under a desired amount of tension as they traverse through the articulation joint 12200 may prevent slack from forming in those flexible chain drive assemblies 13400, 13500 which might otherwise cause them to undesirably bunch up in the articulation joint 12200.
Another cable management system 13800′ is illustrated in
One method of using the surgical instrument 9010 may involve the use of the surgical instrument to cut and staple target tissue within a patient using laparoscopic techniques. For example, one or more trocars may have been placed through the abdominal wall of a patient to provide access to a target tissue within the patient. The surgical end effector 10000 may be inserted through one trocar and one or more cameras or other surgical instruments may be inserted through the other trocar(s). To enable the surgical end effector 10000 to pass through the trocar cannula, the surgical end effector 10000 is positioned in an unarticulated orientation (
Once inside the abdomen and before engaging the target tissue, the surgeon may need to articulate the surgical end effector 10000 into an advantageous position. The cable control system 9030 may then be actuated to articulate the surgical end effector 10000 in one or more planes relative to a portion of the elongate shaft assembly 12000 that is received within the cannula of the trocar. Once the surgeon has oriented the surgical end effector 10000 in a desirable position, the cable control system 9030 is deactivated to retain the surgical end effector 10000 in the articulated orientation. Thereafter, the surgeon may activate the cable control system 9030 in the above-described manner to cause the anvil 10210 to rapidly close to grasp the tissue between the anvil 10210 and the surgical staple cartridge 10300. This process may be repeated as necessary until the target tissue has be properly positioned between the anvil 10210 and the surgical staple cartridge 10300.
Once the target tissue has been positioned between the anvil 10210 and the surgical staple cartridge 10300, the surgeon may activate the cable control system 9030 to close the anvil 10210 to clamp the target tissue in position. Thereafter, the firing process may be commenced by activating the rotary drive system 13600 to drive the firing member 13310 distally from the starting position. As the firing member 13310 moves distally, the firing member 13310 contacts a sled that is supported in the surgical staple cartridge 10300 and also drives the sled distally through the staple cartridge body. The sled serially drives rows of drivers supported in the staple cartridge toward the clamped target tissue. Each driver has supported thereon one or more surgical staples or fasteners which are then driven through the target tissue and into forming contact with the underside of the anvil 10210. As the firing member 13310 moves distally, the tissue cutting edge 13318 thereon cuts through the stapled tissue.
After the firing member 13310 has been driven distally to the ending position within the surgical end effector 10000, the rotary drive system 13600 is reversed which causes the firing member 13310 to retract proximally back to the starting position. Once the firing member 13310 has returned to the starting position, the cable control system 9030 may be activated to rotate the pulley unit 12610 back to an open position wherein the anvil springs 10240 can pivot the anvil 10210 to the open position to enable the surgeon to release the stapled tissue from the surgical end effector 10000. Once the stapled tissue has been released, the surgical end effector 10000 may be withdrawn out of the patient through the trocar cannula. To do so, the surgeon must first actuate the cable control system 9030 to return the surgical end effector 10000 to an unarticulated position and actuate the cable control system 9030 to pivot the anvil 10210 to the closed position. Thereafter, the surgical end effector 10000 may be withdrawn through the trocar cannula.
In previous endocutter arrangements, the firing member is pushed by a flexible beam. In such arrangements, the articulation joint must redirect the linear motion of the flexible beam as it enters the articulation joint back to that linear motion as it exits the articulation joint and enters the end effector. Because of the high loads required to push the flexible beam and the firing member, the flexible beam commonly experiences high amounts of friction as it exits the articulation joint and is linearly redirected into the end effector. This added amount of friction increases the amount of driving forces that are required to drive the firing member from the starting to ending position within the end effector while the end effector is articulated. Further, as the flexible beam traverses the articulation joint, it may apply de-articulation motions to the articulation joint components. Thus, the articulation joint components must be sufficiently robust so as to resist such de-articulation motions.
Other forms of surgical endocutters employ rotary forces to drive the firing member through the end effector. Such arrangements commonly employ a rotary drive screw that is housed within the channel that supports the staple cartridge. During use, the sled and tissue place large moments on the firing member which decrease the efficiency of the system and ultimately require higher rotary forces to actuate the firing member. It is difficult to move the rotary drive screw closer to the center of such forces because of the cartridge and the location of the tissue. It is also difficult to package a screw on top and bottom of the firing member without increasing the overall diameter of the surgical end effector. The various embodiments discussed above may address many if not all of these issues and challenges.
In one form, the surgical end effector 26000 comprises a first jaw 26100 and a second jaw 26200. In the illustrated arrangement, the first jaw 26100 comprises an elongate channel 26110 that comprises a proximal end 26112 and a distal end 26114 and is configured to operably support a surgical staple cartridge 10300 therein. An example of a surgical staple cartridge 10300 was described in detail above. The second jaw 26200 comprises an anvil 26210 that comprises an elongate anvil body 26212 that has a proximal end 26214 and a distal end 26216. The anvil body 26212 comprises a staple-forming undersurface 26218 that faces the first jaw 26100 and may include a series of staple-forming pockets (not shown) that corresponds to each of the staples or fasteners in the surgical staple cartridge 10300. As can be seen in
In the illustrated arrangement, the elongate shaft assembly 28000 defines a shaft axis SA and comprises a shaft spine assembly 28100 that is received in a hollow outer shaft tube 28102. See
The elongate shaft assembly 28000 further comprises an articulation joint 28200 that may be attached to the distal spine segment 28140 as well as the surgical end effector 26000 to facilitate selective articulation of the surgical end effector 26000 relative to the elongate shaft assembly 28000 in multiple articulation planes. Turning now to
In at least one embodiment, the articulation joint further comprises a series 28270 of elastomeric annular spacer members 28280 that serve to space and provide elastic support between each annular disc member 28210. The elastomeric annular spacer members 28280 define a spacer opening 28282 such that each elastomeric spacer member 28280 may be journaled on an annular hub portion 28232 of a corresponding annular disc member 28210. Each annular disc member 28210 is journaled on a central elastomeric support or continuum shaft 28300 that is mounted to the proximal attachment disc assembly 28240 and the anvil mounting bracket 26240. In one arrangement, the central continuum shaft 28300 is fabricated from an elastomeric material (e.g., rubber, polymer, etc.) and comprises a flanged proximal end 28302 and a cylindrical body portion 28304. The cylindrical body portion 28304 comprises a series of annular grooves 28306 therein. Each annular groove 28306 corresponds to one of the annular disc members 28210. The annular disc members 28210 and annular spacer members 28280 are journaled on the central continuum shaft 28300 as shown in
Still referring to
In at least one arrangement, to limit pivotal travel of the annular disc members to a range of relative pivotal travel and prevent complete relative rotation of the annular disc members 28210 relative to each other, the centrally-disposed spherical feature or protrusion 28222 of each of the annular disc member 28210P, 28210A, 28210B, 28210C, as well as the distal spherical feature or protrusion 26246 of the anvil mounting bracket 26240, includes a pair of arcuate pin grooves 28226 therein. As can be seen in
Returning to
The proximal cable portions 28412, 28422, 28432, 28442 may operably interface with a portion of a cable control system 25030 that is supported within or is otherwise associated with a housing of the surgical instrument 25010. The cable control system 25030 may comprise a plurality of cable support members/capstans, pulleys, etc. that are controlled by one or more corresponding motors that are controlled by a control circuit portion of the surgical instrument 25010. In various embodiments, the cable control system 25030 is configured to manage the tensioning (pulling) and paying out of cables at precise times during the articulation process. In addition, in at least one arrangement, the cable control system 25030 may be employed to control the opening and closing of the anvil 26210 as will be discussed in further detail below.
Turning now to
As can be seen in
Each of the first and second lateral alpha wrap pulleys 28520, 28530 also comprise a corresponding spiral closure cam that is configured to apply closure motions to the anvil 26210. As can be seen in
In the illustrated arrangement, the proximal attachment disc 28240, the proximal-most annular disc member 28210P, annular proximal disc members 28210A, 28210B, 28210C and anvil mounting bracket 26240 all include fourth articulation cable passages 28214 that are configured to permit each of the distal cable portions 28416, 28426, 28436, and 28446 to pass therethrough.
Referring now to
In the illustrated example, distal cable portion 28436 extends from the articulation rod 28434 through the articulation joint 28200 to be received within a corresponding circumferential groove 28534 in the second lateral alpha wrap pulley 28530 where it is secured therein. In addition, the distal cable portion 28446 extends from the articulation rod 28444 through the articulation joint 28200 to be received within a corresponding circumferential groove 28532 in the second lateral alpha wrap pulley 28530 where it is secure therein.
In at least one example, to articulate the surgical end effector 26000 relative to the elongate shaft assembly 28000 through a first articulation plane, the cable control system 25030 is actuated to pull on the distal cable portion 28426 and the distal cable portion 28446 simultaneously with a same amount of tension being applied to each distal cable portion 28426, 28446. Because the distal cable portions 28426, 28446 apply equal amounts of tension on both sides of the pulley unit 28510, the pulley unit 28510 does not rotate. However, the pulling action of the distal cable portions 28426, 28446 is translated through the articulation joint 28200 to the surgical end effector 26000 which results in the articulation of the articulation joint 28200 through a first articulation plane. To articulate the surgical end effector 26000 through a second plane of articulation that is transverse to the first plane of articulation, the cable control system 25030 is actuated to pull the distal cable portion 28436 and the distal cable portion 28446 simultaneously with a same amount of tension being applied to each distal cable portion 28436, 28446. Because the distal cable portions 28436, 28446 apply equal amounts of tension on both sides of the second lateral alpha wrap pulley 25830 of the pulley unit 28510, the pulley unit 28510 does not rotate. However, the pulling action of the distal cable portions 28436, 28446 is translated through the articulation joint 28200 to the surgical end effector 26000 which results in the articulation of the articulation joint 28200 in a second articulation plane.
The cable control system 25030 may also be used to control the opening and closing of the anvil 26210 in the following manner. As indicated above, when the spiral closure cams 28526 on the first lateral alpha wrap pulley 28520 and the second lateral alpha wrap pulley 28530 are in a first position, the anvil 26210 may be pivoted to an open position by an anvil spring or springs (not shown) that are positioned in the proximal end 26112 of the elongate channel 26110 and are position to contact the anvil mounting portion 26230 or anvil closure arms 26234 to pivot the anvil 26210 to the open position. To close the anvil 26210 from that position, the cable control system 25030 is actuated to pull the distal cable portion 28416 and the distal cable portion 28446 simultaneously with a same amount of tension being applied to each distal cable portion 28416 and 28446. These distal cable portions 28416, 28446 will cause the pulley unit 28510 to rotate causing the spiral closure cams 28526, 28536 to contact the anvil closure arms 26234 and cam the anvil 26210 to a closed position. It will be appreciated that by applying equal amounts of tension into the distal cable portions 28416, 28446, no moment is applied to the articulation joint 28200 because there are equal amounts of tension being applied on each side of the shaft axis SA. Such arrangement allows the jaw closure to be profiled as desired. This cable-control system 25030 may allow for a faster closure when the anvil 26210 is fully open. The cable-control system 25030 can also function as a lower speed/higher force generating closure mechanism for clamping onto tissue. The present cable controlled system 25030 may not produce the backlash that commonly occurs with other cable-controlled systems and thus can also be used to control the articulation position of the end effector. The above-described articulation joint 28200 and cable controlled system 25030 can facilitate multiple plane articulation while also supplying an additional actuation motion to the surgical end effector 26000.
As was discussed above, many surgical end effectors employ a firing member that is pushed distally through a surgical staple cartridge by an axially movable firing beam. The firing beam is commonly attached to the firing member in the center region of the firing member body. This attachment location can introduce an unbalance to the firing member as it is advanced through the end effector. Such unbalance can lead to undesirable friction between the firing member and the end effector jaws. The creation of this additional friction may require an application of a higher firing force to overcome such friction as well as can cause undesirable wear to portions of the jaws and/or the firing member. An application of higher firing forces to the firing beam may result in unwanted flexure in the firing beam as it traverses the articulation joint. Such additional flexure may cause the articulation joint to de-articulate—particularly when the surgical end effector is articulated at relatively high articulation angles. The surgical instrument 25010 employs a firing system 27000 that may address many if not all of such issues.
Referring now to
In the illustrated arrangement, the firing system 27000 comprises an upper firing assembly 27200 that operably interfaces with the top firing member feature 27120. The upper firing assembly 27200 includes an upper flexible outer tube or conduit 27210 that has a proximal end 27212 that is fixed to an upper insert 27214 that is non-movably attached to the shaft spine assembly 28100. For example, the upper insert 27214 may be welded to the shaft spine assembly 28100 or otherwise be attached thereto by adhesive or other appropriate fastening means. The flexible outer tube or conduit 27210 extends through upper passages 28216 provided through the proximal attachment disc assembly 28240, the proximal-most annular disc member 28210P, the annular disc members 28210A, 28210B, 28210C and the anvil mounting bracket 26240. A distal end 27216 of the flexible outer tube or conduit 27210 may be affixed to the anvil mounting bracket 26240.
In the illustrated embodiment, the upper firing assembly 27200 further includes an upper push rod 27220 that is slidably supported in a corresponding axial passage in the shaft spine assembly 28100. The upper firing assembly 27200 further comprises an upper push coil 27230 that is supported in an inner flexible upper sleeve 27240 which extends through the upper flexible outer tube or conduit 27210. A proximal end 27232 of the upper push coil 27230 and a proximal end 27242 of the inner flexible upper sleeve 27240 abut a distal end 27222 of the upper push rod 27220. The upper push coil 27230 is hollow and may comprise a coil spring that is fabricated from Nitinol, titanium, stainless steel, etc. In other arrangements, the upper push coil 27230 comprises a laser cut “hypotube” that essentially comprises a hollow tubular member with offset laser cuts therein which enable the hypotube to flex and bend while being capable of transmitting axial forces or motions. The inner flexible upper sleeve 27240 may be fabricated from a polymer or similar material and prevent tissue, fluid, and/or debris from infiltrating into the upper push coil 27230 which may hamper its ability to flex and bend during articulation of the surgical end effector relative to the elongate shaft assembly.
As can be seen in
In the illustrated example, the firing system 27000 further comprises a lower firing assembly 27300 that operably interfaces with the bottom firing member feature 27130. The lower firing assembly 27300 includes a lower flexible outer tube or conduit 27310 that has a proximal end 27312 that is fixed to a lower insert 27314 that is non-movably attached to the shaft spine assembly 28100. For example, the lower insert 27314 may be welded to the shaft spine assembly 28100 or otherwise be attached thereto by adhesive or other appropriate fastening means. The lower flexible outer tube or conduit 27310 extends through lower passages 28218 provided in each of the proximal attachment disc assembly 28240, the proximal-most annular disc member 28210P, annular disc members 28210A, 28210B, 28210C and anvil mounting bracket 26240. A distal end 27316 of the flexible outer tube or conduit 27310 is affixed to the anvil mounting bracket 26240.
In the illustrated embodiment, the lower firing assembly 27300 further includes a lower push rod 27320 that is slidably supported in a corresponding axial passage in the shaft spine assembly 28100. The lower firing assembly 27300 further comprises a lower push coil 27330 that is supported in an inner flexible lower sleeve 27340 which extends through the lower flexible outer tube or conduit 27310. A proximal end 27332 of the lower push coil 27330 and a proximal end 27342 of the inner flexible lower sleeve 27340 abut a distal end 27322 of the lower push rod 27320. The lower push coil 27330 is hollow and may comprise a coil spring that is fabricated from Nitinol, titanium, stainless steel, etc. In other arrangements, the lower push coil 27330 comprises a laser cut hypotube that essentially comprises a hollow tubular member with offset laser cuts therein which enable the hypotube to flex and bend. The inner flexible lower sleeve 27340 may be fabricated from a polymer or similar material and prevent tissue, fluid, and/or debris from infiltrating into the lower push coil 27330 which may hamper its ability to flex during articulation.
As can be seen in
In the illustrated arrangement, the firing system 27000 further comprises a differential drive assembly 27400 that is configured to axially drive the upper firing assembly 27200 and the lower firing assembly 27300. Turning to
Surgical stapling devices need to apply a high force on the firing member over a long displacement to form the staples and cut tissue. Transmitting that force through an articulated joint is especially challenging because it is difficult to redirect the forces in the desired direction and withstand the loads applied to it. The differential drive assembly 27400 described herein addresses and solves many, if not all of such challenges by employing two flexible outer tubes or conduits 27210, 27310 to constrain the paths of the flexible push coils 27230, 27330, respectively. As described herein, the upper flexible outer tube or conduit 27210 surrounds a portion of the upper push coil 27230 and the upper flexible outer tube or conduit 27310 surrounds a portion of the lower push coil 27330. Each of the outer tubes or conduits 27210, 27310 can bend but they also can resolve an axial tensile load. The ability to bend allows for the firing member force to be redirected through the articulated joint, and the ability to resolve tension allows for it to change the direction in which the push coil goes. When the push coil 27230, 27330 is put in compression, the flexible outer tube or conduit 27210, 27310 is put in tension. The outer tubes or conduits 27210, 27310 prevent the push coils 27230, 27330 from buckling. The outer tubes 27210, 27310 are terminated in a manner to resolve the tensile loads. As described above, the distal end 27216 of the flexible outer tube or conduit 27210 and the distal end 27316 of the flexible outer tube or conduit 27310 are both affixed to the anvil mounting bracket 26240. The proximal end 27212 of the flexible outer tube or conduit 27210 and the proximal end 27312 of the flexible outer tube or conduit 27310 are both affixed to the shaft spine assembly 28100. The pinion gear 27432 is in meshing engagement with the first or upper gear rack 27410 and the second or lower gear rack 27420 such that when one of the racks 27410, 27420 moves in one axial direction, the other rack 27410, 27420 axially moves in an opposite direction. As can be seen in
In accordance with one general aspect, the upper passages 28216 form an upper pathway 28221 (
When the surgical end effector 26000 is in the unarticulated position, the firing system 27000 may be actuated to drive the firing member 27100 from a starting position within the proximal end 26112 of the elongate channel 26100 to an ending position within the distal end 26114 of the elongate channel 26110. When the surgical end effector 26000 is in the unarticulated position, and the firing system 27000 is actuated, the differential drive assembly 27400 drives the upper firing assembly 27200 and the lower firing assembly 27300 equal axial distances in a same axial direction (i.e., the distal direction DD) to apply an upper axial drive motion and a lower axial drive motion to the firing member 27100. The upper axial drive motion and the lower axial drive motion are substantially equal in magnitude which serves to distally advance the firing member 27100 through the surgical end effector 26000 without binding which might otherwise occur should the upper axial drive motion and the lower axial drive motions be different in magnitude. Similarly, when the surgical end effector 26000 is in an articulated position relative to the elongate shaft assembly 28000, the firing system 27000 may be actuated to drive the firing member 27100 from the starting position to the ending position. In such instances, the differential drive assembly 27400 is configured to permit the upper firing assembly 27200 and the lower firing assembly 27300 to move in substantially equal distances in opposite axial directions to accommodate the articulated position. The differential drive assembly 27400 may then apply an upper axial drive motion and a lower axial drive motion that are equal to each other to the firing member 27100. For example, depending upon the articulated position of the surgical end effector 26000 relative to the elongate shaft assembly 28000, the upper firing assembly 27200, upon articulation of the surgical end effector 26000, may be moved proximally a first distance and the lower firing assembly 27300 may be positioned relative thereto distally a second distance that is substantially equal to the first distance by the pinion gear 27432. Thereafter, distal actuation of the firing drive actuator 27440 will cause the upper firing assembly 27200 and the lower firing assembly 27300 to apply an upper axial drive motion and a lower axial drive motion that are equal to each other to the firing member 27100. As used herein, when the carrier is moved distally, the carrier may apply “axial control motions” to the upper firing assembly 27200 and the lower firing assembly 27300. Thus, when the surgical end effector 26000 is in an unarticulated configuration, the carrier may apply equal amounts of axial control motions to the upper firing member 27200 and the lower firing member 27300 in the same axial direction (distal direction DD) and when the surgical end effector 26000 is in an articulated configuration, the carrier may apply “other equal amounts” of axial control motions to the upper firing member 27200 and the lower firing member 27300 in the same axial direction (distal direction DD) to move the firing member 27100 from the starting position to the ending position.
As can be seen in
In at least one embodiment, the first proximal cross pin assembly 30330 further comprises a second proximal cross pin 30340 that is rotatably journaled on the first proximal cross pin 30332. In one arrangement, the first proximal cross pin 30332 may comprise a first proximal bushing or low friction sleeve 30338 that is configured to facilitate free rotation between the first proximal cross pin 30332 and the second proximal cross pin 30340. The second proximal cross pin 30340 defines a second proximal pivot axis SPPA that is transverse to the first proximal pivot axis FPPA and a shaft axis SA that is defined by the elongate shaft assembly 32000. As can be seen in
In the illustrated example, the first link 30310 and the second link 30320 are coupled to the distal joint member 30250 by a distal cross pin assembly 30350. In accordance with one aspect, the distal cross pin assembly 30350 comprises a first distal cross pin 30352 that defines a first distal pivot axis FDPA. A distal end 30316 of the first link 30310 is configured to receive a first distal threaded fastener 30318 therethrough that is configured to be threadably received in a third threaded hole 30354 in the first distal cross pin 30352. Likewise, a distal end 30326 of the second link 30320 is configured to receive a second distal threaded fastener 30328 therethrough that is configured to be threadably received in a fourth threaded hole 30356 in the first distal cross pin 30352.
In at least one embodiment, the first distal cross pin assembly 30350 further comprises a second distal cross pin 30360 that is rotatably journaled on the first distal cross pin 30352. In one arrangement, the first distal cross pin 30352 may comprise a first proximal bushing or low friction sleeve 30358 that is configured to facilitate free rotation between the first distal cross pin 30352 and the second distal cross pin 30360. The second distal cross pin 30360 defines a second distal pivot axis SDPA that is transverse to the first distal pivot axis FDPA and the shaft axis SA. As can be seen in
Turning now to
Returning to
The articulation joints 30200, 30200′ utilize an outer linkage assembly 30300 arrangement that connects the proximal cross pin assembly 30330 and the distal cross pin assembly 30350 together and resolve torsional and axial loads that are applied to the joint which may be particular important for resolving loads in the instrument during firing of the firing member. Such joint arrangement further leaves space between the proximal joint member and distal joint member to accommodate additional components/features. As can be seen in the various Figures, the proximal joint member and the distal joint member each are provided with clearance pockets/features/contours to accommodate the linkage assembly when the joint articulates.
In the illustrated arrangement, the proximal joint member 33100 comprises a first or right half segment 33100A and a second or left half segment 33100B that are attached to a distal end of the central spine member 34100. The first half segment 33100A and the second half segment 33100B may be attached to the central spine member 34100 or other similar component of the elongate shaft assembly 34000 by welding, adhesive, mechanical fasteners, pins, etc. In accordance with one aspect, the surgical instrument 33010 comprises a firing system 35000 that comprises a distal differential drive assembly 35100 and a proximal differential drive assembly 35500.
As can be seen in
In accordance with one aspect, the firing system 35000 further comprises an upper flexible firing assembly 35300 and a lower flexible firing assembly 35400 that are configured to operably interface with a firing member 35200. As can be seen in
In one example, the upper flexible firing assembly 35300 comprises an upper flexible tube or conduit 35310 that has a proximal end 35312 that is supported in a distal socket 3512 in the upper distal rack assembly 35110 and is secured thereto by welding, adhesive, etc. The upper flexible tube or conduit 35310 extends through an upper opening 33218 in the proximal joint member 33100 and spans across the articulation joint 33000. The upper flexible tube or conduit 35310 comprises a distal end 35314 that is received in an opening 33330 in the distal joint member 33300 and is terminated or secured therein by welding, adhesive, etc. The upper flexible firing assembly 35300 further comprises an upper push coil 35320. The upper push coil 35320 is hollow and may comprise a coil spring that is fabricated from Nitinol, titanium, stainless steel, etc. In other arrangements, the upper push coil 35320 comprises a laser cut hypotube that essentially comprises a hollow tubular member with offset laser cuts or spiral cuts therein which enable the hypotube to flex and bend. The upper push coil 35320 may additionally be received within an inner flexible upper sleeve 35330 that may be fabricated from a polymer or similar material and prevent tissue, fluid, and/or debris from infiltrating into the upper push coil 35320 which may hamper its ability to flex and bend during articulation.
The upper push coil 35320 extends through the upper flexible tube 35310 and through an axial passage in the upper distal rack 35110. An upper support beam 35140 is supported by the central spine member 34100 and has an upper passage 35142 to constrain and permit passage of the upper push coil 35320 therethrough. As can be seen in
Turning to
In the illustrated arrangement, the upper proximal gear rack 35510 further comprises an upper cable attachment feature 35512 that protrudes therefrom and is configured to slide within the upper passage 35142 in the upper support beam 35140. In accordance with one aspect, the upper cable 35340 extends through the hollow upper push coil 35320 and a proximal end of the upper cable 35340 is secured to the upper cable attachment feature 35512. The upper cable 35340 is held in tension between the top firing member feature 35220 and the upper cable attachment feature 35512 which serves to retain the distal end 35322 of the upper push coil 35320 as well as a distal end 35332 of the inner flexible upper sleeve 35330 in abutting contact with the proximal end 35323 of the top finned portion 35222 of the top firing member feature 35220 and the proximal end of the upper push coil 35320 and a proximal end of the inner flexible upper sleeve 35330 in abutting contact with the distal end of the upper cable attachment feature 35512.
In one example, the lower flexible firing assembly 35400 comprises a lower flexible tube or conduit 35410 that has a proximal end 35412 that is supported in a distal socket 35122 in the lower distal rack 35120 and is secured thereto by welding, adhesive, etc. The lower flexible tube or conduit 35410 extends through a lower opening 33219 in the proximal joint member 33100 and spans across the articulation joint 33000. The lower flexible tube or conduit 35410 comprises a distal end 35414 that is received in an opening 33340 in the distal joint member 33300 and is terminated or secured therein by welding, adhesive, etc. The lower flexible firing assembly 35400 further comprises a lower push coil 35420. The lower push coil 35420 is hollow and may comprise a coil spring that is fabricated from Nitinol, titanium, stainless steel, etc. In other arrangements, the lower push coil 35420 comprises a laser cut hypotube that essentially comprises a hollow tubular member with offset laser cuts or spiral cuts therein which enable the hypotube to flex and bend. The lower push coil 35420 may additionally be received within an inner flexible lower sleeve 35430 may be fabricated from a polymer or similar material and prevent tissue, fluid, and/or debris from infiltrating into the lower push coil 35420 which may hamper its ability to flex and bend during articulation.
The lower push coil 35420 extends through the lower flexible tube 35410 and through an axial passage in the lower distal rack 35120. A lower support beam 35150 is supported by the central spine member 34100 and has a lower passage 35152 to constrain and permit passage of the lower push coil 35420 therethrough. As can be seen in
Surgical stapling devices need to apply a high force on the firing member over a long displacement to form the staples and cut tissue. Transmitting that force through an articulated joint is especially challenging because it is difficult to redirect the forces in the desired direction and withstand the loads applied to it. The firing system 35000 described herein addresses and solves many, if not all of such challenges by employing two flexible tubes 35310, 35410 to constrain the paths of the push coils 35320, 35420, respectively. As described herein, the upper flexible tube 35310 surrounds the upper push coil 35320 and the lower flexible tube 35410 surrounds the lower push coil 35420. Each of the tubes 35310, 35410 can bend but they also can resolve an axial tensile load. See
In accordance with one aspect, the upper flexible tube or conduit 35310 forms an upper pathway that spans the articulation joint 33000 and the lower flexible tube or conduit 35410 forms a lower pathway that spans the articulation joint 33000. The upper pathway supports the upper push coil 35320 for axial travel therethrough and the lower push coil 35420 for axial travel therethrough. When the surgical end effector to which the articulation joint 33000 is attached is in an unarticulated position (i.e., the surgical end effector is axially aligned articulated with the elongate shaft assembly along the shaft axis) the upper pathway and the lower pathway are parallel. Stated another way, when the surgical end effector is in an unarticulated position, an end effector axis is axially aligned with the shaft axis and the upper pathway and the lower pathway are parallel. When the surgical end effector is in an unarticulated position (i.e., the end effector axis is not axially aligned with the shaft axis), the upper pathway and the lower pathway are concentric to each other. When the surgical end effector is in the unarticulated position, the proximal differential drive assembly is configured to drive the upper push coil 35320 and the lower push coil 35420 equal distances in the same axial direction (distal direction DD) to apply an upper axial drive motion and a lower axial drive motion to the firing member. The upper axial drive motion and the lower axial drive motion are substantially equal in magnitude which serves to distally advance the firing member through the surgical end effector without binding which might otherwise occur should the upper axial drive motion and the lower axial drive motions be different in magnitude. Similarly, the when the surgical end effector is in an articulated position relative to the elongate shaft assembly, the proximal differential drive assembly is configured to permit the upper push coil 35320 and the lower push coil 35420 to move in substantially equal distances in opposite axial directions and thereafter apply an upper axial drive motion and a lower axial drive motion that are equal to each other to the firing member.
As can be seen in
The proximal cross pin assembly 33500 further comprises a second proximal cross pin 33520 that is rotatably journaled on the first proximal cross pin 33510 to permit relative pivotal rotation between the first proximal cross pin 33510 and the second proximal cross pin 33520. The second proximal cross pin 33520 is pivotally supported within the spherical proximal end 33410 of the central link member 33400 and defines a second proximal pivot axis SPPA. The first proximal pivot axis FPPA is transverse to the shaft axis SA. The second proximal pivot axis SPPA is transverse to the shaft axis SA as well as the first proximal pivot axis FPPA. The proximal cross pin assembly 33500 facilitates pivotal travel of the spherical proximal end 33410 of the central link member 33400 relative to the proximal joint member 33100 about the first proximal pivot axis FPPA as well as the second proximal pivot axis SPPA.
In the illustrated arrangement, the distal joint member 33100 defines a distal face 33310 that is configured to receive a spherical distal end 33420 of a central link member 33400. In the illustrated arrangement, the spherical distal end 33420 is configured to be pivotally received in a distal socket 33312 in the distal face 33310 of the distal joint member 33300. The spherical distal end 33420 of the central link member 33400 is retained within the distal socket 33312 by a distal cross pin assembly 33600. In accordance with one aspect, the distal cross pin assembly 33600 comprises a first distal cross pin 33610 that defines a first distal pivot axis FDPA. The first distal cross pin 33610 is pivotally supported in a pair of attachment lugs 33314 formed on the distal face 33312 of the distal joint member 33300 and extends through two opposing arcuate slots 33422 to permit pivotal as well as rotational travel of the first distal cross pin 33610 within the spherical distal end 33420 of the central link member 33400. Stated another way, the spherical distal end 33420 of the central link member 33400 is rotatable about the first distal cross pin 33610 as well as pivotable through a distal pivot angle DPA defined by the arcuate slots 33412.
The distal cross pin assembly 33600 further comprises a second distal cross pin 33620 that is rotatably journaled on the first distal cross pin 33610 to permit relative pivotal rotation between the first distal cross pin 33610 and the second distal cross pin 33620. The second distal cross pin 33620 is pivotally supported within the spherical distal end 33420 of the central link member 33400 and defines a second distal pivot axis SDPA. The first distal pivot axis FDPA is transverse to the shaft axis SA. The second distal pivot axis SDPA is transverse to the shaft axis SA as well as the first distal pivot axis FDPA. The distal cross pin assembly 33600 facilitates pivotal travel of the spherical distal end 33420 of the central link member 33400 relative to the distal joint member 33300 about the first distal pivot axis FDPA as well as the second distal pivot axis SDPA.
In accordance with at least one aspect, the articulation joint 33000 further comprises a flexible joint support assembly generally designated as 33700 which provides flexible support between the proximal joint member 33100 and the distal joint member 33200 during articulation as well as to assist the articulation joint 33000 in returning to an unarticulated position (
The surgical instrument 33010 also comprises an articulation system 33800 that is configured to apply articulation motions to the surgical end effector to articulate the surgical end effector relative to the elongate shaft assembly 34000. In at least one arrangement, the articulation system 33800 comprises four articulation cables 33810, 33820, 33830, and 33840 that extend through the elongate shaft assembly 34000. In the illustrated arrangement, the articulation cables 33810, 33820, 33830, and 33840 pass through the proximal articulation joint member 33100 and the distal articulation joint member 33300 and are secured to the surgical end effector in the various manners disclosed herein. The articulation cables 33810, 33820, 33830, and 33840 operably interface with an articulation control system that is supported in or is otherwise associated with the housing of the surgical instrument 33010. For example, as was discussed above, a proximal portion of each cable 33810, 33820, 33830, and 33840 may be spooled on a corresponding rotary spool or cable-management system 2007 (
The articulation joint 33000 comprises a spherical pitch and yaw joint that is controlled by cables and is used for articulation of the surgical end effector. The articulation joint comprises a double spherical joint, meaning that it has a pair of joints that each can perform pitch and yaw. This arrangement creates redundancy in the joint as now there are two joints that can perform pitch and yaw. The flexible joint support assembly 33700 serves to constrain how each joint moves during articulation so that the four degrees of freedom act as two. The flexible joint support assembly 33700 ties the two spherical joints together such that if one rotates, the other one rotates the same amount. When a joint rotates it applies tension in the cable that forces the other joint to rotate as well. Such joint arrangement has a very compact form factor and very little backlash in the wrist design.
As can be seen in
The second link 15020 of each linkage assembly 15000, 15002 comprises a rigid body 15022 that defines a proximal end 15024 and a distal end 15026. The proximal end 15024 is pivotally coupled to or pinned to the proximal joint member 14210 on side B of the first reference plane RP1 and the distal end 15016 is pivotally coupled to or pinned to the distal joint member 14250 on side A of the first reference plane RP1 such that the second link 15020 crosses the first link 15010 and passes through the first reference plane RP1. The proximal end 15024 pivots about a third pivot axis TPA that is transverse to the shaft axis SA and the distal end 15026 pivots about a fourth pivot axis FTPA that is transverse to the shaft axis. In at least one example, all of the pivot axes FPA, SPA, TPA, FTPA are parallel to each other and transverse to the shaft axis SA.
Turning now to
Returning to
The central joint member 16230 comprises proximal face 16232 that defines two face segments 16234, 16236 that angle away from a first arcuate center apex 16238. The central joint member 16230 further comprises a central joint distal face 16240 that defines two face segments 16244, 16246 that angle away from a second arcuate center apex 16248. The distal joint member 16250 comprises a distal joint proximal face 16252 that defines two face segments 16254, 16256 that angle away from an arcuate distal apex 16258. In the illustrated example, the proximal joint member 16210 and the central joint member 14230 are pivotally retained together with their respective apex portions 16218, 16238 in a confronting arrangement by a first proximal linkage assembly 17000 that comprises proximal links 17010, 17020 that are located on one side (side A) of a first reference plane RP1 that extends through the shaft axis SA and a second proximal linkage assembly 17002 that comprises proximal links 17030, 17040 that are located on side B of the first reference plane RP1. The first proximal link 17010 comprises a rigid body 17012 that defines a proximal end 17014 and a distal end 17016. The proximal end 17014 is pivotally coupled to or pinned to the proximal joint member 16210 on side C of a second reference plane RP2 that is defined by the shaft axis SA and is orthogonal to the first reference plane RF1. The proximal end 17014 pivots about a first pivot axis FPA that is transverse to the shaft axis SA. See
The second proximal link 17020 of the proximal linkage assembly 17000 comprises a rigid body 17022 that defines a proximal end 17024 and a distal end 17026. The proximal end 17024 is pivotally coupled to or pinned to the proximal joint member 16210 on side D of the second reference plane RP2 and the distal end 17026 is pivotally coupled to or pinned to the central joint member 16230 on side C of the second reference plane RP2 such that the second proximal link 17020 crosses the first proximal link 17010 and passes through the second reference plane RP2. The proximal end 17024 pivots about a third pivot axis TPA that is transverse to the shaft axis SA and the distal end 17026 pivots about a fourth pivot axis FTPA that is transverse to the shaft axis SA. In at least one example, all of the pivot axes FPA, SPA, TPA, FTPA are parallel to each other and transverse to the shaft axis SA.
A “third” proximal link 17030 in the second proximal linkage assembly 17002 comprises a rigid body 17032 that defines a proximal end 17034 and a distal end 17036. The proximal end 17034 is pivotally coupled to or pinned to the proximal joint member 16210 on side D of the second reference plane RP2. The proximal end 17014 pivots about the third pivot axis TPA. The distal end 17036 is pivotally coupled to or pinned to the central joint member 16230 on side C) of the second reference plane RP2 such that the third proximal link 17030 crosses through the second reference plane RP2. The distal end 17016 pivots about the fourth pivot axis FTPA.
The “fourth” proximal link 17040 of the proximal linkage assembly 17002 comprises a rigid body 17042 that defines a proximal end 17044 and a distal end 17046. The proximal end 17044 is pivotally coupled to or pinned to the proximal joint member 16210 on side C of the second reference plane RP2 and the distal end 17046 is pivotally coupled to or pinned to the central joint member 16230 on side D of the second reference plane RP2 such that the fourth proximal link 17040 crosses the third proximal link 17030 and passes through the second reference plane RP2. The proximal end 17044 pivots about the first pivot axis TPA and the distal end 17046 pivots about the second pivot axis STPA.
In the illustrated example, the distal joint member 16250 and the central joint member 16230 are pivotally retained together with their respective arcuate apexes 16258, 16248 in a confronting arrangement by a third distal linkage assembly 17004 that comprises distal links 17050, 17060 that are located on side D of the second reference plane RP2 and a fourth distal linkage assembly 17006 that comprises distal links 17070, 17080 that are located on side C of the second reference plane RP2. A first distal link 17050 comprises a rigid body 17052 that defines a proximal end 17054 and a distal end 17056. The proximal end 17054 is pivotally coupled to or pinned to the central joint member 16230 on side A of the first reference plane RP1. The proximal end 17054 pivots about a fifth pivot axis FFPA that is transverse to the shaft axis SA. The distal end 17016 is pivotally coupled to or pinned to the distal joint member 16250 on side B of the first reference plane RP1 such that the first distal link 17050 crosses through the first reference plane RP1. The distal end 17056 pivots about a sixth pivot axis SXPA that is also transverse to the shaft axis SA.
A second distal link 17060 comprises a rigid body 17062 that defines a proximal end 17064 and a distal end 17066. The proximal end 17064 is pivotally coupled to or pinned to the central joint member 16230 on side B of the first reference plane RP1 and the distal end 17066 is pivotally coupled to or pinned to the distal joint member 16250 on side A of the first reference plane RP1 such that the second distal link 17060 crosses the first distal link 17050 and passes through the first reference plane RP1. The proximal end 17064 pivots about a seventh pivot axis SVPA that is transverse to the shaft axis SA and the distal end 17066 pivots about an eighth pivot axis EPA that is transverse to the shaft axis SA. In at least one example, all of the pivot axes FFPA, SXPA, SVPA and EPA are parallel to each other and transverse to the shaft axis SA.
A “third” distal link 17070 comprises a rigid body 17072 that defines a proximal end 17074 and a distal end 17076. The proximal end 17074 is pivotally coupled to or pinned to the central joint 16230 on side B of the first reference plane RP1. The proximal end 17074 pivots about the seventh pivot axis SVPA. The distal end 17036 is pivotally coupled to or pinned to the distal joint member 16250 on side A of the first reference plane RP1 such that the third distal link 17070 crosses through the first reference plane RP1. The distal end 17076 pivots about the eighth pivot axis EPA.
The “fourth” distal link 17080 comprises a rigid body 17082 that defines a proximal end 17084 and a distal end 17086. The proximal end 17084 is pivotally coupled to or pinned to the central joint member 16230 on side A of the first reference plane RP1 and the distal end 17086 is pivotally coupled to or pinned to the distal joint member 16250 on side B of the first reference plane RP1 such that the fourth distal link 17080 crosses the third distal link 17070 and passes through the first reference plane RP1. The proximal end 17084 pivots about the fifth pivot axis FFPA and the distal end 17086 pivots about the sixth pivot axis SXPA.
In the illustrated example, the articulation joint 16200 is operably controlled by a cable control system that comprises four cables 16310, 16320, 16330, and 16340 that extend through the elongate shaft assembly to operably interface with a cable control system that is supported within the housing of the surgical instrument. The cable control system may comprise a plurality of cable support members/capstans, pulleys, etc. that are controlled by one or more corresponding motors that are controlled by a control circuit portion of the surgical instrument. The cable control system is configured to manage the tensioning (pulling) and paying out of cables at precise times during the articulation process. As can be seen in
Still referring to
As can also be seen in
As can be further seen in
To articulate the distal joint member 16250 in a first articulation direction FAD relative to the central joint member 16230, the cable control system is actuated to apply tension to cables 16330 and 16340 while allowing cables 16310 and 16320 to sufficiently slacken. To articulate the distal joint member 16250 in a second articulation direction SAD, the cable control system is actuated to apply tension to cables 16310 and 16320 while allowing cables 16330 and 16340 to sufficiently slacken. To articulate the central joint member 16230 relative to the proximal joint member 16210 in a third articulation direction TAD, the cable control system is actuated to apply tension to cables 16320 and 16340 while allowing cables 16310 and 16330 to sufficiently slacken. To articulate the central joint member 16230 relative to the proximal joint member 16210 in a fourth articulation direction FRD, the cable control system is actuated to apply tension to cables 16310 and 16330 while allowing cables 16320 and 16340 to sufficiently slacken.
Example 1—A surgical instrument comprising a shaft assembly that defines a shaft axis and has a surgical end effector operably coupled thereto by an articulation joint. The surgical end effector comprises a first jaw and a second jaw that is selectively movable between an open position and a closed position relative to the first jaw. The articulation joint comprises a distal joint member that is coupled to the surgical end effector. A central joint member operably interfaces with the distal joint member such that the distal joint member is selectively articulatable relative to the central joint member about a distal articulation axis that is transverse to the shaft axis. A proximal joint member is coupled to the shaft assembly and operably interfaces with the central joint member such that the central joint member is selectively articulatable relative to the proximal joint member about a proximal articulation axis that is transverse to the shaft axis and the distal articulation axis. The surgical instrument further comprises an articulation control system that operably interfaces with the articulation joint and the surgical end effector. The articulation control system is configured to apply articulation motions to the surgical end effector to selectively articulate the surgical end effector about the distal articulation axis and the proximal articulation axis.
Example 2—The surgical instrument of Example 1, wherein the articulation control system is configured to apply closing motions to the second jaw of the surgical end effector.
Example 3—The surgical instrument of Examples 1 or 2, wherein the articulation control system comprises a plurality of flexible actuators that extend through the proximal joint member, the central joint member, and the distal joint member and operably interface with a jaw closure system that is operably supported in the surgical end effector and configured to apply the closing motions to the second jaw.
Example 4—The surgical instrument of Example 3, wherein the jaw closure system comprises a closure pulley assembly that is configured to apply the closing motions to said second jaw.
Example 5—The surgical instrument of Example 4, wherein the closure pulley assembly comprises at least one closure cam that is configured to cammingly engage a mounting portion on the second jaw to apply the closure motions thereto.
Example 6—The surgical instrument of Examples 3, 4 or 5, wherein the plurality of flexible actuators comprises a first cable, a second cable, a third cable, and a fourth cable. The first cable and the second cable extend through the proximal joint member, the central joint member, and the distal joint member on one side of the shaft axis. The third cable and the fourth cable extend through the proximal joint member, the central joint member, and the distal joint member on another side of the shaft axis.
Example 7—The surgical instrument of Example 6, wherein the jaw closure system comprises a pulley unit that is supported by the surgical end effector and comprises a first pulley that is rotatably supported on one side of the shaft axis. A second pulley is supported on another side of the shaft axis and is coupled to the first pulley for rotational travel therewith. The first cable and the second cable operably interface with the first pulley and the third cable and the fourth cable operably interface with a third pulley and a fourth pulley.
Example 8—The surgical instrument of Example 7, wherein the pulley unit is rotatable through a rotational travel path of at least three hundred thirty degrees by applying tension to one or more of the first cable, the second cable, the third cable, and the fourth cable.
Example 9—The surgical instrument of Examples 7 or 8, wherein the first cable extends through a lower portion of the proximal joint member. The central joint member comprises a cable redirection unit that is configured to redirect the first cable out through an upper portion of the central joint member to pass through an upper portion of the distal joint member and engage the first pulley. The second cable extends through an upper portion of the proximal joint member and engages the redirection unit in the central jaw member which redirects the second cable out through a lower portion of the central jaw member to pass through a lower portion of the distal joint member to operably engage the first pulley.
Example 10—The surgical instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8 or 9, wherein the proximal joint member comprises a proximal joint distal face. The central joint member comprises a center joint proximal face that confronts the proximal joint distal face and wherein the central joint member further comprises a central joint distal face. The distal joint member comprises a distal joint proximal face that confronts the central joint distal face.
Example 11—The surgical instrument of Example 10, wherein the proximal joint distal face comprises a plurality of proximal joint gear teeth that are configured for meshing engagement with corresponding central joint proximal gear teeth that are associated with the central joint proximal face. The central joint distal face comprises a plurality of central joint distal gear teeth that are configured for meshing engagement with corresponding distal joint proximal gear teeth that are associated with the distal joint proximal face.
Example 12—The surgical instrument of Example 10, wherein the proximal joint distal face comprises a pair of spaced proximal joint distal apex portions. The central joint proximal face comprises a pair of spaced central joint proximal apex portions that are configured to confront the pair of spaced proximal joint distal apex portions. The central joint distal face comprises a pair of spaced central joint distal apex portions. The distal joint proximal face comprises a pair of spaced distal joint proximal apex portions that are configured to confront the pair of spaced central joint distal apex portions.
Example 13—The surgical instrument of Example 12, wherein each proximal joint distal apex portion comprises a first arcuate distal surface that is configured to rockingly engage a first arcuate proximal surface on a corresponding central joint proximal apex portion. Each central joint distal apex portion comprises a second arcuate distal surface that is configured to rockingly engage a second arcuate proximal surface on a corresponding distal joint proximal apex portion.
Example 14—The surgical instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13, further comprising a drive shaft arrangement that extends through the proximal joint member, the central joint member, and the distal joint member to operably interface with the surgical end effector to apply drive motions thereto.
Example 15—The surgical instrument of Example 14, wherein the drive shaft arrangement comprises a rotary drive shaft arrangement.
Example 16—The surgical instrument of Example 15, wherein the rotary drive shaft arrangement comprises a proximal rotary drive shaft that has a distal end that is rotatably supported in the proximal joint member. The rotary drive shaft arrangement further comprises a first rotary drive shaft that has a first distal end that is rotatably coupled to the distal end of the proximal rotary drive shaft. The first rotary drive shaft spans between the proximal joint member and the central joint member and further comprises a first distal end that is rotatably coupled to a central bearing that is supported in the central joint member. A second rotary drive shaft comprises a second proximal end that is rotatably coupled in the central bearing in the central joint member. The second rotary drive shaft spans between the central joint member and the distal joint member to be operably coupled to a rotary drive member.
Example 17—The surgical instrument of Examples 3, 4, 5, 6, 7, 8, 9, 14, 15 or 16, wherein the central joint member is not directly attached to the proximal joint member, wherein the distal joint member is not directly attached to the central joint member, wherein the central joint member is held in operable pivotal engagement with the proximal joint member by the plurality of flexible actuators, and wherein the distal joint member is held in operable pivotal engagement with the central joint member by the plurality of flexible actuators.
Example 18—A surgical instrument comprising a shaft assembly that defines a shaft axis. The surgical instrument further comprises a surgical end effector that is operably coupled to the shaft assembly by an articulation joint. The surgical end effector comprises an elongate channel that is configured to operably support a surgical staple cartridge therein. An anvil is pivotally supported relative to the elongate channel and is selectively movable between an open position and a closed position relative to the surgical staple cartridge supported in the elongate channel. The articulation joint comprises a distal joint member that is coupled to the elongate channel. A central joint member operably interfaces with the distal joint member such that the distal joint member is selectively articulatable relative to the central joint member about a distal articulation axis that is transverse to the shaft axis. A proximal joint member is coupled to the shaft assembly and operably interfaces with the central joint member such that the central joint member is selectively articulatable relative to the proximal joint member about a proximal articulation axis that is transverse to the shaft axis and the distal articulation axis. The surgical instrument further comprises an articulation control system that operably interfaces with the articulation joint and the surgical end effector. The articulation control system is configured to apply articulation motions to the surgical end effector to selectively articulate the surgical end effector about the distal articulation axis and the proximal articulation axis. The articulation control system is configured to apply closing motions to the second jaw of the surgical end effector.
Example 19—The surgical instrument of Example 18, wherein the articulation control system comprises a plurality of flexible actuators that extend through the proximal joint member, the central joint member, and the distal joint member and operably interface with an anvil closure system that is operably supported in the elongate channel and is configured to apply closing motions to the anvil.
Example 20—The surgical instrument of Examples 18 or 19, wherein the anvil closure system comprises a closure pulley assembly configured to apply said closing motions to the anvil.
Example 21—The surgical instrument of Examples 18, 19 or 20, wherein the surgical end effector further comprises a firing member that is configured to axially move between a starting position and an ending position within the surgical end effector in response to firing motions applied to the firing member by a rotary drive system that extends through the proximal joint member, the central joint member, and the distal joint member.
As used in any aspect herein, the term “control circuit” may refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor including one or more individual instruction processing cores, processing unit, processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic device (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuit may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. Accordingly, as used herein “control circuit” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
While several forms have been illustrated and described, it is not the intention of Applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.
One or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flow diagrams are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
It is worthy to note that any reference to “one aspect,” “an aspect,” “an exemplification,” “one exemplification,” and the like means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in an exemplification,” and “in one exemplification” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Any patent application, patent, non-patent publication, or other disclosure material referred to in this specification and/or listed in any Application Data Sheet is incorporated by reference herein, to the extent that the incorporated materials is not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail.
The entire disclosures of:
U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;
U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, now U.S. Pat. No. 7,845,537;
U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;
U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;
U.S. patent application Ser. No. 12/235,972, entitled MOTORIZED SURGICAL INSTRUMENT, now U.S. Pat. No. 9,050,083;
U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;
U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009, now U.S. Pat. No. 8,220,688;
U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;
U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;
U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;
U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012, now U.S. Pat. No. 9,101,358;
U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Pat. No. 9,345,481;
U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;
U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.
Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one or more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.
While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
This non-provisional application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 63/057,430, entitled SURGICAL INSTRUMENTS WITH TORSION SPINE DRIVE ARRANGEMENTS, filed Jul. 28, 2020, of U.S. Provisional Patent Application Ser. No. 63/057,432, entitled ARTICULATION JOINT ARRANGEMENTS FOR SURGICAL INSTRUMENTS, filed Jul. 28, 2020, the disclosures of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
66052 | Smith | Jun 1867 | A |
662587 | Blake | Nov 1900 | A |
670748 | Weddeler | Mar 1901 | A |
719487 | Minor | Feb 1903 | A |
804229 | Hutchinson | Nov 1905 | A |
903739 | Lesemann | Nov 1908 | A |
951393 | Hahn | Mar 1910 | A |
1075556 | Fenoughty | Oct 1913 | A |
1082105 | Anderson | Dec 1913 | A |
1188721 | Bittner | Jun 1916 | A |
1306107 | Elliott | Jun 1919 | A |
1314601 | McCaskey | Sep 1919 | A |
1677337 | Grove | Jul 1928 | A |
1794907 | Kelly | Mar 1931 | A |
1849427 | Hook | Mar 1932 | A |
1944116 | Stratman | Jan 1934 | A |
1954048 | Jeffrey et al. | Apr 1934 | A |
2028635 | Wappler | Jan 1936 | A |
2037727 | La Chapelle | Apr 1936 | A |
2132295 | Hawkins | Oct 1938 | A |
2161632 | Nattenheimer | Jun 1939 | A |
D120434 | Gold | May 1940 | S |
2211117 | Hess | Aug 1940 | A |
2214870 | West | Sep 1940 | A |
2224882 | Peck | Dec 1940 | A |
2318379 | Davis et al. | May 1943 | A |
2329440 | La Place | Sep 1943 | A |
2377581 | Shaffrey | Jun 1945 | A |
2406389 | Lee | Aug 1946 | A |
2420552 | Morrill | May 1947 | A |
2441096 | Happe | May 1948 | A |
2448741 | Scott et al. | Sep 1948 | A |
2450527 | Smith | Oct 1948 | A |
2491872 | Neuman | Dec 1949 | A |
2507872 | Unsinger | May 1950 | A |
2526902 | Rublee | Oct 1950 | A |
2527256 | Jackson | Oct 1950 | A |
2578686 | Fish | Dec 1951 | A |
2638901 | Sugarbaker | May 1953 | A |
2674149 | Benson | Apr 1954 | A |
2701489 | Osborn | Feb 1955 | A |
2711461 | Happe | Jun 1955 | A |
2724289 | Wight | Nov 1955 | A |
2742955 | Dominguez | Apr 1956 | A |
2804848 | O'Farrell et al. | Sep 1957 | A |
2808482 | Zanichkowsky et al. | Oct 1957 | A |
2853074 | Olson | Sep 1958 | A |
2856192 | Schuster | Oct 1958 | A |
2887004 | Stewart | May 1959 | A |
2957353 | Lewis | Oct 1960 | A |
2959974 | Emrick | Nov 1960 | A |
3026744 | Rouse | Mar 1962 | A |
3032769 | Palmer | May 1962 | A |
3060972 | Sheldon | Oct 1962 | A |
3075062 | Iaccarino | Jan 1963 | A |
3078465 | Bobrov | Feb 1963 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3080564 | Strekopitov et al. | Mar 1963 | A |
3166072 | Sullivan, Jr. | Jan 1965 | A |
3180236 | Beckett | Apr 1965 | A |
3196869 | Scholl | Jul 1965 | A |
3204731 | Bent et al. | Sep 1965 | A |
3266494 | Brownrigg et al. | Aug 1966 | A |
3269630 | Fleischer | Aug 1966 | A |
3269631 | Takaro | Aug 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3315863 | O'Dea | Apr 1967 | A |
3317103 | Cullen et al. | May 1967 | A |
3317105 | Astafjev et al. | May 1967 | A |
3357296 | Lefever | Dec 1967 | A |
3359978 | Smith, Jr. | Dec 1967 | A |
3377893 | Shorb | Apr 1968 | A |
3480193 | Ralston | Nov 1969 | A |
3490675 | Green et al. | Jan 1970 | A |
3494533 | Green et al. | Feb 1970 | A |
3499591 | Green | Mar 1970 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3509629 | Kidokoro | May 1970 | A |
3551987 | Wilkinson | Jan 1971 | A |
3568675 | Harvey | Mar 1971 | A |
3572159 | Tschanz | Mar 1971 | A |
3583393 | Takahashi | Jun 1971 | A |
3589589 | Akopov | Jun 1971 | A |
3598943 | Barrett | Aug 1971 | A |
3608549 | Merrill | Sep 1971 | A |
3618842 | Bryan | Nov 1971 | A |
3638652 | Kelley | Feb 1972 | A |
3640317 | Panfili | Feb 1972 | A |
3643851 | Green et al. | Feb 1972 | A |
3650453 | Smith, Jr. | Mar 1972 | A |
3661339 | Shimizu | May 1972 | A |
3661666 | Foster et al. | May 1972 | A |
3662939 | Bryan | May 1972 | A |
3688966 | Perkins et al. | Sep 1972 | A |
3695646 | Mommsen | Oct 1972 | A |
3709221 | Riely | Jan 1973 | A |
3717294 | Green | Feb 1973 | A |
3724237 | Wood | Apr 1973 | A |
3726755 | Shannon | Apr 1973 | A |
3727904 | Gabbey | Apr 1973 | A |
3734207 | Fishbein | May 1973 | A |
3740994 | De Carlo, Jr. | Jun 1973 | A |
3744495 | Johnson | Jul 1973 | A |
3746002 | Haller | Jul 1973 | A |
3747603 | Adler | Jul 1973 | A |
3747692 | Davidson | Jul 1973 | A |
3751902 | Kingsbury et al. | Aug 1973 | A |
3752161 | Bent | Aug 1973 | A |
3799151 | Fukaumi et al. | Mar 1974 | A |
3808452 | Hutchinson | Apr 1974 | A |
3815476 | Green et al. | Jun 1974 | A |
3819100 | Noiles et al. | Jun 1974 | A |
3821919 | Knohl | Jul 1974 | A |
3826978 | Kelly | Jul 1974 | A |
3836171 | Hayashi et al. | Sep 1974 | A |
3837555 | Green | Sep 1974 | A |
3841474 | Maier | Oct 1974 | A |
3851196 | Hinds | Nov 1974 | A |
3863639 | Kleaveland | Feb 1975 | A |
3863940 | Cummings | Feb 1975 | A |
3883624 | McKenzie et al. | May 1975 | A |
3885491 | Curtis | May 1975 | A |
3887393 | La Rue, Jr. | Jun 1975 | A |
3892228 | Mitsui | Jul 1975 | A |
3894174 | Cartun | Jul 1975 | A |
3902247 | Fleer et al. | Sep 1975 | A |
3940844 | Colby et al. | Mar 1976 | A |
3944163 | Hayashi et al. | Mar 1976 | A |
3950686 | Randall | Apr 1976 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3955581 | Spasiano et al. | May 1976 | A |
3959879 | Sellers | Jun 1976 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
3972734 | King | Aug 1976 | A |
3973179 | Weber et al. | Aug 1976 | A |
3981051 | Brumlik | Sep 1976 | A |
3999110 | Ramstrom et al. | Dec 1976 | A |
4025216 | Hives | May 1977 | A |
4027746 | Kine | Jun 1977 | A |
4034143 | Sweet | Jul 1977 | A |
4038987 | Komiya | Aug 1977 | A |
4054108 | Gill | Oct 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4066133 | Voss | Jan 1978 | A |
4085337 | Moeller | Apr 1978 | A |
4100820 | Evett | Jul 1978 | A |
4106446 | Yamada et al. | Aug 1978 | A |
4106620 | Brimmer et al. | Aug 1978 | A |
4108211 | Tanaka | Aug 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4127227 | Green | Nov 1978 | A |
4129059 | Van Eck | Dec 1978 | A |
4132146 | Uhlig | Jan 1979 | A |
4135517 | Reale | Jan 1979 | A |
4154122 | Severin | May 1979 | A |
4160857 | Nardella et al. | Jul 1979 | A |
4169990 | Lerdman | Oct 1979 | A |
4180285 | Reneau | Dec 1979 | A |
4185701 | Boys | Jan 1980 | A |
4190042 | Sinnreich | Feb 1980 | A |
4198734 | Brumlik | Apr 1980 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4207898 | Becht | Jun 1980 | A |
4213562 | Garrett et al. | Jul 1980 | A |
4226242 | Jarvik | Oct 1980 | A |
4239431 | Davini | Dec 1980 | A |
4241861 | Fleischer | Dec 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4250436 | Weissman | Feb 1981 | A |
4261244 | Becht et al. | Apr 1981 | A |
4272002 | Moshofsky | Jun 1981 | A |
4272662 | Simpson | Jun 1981 | A |
4274304 | Curtiss | Jun 1981 | A |
4274398 | Scott, Jr. | Jun 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4278091 | Borzone | Jul 1981 | A |
4282573 | Imai et al. | Aug 1981 | A |
4289131 | Mueller | Sep 1981 | A |
4289133 | Rothfuss | Sep 1981 | A |
4290542 | Fedotov et al. | Sep 1981 | A |
D261356 | Robinson | Oct 1981 | S |
4293604 | Campbell | Oct 1981 | A |
4296654 | Mercer | Oct 1981 | A |
4296881 | Lee | Oct 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4305539 | Korolkov et al. | Dec 1981 | A |
4312363 | Rothfuss et al. | Jan 1982 | A |
4312685 | Riedl | Jan 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4319576 | Rothfuss | Mar 1982 | A |
4321002 | Froehlich | Mar 1982 | A |
4321746 | Grinage | Mar 1982 | A |
4328839 | Lyons et al. | May 1982 | A |
4331277 | Green | May 1982 | A |
4340331 | Savino | Jul 1982 | A |
4347450 | Colligan | Aug 1982 | A |
4348603 | Huber | Sep 1982 | A |
4349028 | Green | Sep 1982 | A |
4350151 | Scott | Sep 1982 | A |
4353371 | Cosman | Oct 1982 | A |
4357940 | Muller | Nov 1982 | A |
4361057 | Kochera | Nov 1982 | A |
4366544 | Shima et al. | Dec 1982 | A |
4369013 | Abildgaard et al. | Jan 1983 | A |
4373147 | Carlson, Jr. | Feb 1983 | A |
4376380 | Burgess | Mar 1983 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4380312 | Landrus | Apr 1983 | A |
4382326 | Rabuse | May 1983 | A |
4383634 | Green | May 1983 | A |
4389963 | Pearson | Jun 1983 | A |
4393728 | Larson et al. | Jul 1983 | A |
4394613 | Cole | Jul 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4397311 | Kanshin et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4406621 | Bailey | Sep 1983 | A |
4408692 | Sigel et al. | Oct 1983 | A |
4409057 | Molenda et al. | Oct 1983 | A |
4415112 | Green | Nov 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4417890 | Dennehey et al. | Nov 1983 | A |
4421264 | Arter et al. | Dec 1983 | A |
4423456 | Zaidenweber | Dec 1983 | A |
4425915 | Ivanov | Jan 1984 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4430997 | DiGiovanni et al. | Feb 1984 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4438659 | Desplats | Mar 1984 | A |
4442964 | Becht | Apr 1984 | A |
4448194 | DiGiovanni et al. | May 1984 | A |
4451743 | Suzuki et al. | May 1984 | A |
4452376 | Klieman et al. | Jun 1984 | A |
4454887 | Kruger | Jun 1984 | A |
4459519 | Erdman | Jul 1984 | A |
4461305 | Cibley | Jul 1984 | A |
4467805 | Fukuda | Aug 1984 | A |
4468597 | Baumard et al. | Aug 1984 | A |
4469481 | Kobayashi | Sep 1984 | A |
4470414 | Imagawa et al. | Sep 1984 | A |
4471780 | Menges et al. | Sep 1984 | A |
4471781 | Di Giovanni et al. | Sep 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4476864 | Tezel | Oct 1984 | A |
4478220 | Di Giovanni et al. | Oct 1984 | A |
4480641 | Failla et al. | Nov 1984 | A |
4481458 | Lane | Nov 1984 | A |
4483562 | Schoolman | Nov 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4486928 | Tucker et al. | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4493983 | Taggert | Jan 1985 | A |
4494057 | Hotta | Jan 1985 | A |
4499895 | Takayama | Feb 1985 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
D278081 | Green | Mar 1985 | S |
4503842 | Takayama | Mar 1985 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4512038 | Alexander et al. | Apr 1985 | A |
4514477 | Kobayashi | Apr 1985 | A |
4520817 | Green | Jun 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4526174 | Froehlich | Jul 1985 | A |
4527724 | Chow et al. | Jul 1985 | A |
4530357 | Pawloski et al. | Jul 1985 | A |
4530453 | Green | Jul 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4532927 | Miksza, Jr. | Aug 1985 | A |
4540202 | Amphoux et al. | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4556058 | Green | Dec 1985 | A |
4560915 | Soultanian | Dec 1985 | A |
4565109 | Tsay | Jan 1986 | A |
4565189 | Mabuchi | Jan 1986 | A |
4566620 | Green et al. | Jan 1986 | A |
4569346 | Poirier | Feb 1986 | A |
4569469 | Mongeon et al. | Feb 1986 | A |
4571213 | Ishimoto | Feb 1986 | A |
4573468 | Conta et al. | Mar 1986 | A |
4573469 | Golden et al. | Mar 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4576165 | Green et al. | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4585153 | Failla et al. | Apr 1986 | A |
4586501 | Claracq | May 1986 | A |
4586502 | Bedi et al. | May 1986 | A |
4589416 | Green | May 1986 | A |
4589582 | Bilotti | May 1986 | A |
4589870 | Citrin et al. | May 1986 | A |
4591085 | Di Giovanni | May 1986 | A |
RE32214 | Schramm | Jul 1986 | E |
4597753 | Turley | Jul 1986 | A |
4600037 | Hatten | Jul 1986 | A |
4604786 | Howie, Jr. | Aug 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4605004 | Di Giovanni et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4607636 | Kula et al. | Aug 1986 | A |
4607638 | Crainich | Aug 1986 | A |
4608980 | Aihara | Sep 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4610250 | Green | Sep 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
D286180 | Korthoff | Oct 1986 | S |
D286442 | Korthoff et al. | Oct 1986 | S |
4617893 | Donner et al. | Oct 1986 | A |
4617914 | Ueda | Oct 1986 | A |
4619262 | Taylor | Oct 1986 | A |
4619391 | Sharkany et al. | Oct 1986 | A |
4624401 | Gassner et al. | Nov 1986 | A |
D287278 | Spreckelmeier | Dec 1986 | S |
4628459 | Shinohara et al. | Dec 1986 | A |
4628636 | Folger | Dec 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4633861 | Chow et al. | Jan 1987 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634419 | Kreizman et al. | Jan 1987 | A |
4635638 | Weintraub et al. | Jan 1987 | A |
4641076 | Linden | Feb 1987 | A |
4642618 | Johnson et al. | Feb 1987 | A |
4642738 | Meller | Feb 1987 | A |
4643173 | Bell et al. | Feb 1987 | A |
4643731 | Eckenhoff | Feb 1987 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4646745 | Noiles | Mar 1987 | A |
4651734 | Doss et al. | Mar 1987 | A |
4652820 | Maresca | Mar 1987 | A |
4654028 | Suma | Mar 1987 | A |
4655222 | Florez et al. | Apr 1987 | A |
4662555 | Thornton | May 1987 | A |
4663874 | Sano et al. | May 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4665916 | Green | May 1987 | A |
4667674 | Korthoff et al. | May 1987 | A |
4669647 | Storace | Jun 1987 | A |
4671278 | Chin | Jun 1987 | A |
4671280 | Dorband et al. | Jun 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4672964 | Dee et al. | Jun 1987 | A |
4675944 | Wells | Jun 1987 | A |
4676245 | Fukuda | Jun 1987 | A |
4679460 | Yoshigai | Jul 1987 | A |
4679719 | Kramer | Jul 1987 | A |
4684051 | Akopov et al. | Aug 1987 | A |
4688555 | Wardle | Aug 1987 | A |
4691703 | Auth et al. | Sep 1987 | A |
4693248 | Failla | Sep 1987 | A |
4698579 | Richter et al. | Oct 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4709120 | Pearson | Nov 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4721099 | Chikama | Jan 1988 | A |
4722340 | Takayama et al. | Feb 1988 | A |
4724840 | McVay et al. | Feb 1988 | A |
4726247 | Hermann | Feb 1988 | A |
4727308 | Huljak et al. | Feb 1988 | A |
4728020 | Green et al. | Mar 1988 | A |
4728876 | Mongeon et al. | Mar 1988 | A |
4729260 | Dudden | Mar 1988 | A |
4730726 | Holzwarth | Mar 1988 | A |
4741336 | Failla et al. | May 1988 | A |
4743214 | Tai-Cheng | May 1988 | A |
4744363 | Hasson | May 1988 | A |
4747820 | Hornlein et al. | May 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4755070 | Cerutti | Jul 1988 | A |
4761326 | Barnes et al. | Aug 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
4767044 | Green | Aug 1988 | A |
D297764 | Hunt et al. | Sep 1988 | S |
4773420 | Green | Sep 1988 | A |
4777780 | Holzwarth | Oct 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4784137 | Kulik et al. | Nov 1988 | A |
4787387 | Burbank, III et al. | Nov 1988 | A |
4788485 | Kawagishi et al. | Nov 1988 | A |
D298967 | Hunt | Dec 1988 | S |
4790225 | Moody et al. | Dec 1988 | A |
4790314 | Weaver | Dec 1988 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4807628 | Peters et al. | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4815460 | Porat et al. | Mar 1989 | A |
4817643 | Olson | Apr 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819495 | Hormann | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4827552 | Bojar et al. | May 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4828542 | Hermann | May 1989 | A |
4828944 | Yabe et al. | May 1989 | A |
4830855 | Stewart | May 1989 | A |
4832158 | Farrar et al. | May 1989 | A |
4833937 | Nagano | May 1989 | A |
4834096 | Oh et al. | May 1989 | A |
4834720 | Blinkhorn | May 1989 | A |
4838859 | Strassmann | Jun 1989 | A |
4844068 | Arata et al. | Jul 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4856078 | Konopka | Aug 1989 | A |
4860644 | Kohl et al. | Aug 1989 | A |
4862891 | Smith | Sep 1989 | A |
4863423 | Wallace | Sep 1989 | A |
4865030 | Polyak | Sep 1989 | A |
4868530 | Ahs | Sep 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4875486 | Rapoport et al. | Oct 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4890613 | Golden et al. | Jan 1990 | A |
4892244 | Fox et al. | Jan 1990 | A |
4893622 | Green et al. | Jan 1990 | A |
4894051 | Shiber | Jan 1990 | A |
4896584 | Stoll et al. | Jan 1990 | A |
4896678 | Ogawa | Jan 1990 | A |
4900303 | Lemelson | Feb 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4909789 | Taguchi et al. | Mar 1990 | A |
4915100 | Green | Apr 1990 | A |
4919679 | Averill et al. | Apr 1990 | A |
4921479 | Grayzel | May 1990 | A |
4925082 | Kim | May 1990 | A |
4928699 | Sasai | May 1990 | A |
4930503 | Pruitt | Jun 1990 | A |
4930674 | Barak | Jun 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4931737 | Hishiki | Jun 1990 | A |
4932960 | Green et al. | Jun 1990 | A |
4933800 | Yang | Jun 1990 | A |
4933843 | Scheller et al. | Jun 1990 | A |
D309350 | Sutherland et al. | Jul 1990 | S |
4938408 | Bedi et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4943182 | Hoblingre | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4946067 | Kelsall | Aug 1990 | A |
4948327 | Crupi, Jr. | Aug 1990 | A |
4949707 | LeVahn et al. | Aug 1990 | A |
4951860 | Peters et al. | Aug 1990 | A |
4951861 | Schulze et al. | Aug 1990 | A |
4954960 | Lo et al. | Sep 1990 | A |
4955959 | Tompkins et al. | Sep 1990 | A |
4957212 | Duck et al. | Sep 1990 | A |
4962681 | Yang | Oct 1990 | A |
4962877 | Hervas | Oct 1990 | A |
4964559 | Deniega et al. | Oct 1990 | A |
4964863 | Kanshin et al. | Oct 1990 | A |
4965709 | Ngo | Oct 1990 | A |
4970656 | Lo et al. | Nov 1990 | A |
4973274 | Hirukawa | Nov 1990 | A |
4973302 | Armour et al. | Nov 1990 | A |
4976173 | Yang | Dec 1990 | A |
4978049 | Green | Dec 1990 | A |
4978333 | Broadwin et al. | Dec 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4984564 | Yuen | Jan 1991 | A |
4986808 | Broadwin et al. | Jan 1991 | A |
4987049 | Komamura et al. | Jan 1991 | A |
4988334 | Hornlein et al. | Jan 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
4995959 | Metzner | Feb 1991 | A |
4996975 | Nakamura | Mar 1991 | A |
5001649 | Lo et al. | Mar 1991 | A |
5002543 | Bradshaw et al. | Mar 1991 | A |
5002553 | Shiber | Mar 1991 | A |
5005754 | Van Overloop | Apr 1991 | A |
5009222 | Her | Apr 1991 | A |
5009661 | Michelson | Apr 1991 | A |
5012411 | Policastro et al. | Apr 1991 | A |
5014898 | Heidrich | May 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5018515 | Gilman | May 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5024652 | Dumenek et al. | Jun 1991 | A |
5024671 | Tu et al. | Jun 1991 | A |
5025559 | McCullough | Jun 1991 | A |
5027834 | Pruitt | Jul 1991 | A |
5030226 | Green et al. | Jul 1991 | A |
5031814 | Tompkins et al. | Jul 1991 | A |
5033552 | Hu | Jul 1991 | A |
5035040 | Kerrigan et al. | Jul 1991 | A |
5037018 | Matsuda et al. | Aug 1991 | A |
5038109 | Goble et al. | Aug 1991 | A |
5038247 | Kelley et al. | Aug 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5056953 | Marot et al. | Oct 1991 | A |
5060658 | Dejter, Jr. et al. | Oct 1991 | A |
5061269 | Muller | Oct 1991 | A |
5062491 | Takeshima et al. | Nov 1991 | A |
5062563 | Green et al. | Nov 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5074454 | Peters | Dec 1991 | A |
5077506 | Krause | Dec 1991 | A |
5079006 | Urquhart | Jan 1992 | A |
5080556 | Carreno | Jan 1992 | A |
5083695 | Foslien et al. | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5089606 | Cole et al. | Feb 1992 | A |
5094247 | Hernandez et al. | Mar 1992 | A |
5098004 | Kerrigan | Mar 1992 | A |
5098360 | Hirota | Mar 1992 | A |
5100042 | Gravener et al. | Mar 1992 | A |
5100420 | Green et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5104397 | Vasconcelos et al. | Apr 1992 | A |
5104400 | Berguer et al. | Apr 1992 | A |
5106008 | Tompkins et al. | Apr 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5109722 | Hufnagle et al. | May 1992 | A |
5111987 | Moeinzadeh et al. | May 1992 | A |
5116349 | Aranyi | May 1992 | A |
D327323 | Hunt | Jun 1992 | S |
5119009 | McCaleb et al. | Jun 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5124990 | Williamson | Jun 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5141144 | Foslien et al. | Aug 1992 | A |
5142932 | Moya et al. | Sep 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5155941 | Takahashi et al. | Oct 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5156614 | Green et al. | Oct 1992 | A |
5158222 | Green et al. | Oct 1992 | A |
5158567 | Green | Oct 1992 | A |
D330699 | Gill | Nov 1992 | S |
5163598 | Peters et al. | Nov 1992 | A |
5168605 | Bartlett | Dec 1992 | A |
5170925 | Madden et al. | Dec 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5171249 | Stefanchik et al. | Dec 1992 | A |
5171253 | Klieman | Dec 1992 | A |
5173053 | Swanson et al. | Dec 1992 | A |
5173133 | Morin et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5176688 | Narayan et al. | Jan 1993 | A |
5181514 | Solomon et al. | Jan 1993 | A |
5187422 | Izenbaard et al. | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
5188111 | Yates et al. | Feb 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5190560 | Woods et al. | Mar 1993 | A |
5190657 | Heagle et al. | Mar 1993 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5193731 | Aranyi | Mar 1993 | A |
5195505 | Josefsen | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5197970 | Green et al. | Mar 1993 | A |
5200280 | Karasa | Apr 1993 | A |
5201750 | Hocherl et al. | Apr 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5207672 | Roth et al. | May 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5211649 | Kohler et al. | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217478 | Rexroth | Jun 1993 | A |
5219111 | Bilotti et al. | Jun 1993 | A |
5220269 | Chen et al. | Jun 1993 | A |
5221036 | Takase | Jun 1993 | A |
5221281 | Klicek | Jun 1993 | A |
5222945 | Basnight | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5223675 | Taft | Jun 1993 | A |
D338729 | Sprecklemeier et al. | Aug 1993 | S |
5234447 | Kaster et al. | Aug 1993 | A |
5236269 | Handy | Aug 1993 | A |
5236424 | Imran | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5239981 | Anapliotis | Aug 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5246156 | Rothfuss et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5258007 | Spetzler et al. | Nov 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5258009 | Conners | Nov 1993 | A |
5258010 | Green et al. | Nov 1993 | A |
5258012 | Luscombe et al. | Nov 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5259835 | Clark et al. | Nov 1993 | A |
5260637 | Pizzi | Nov 1993 | A |
5261135 | Mitchell | Nov 1993 | A |
5261877 | Fine et al. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5263937 | Shipp | Nov 1993 | A |
5263973 | Cook | Nov 1993 | A |
5264218 | Rogozinski | Nov 1993 | A |
5268622 | Philipp | Dec 1993 | A |
5269794 | Rexroth | Dec 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5275323 | Schulze et al. | Jan 1994 | A |
5275608 | Forman et al. | Jan 1994 | A |
5279416 | Malec et al. | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5281400 | Berry, Jr. | Jan 1994 | A |
5282806 | Haber et al. | Feb 1994 | A |
5282826 | Quadri | Feb 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5284128 | Hart | Feb 1994 | A |
5285381 | Iskarous et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5286253 | Fucci | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
5291133 | Gokhale et al. | Mar 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5293024 | Sugahara et al. | Mar 1994 | A |
5297714 | Kramer | Mar 1994 | A |
5303606 | Kokinda | Apr 1994 | A |
5304204 | Bregen | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5307976 | Olson et al. | May 1994 | A |
5308353 | Beurrier | May 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5308576 | Green et al. | May 1994 | A |
5309387 | Mori et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5312329 | Beaty et al. | May 1994 | A |
5313935 | Kortenbach et al. | May 1994 | A |
5313967 | Lieber et al. | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5314445 | Heidmueller et al. | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5320627 | Sorensen et al. | Jun 1994 | A |
D348930 | Olson | Jul 1994 | S |
5326013 | Green et al. | Jul 1994 | A |
5329923 | Lundquist | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5330487 | Thornton et al. | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5331971 | Bales et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5333422 | Warren et al. | Aug 1994 | A |
5333772 | Rothfuss et al. | Aug 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5336130 | Ray | Aug 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336232 | Green et al. | Aug 1994 | A |
5338317 | Hasson et al. | Aug 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5341724 | Vatel | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5341810 | Dardel | Aug 1994 | A |
5342380 | Hood | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342385 | Norelli et al. | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5343382 | Hale et al. | Aug 1994 | A |
5343391 | Mushabac | Aug 1994 | A |
5344059 | Green et al. | Sep 1994 | A |
5344060 | Gravener et al. | Sep 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5346504 | Ortiz et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5350388 | Epstein | Sep 1994 | A |
5350391 | Lacovelli | Sep 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5352229 | Goble et al. | Oct 1994 | A |
5352235 | Koros et al. | Oct 1994 | A |
5352238 | Green et al. | Oct 1994 | A |
5353798 | Sieben | Oct 1994 | A |
5354250 | Christensen | Oct 1994 | A |
5354303 | Spaeth et al. | Oct 1994 | A |
5356006 | Alpern et al. | Oct 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5358510 | Luscombe et al. | Oct 1994 | A |
5359231 | Flowers et al. | Oct 1994 | A |
D352780 | Glaeser et al. | Nov 1994 | S |
5359993 | Slater et al. | Nov 1994 | A |
5360305 | Kerrigan | Nov 1994 | A |
5360428 | Hutchinson, Jr. | Nov 1994 | A |
5361902 | Abidin et al. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5364002 | Green et al. | Nov 1994 | A |
5364003 | Williamson, IV | Nov 1994 | A |
5366133 | Geiste | Nov 1994 | A |
5366134 | Green et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368592 | Stern et al. | Nov 1994 | A |
5369565 | Chen et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5372602 | Burke | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5376095 | Ortiz | Dec 1994 | A |
5379933 | Green et al. | Jan 1995 | A |
5381649 | Webb | Jan 1995 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5381943 | Allen et al. | Jan 1995 | A |
5382247 | Cimino et al. | Jan 1995 | A |
5383460 | Jang et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383881 | Green et al. | Jan 1995 | A |
5383882 | Buess et al. | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5383895 | Holmes et al. | Jan 1995 | A |
5388568 | van der Heide | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389102 | Green et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391180 | Tovey et al. | Feb 1995 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395034 | Allen et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395384 | Duthoit et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403276 | Schechter et al. | Apr 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5404106 | Matsuda | Apr 1995 | A |
5404870 | Brinkerhoff et al. | Apr 1995 | A |
5404960 | Wada et al. | Apr 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5405073 | Porter | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5407293 | Crainich | Apr 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5409498 | Braddock et al. | Apr 1995 | A |
5409703 | McAnalley et al. | Apr 1995 | A |
D357981 | Green et al. | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5413268 | Green et al. | May 1995 | A |
5413272 | Green et al. | May 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5415334 | Williamson et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417203 | Tovey et al. | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5419766 | Chang et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423471 | Mastri et al. | Jun 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5423835 | Green et al. | Jun 1995 | A |
5425355 | Kulick | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5427298 | Tegtmeier | Jun 1995 | A |
5431322 | Green et al. | Jul 1995 | A |
5431323 | Smith et al. | Jul 1995 | A |
5431645 | Smith et al. | Jul 1995 | A |
5431654 | Nic | Jul 1995 | A |
5431668 | Burbank, III et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5439155 | Viola | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5439479 | Shichman et al. | Aug 1995 | A |
5441191 | Linden | Aug 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443197 | Malis et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5444113 | Sinclair et al. | Aug 1995 | A |
5445155 | Sieben | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5445644 | Pietrafitta et al. | Aug 1995 | A |
5446646 | Miyazaki | Aug 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5447417 | Kuhl et al. | Sep 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5449355 | Rhum et al. | Sep 1995 | A |
5449365 | Green et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5452836 | Huitema et al. | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5454378 | Palmer et al. | Oct 1995 | A |
5454822 | Schob et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456401 | Green et al. | Oct 1995 | A |
5456917 | Wise et al. | Oct 1995 | A |
5458279 | Plyley | Oct 1995 | A |
5458579 | Chodorow et al. | Oct 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5464013 | Lemelson | Nov 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5464300 | Crainich | Nov 1995 | A |
5465819 | Weilant et al. | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5465896 | Allen et al. | Nov 1995 | A |
5466020 | Page et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5470007 | Plyley et al. | Nov 1995 | A |
5470008 | Rodak | Nov 1995 | A |
5470009 | Rodak | Nov 1995 | A |
5470010 | Rothfuss et al. | Nov 1995 | A |
5471129 | Mann | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5473204 | Temple | Dec 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5474570 | Kockerling et al. | Dec 1995 | A |
5474738 | Nichols et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5476481 | Schondorf | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5482197 | Green et al. | Jan 1996 | A |
5483952 | Aranyi | Jan 1996 | A |
5484095 | Green et al. | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487377 | Smith et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5489256 | Adair | Feb 1996 | A |
5489290 | Furnish | Feb 1996 | A |
5490819 | Nicholas et al. | Feb 1996 | A |
5492671 | Krafft | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5498164 | Ward et al. | Mar 1996 | A |
5498838 | Furman | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5507425 | Ziglioli | Apr 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5507773 | Huitema et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5509916 | Taylor | Apr 1996 | A |
5509918 | Romano | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514129 | Smith | May 1996 | A |
5514149 | Green et al. | May 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5520609 | Moll et al. | May 1996 | A |
5520634 | Fox et al. | May 1996 | A |
5520678 | Heckele et al. | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522817 | Sander et al. | Jun 1996 | A |
5522831 | Sleister et al. | Jun 1996 | A |
5527264 | Moll et al. | Jun 1996 | A |
5527320 | Carruthers et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
D372086 | Grasso et al. | Jul 1996 | S |
5531305 | Roberts et al. | Jul 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5531856 | Moll et al. | Jul 1996 | A |
5533521 | Granger | Jul 1996 | A |
5533581 | Barth et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5541376 | Ladtkow et al. | Jul 1996 | A |
5541489 | Dunstan | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5543119 | Sutter et al. | Aug 1996 | A |
5543695 | Culp et al. | Aug 1996 | A |
5544802 | Crainich | Aug 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5549583 | Sanford et al. | Aug 1996 | A |
5549621 | Bessler et al. | Aug 1996 | A |
5549627 | Kieturakis | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5551622 | Yoon | Sep 1996 | A |
5553624 | Francese et al. | Sep 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554148 | Aebischer et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5556020 | Hou | Sep 1996 | A |
5556416 | Clark et al. | Sep 1996 | A |
5558533 | Hashizawa et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5561881 | Klinger et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5562682 | Oberlin et al. | Oct 1996 | A |
5562690 | Green et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5563481 | Krause | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5569161 | Ebling et al. | Oct 1996 | A |
5569270 | Weng | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5571488 | Beerstecher et al. | Nov 1996 | A |
5573169 | Green et al. | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5574431 | McKeown et al. | Nov 1996 | A |
5575054 | Klinzing et al. | Nov 1996 | A |
5575789 | Bell et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5582907 | Pall | Dec 1996 | A |
5583114 | Barrows et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5591187 | Dekel | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599151 | Daum et al. | Feb 1997 | A |
5599279 | Slotman et al. | Feb 1997 | A |
5599344 | Paterson | Feb 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5599852 | Scopelianos et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601573 | Fogelberg et al. | Feb 1997 | A |
5601604 | Vincent | Feb 1997 | A |
5602449 | Krause et al. | Feb 1997 | A |
5603443 | Clark et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5607433 | Polla et al. | Mar 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5607474 | Athanasiou et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609601 | Kolesa et al. | Mar 1997 | A |
5611709 | McAnulty | Mar 1997 | A |
5613499 | Palmer et al. | Mar 1997 | A |
5613937 | Garrison et al. | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5614887 | Buchbinder | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5619992 | Guthrie et al. | Apr 1997 | A |
5620289 | Curry | Apr 1997 | A |
5620326 | Younker | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5626979 | Mitsui et al. | May 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5628743 | Cimino | May 1997 | A |
5628745 | Bek | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5630541 | Williamson, IV et al. | May 1997 | A |
5630782 | Adair | May 1997 | A |
5631973 | Green | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5633374 | Humphrey et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636779 | Palmer | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5638582 | Klatt et al. | Jun 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5643291 | Pier et al. | Jul 1997 | A |
5643293 | Kogasaka et al. | Jul 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5651762 | Bridges | Jul 1997 | A |
5651821 | Uchida | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653721 | Knodel et al. | Aug 1997 | A |
5653748 | Strecker | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5657417 | Di Troia | Aug 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5658298 | Vincent et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658307 | Exconde | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5664404 | Ivanov et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5667864 | Landoil | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5669904 | Platt, Jr. et al. | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5672945 | Krause | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5674184 | Hassler, Jr. | Oct 1997 | A |
5674286 | D'Alessio et al. | Oct 1997 | A |
5678748 | Plyley et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5680983 | Plyley et al. | Oct 1997 | A |
5681341 | Lunsford et al. | Oct 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5686090 | Schilder et al. | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693020 | Rauh | Dec 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695494 | Becker | Dec 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5697542 | Knodel et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5700276 | Benecke | Dec 1997 | A |
5702387 | Arts et al. | Dec 1997 | A |
5702408 | Wales et al. | Dec 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5704087 | Strub | Jan 1998 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5707392 | Kortenbach | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5709335 | Heck | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5709706 | Kienzle et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5711960 | Shikinami | Jan 1998 | A |
5712460 | Carr et al. | Jan 1998 | A |
5713128 | Schrenk et al. | Feb 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713895 | Lontine et al. | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5713920 | Bezwada et al. | Feb 1998 | A |
5715604 | Lanzoni | Feb 1998 | A |
5715836 | Kliegis et al. | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5715988 | Palmer | Feb 1998 | A |
5716352 | Viola et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5718548 | Cotellessa | Feb 1998 | A |
5718714 | Livneh | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
D393067 | Geary et al. | Mar 1998 | S |
5724025 | Tavori | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728113 | Sherts | Mar 1998 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732712 | Adair | Mar 1998 | A |
5732821 | Stone et al. | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5733308 | Daugherty et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5736271 | Cisar et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5738629 | Moll et al. | Apr 1998 | A |
5738648 | Lands et al. | Apr 1998 | A |
5741271 | Nakao et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5747953 | Philipp | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5749896 | Cook | May 1998 | A |
5749968 | Melanson et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5752970 | Yoon | May 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5755726 | Pratt et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5765565 | Adair | Jun 1998 | A |
5766186 | Faraz et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5769303 | Knodel et al. | Jun 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5769748 | Eyerly et al. | Jun 1998 | A |
5769791 | Benaron et al. | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5772099 | Gravener | Jun 1998 | A |
5772379 | Evensen | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5773991 | Chen | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5778939 | Hok-Yin | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782748 | Palmer et al. | Jul 1998 | A |
5782749 | Riza | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5784934 | Izumisawa | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5785647 | Tompkins et al. | Jul 1998 | A |
5787897 | Kieturakis | Aug 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792162 | Jolly et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5792573 | Pitzen et al. | Aug 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797637 | Ervin | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5797906 | Rhum et al. | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5800423 | Jensen | Sep 1998 | A |
5804726 | Gelb et al. | Sep 1998 | A |
5804936 | Brodsky et al. | Sep 1998 | A |
5806676 | Wasgien | Sep 1998 | A |
5807241 | Heimberger | Sep 1998 | A |
5807376 | Viola et al. | Sep 1998 | A |
5807378 | Jensen et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5809441 | McKee | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810846 | Virnich et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5812188 | Adair | Sep 1998 | A |
5813813 | Daum et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5816471 | Plyley et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817091 | Nardella et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817109 | McGarry et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5824333 | Scopelianos et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5830598 | Patterson | Nov 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5836960 | Kolesa et al. | Nov 1998 | A |
5839369 | Chatterjee et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5841284 | Takahashi | Nov 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5843097 | Mayenberger et al. | Dec 1998 | A |
5843122 | Riza | Dec 1998 | A |
5843132 | Ilvento | Dec 1998 | A |
5843169 | Taheri | Dec 1998 | A |
5846254 | Schulze et al. | Dec 1998 | A |
5847566 | Marritt et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5849020 | Long et al. | Dec 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5851179 | Ritson et al. | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5853366 | Dowlatshahi | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5855583 | Wang et al. | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5865638 | Trafton | Feb 1999 | A |
5868361 | Rinderer | Feb 1999 | A |
5868664 | Speier et al. | Feb 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5868790 | Vincent et al. | Feb 1999 | A |
5871135 | Williamson IV et al. | Feb 1999 | A |
5873885 | Weidenbenner | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878607 | Nunes et al. | Mar 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5881777 | Bassi et al. | Mar 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5891094 | Masterson et al. | Apr 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5891558 | Bell et al. | Apr 1999 | A |
5893506 | Powell | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893878 | Pierce | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5899824 | Kurtz et al. | May 1999 | A |
5899914 | Zirps et al. | May 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5903117 | Gregory | May 1999 | A |
5904647 | Ouchi | May 1999 | A |
5904693 | Dicesare et al. | May 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5907211 | Hall et al. | May 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5908402 | Blythe | Jun 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5909062 | Krietzman | Jun 1999 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5916225 | Kugel | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5919198 | Graves, Jr. et al. | Jul 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5924864 | Loge et al. | Jul 1999 | A |
5928137 | Green | Jul 1999 | A |
5928256 | Riza | Jul 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5931853 | McEwen et al. | Aug 1999 | A |
5937951 | Izuchukwu et al. | Aug 1999 | A |
5938667 | Peyser et al. | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5941890 | Voegele et al. | Aug 1999 | A |
5944172 | Hannula | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5946978 | Yamashita | Sep 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5947996 | Logeman | Sep 1999 | A |
5948030 | Miller et al. | Sep 1999 | A |
5948429 | Bell et al. | Sep 1999 | A |
5951301 | Younker | Sep 1999 | A |
5951516 | Bunyan | Sep 1999 | A |
5951552 | Long et al. | Sep 1999 | A |
5951574 | Stefanchik et al. | Sep 1999 | A |
5951575 | Bolduc et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5957831 | Adair | Sep 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5966126 | Szabo | Oct 1999 | A |
5971916 | Koren | Oct 1999 | A |
5973221 | Collyer et al. | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5976122 | Madhani et al. | Nov 1999 | A |
5977746 | Hershberger et al. | Nov 1999 | A |
5980248 | Kusakabe et al. | Nov 1999 | A |
5984949 | Levin | Nov 1999 | A |
5988479 | Palmer | Nov 1999 | A |
5990379 | Gregory | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5997528 | Bisch et al. | Dec 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007521 | Bidwell et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6010513 | Tormala et al. | Jan 2000 | A |
6010520 | Pattison | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6013076 | Goble et al. | Jan 2000 | A |
6013991 | Philipp | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017322 | Snoke et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6018227 | Kumar et al. | Jan 2000 | A |
6019745 | Gray | Feb 2000 | A |
6019780 | Lombardo et al. | Feb 2000 | A |
6022352 | Vandewalle | Feb 2000 | A |
6023641 | Thompson | Feb 2000 | A |
6024708 | Bales et al. | Feb 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6024750 | Mastri et al. | Feb 2000 | A |
6024764 | Schroeppel | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6033105 | Barker et al. | Mar 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6033427 | Lee | Mar 2000 | A |
6036641 | Taylor et al. | Mar 2000 | A |
6036667 | Manna et al. | Mar 2000 | A |
6037724 | Buss et al. | Mar 2000 | A |
6037927 | Rosenberg | Mar 2000 | A |
6039126 | Hsieh | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6042601 | Smith | Mar 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6043626 | Snyder et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6047861 | Vidal et al. | Apr 2000 | A |
6049145 | Austin et al. | Apr 2000 | A |
6050172 | Corves et al. | Apr 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6050989 | Fox et al. | Apr 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6053899 | Slanda et al. | Apr 2000 | A |
6053922 | Krause et al. | Apr 2000 | A |
6054142 | Li et al. | Apr 2000 | A |
6055062 | Dina et al. | Apr 2000 | A |
RE36720 | Green et al. | May 2000 | E |
6056735 | Okada et al. | May 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6059806 | Hoegerle | May 2000 | A |
6062360 | Shields | May 2000 | A |
6063020 | Jones et al. | May 2000 | A |
6063025 | Bridges et al. | May 2000 | A |
6063050 | Manna et al. | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6065679 | Levie et al. | May 2000 | A |
6065919 | Peck | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6072299 | Kurle et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6075441 | Maloney | Jun 2000 | A |
6077280 | Fossum | Jun 2000 | A |
6077286 | Cuschieri et al. | Jun 2000 | A |
6077290 | Marini | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6082577 | Coates et al. | Jul 2000 | A |
6083191 | Rose | Jul 2000 | A |
6083223 | Baker | Jul 2000 | A |
6083234 | Nicholas et al. | Jul 2000 | A |
6083242 | Cook | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
D429252 | Haitani et al. | Aug 2000 | S |
6099537 | Sugai et al. | Aug 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6104162 | Sainsbury et al. | Aug 2000 | A |
6104304 | Clark et al. | Aug 2000 | A |
6106511 | Jensen | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110187 | Donlon | Aug 2000 | A |
6113618 | Nic | Sep 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6120433 | Mizuno et al. | Sep 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6123241 | Walter et al. | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
RE36923 | Hiroi et al. | Oct 2000 | E |
6126058 | Adams et al. | Oct 2000 | A |
6126359 | Dittrich et al. | Oct 2000 | A |
6126670 | Walker et al. | Oct 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6131790 | Piraka | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6134962 | Sugitani | Oct 2000 | A |
6139546 | Koenig et al. | Oct 2000 | A |
6142149 | Steen | Nov 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6147135 | Yuan et al. | Nov 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6151323 | O'Connell et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6156056 | Kearns et al. | Dec 2000 | A |
6157169 | Lee | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6159224 | Yoon | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6162537 | Martin et al. | Dec 2000 | A |
6165175 | Wampler et al. | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6167185 | Smiley et al. | Dec 2000 | A |
6168605 | Measamer et al. | Jan 2001 | B1 |
6171305 | Sherman | Jan 2001 | B1 |
6171316 | Kovac et al. | Jan 2001 | B1 |
6171330 | Benchetrit | Jan 2001 | B1 |
6173074 | Russo | Jan 2001 | B1 |
6174308 | Goble et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6174318 | Bates et al. | Jan 2001 | B1 |
6175290 | Forsythe et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6181105 | Cutolo et al. | Jan 2001 | B1 |
6182673 | Kindermann et al. | Feb 2001 | B1 |
6185356 | Parker et al. | Feb 2001 | B1 |
6186142 | Schmidt et al. | Feb 2001 | B1 |
6186957 | Milam | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6197042 | Ginn et al. | Mar 2001 | B1 |
6200311 | Danek et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6206894 | Thompson et al. | Mar 2001 | B1 |
6206897 | Jamiolkowski et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6206904 | Ouchi | Mar 2001 | B1 |
6209414 | Uneme | Apr 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6211626 | Lys et al. | Apr 2001 | B1 |
6213999 | Platt, Jr. et al. | Apr 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6220368 | Ark et al. | Apr 2001 | B1 |
6221007 | Green | Apr 2001 | B1 |
6221023 | Matsuba et al. | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6223835 | Habedank et al. | May 2001 | B1 |
6224617 | Saadat et al. | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6228084 | Kirwan, Jr. | May 2001 | B1 |
6228089 | Wahrburg | May 2001 | B1 |
6228098 | Kayan et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6238384 | Peer | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6241723 | Heim et al. | Jun 2001 | B1 |
6245084 | Mark et al. | Jun 2001 | B1 |
6248116 | Chevillon et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6249105 | Andrews et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6251485 | Harris et al. | Jun 2001 | B1 |
D445745 | Norman | Jul 2001 | S |
6254534 | Butler et al. | Jul 2001 | B1 |
6254619 | Garabet et al. | Jul 2001 | B1 |
6254642 | Taylor | Jul 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6261246 | Pantages et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6261679 | Chen et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6264617 | Bales et al. | Jul 2001 | B1 |
6269997 | Balazs et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6270916 | Sink et al. | Aug 2001 | B1 |
6273252 | Mitchell | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6280407 | Manna et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6293927 | McGuckin, Jr. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296640 | Wampler et al. | Oct 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6302743 | Chiu et al. | Oct 2001 | B1 |
6305891 | Burlingame | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6306424 | Vyakarnam et al. | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6309403 | Minor et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6317616 | Glossop | Nov 2001 | B1 |
6319510 | Yates | Nov 2001 | B1 |
6320123 | Reimers | Nov 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6324339 | Hudson et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6328498 | Mersch | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6331761 | Kumar et al. | Dec 2001 | B1 |
6333029 | Vyakarnam et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6336926 | Goble | Jan 2002 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6346077 | Taylor et al. | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6349868 | Mattingly et al. | Feb 2002 | B1 |
D454951 | Bon | Mar 2002 | S |
6352503 | Matsui et al. | Mar 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6355699 | Vyakarnam et al. | Mar 2002 | B1 |
6356072 | Chass | Mar 2002 | B1 |
6358224 | Tims et al. | Mar 2002 | B1 |
6358263 | Mark et al. | Mar 2002 | B2 |
6358459 | Ziegler et al. | Mar 2002 | B1 |
6364828 | Yeung et al. | Apr 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6366441 | Ozawa et al. | Apr 2002 | B1 |
6370981 | Watarai | Apr 2002 | B2 |
6371114 | Schmidt et al. | Apr 2002 | B1 |
6373152 | Wang et al. | Apr 2002 | B1 |
6377011 | Ben-Ur | Apr 2002 | B1 |
6383201 | Dong | May 2002 | B1 |
6387092 | Burnside et al. | May 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
6387114 | Adams | May 2002 | B2 |
6391038 | Vargas et al. | May 2002 | B2 |
6392854 | O'Gorman | May 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6398781 | Goble et al. | Jun 2002 | B1 |
6398797 | Bombard et al. | Jun 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6406440 | Stefanchik | Jun 2002 | B1 |
6406472 | Jensen | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6412639 | Hickey | Jul 2002 | B1 |
6413274 | Pedros | Jul 2002 | B1 |
6415542 | Bates et al. | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6423079 | Blake, III | Jul 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
RE37814 | Allgeyer | Aug 2002 | E |
6428070 | Takanashi et al. | Aug 2002 | B1 |
6428487 | Burdorff et al. | Aug 2002 | B1 |
6429611 | Li | Aug 2002 | B1 |
6430298 | Kettl et al. | Aug 2002 | B1 |
6432065 | Burdorff et al. | Aug 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6436115 | Beaupre | Aug 2002 | B1 |
6436122 | Frank et al. | Aug 2002 | B1 |
6439439 | Rickard et al. | Aug 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6440146 | Nicholas et al. | Aug 2002 | B2 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
D462758 | Epstein et al. | Sep 2002 | S |
6443973 | Whitman | Sep 2002 | B1 |
6445530 | Baker | Sep 2002 | B1 |
6447518 | Krause et al. | Sep 2002 | B1 |
6447523 | Middleman et al. | Sep 2002 | B1 |
6447799 | Ullman | Sep 2002 | B1 |
6447864 | Johnson et al. | Sep 2002 | B2 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6454781 | Witt et al. | Sep 2002 | B1 |
6457338 | Frenken | Oct 2002 | B1 |
6457625 | Tormala et al. | Oct 2002 | B1 |
6458077 | Boebel et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6458147 | Cruise et al. | Oct 2002 | B1 |
6460627 | Below et al. | Oct 2002 | B1 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6468286 | Mastri et al. | Oct 2002 | B2 |
6471106 | Reining | Oct 2002 | B1 |
6471659 | Eggers et al. | Oct 2002 | B2 |
6478210 | Adams et al. | Nov 2002 | B2 |
6482200 | Shippert | Nov 2002 | B2 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6485503 | Jacobs et al. | Nov 2002 | B2 |
6485667 | Tan | Nov 2002 | B1 |
6486286 | McGall et al. | Nov 2002 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6488659 | Rosenman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491702 | Heilbrun et al. | Dec 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494882 | Lebouitz et al. | Dec 2002 | B1 |
6494885 | Dhindsa | Dec 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6494896 | D'Alessio et al. | Dec 2002 | B1 |
6498480 | Manara | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500189 | Lang et al. | Dec 2002 | B1 |
6500194 | Benderev et al. | Dec 2002 | B2 |
D468749 | Friedman | Jan 2003 | S |
6503139 | Coral | Jan 2003 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6505768 | Whitman | Jan 2003 | B2 |
6506197 | Rollero et al. | Jan 2003 | B1 |
6506399 | Donovan | Jan 2003 | B2 |
6510854 | Goble | Jan 2003 | B2 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6512360 | Goto et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6516073 | Schulz et al. | Feb 2003 | B1 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6517535 | Edwards | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6520971 | Perry et al. | Feb 2003 | B1 |
6520972 | Peters | Feb 2003 | B2 |
6522101 | Malackowski | Feb 2003 | B2 |
6524180 | Simms et al. | Feb 2003 | B1 |
6525499 | Naganuma | Feb 2003 | B2 |
D471206 | Buzzard et al. | Mar 2003 | S |
6527782 | Hogg et al. | Mar 2003 | B2 |
6527785 | Sancoff et al. | Mar 2003 | B2 |
6530942 | Fogarty et al. | Mar 2003 | B2 |
6532958 | Buan et al. | Mar 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6533723 | Lockery et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6539297 | Weiberle et al. | Mar 2003 | B2 |
D473239 | Cockerill | Apr 2003 | S |
6539816 | Kogiso et al. | Apr 2003 | B2 |
6540737 | Bacher et al. | Apr 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6547786 | Goble | Apr 2003 | B1 |
6550546 | Thurler et al. | Apr 2003 | B2 |
6551333 | Kuhns et al. | Apr 2003 | B2 |
6554844 | Lee et al. | Apr 2003 | B2 |
6554861 | Knox et al. | Apr 2003 | B2 |
6555770 | Kawase | Apr 2003 | B2 |
6558378 | Sherman et al. | May 2003 | B2 |
6558379 | Batchelor et al. | May 2003 | B1 |
6558429 | Taylor | May 2003 | B2 |
6561187 | Schmidt et al. | May 2003 | B2 |
6565560 | Goble et al. | May 2003 | B1 |
6566619 | Gillman et al. | May 2003 | B2 |
6569085 | Kortenbach et al. | May 2003 | B2 |
6569171 | DeGuillebon et al. | May 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6582364 | Butler et al. | Jun 2003 | B2 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582441 | He et al. | Jun 2003 | B1 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6585664 | Burdorff et al. | Jul 2003 | B2 |
6586898 | King et al. | Jul 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6588277 | Giordano et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6588931 | Betzner et al. | Jul 2003 | B2 |
6589118 | Soma et al. | Jul 2003 | B1 |
6589164 | Flaherty | Jul 2003 | B1 |
6592538 | Hotchkiss et al. | Jul 2003 | B1 |
6592572 | Suzuta | Jul 2003 | B1 |
6592597 | Grant et al. | Jul 2003 | B2 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6595914 | Kato | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6596304 | Bayon et al. | Jul 2003 | B1 |
6596432 | Kawakami et al. | Jul 2003 | B2 |
6599295 | Tornier et al. | Jul 2003 | B1 |
6599323 | Melican et al. | Jul 2003 | B2 |
D478665 | Isaacs et al. | Aug 2003 | S |
D478986 | Johnston et al. | Aug 2003 | S |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6603050 | Heaton | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605669 | Awokola et al. | Aug 2003 | B2 |
6605911 | Klesing | Aug 2003 | B1 |
6607475 | Doyle et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6613069 | Boyd et al. | Sep 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620111 | Stephens et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6620166 | Wenstrom, Jr. et al. | Sep 2003 | B1 |
6625517 | Bogdanov et al. | Sep 2003 | B1 |
6626834 | Dunne et al. | Sep 2003 | B2 |
H2086 | Amsler | Oct 2003 | H |
6629630 | Adams | Oct 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6635838 | Komelson | Oct 2003 | B1 |
6636412 | Smith | Oct 2003 | B2 |
6638108 | Tachi | Oct 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6638297 | Huitema | Oct 2003 | B1 |
RE38335 | Aust et al. | Nov 2003 | E |
6641528 | Torii | Nov 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6645201 | Utley et al. | Nov 2003 | B1 |
6646307 | Yu et al. | Nov 2003 | B1 |
6648816 | Irion et al. | Nov 2003 | B2 |
6648901 | Fleischman et al. | Nov 2003 | B2 |
6652595 | Nicolo | Nov 2003 | B1 |
D484243 | Ryan et al. | Dec 2003 | S |
D484595 | Ryan et al. | Dec 2003 | S |
D484596 | Ryan et al. | Dec 2003 | S |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6659940 | Adler | Dec 2003 | B2 |
6660008 | Foerster et al. | Dec 2003 | B1 |
6663623 | Oyama et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6666860 | Takahashi | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6667825 | Lu et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6670806 | Wendt et al. | Dec 2003 | B2 |
6671185 | Duval | Dec 2003 | B2 |
D484977 | Ryan et al. | Jan 2004 | S |
6676660 | Wampler et al. | Jan 2004 | B2 |
6677687 | Ho et al. | Jan 2004 | B2 |
6679269 | Swanson | Jan 2004 | B2 |
6679410 | Wursch et al. | Jan 2004 | B2 |
6681978 | Geiste et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6685727 | Fisher et al. | Feb 2004 | B2 |
6689153 | Skiba | Feb 2004 | B1 |
6692507 | Pugsley et al. | Feb 2004 | B2 |
6692692 | Stetzel | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6695774 | Hale et al. | Feb 2004 | B2 |
6695849 | Michelson | Feb 2004 | B2 |
6696814 | Henderson et al. | Feb 2004 | B2 |
6697048 | Rosenberg et al. | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6699214 | Gellman | Mar 2004 | B2 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6705503 | Pedicini et al. | Mar 2004 | B1 |
6709445 | Boebel et al. | Mar 2004 | B2 |
6712773 | Viola | Mar 2004 | B1 |
6716215 | David et al. | Apr 2004 | B1 |
6716223 | Leopold et al. | Apr 2004 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6720734 | Norris | Apr 2004 | B2 |
6722550 | Ricordi et al. | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723087 | O'Neill et al. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6723106 | Charles et al. | Apr 2004 | B1 |
6723109 | Solingen | Apr 2004 | B2 |
6726651 | Robinson et al. | Apr 2004 | B1 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6726705 | Peterson et al. | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6729119 | Schnipke et al. | May 2004 | B2 |
6731976 | Penn et al. | May 2004 | B2 |
6736810 | Hoey et al. | May 2004 | B2 |
6736825 | Blatter et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6743230 | Lutze et al. | Jun 2004 | B2 |
6744385 | Kazuya et al. | Jun 2004 | B2 |
6747121 | Gogolewski | Jun 2004 | B2 |
6747300 | Nadd et al. | Jun 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6749600 | Levy | Jun 2004 | B1 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6754959 | Guiette, III et al. | Jun 2004 | B1 |
6755195 | Lemke et al. | Jun 2004 | B1 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6755825 | Shoenman et al. | Jun 2004 | B2 |
6755843 | Chung et al. | Jun 2004 | B2 |
6756705 | Pulford, Jr. | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6762339 | Klun et al. | Jul 2004 | B1 |
6763307 | Berg et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6766957 | Matsuura et al. | Jul 2004 | B2 |
6767352 | Field et al. | Jul 2004 | B2 |
6767356 | Kanner et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6770027 | Banik et al. | Aug 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6770078 | Bonutti | Aug 2004 | B2 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773437 | Ogilvie et al. | Aug 2004 | B2 |
6773438 | Knodel et al. | Aug 2004 | B1 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6777838 | Miekka et al. | Aug 2004 | B2 |
6778846 | Martinez et al. | Aug 2004 | B1 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6784775 | Mandell et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793661 | Hamilton et al. | Sep 2004 | B2 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6793669 | Nakamura et al. | Sep 2004 | B2 |
6796921 | Buck et al. | Sep 2004 | B1 |
6799669 | Fukumura et al. | Oct 2004 | B2 |
6801009 | Makaran et al. | Oct 2004 | B2 |
6802822 | Dodge | Oct 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6802844 | Ferree | Oct 2004 | B2 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6806808 | Watters et al. | Oct 2004 | B1 |
6806867 | Arruda et al. | Oct 2004 | B1 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6810359 | Sakaguchi | Oct 2004 | B2 |
6814154 | Chou | Nov 2004 | B2 |
6814741 | Bowman et al. | Nov 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6817509 | Geiste et al. | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6818018 | Sawhney | Nov 2004 | B1 |
6820791 | Adams | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6821284 | Sturtz et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6827725 | Batchelor et al. | Dec 2004 | B2 |
6828902 | Casden | Dec 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6831629 | Nishino et al. | Dec 2004 | B2 |
6832998 | Goble | Dec 2004 | B2 |
6834001 | Myono | Dec 2004 | B2 |
6835173 | Couvillon, Jr. | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6835336 | Watt | Dec 2004 | B2 |
6836611 | Popovic et al. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6838493 | Williams et al. | Jan 2005 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6841967 | Kim et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6843789 | Goble | Jan 2005 | B2 |
6843793 | Brock et al. | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6847190 | Schaefer et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6850817 | Green | Feb 2005 | B1 |
6852122 | Rush | Feb 2005 | B2 |
6852330 | Bowman et al. | Feb 2005 | B2 |
6853879 | Sunaoshi | Feb 2005 | B2 |
6858005 | Ohline et al. | Feb 2005 | B2 |
6859882 | Fung | Feb 2005 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
D502994 | Blake, III | Mar 2005 | S |
6861142 | Wilkie et al. | Mar 2005 | B1 |
6861954 | Levin | Mar 2005 | B2 |
6863668 | Gillespie et al. | Mar 2005 | B2 |
6863694 | Boyce et al. | Mar 2005 | B1 |
6863924 | Ranganathan et al. | Mar 2005 | B2 |
6866178 | Adams et al. | Mar 2005 | B2 |
6866668 | Giannetti et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6867248 | Martin et al. | Mar 2005 | B1 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6869435 | Blake, III | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6876850 | Maeshima et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6882127 | Konigbauer | Apr 2005 | B2 |
6883199 | Lundell et al. | Apr 2005 | B1 |
6884392 | Malkin et al. | Apr 2005 | B2 |
6884428 | Binette et al. | Apr 2005 | B2 |
6886730 | Fujisawa et al. | May 2005 | B2 |
6887244 | Walker et al. | May 2005 | B1 |
6887710 | Call et al. | May 2005 | B2 |
6889116 | Jinno | May 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6894140 | Roby | May 2005 | B2 |
6895176 | Archer et al. | May 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6899593 | Moeller et al. | May 2005 | B1 |
6899705 | Niemeyer | May 2005 | B2 |
6899915 | Yelick et al. | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6905498 | Hooven | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6911916 | Wang et al. | Jun 2005 | B1 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6913608 | Liddicoat et al. | Jul 2005 | B2 |
6913613 | Schwarz et al. | Jul 2005 | B2 |
6921397 | Corcoran et al. | Jul 2005 | B2 |
6921412 | Black et al. | Jul 2005 | B1 |
6923093 | Ullah | Aug 2005 | B2 |
6923803 | Goble | Aug 2005 | B2 |
6923819 | Meade et al. | Aug 2005 | B2 |
6925849 | Jairam | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6928902 | Eyssallenne | Aug 2005 | B1 |
6929641 | Goble et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6931830 | Liao | Aug 2005 | B2 |
6932218 | Kosann et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6936948 | Bell et al. | Aug 2005 | B2 |
D509297 | Wells | Sep 2005 | S |
D509589 | Wells | Sep 2005 | S |
6938706 | Ng | Sep 2005 | B2 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
6942674 | Belef et al. | Sep 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6949196 | Schmitz et al. | Sep 2005 | B2 |
6951562 | Zwirnmann | Oct 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6957758 | Aranyi | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
D511525 | Hernandez et al. | Nov 2005 | S |
6959851 | Heinrich | Nov 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6960107 | Schaub et al. | Nov 2005 | B1 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6960220 | Marino et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6963792 | Green | Nov 2005 | B1 |
6964363 | Wales et al. | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6968908 | Tokunaga et al. | Nov 2005 | B2 |
6969385 | Moreyra | Nov 2005 | B2 |
6969395 | Eskuri | Nov 2005 | B2 |
6971988 | Orban, III | Dec 2005 | B2 |
6972199 | Lebouitz et al. | Dec 2005 | B2 |
6974435 | Daw et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6981978 | Gannoe | Jan 2006 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
6989034 | Hammer et al. | Jan 2006 | B2 |
6990731 | Haytayan | Jan 2006 | B2 |
6990796 | Schnipke et al. | Jan 2006 | B2 |
6991146 | Sinisi et al. | Jan 2006 | B2 |
6993200 | Tastl et al. | Jan 2006 | B2 |
6993413 | Sunaoshi | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6995729 | Govari et al. | Feb 2006 | B2 |
6996433 | Burbank et al. | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
6997935 | Anderson et al. | Feb 2006 | B2 |
6998736 | Lee et al. | Feb 2006 | B2 |
6998816 | Wieck et al. | Feb 2006 | B2 |
6999821 | Jenney et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7000911 | McCormick et al. | Feb 2006 | B2 |
7001380 | Goble | Feb 2006 | B2 |
7001408 | Knodel et al. | Feb 2006 | B2 |
7004174 | Eggers et al. | Feb 2006 | B2 |
7007176 | Goodfellow et al. | Feb 2006 | B2 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7009039 | Yayon et al. | Mar 2006 | B2 |
7011213 | Clark et al. | Mar 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7014640 | Kemppainen et al. | Mar 2006 | B2 |
7018357 | Emmons | Mar 2006 | B2 |
7018390 | Turovskiy et al. | Mar 2006 | B2 |
7021399 | Driessen | Apr 2006 | B2 |
7021669 | Lindermeir et al. | Apr 2006 | B1 |
7022131 | Derowe et al. | Apr 2006 | B1 |
7023159 | Gorti et al. | Apr 2006 | B2 |
7025064 | Wang et al. | Apr 2006 | B2 |
7025732 | Thompson et al. | Apr 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
7025775 | Gadberry et al. | Apr 2006 | B2 |
7028570 | Ohta et al. | Apr 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7029439 | Roberts et al. | Apr 2006 | B2 |
7030904 | Adair et al. | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7033378 | Smith et al. | Apr 2006 | B2 |
7035716 | Harris et al. | Apr 2006 | B2 |
7035762 | Menard et al. | Apr 2006 | B2 |
7036680 | Flannery | May 2006 | B1 |
7037314 | Armstrong | May 2006 | B2 |
7037344 | Kagan et al. | May 2006 | B2 |
7038421 | Trifilo | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7041868 | Greene et al. | May 2006 | B2 |
7043852 | Hayashida et al. | May 2006 | B2 |
7044350 | Kameyama et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7046082 | Komiya et al. | May 2006 | B2 |
7048165 | Haramiishi | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7048716 | Kucharczyk et al. | May 2006 | B1 |
7048745 | Tierney et al. | May 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052499 | Steger et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056123 | Gregorio et al. | Jun 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7063671 | Couvillon, Jr. | Jun 2006 | B2 |
7063712 | Vargas et al. | Jun 2006 | B2 |
7064509 | Fu et al. | Jun 2006 | B1 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066944 | Laufer et al. | Jun 2006 | B2 |
7067038 | Trokhan et al. | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7070559 | Adams et al. | Jul 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7071287 | Rhine et al. | Jul 2006 | B2 |
7075770 | Smith | Jul 2006 | B1 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7081114 | Rashid! | Jul 2006 | B2 |
7081318 | Lee et al. | Jul 2006 | B2 |
7083073 | Yoshie et al. | Aug 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7086267 | Dworak et al. | Aug 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7090684 | McGuckin, Jr. et al. | Aug 2006 | B2 |
7091191 | Laredo et al. | Aug 2006 | B2 |
7091412 | Wang et al. | Aug 2006 | B2 |
7093492 | Treiber et al. | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094247 | Monassevitch et al. | Aug 2006 | B2 |
7094916 | DeLuca et al. | Aug 2006 | B2 |
7096972 | Orozco, Jr. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7097644 | Long | Aug 2006 | B2 |
7097650 | Weller et al. | Aug 2006 | B2 |
7098794 | Lindsay et al. | Aug 2006 | B2 |
7100949 | Williams et al. | Sep 2006 | B2 |
7101187 | Deconinck et al. | Sep 2006 | B1 |
7101363 | Nishizawa et al. | Sep 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101394 | Hamm et al. | Sep 2006 | B2 |
7104741 | Krohn | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7111768 | Cummins et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112214 | Peterson et al. | Sep 2006 | B2 |
RE39358 | Goble | Oct 2006 | E |
D530339 | Hernandez et al. | Oct 2006 | S |
7114642 | Whitman | Oct 2006 | B2 |
7116100 | Mock et al. | Oct 2006 | B1 |
7118020 | Lee et al. | Oct 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7118563 | Weckwerth et al. | Oct 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7119534 | Butzmann | Oct 2006 | B2 |
7121446 | Arad et al. | Oct 2006 | B2 |
7121773 | Mikiya et al. | Oct 2006 | B2 |
7122028 | Looper et al. | Oct 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7126879 | Snyder | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7133601 | Phillips et al. | Nov 2006 | B2 |
7134364 | Kageler et al. | Nov 2006 | B2 |
7134587 | Schwemberger et al. | Nov 2006 | B2 |
7135027 | Delmotte | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7139016 | Squilla et al. | Nov 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7146191 | Kerner et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7147140 | Wukusick et al. | Dec 2006 | B2 |
7147637 | Goble | Dec 2006 | B2 |
7147648 | Lin | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7150748 | Ebbutt et al. | Dec 2006 | B2 |
7153300 | Goble | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7156863 | Sonnenschein et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7161036 | Oikawa et al. | Jan 2007 | B2 |
7161580 | Bailey et al. | Jan 2007 | B2 |
7162758 | Skinner | Jan 2007 | B2 |
7163563 | Schwartz et al. | Jan 2007 | B2 |
7166117 | Hellenkamp | Jan 2007 | B2 |
7166133 | Evans et al. | Jan 2007 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7170910 | Chen et al. | Jan 2007 | B2 |
7171279 | Buckingham et al. | Jan 2007 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7172593 | Trieu et al. | Feb 2007 | B2 |
7172615 | Morriss et al. | Feb 2007 | B2 |
7174202 | Bladen et al. | Feb 2007 | B2 |
7174636 | Lowe | Feb 2007 | B2 |
7177533 | McFarlin et al. | Feb 2007 | B2 |
7179223 | Motoki et al. | Feb 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7182763 | Nardella | Feb 2007 | B2 |
7183737 | Kitagawa | Feb 2007 | B2 |
7187960 | Abreu | Mar 2007 | B2 |
7188758 | Viola et al. | Mar 2007 | B2 |
7189207 | Viola | Mar 2007 | B2 |
7190147 | Gileff et al. | Mar 2007 | B2 |
7193199 | Jang | Mar 2007 | B2 |
7195627 | Amoah et al. | Mar 2007 | B2 |
7196911 | Takano et al. | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7199537 | Okamura et al. | Apr 2007 | B2 |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7202576 | Dechene et al. | Apr 2007 | B1 |
7202653 | Pai | Apr 2007 | B2 |
7204404 | Nguyen et al. | Apr 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7205959 | Henriksson | Apr 2007 | B2 |
7206626 | Quaid, III | Apr 2007 | B2 |
7207233 | Wadge | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7207556 | Saitoh et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7211081 | Goble | May 2007 | B2 |
7211084 | Goble et al. | May 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7211979 | Khatib et al. | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7214224 | Goble | May 2007 | B2 |
7215517 | Takamatsu | May 2007 | B2 |
7217285 | Vargas et al. | May 2007 | B2 |
7220260 | Fleming et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7225959 | Patton et al. | Jun 2007 | B2 |
7225963 | Scirica | Jun 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226450 | Athanasiou et al. | Jun 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7228505 | Shimazu et al. | Jun 2007 | B2 |
7229408 | Douglas et al. | Jun 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235072 | Sartor et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
7235302 | Jing et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7238195 | Viola | Jul 2007 | B2 |
7238901 | Kim et al. | Jul 2007 | B2 |
7239657 | Gunnarsson | Jul 2007 | B1 |
7241288 | Braun | Jul 2007 | B2 |
7241289 | Braun | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7247161 | Johnston et al. | Jul 2007 | B2 |
7249267 | Chapuis | Jul 2007 | B2 |
7252641 | Thompson et al. | Aug 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7255012 | Hedtke | Aug 2007 | B2 |
7255696 | Goble et al. | Aug 2007 | B2 |
7256695 | Hamel et al. | Aug 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7258546 | Beier et al. | Aug 2007 | B2 |
7260431 | Libbus et al. | Aug 2007 | B2 |
7265374 | Lee et al. | Sep 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267679 | McGuckin, Jr. et al. | Sep 2007 | B2 |
7272002 | Drapeau | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
D552623 | Vong et al. | Oct 2007 | S |
7275674 | Racenet et al. | Oct 2007 | B2 |
7276044 | Ferry et al. | Oct 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7278949 | Bader | Oct 2007 | B2 |
7278994 | Goble | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7283096 | Geisheimer et al. | Oct 2007 | B2 |
7286850 | Frielink et al. | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7289139 | Amling et al. | Oct 2007 | B2 |
7293685 | Ehrenfels et al. | Nov 2007 | B2 |
7295893 | Sunaoshi | Nov 2007 | B2 |
7295907 | Lu et al. | Nov 2007 | B2 |
7296722 | Ivanko | Nov 2007 | B2 |
7296724 | Green et al. | Nov 2007 | B2 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300373 | Jinno et al. | Nov 2007 | B2 |
7300431 | Dubrovsky | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7303502 | Thompson | Dec 2007 | B2 |
7303556 | Metzger | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7311238 | Liu | Dec 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7314473 | Jinno et al. | Jan 2008 | B2 |
7322859 | Evans | Jan 2008 | B2 |
7322975 | Goble et al. | Jan 2008 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7324572 | Chang | Jan 2008 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7330004 | DeJonge et al. | Feb 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7331343 | Schmidt et al. | Feb 2008 | B2 |
7331403 | Berry et al. | Feb 2008 | B2 |
7331406 | Wottreng, Jr. et al. | Feb 2008 | B2 |
7331969 | Inganas et al. | Feb 2008 | B1 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335199 | Goble et al. | Feb 2008 | B2 |
7335401 | Finke et al. | Feb 2008 | B2 |
7336045 | Clermonts | Feb 2008 | B2 |
7336048 | Lohr | Feb 2008 | B2 |
7336183 | Reddy et al. | Feb 2008 | B2 |
7336184 | Smith et al. | Feb 2008 | B2 |
7337774 | Webb | Mar 2008 | B2 |
7338505 | Belson | Mar 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7341554 | Sekine et al. | Mar 2008 | B2 |
7341555 | Ootawara et al. | Mar 2008 | B2 |
7341591 | Grinberg | Mar 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7344533 | Pearson et al. | Mar 2008 | B2 |
7346344 | Fontaine | Mar 2008 | B2 |
7346406 | Brotto et al. | Mar 2008 | B2 |
7348763 | Reinhart et al. | Mar 2008 | B1 |
7348875 | Hughes et al. | Mar 2008 | B2 |
RE40237 | Bilotti et al. | Apr 2008 | E |
7351258 | Ricotta et al. | Apr 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7354502 | Polat et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7357806 | Rivera et al. | Apr 2008 | B2 |
7361168 | Makower et al. | Apr 2008 | B2 |
7361195 | Schwartz et al. | Apr 2008 | B2 |
7362062 | Schneider et al. | Apr 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7367485 | Shelton, IV et al. | May 2008 | B2 |
7367973 | Manzo et al. | May 2008 | B2 |
7368124 | Chun et al. | May 2008 | B2 |
7371210 | Brock et al. | May 2008 | B2 |
7371403 | McCarthy et al. | May 2008 | B2 |
7375493 | Calhoon et al. | May 2008 | B2 |
7377918 | Amoah | May 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7378817 | Calhoon et al. | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
D570868 | Hosokawa et al. | Jun 2008 | S |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7384403 | Sherman | Jun 2008 | B2 |
7384417 | Cucin | Jun 2008 | B2 |
7386365 | Nixon | Jun 2008 | B2 |
7386730 | Uchikubo | Jun 2008 | B2 |
7388217 | Buschbeck et al. | Jun 2008 | B2 |
7388484 | Hsu | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7394190 | Huang | Jul 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7397364 | Govari | Jul 2008 | B2 |
7398707 | Morley et al. | Jul 2008 | B2 |
7398907 | Racenet et al. | Jul 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7400107 | Schneider et al. | Jul 2008 | B2 |
7400752 | Zacharias | Jul 2008 | B2 |
7401000 | Nakamura | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7404449 | Bermingham et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7404509 | Ortiz et al. | Jul 2008 | B2 |
7404822 | Viart et al. | Jul 2008 | B2 |
D575793 | Ording | Aug 2008 | S |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407076 | Racenet et al. | Aug 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7408310 | Hong et al. | Aug 2008 | B2 |
7410085 | Wolf et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7410483 | Danitz et al. | Aug 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7418078 | Blanz et al. | Aug 2008 | B2 |
RE40514 | Mastri et al. | Sep 2008 | E |
7419080 | Smith et al. | Sep 2008 | B2 |
7419081 | Ehrenfels et al. | Sep 2008 | B2 |
7419321 | Tereschouk | Sep 2008 | B2 |
7419495 | Menn et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7427607 | Suzuki | Sep 2008 | B2 |
D578644 | Shumer et al. | Oct 2008 | S |
7430772 | Van Es | Oct 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431230 | McPherson et al. | Oct 2008 | B2 |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7435249 | Buysse et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7439354 | Lenges et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7442201 | Pugsley et al. | Oct 2008 | B2 |
7443547 | Moreno et al. | Oct 2008 | B2 |
7446131 | Liu et al. | Nov 2008 | B1 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7450010 | Gravelle et al. | Nov 2008 | B1 |
7450991 | Smith et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7455687 | Saunders et al. | Nov 2008 | B2 |
D582934 | Byeon | Dec 2008 | S |
7461767 | Viola et al. | Dec 2008 | B2 |
7462187 | Johnston et al. | Dec 2008 | B2 |
7464845 | Chou | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464848 | Green et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7467849 | Silverbrook et al. | Dec 2008 | B2 |
7472814 | Mastri et al. | Jan 2009 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7472816 | Holsten et al. | Jan 2009 | B2 |
7473221 | Ewers et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7476237 | Taniguchi et al. | Jan 2009 | B2 |
7479147 | Honeycutt et al. | Jan 2009 | B2 |
7479608 | Smith | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7481349 | Holsten et al. | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7485124 | Kuhns et al. | Feb 2009 | B2 |
7485133 | Cannon et al. | Feb 2009 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7489055 | Jeong et al. | Feb 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7491232 | Bolduc et al. | Feb 2009 | B2 |
7492261 | Cambre et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7494460 | Haarstad et al. | Feb 2009 | B2 |
7494499 | Nagase et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7497137 | Tellenbach et al. | Mar 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7501198 | Barlev et al. | Mar 2009 | B2 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7507202 | Schoellhorn | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510534 | Burdorff et al. | Mar 2009 | B2 |
7510566 | Jacobs et al. | Mar 2009 | B2 |
7513407 | Chang | Apr 2009 | B1 |
7513408 | Shelton, IV et al. | Apr 2009 | B2 |
7517356 | Heinrich | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7527632 | Houghton et al. | May 2009 | B2 |
7530984 | Sonnenschein et al. | May 2009 | B2 |
7530985 | Takemoto et al. | May 2009 | B2 |
7533906 | Luettgen et al. | May 2009 | B2 |
7534259 | Lashinski et al. | May 2009 | B2 |
7540867 | Jinno et al. | Jun 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7542807 | Bertolero et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547287 | Boecker et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7549998 | Braun | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7553173 | Kowalick | Jun 2009 | B2 |
7553275 | Padget et al. | Jun 2009 | B2 |
7554343 | Bromfield | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7559449 | Viola | Jul 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7561637 | Jonsson et al. | Jul 2009 | B2 |
7562910 | Kertesz et al. | Jul 2009 | B2 |
7563269 | Hashiguchi | Jul 2009 | B2 |
7563862 | Sieg et al. | Jul 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7567045 | Fristedt | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7568619 | Todd et al. | Aug 2009 | B2 |
7572285 | Frey et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7578825 | Huebner | Aug 2009 | B2 |
D600712 | LaManna et al. | Sep 2009 | S |
7583063 | Dooley | Sep 2009 | B2 |
7584880 | Racenet et al. | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7591783 | Boulais et al. | Sep 2009 | B2 |
7591818 | Bertolero et al. | Sep 2009 | B2 |
7593766 | Faber et al. | Sep 2009 | B2 |
7595642 | Doyle | Sep 2009 | B2 |
7597229 | Boudreaux et al. | Oct 2009 | B2 |
7597230 | Racenet et al. | Oct 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7597699 | Rogers | Oct 2009 | B2 |
7598972 | Tomita | Oct 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7604118 | Iio et al. | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7604668 | Farnsworth et al. | Oct 2009 | B2 |
7605826 | Sauer | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
D604325 | Ebeling et al. | Nov 2009 | S |
7611038 | Racenet et al. | Nov 2009 | B2 |
7611474 | Hibner et al. | Nov 2009 | B2 |
7615003 | Stefanchik et al. | Nov 2009 | B2 |
7615006 | Abe | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7618427 | Ortiz et al. | Nov 2009 | B2 |
D605201 | Lorenz et al. | Dec 2009 | S |
D606992 | Liu et al. | Dec 2009 | S |
D607010 | Kocmick | Dec 2009 | S |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7624903 | Green et al. | Dec 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7625388 | Boukhny et al. | Dec 2009 | B2 |
7630841 | Comisky et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7631794 | Rethy et al. | Dec 2009 | B2 |
7635074 | Olson et al. | Dec 2009 | B2 |
7635922 | Becker | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7641091 | Olson et al. | Jan 2010 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7641095 | Viola | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644783 | Roberts et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7648055 | Marczyk | Jan 2010 | B2 |
7648457 | Stefanchik et al. | Jan 2010 | B2 |
7648519 | Lee et al. | Jan 2010 | B2 |
7650185 | Maile et al. | Jan 2010 | B2 |
7651017 | Ortiz et al. | Jan 2010 | B2 |
7651498 | Shifrin et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7655003 | Lorang et al. | Feb 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7655288 | Bauman et al. | Feb 2010 | B2 |
7655584 | Biran et al. | Feb 2010 | B2 |
7656131 | Embrey et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7658312 | Vidal et al. | Feb 2010 | B2 |
7658705 | Melvin et al. | Feb 2010 | B2 |
7659219 | Biran et al. | Feb 2010 | B2 |
7661448 | Kim et al. | Feb 2010 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666195 | Kelleher et al. | Feb 2010 | B2 |
7669746 | Shelton, IV | Mar 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7673781 | Swayze et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7673783 | Morgan et al. | Mar 2010 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7674255 | Braun | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7674270 | Layer | Mar 2010 | B2 |
7678121 | Knodel | Mar 2010 | B1 |
7682307 | Danitz et al. | Mar 2010 | B2 |
7682367 | Shah et al. | Mar 2010 | B2 |
7682686 | Curro et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7690547 | Racenet et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7691103 | Fernandez et al. | Apr 2010 | B2 |
7691106 | Schenberger et al. | Apr 2010 | B2 |
7694864 | Okada et al. | Apr 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7695485 | Whitman et al. | Apr 2010 | B2 |
7695493 | Saadat et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7699844 | Utley et al. | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7699856 | Van Wyk et al. | Apr 2010 | B2 |
7699859 | Bombard et al. | Apr 2010 | B2 |
7699860 | Huitema et al. | Apr 2010 | B2 |
7699868 | Frank et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7705559 | Powell et al. | Apr 2010 | B2 |
7706853 | Hacker et al. | Apr 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7708182 | Viola | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7708768 | Danek et al. | May 2010 | B2 |
7709136 | Touchton et al. | May 2010 | B2 |
7712182 | Zeller et al. | May 2010 | B2 |
7713190 | Brock et al. | May 2010 | B2 |
7713542 | Xu et al. | May 2010 | B2 |
7714239 | Smith | May 2010 | B2 |
7714334 | Lin | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7717846 | Zirps et al. | May 2010 | B2 |
7717873 | Swick | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7717926 | Whitfield et al. | May 2010 | B2 |
7718180 | Karp | May 2010 | B2 |
7718556 | Matsuda et al. | May 2010 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721932 | Cole et al. | May 2010 | B2 |
7721933 | Ehrenfels et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7722610 | Viola et al. | May 2010 | B2 |
7725214 | Diolaiti | May 2010 | B2 |
7726171 | Langlotz et al. | Jun 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7726538 | Holsten et al. | Jun 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7727954 | McKay | Jun 2010 | B2 |
7728553 | Carrier et al. | Jun 2010 | B2 |
7729742 | Govari | Jun 2010 | B2 |
7731072 | Timm et al. | Jun 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7731724 | Huitema et al. | Jun 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7735704 | Bilotti | Jun 2010 | B2 |
7736254 | Schena | Jun 2010 | B2 |
7736306 | Brustad et al. | Jun 2010 | B2 |
7736356 | Cooper | Jun 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7742036 | Grant et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7744624 | Bettuchi | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7744628 | Viola | Jun 2010 | B2 |
7747146 | Milano et al. | Jun 2010 | B2 |
7748587 | Haramiishi et al. | Jul 2010 | B2 |
7748632 | Coleman et al. | Jul 2010 | B2 |
7749204 | Dhanaraj et al. | Jul 2010 | B2 |
7749240 | Takahashi et al. | Jul 2010 | B2 |
7751870 | Whitman | Jul 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753246 | Scirica | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7757924 | Gerbi et al. | Jul 2010 | B2 |
7758594 | Lamson et al. | Jul 2010 | B2 |
7758612 | Shipp | Jul 2010 | B2 |
7758613 | Whitman | Jul 2010 | B2 |
7762462 | Gelbman | Jul 2010 | B2 |
7762998 | Birk et al. | Jul 2010 | B2 |
D622286 | Umezawa | Aug 2010 | S |
7766207 | Mather et al. | Aug 2010 | B2 |
7766209 | Baxter, III et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766821 | Brunnen et al. | Aug 2010 | B2 |
7766894 | Weitzner et al. | Aug 2010 | B2 |
7770658 | Ito et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771396 | Stefanchik et al. | Aug 2010 | B2 |
7772720 | McGee et al. | Aug 2010 | B2 |
7772725 | Siman-Tov | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7776065 | Griffiths et al. | Aug 2010 | B2 |
7778004 | Nerheim et al. | Aug 2010 | B2 |
7779614 | McGonagle et al. | Aug 2010 | B1 |
7779737 | Newman, Jr. et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780055 | Scirica et al. | Aug 2010 | B2 |
7780309 | McMillan et al. | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7780685 | Hunt et al. | Aug 2010 | B2 |
7782382 | Fujimura | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7787256 | Chan et al. | Aug 2010 | B2 |
7789283 | Shah | Sep 2010 | B2 |
7789875 | Brock et al. | Sep 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7789889 | Zubik et al. | Sep 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7799044 | Johnston et al. | Sep 2010 | B2 |
7799965 | Patel et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7806871 | Li et al. | Oct 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810690 | Bilotti et al. | Oct 2010 | B2 |
7810691 | Boyden et al. | Oct 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7811275 | Birk et al. | Oct 2010 | B2 |
7814816 | Alberti et al. | Oct 2010 | B2 |
7815092 | Whitman et al. | Oct 2010 | B2 |
7815565 | Stefanchik et al. | Oct 2010 | B2 |
7815662 | Spivey et al. | Oct 2010 | B2 |
7819296 | Hueil et al. | Oct 2010 | B2 |
7819297 | Doll et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819799 | Merril et al. | Oct 2010 | B2 |
7819884 | Lee et al. | Oct 2010 | B2 |
7819885 | Cooper | Oct 2010 | B2 |
7819886 | Whitfield et al. | Oct 2010 | B2 |
7819894 | Mitsuishi et al. | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7824422 | Benchetrit | Nov 2010 | B2 |
7824426 | Racenet et al. | Nov 2010 | B2 |
7828189 | Holsten et al. | Nov 2010 | B2 |
7828794 | Sartor | Nov 2010 | B2 |
7828808 | Hinman et al. | Nov 2010 | B2 |
7829416 | Kudou et al. | Nov 2010 | B2 |
7831292 | Quaid et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7833234 | Bailly et al. | Nov 2010 | B2 |
7835823 | Sillman et al. | Nov 2010 | B2 |
7836400 | May et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7837425 | Saeki et al. | Nov 2010 | B2 |
7837685 | Weinberg et al. | Nov 2010 | B2 |
7837687 | Harp | Nov 2010 | B2 |
7837694 | Tethrake et al. | Nov 2010 | B2 |
7838789 | Stotters et al. | Nov 2010 | B2 |
7839109 | Carmen, Jr. et al. | Nov 2010 | B2 |
7840253 | Tremblay et al. | Nov 2010 | B2 |
7841503 | Sonnenschein et al. | Nov 2010 | B2 |
7842025 | Coleman et al. | Nov 2010 | B2 |
7842028 | Lee | Nov 2010 | B2 |
7843158 | Prisco | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845535 | Scircia | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7845538 | Whitman | Dec 2010 | B2 |
7845912 | Sung et al. | Dec 2010 | B2 |
7846085 | Silverman et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7848066 | Yanagishima | Dec 2010 | B2 |
7850623 | Griffin et al. | Dec 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7850982 | Stopek et al. | Dec 2010 | B2 |
7853813 | Lee | Dec 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
7854736 | Ryan | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7857184 | Viola | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7857186 | Baxter, III et al. | Dec 2010 | B2 |
7857813 | Schmitz et al. | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7862502 | Pool et al. | Jan 2011 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7866525 | Scirica | Jan 2011 | B2 |
7866527 | Hall et al. | Jan 2011 | B2 |
7866528 | Olson et al. | Jan 2011 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7871418 | Thompson et al. | Jan 2011 | B2 |
7871440 | Schwartz et al. | Jan 2011 | B2 |
7875055 | Cichocki, Jr. | Jan 2011 | B2 |
7879063 | Khosravi | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7883461 | Albrecht et al. | Feb 2011 | B2 |
7883465 | Donofrio et al. | Feb 2011 | B2 |
7883540 | Niwa et al. | Feb 2011 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7886952 | Scirica et al. | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7887535 | Lands et al. | Feb 2011 | B2 |
7887536 | Johnson et al. | Feb 2011 | B2 |
7887563 | Cummins | Feb 2011 | B2 |
7891531 | Ward | Feb 2011 | B1 |
7891532 | Mastri et al. | Feb 2011 | B2 |
7892200 | Birk et al. | Feb 2011 | B2 |
7892245 | Liddicoat et al. | Feb 2011 | B2 |
7893586 | West et al. | Feb 2011 | B2 |
7896214 | Farascioni | Mar 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7896671 | Kim et al. | Mar 2011 | B2 |
7896869 | DiSilvestro et al. | Mar 2011 | B2 |
7896877 | Hall et al. | Mar 2011 | B2 |
7896895 | Boudreaux et al. | Mar 2011 | B2 |
7896897 | Gresham et al. | Mar 2011 | B2 |
7896900 | Frank et al. | Mar 2011 | B2 |
7898198 | Murphree | Mar 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7900806 | Chen et al. | Mar 2011 | B2 |
7901381 | Birk et al. | Mar 2011 | B2 |
7905380 | Shelton, IV et al. | Mar 2011 | B2 |
7905381 | Baxter, III et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7905889 | Catanese, III et al. | Mar 2011 | B2 |
7905890 | Whitfield et al. | Mar 2011 | B2 |
7905902 | Huitema et al. | Mar 2011 | B2 |
7909039 | Hur | Mar 2011 | B2 |
7909191 | Baker et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7913893 | Mastri et al. | Mar 2011 | B2 |
7914521 | Wang et al. | Mar 2011 | B2 |
7914543 | Roth et al. | Mar 2011 | B2 |
7914551 | Ortiz et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918376 | Knodel et al. | Apr 2011 | B1 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7918845 | Saadat et al. | Apr 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7918861 | Brock et al. | Apr 2011 | B2 |
7918867 | Dana et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7923144 | Kohn et al. | Apr 2011 | B2 |
7926691 | Viola et al. | Apr 2011 | B2 |
7926692 | Racenet et al. | Apr 2011 | B2 |
7927328 | Orszulak et al. | Apr 2011 | B2 |
7928281 | Augustine | Apr 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7930065 | Larkin et al. | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7931695 | Ringeisen | Apr 2011 | B2 |
7931877 | Steffens et al. | Apr 2011 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
7934631 | Balbierz et al. | May 2011 | B2 |
7934896 | Schnier | May 2011 | B2 |
7935130 | Williams | May 2011 | B2 |
7935773 | Hadba et al. | May 2011 | B2 |
7936142 | Otsuka et al. | May 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7939152 | Haskin et al. | May 2011 | B2 |
7941865 | Seman, Jr. et al. | May 2011 | B2 |
7942300 | Rethy et al. | May 2011 | B2 |
7942303 | Shah | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7944175 | Mori et al. | May 2011 | B2 |
7945792 | Cherpantier | May 2011 | B2 |
7945798 | Carlson et al. | May 2011 | B2 |
7946453 | Voegele et al. | May 2011 | B2 |
7947011 | Birk et al. | May 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7950562 | Beardsley et al. | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7954684 | Boudreaux | Jun 2011 | B2 |
7954685 | Viola | Jun 2011 | B2 |
7954686 | Baxter, III et al. | Jun 2011 | B2 |
7954687 | Zemlok et al. | Jun 2011 | B2 |
7954688 | Argentine et al. | Jun 2011 | B2 |
7955253 | Ewers et al. | Jun 2011 | B2 |
7955257 | Frasier et al. | Jun 2011 | B2 |
7955322 | Devengenzo et al. | Jun 2011 | B2 |
7955327 | Sartor et al. | Jun 2011 | B2 |
7955380 | Chu et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7959052 | Sonnenschein et al. | Jun 2011 | B2 |
7963432 | Knodel et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7963913 | Devengenzo et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7963964 | Santilli et al. | Jun 2011 | B2 |
7964206 | Suokas et al. | Jun 2011 | B2 |
7966236 | Noriega et al. | Jun 2011 | B2 |
7966269 | Bauer et al. | Jun 2011 | B2 |
7966799 | Morgan et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7967791 | Franer et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7972298 | Wallace et al. | Jul 2011 | B2 |
7972315 | Birk et al. | Jul 2011 | B2 |
7976213 | Bertolotti et al. | Jul 2011 | B2 |
7976508 | Hoag | Jul 2011 | B2 |
7976563 | Summerer | Jul 2011 | B2 |
7979137 | Tracey et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7981025 | Pool et al. | Jul 2011 | B2 |
7981102 | Patel et al. | Jul 2011 | B2 |
7981132 | Dubrul et al. | Jul 2011 | B2 |
7987405 | Turner et al. | Jul 2011 | B2 |
7988015 | Mason, II et al. | Aug 2011 | B2 |
7988026 | Knodel et al. | Aug 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
7988028 | Farascioni et al. | Aug 2011 | B2 |
7988779 | Disalvo et al. | Aug 2011 | B2 |
7992757 | Wheeler et al. | Aug 2011 | B2 |
7993360 | Hacker et al. | Aug 2011 | B2 |
7994670 | Ji | Aug 2011 | B2 |
7997054 | Bertsch et al. | Aug 2011 | B2 |
7997468 | Farascioni | Aug 2011 | B2 |
7997469 | Olson et al. | Aug 2011 | B2 |
8002696 | Suzuki | Aug 2011 | B2 |
8002784 | Jinno et al. | Aug 2011 | B2 |
8002785 | Weiss et al. | Aug 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006365 | Levin et al. | Aug 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8007370 | Hirsch et al. | Aug 2011 | B2 |
8007465 | Birk et al. | Aug 2011 | B2 |
8007479 | Birk et al. | Aug 2011 | B2 |
8007511 | Brock et al. | Aug 2011 | B2 |
8007513 | Nalagatla et al. | Aug 2011 | B2 |
8008598 | Whitman et al. | Aug 2011 | B2 |
8010180 | Quaid et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011553 | Mastri et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8016176 | Kasvikis et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016849 | Wenchell | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8016881 | Furst | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8021375 | Aldrich et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8025896 | Malaviya et al. | Sep 2011 | B2 |
8028882 | Viola | Oct 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8028884 | Sniffin et al. | Oct 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8029510 | Hoegerle | Oct 2011 | B2 |
8031069 | Cohn et al. | Oct 2011 | B2 |
8033438 | Scirica | Oct 2011 | B2 |
8033439 | Racenet et al. | Oct 2011 | B2 |
8033440 | Wenchell et al. | Oct 2011 | B2 |
8033442 | Racenet et al. | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8034337 | Simard | Oct 2011 | B2 |
8034363 | Li et al. | Oct 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8037591 | Spivey et al. | Oct 2011 | B2 |
8038044 | Viola | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8043328 | Hahnen et al. | Oct 2011 | B2 |
8044536 | Nguyen et al. | Oct 2011 | B2 |
8044604 | Hagino et al. | Oct 2011 | B2 |
8047236 | Perry | Nov 2011 | B2 |
8048503 | Farnsworth et al. | Nov 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8056788 | Mastri et al. | Nov 2011 | B2 |
8056789 | White et al. | Nov 2011 | B1 |
8057508 | Shelton, IV | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8060250 | Reiland et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8061576 | Cappola | Nov 2011 | B2 |
8062236 | Soltz | Nov 2011 | B2 |
8062306 | Nobis et al. | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8063619 | Zhu et al. | Nov 2011 | B2 |
8066158 | Vogel et al. | Nov 2011 | B2 |
8066166 | Demmy et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066168 | Vidal et al. | Nov 2011 | B2 |
8066720 | Knodel et al. | Nov 2011 | B2 |
D650074 | Hunt et al. | Dec 2011 | S |
D650789 | Arnold | Dec 2011 | S |
8070033 | Milliman et al. | Dec 2011 | B2 |
8070034 | Knodel | Dec 2011 | B1 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070743 | Kagan et al. | Dec 2011 | B2 |
8074858 | Marczyk | Dec 2011 | B2 |
8074859 | Kostrzewski | Dec 2011 | B2 |
8074861 | Ehrenfels et al. | Dec 2011 | B2 |
8075476 | Vargas | Dec 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8079950 | Stern et al. | Dec 2011 | B2 |
8079989 | Birk et al. | Dec 2011 | B2 |
8080004 | Downey et al. | Dec 2011 | B2 |
8083118 | Milliman et al. | Dec 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8083120 | Shelton, IV et al. | Dec 2011 | B2 |
8084001 | Burns et al. | Dec 2011 | B2 |
8084969 | David et al. | Dec 2011 | B2 |
8085013 | Wei et al. | Dec 2011 | B2 |
8087562 | Manoux et al. | Jan 2012 | B1 |
8087563 | Milliman et al. | Jan 2012 | B2 |
8089509 | Chatenever et al. | Jan 2012 | B2 |
8091753 | Viola | Jan 2012 | B2 |
8091756 | Viola | Jan 2012 | B2 |
8092443 | Bischoff | Jan 2012 | B2 |
8092932 | Phillips et al. | Jan 2012 | B2 |
8093572 | Kuduvalli | Jan 2012 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8097017 | Viola | Jan 2012 | B2 |
8100310 | Zemlok | Jan 2012 | B2 |
8100824 | Hegeman et al. | Jan 2012 | B2 |
8100872 | Patel | Jan 2012 | B2 |
8102138 | Sekine et al. | Jan 2012 | B2 |
8102278 | Deck et al. | Jan 2012 | B2 |
8105320 | Manzo | Jan 2012 | B2 |
8105350 | Lee et al. | Jan 2012 | B2 |
8107925 | Natsuno et al. | Jan 2012 | B2 |
8108033 | Drew et al. | Jan 2012 | B2 |
8108072 | Zhao et al. | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8110208 | Hen | Feb 2012 | B1 |
8113405 | Milliman | Feb 2012 | B2 |
8113407 | Holsten et al. | Feb 2012 | B2 |
8113408 | Wenchell et al. | Feb 2012 | B2 |
8113410 | Hall et al. | Feb 2012 | B2 |
8114017 | Bacher | Feb 2012 | B2 |
8114100 | Smith et al. | Feb 2012 | B2 |
8114345 | Dlugos, Jr. et al. | Feb 2012 | B2 |
8118206 | Zand et al. | Feb 2012 | B2 |
8118207 | Racenet et al. | Feb 2012 | B2 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8122128 | Burke, II et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8123523 | Carron et al. | Feb 2012 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8125168 | Johnson et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8127976 | Scirica et al. | Mar 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8128643 | Aranyi et al. | Mar 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8128662 | Altarac et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8132706 | Marczyk et al. | Mar 2012 | B2 |
8133500 | Ringeisen et al. | Mar 2012 | B2 |
8134306 | Drader et al. | Mar 2012 | B2 |
8136711 | Beardsley et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8136713 | Hathaway et al. | Mar 2012 | B2 |
8137339 | Jinno et al. | Mar 2012 | B2 |
8140417 | Shibata | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8141763 | Milliman | Mar 2012 | B2 |
8142200 | Crunkilton et al. | Mar 2012 | B2 |
8142425 | Eggers | Mar 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8142515 | Therin et al. | Mar 2012 | B2 |
8143520 | Cutler | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8147421 | Farquhar et al. | Apr 2012 | B2 |
8147456 | Fisher et al. | Apr 2012 | B2 |
8147485 | Wham et al. | Apr 2012 | B2 |
8152041 | Kostrzewski | Apr 2012 | B2 |
8152756 | Webster et al. | Apr 2012 | B2 |
8154239 | Katsuki et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157148 | Scirica | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8157152 | Holsten et al. | Apr 2012 | B2 |
8157153 | Shelton, IV et al. | Apr 2012 | B2 |
8157793 | Omori et al. | Apr 2012 | B2 |
8157834 | Conlon | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162138 | Bettenhausen et al. | Apr 2012 | B2 |
8162197 | Mastri et al. | Apr 2012 | B2 |
8162668 | Toly | Apr 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8162965 | Reschke et al. | Apr 2012 | B2 |
8167185 | Shelton, IV et al. | May 2012 | B2 |
8167622 | Zhou | May 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8167898 | Schaller et al. | May 2012 | B1 |
8170241 | Roe et al. | May 2012 | B2 |
8172004 | Ho | May 2012 | B2 |
8172120 | Boyden et al. | May 2012 | B2 |
8172122 | Kasvikis et al. | May 2012 | B2 |
8172124 | Shelton, IV et al. | May 2012 | B2 |
8177776 | Humayun et al. | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8179705 | Chapuis | May 2012 | B2 |
8180458 | Kane et al. | May 2012 | B2 |
8181839 | Beetel | May 2012 | B2 |
8181840 | Milliman | May 2012 | B2 |
8182422 | Bayer et al. | May 2012 | B2 |
8182444 | Uber, III et al. | May 2012 | B2 |
8183807 | Tsai et al. | May 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186556 | Viola | May 2012 | B2 |
8186558 | Sapienza | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8191752 | Scirica | Jun 2012 | B2 |
8192350 | Ortiz et al. | Jun 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8192651 | Young et al. | Jun 2012 | B2 |
8193129 | Tagawa et al. | Jun 2012 | B2 |
8196795 | Moore et al. | Jun 2012 | B2 |
8196796 | Shelton, IV et al. | Jun 2012 | B2 |
8197472 | Lau et al. | Jun 2012 | B2 |
8197501 | Shadeck et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8197837 | Jamiolkowski et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8202549 | Stucky et al. | Jun 2012 | B2 |
8205779 | Ma et al. | Jun 2012 | B2 |
8205780 | Sorrentino et al. | Jun 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8207863 | Neubauer et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8210415 | Ward | Jul 2012 | B2 |
8210416 | Milliman et al. | Jul 2012 | B2 |
8210721 | Chen et al. | Jul 2012 | B2 |
8211125 | Spivey | Jul 2012 | B2 |
8214019 | Govari et al. | Jul 2012 | B2 |
8215531 | Shelton, IV et al. | Jul 2012 | B2 |
8215532 | Marczyk | Jul 2012 | B2 |
8215533 | Viola et al. | Jul 2012 | B2 |
8220468 | Cooper et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8220690 | Hess et al. | Jul 2012 | B2 |
8221402 | Francischelli et al. | Jul 2012 | B2 |
8221424 | Cha | Jul 2012 | B2 |
8221433 | Lozier et al. | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225979 | Farascioni et al. | Jul 2012 | B2 |
8226553 | Shelton, IV et al. | Jul 2012 | B2 |
8226635 | Petrie et al. | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8226715 | Hwang et al. | Jul 2012 | B2 |
8227946 | Kim | Jul 2012 | B2 |
8228020 | Shin et al. | Jul 2012 | B2 |
8228048 | Spencer | Jul 2012 | B2 |
8229549 | Whitman et al. | Jul 2012 | B2 |
8231040 | Zemlok et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8235272 | Nicholas et al. | Aug 2012 | B2 |
8235274 | Cappola | Aug 2012 | B2 |
8236010 | Ortiz et al. | Aug 2012 | B2 |
8236011 | Harris et al. | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8237388 | Jinno et al. | Aug 2012 | B2 |
8240537 | Marczyk | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8241308 | Kortenbach et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8245594 | Rogers et al. | Aug 2012 | B2 |
8245898 | Smith et al. | Aug 2012 | B2 |
8245899 | Swensgard et al. | Aug 2012 | B2 |
8245900 | Scirica | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8246608 | Omori et al. | Aug 2012 | B2 |
8246637 | Viola et al. | Aug 2012 | B2 |
8252009 | Weller et al. | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8256655 | Sniffin et al. | Sep 2012 | B2 |
8256656 | Milliman et al. | Sep 2012 | B2 |
8257251 | Shelton, IV et al. | Sep 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8257386 | Lee et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8257634 | Scirica | Sep 2012 | B2 |
8258745 | Smith et al. | Sep 2012 | B2 |
8261958 | Knodel | Sep 2012 | B1 |
8262560 | Whitman | Sep 2012 | B2 |
8262655 | Ghabrial et al. | Sep 2012 | B2 |
8266232 | Piper et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267849 | Wazer et al. | Sep 2012 | B2 |
8267924 | Zemlok et al. | Sep 2012 | B2 |
8267946 | Whitfield et al. | Sep 2012 | B2 |
8267951 | Whayne et al. | Sep 2012 | B2 |
8268344 | Ma et al. | Sep 2012 | B2 |
8269121 | Smith | Sep 2012 | B2 |
8272553 | Mastri et al. | Sep 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8272918 | Lam | Sep 2012 | B2 |
8273404 | Dave et al. | Sep 2012 | B2 |
8276594 | Shah | Oct 2012 | B2 |
8276801 | Zemlok et al. | Oct 2012 | B2 |
8276802 | Kostrzewski | Oct 2012 | B2 |
8277473 | Sunaoshi et al. | Oct 2012 | B2 |
8281446 | Moskovich | Oct 2012 | B2 |
8281973 | Wenchell et al. | Oct 2012 | B2 |
8281974 | Hessler et al. | Oct 2012 | B2 |
8282654 | Ferrari et al. | Oct 2012 | B2 |
8285367 | Hyde et al. | Oct 2012 | B2 |
8286723 | Puzio et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8286847 | Taylor | Oct 2012 | B2 |
8287487 | Estes | Oct 2012 | B2 |
8287522 | Moses et al. | Oct 2012 | B2 |
8287561 | Nunez et al. | Oct 2012 | B2 |
8288984 | Yang | Oct 2012 | B2 |
8289403 | Dobashi et al. | Oct 2012 | B2 |
8290883 | Takeuchi et al. | Oct 2012 | B2 |
8292147 | Viola | Oct 2012 | B2 |
8292148 | Viola | Oct 2012 | B2 |
8292150 | Bryant | Oct 2012 | B2 |
8292151 | Viola | Oct 2012 | B2 |
8292152 | Milliman et al. | Oct 2012 | B2 |
8292155 | Shelton, IV et al. | Oct 2012 | B2 |
8292157 | Smith et al. | Oct 2012 | B2 |
8292158 | Sapienza | Oct 2012 | B2 |
8292801 | Dejima et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8292906 | Taylor et al. | Oct 2012 | B2 |
8294399 | Suzuki et al. | Oct 2012 | B2 |
8298161 | Vargas | Oct 2012 | B2 |
8298189 | Fisher et al. | Oct 2012 | B2 |
8298233 | Mueller | Oct 2012 | B2 |
8298677 | Wiesner et al. | Oct 2012 | B2 |
8302323 | Fortier et al. | Nov 2012 | B2 |
8303621 | Miyamoto et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8308041 | Kostrzewski | Nov 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308043 | Bindra et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8308659 | Scheibe et al. | Nov 2012 | B2 |
8308725 | Bell et al. | Nov 2012 | B2 |
8310188 | Nakai | Nov 2012 | B2 |
8313496 | Sauer et al. | Nov 2012 | B2 |
8313499 | Magnusson et al. | Nov 2012 | B2 |
8313509 | Kostrzewski | Nov 2012 | B2 |
8317070 | Hueil et al. | Nov 2012 | B2 |
8317071 | Knodel | Nov 2012 | B1 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8317437 | Merkley et al. | Nov 2012 | B2 |
8317744 | Kirschenman | Nov 2012 | B2 |
8317790 | Bell et al. | Nov 2012 | B2 |
8319002 | Daniels et al. | Nov 2012 | B2 |
D672784 | Clanton et al. | Dec 2012 | S |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8322589 | Boudreaux | Dec 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8322901 | Michelotti | Dec 2012 | B2 |
8323271 | Humayun et al. | Dec 2012 | B2 |
8323789 | Rozhin et al. | Dec 2012 | B2 |
8324585 | McBroom et al. | Dec 2012 | B2 |
8327514 | Kim | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8328064 | Racenet et al. | Dec 2012 | B2 |
8328065 | Shah | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328823 | Aranyi et al. | Dec 2012 | B2 |
8333313 | Boudreaux et al. | Dec 2012 | B2 |
8333691 | Schaaf | Dec 2012 | B2 |
8333764 | Francischelli et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8336753 | Olson et al. | Dec 2012 | B2 |
8336754 | Cappola et al. | Dec 2012 | B2 |
8342377 | Milliman et al. | Jan 2013 | B2 |
8342378 | Marczyk et al. | Jan 2013 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8342380 | Viola | Jan 2013 | B2 |
8343150 | Artale | Jan 2013 | B2 |
8347978 | Forster et al. | Jan 2013 | B2 |
8348118 | Segura | Jan 2013 | B2 |
8348123 | Scirica et al. | Jan 2013 | B2 |
8348124 | Scirica | Jan 2013 | B2 |
8348125 | Viola et al. | Jan 2013 | B2 |
8348126 | Olson et al. | Jan 2013 | B2 |
8348127 | Marczyk | Jan 2013 | B2 |
8348129 | Bedi et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8348131 | Omaits et al. | Jan 2013 | B2 |
8348837 | Wenchell | Jan 2013 | B2 |
8348959 | Wolford et al. | Jan 2013 | B2 |
8348972 | Soltz et al. | Jan 2013 | B2 |
8349987 | Kapiamba et al. | Jan 2013 | B2 |
8352004 | Mannheimer et al. | Jan 2013 | B2 |
8353437 | Boudreaux | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8356740 | Knodel | Jan 2013 | B1 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8357161 | Mueller | Jan 2013 | B2 |
8359174 | Nakashima et al. | Jan 2013 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
8360297 | Shelton, IV et al. | Jan 2013 | B2 |
8360298 | Farascioni et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8361501 | DiTizio et al. | Jan 2013 | B2 |
D676866 | Chaudhri | Feb 2013 | S |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8365973 | White et al. | Feb 2013 | B1 |
8365975 | Manoux et al. | Feb 2013 | B1 |
8365976 | Hess et al. | Feb 2013 | B2 |
8366559 | Papenfuss et al. | Feb 2013 | B2 |
8366719 | Markey et al. | Feb 2013 | B2 |
8366787 | Brown et al. | Feb 2013 | B2 |
8368327 | Benning et al. | Feb 2013 | B2 |
8369056 | Senriuchi et al. | Feb 2013 | B2 |
8371393 | Higuchi et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8371494 | Racenet et al. | Feb 2013 | B2 |
8372094 | Bettuchi et al. | Feb 2013 | B2 |
8374723 | Zhao et al. | Feb 2013 | B2 |
8376865 | Forster et al. | Feb 2013 | B2 |
8377029 | Nagao et al. | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8381828 | Whitman et al. | Feb 2013 | B2 |
8382773 | Whitfield et al. | Feb 2013 | B2 |
8382790 | Uenohara et al. | Feb 2013 | B2 |
D677273 | Randall et al. | Mar 2013 | S |
8387848 | Johnson et al. | Mar 2013 | B2 |
8388633 | Rousseau et al. | Mar 2013 | B2 |
8389588 | Ringeisen et al. | Mar 2013 | B2 |
8393513 | Jankowski | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8393516 | Kostrzewski | Mar 2013 | B2 |
8397832 | Blickle et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8397972 | Kostrzewski | Mar 2013 | B2 |
8397973 | Hausen | Mar 2013 | B1 |
8398633 | Mueller | Mar 2013 | B2 |
8398669 | Kim | Mar 2013 | B2 |
8398673 | Hinchliffe et al. | Mar 2013 | B2 |
8398674 | Prestel | Mar 2013 | B2 |
8400108 | Powell et al. | Mar 2013 | B2 |
8400851 | Byun | Mar 2013 | B2 |
8403138 | Weisshaupt et al. | Mar 2013 | B2 |
8403195 | Beardsley et al. | Mar 2013 | B2 |
8403196 | Beardsley et al. | Mar 2013 | B2 |
8403198 | Sorrentino et al. | Mar 2013 | B2 |
8403832 | Cunningham et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403946 | Whitfield et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
D680646 | Hunt et al. | Apr 2013 | S |
8408439 | Huang et al. | Apr 2013 | B2 |
8408442 | Racenet et al. | Apr 2013 | B2 |
8409079 | Okamoto et al. | Apr 2013 | B2 |
8409174 | Omori | Apr 2013 | B2 |
8409175 | Lee et al. | Apr 2013 | B2 |
8409211 | Baroud | Apr 2013 | B2 |
8409222 | Whitfield et al. | Apr 2013 | B2 |
8409223 | Sorrentino et al. | Apr 2013 | B2 |
8411500 | Gapihan et al. | Apr 2013 | B2 |
8413661 | Rousseau et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8413872 | Patel | Apr 2013 | B2 |
8414469 | Diolaiti | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8414598 | Brock et al. | Apr 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8418906 | Farascioni et al. | Apr 2013 | B2 |
8418907 | Johnson et al. | Apr 2013 | B2 |
8418908 | Beardsley | Apr 2013 | B1 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8419635 | Shelton, IV et al. | Apr 2013 | B2 |
8419717 | Diolaiti et al. | Apr 2013 | B2 |
8419747 | Hinman et al. | Apr 2013 | B2 |
8419754 | Laby et al. | Apr 2013 | B2 |
8419755 | Deem et al. | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8424737 | Scirica | Apr 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8424740 | Shelton, IV et al. | Apr 2013 | B2 |
8424741 | McGuckin, Jr. et al. | Apr 2013 | B2 |
8425600 | Maxwell | Apr 2013 | B2 |
8427430 | Lee et al. | Apr 2013 | B2 |
8430292 | Patel et al. | Apr 2013 | B2 |
8430892 | Bindra et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8439246 | Knodel | May 2013 | B1 |
8439830 | McKinley et al. | May 2013 | B2 |
8444036 | Shelton, IV | May 2013 | B2 |
8444037 | Nicholas et al. | May 2013 | B2 |
8444549 | Viola et al. | May 2013 | B2 |
8449536 | Selig | May 2013 | B2 |
8449560 | Roth et al. | May 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8453907 | Laurent et al. | Jun 2013 | B2 |
8453908 | Bedi et al. | Jun 2013 | B2 |
8453912 | Mastri et al. | Jun 2013 | B2 |
8453914 | Laurent et al. | Jun 2013 | B2 |
8454495 | Kawano et al. | Jun 2013 | B2 |
8454551 | Allen et al. | Jun 2013 | B2 |
8454628 | Smith et al. | Jun 2013 | B2 |
8454640 | Johnston et al. | Jun 2013 | B2 |
8457757 | Cauller et al. | Jun 2013 | B2 |
8459520 | Giordano et al. | Jun 2013 | B2 |
8459521 | Zemlok et al. | Jun 2013 | B2 |
8459524 | Pribanic et al. | Jun 2013 | B2 |
8459525 | Yates et al. | Jun 2013 | B2 |
8464922 | Marczyk | Jun 2013 | B2 |
8464923 | Shelton, IV | Jun 2013 | B2 |
8464924 | Gresham et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8465475 | Isbell, Jr. | Jun 2013 | B2 |
8465502 | Zergiebel | Jun 2013 | B2 |
8465515 | Drew et al. | Jun 2013 | B2 |
8469254 | Czernik et al. | Jun 2013 | B2 |
8469946 | Sugita | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8470355 | Skalla et al. | Jun 2013 | B2 |
D686240 | Lin | Jul 2013 | S |
D686244 | Moriya et al. | Jul 2013 | S |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8475453 | Marczyk et al. | Jul 2013 | B2 |
8475454 | Alshemari | Jul 2013 | B1 |
8475474 | Bombard et al. | Jul 2013 | B2 |
8479968 | Hodgkinson et al. | Jul 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8483509 | Matsuzaka | Jul 2013 | B2 |
8485412 | Shelton, IV et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8487199 | Palmer et al. | Jul 2013 | B2 |
8487487 | Dietz et al. | Jul 2013 | B2 |
8490851 | Blier et al. | Jul 2013 | B2 |
8490852 | Viola | Jul 2013 | B2 |
8490853 | Criscuolo et al. | Jul 2013 | B2 |
8491581 | Deville et al. | Jul 2013 | B2 |
8491603 | Yeung et al. | Jul 2013 | B2 |
8496153 | Demmy et al. | Jul 2013 | B2 |
8496154 | Marczyk et al. | Jul 2013 | B2 |
8496156 | Sniffin et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8498691 | Moll et al. | Jul 2013 | B2 |
8499673 | Keller | Aug 2013 | B2 |
8499966 | Palmer et al. | Aug 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8499993 | Shelton, IV et al. | Aug 2013 | B2 |
8499994 | D'Arcangelo | Aug 2013 | B2 |
8500721 | Jinno | Aug 2013 | B2 |
8500762 | Sholev et al. | Aug 2013 | B2 |
8502091 | Palmer et al. | Aug 2013 | B2 |
8505799 | Viola et al. | Aug 2013 | B2 |
8505801 | Ehrenfels et al. | Aug 2013 | B2 |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8506557 | Zemlok et al. | Aug 2013 | B2 |
8506580 | Zergiebel et al. | Aug 2013 | B2 |
8506581 | Wingardner, III et al. | Aug 2013 | B2 |
8511308 | Hecox et al. | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8512402 | Marczyk et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8517243 | Giordano et al. | Aug 2013 | B2 |
8517244 | Shelton, IV et al. | Aug 2013 | B2 |
8517938 | Eisenhardt et al. | Aug 2013 | B2 |
8518024 | Williams et al. | Aug 2013 | B2 |
8521273 | Kliman | Aug 2013 | B2 |
8523042 | Masiakos et al. | Sep 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8523787 | Ludwin et al. | Sep 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8523900 | Jinno et al. | Sep 2013 | B2 |
8529588 | Ahlberg et al. | Sep 2013 | B2 |
8529599 | Holsten | Sep 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8529819 | Ostapoff et al. | Sep 2013 | B2 |
8532747 | Nock et al. | Sep 2013 | B2 |
8534527 | Brendel et al. | Sep 2013 | B2 |
8534528 | Shelton, IV | Sep 2013 | B2 |
8535304 | Sklar et al. | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8539866 | Nayak et al. | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8540129 | Baxter, III et al. | Sep 2013 | B2 |
8540130 | Moore et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8540133 | Bedi et al. | Sep 2013 | B2 |
8540646 | Mendez-Coll | Sep 2013 | B2 |
8540733 | Whitman et al. | Sep 2013 | B2 |
8540735 | Mitelberg et al. | Sep 2013 | B2 |
8550984 | Takemoto | Oct 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8555660 | Takenaka et al. | Oct 2013 | B2 |
8556151 | Viola | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8556935 | Knodel et al. | Oct 2013 | B1 |
8560147 | Taylor et al. | Oct 2013 | B2 |
8561617 | Lindh et al. | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8561871 | Rajappa et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8567656 | Shelton, IV et al. | Oct 2013 | B2 |
8568416 | Schmitz et al. | Oct 2013 | B2 |
8568425 | Ross et al. | Oct 2013 | B2 |
D692916 | Granchi et al. | Nov 2013 | S |
8573459 | Smith et al. | Nov 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573462 | Smith et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574199 | von Bulow et al. | Nov 2013 | B2 |
8574263 | Mueller | Nov 2013 | B2 |
8575880 | Grantz | Nov 2013 | B2 |
8575895 | Garrastacho et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579178 | Holsten et al. | Nov 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8584919 | Hueil et al. | Nov 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8584921 | Scirica | Nov 2013 | B2 |
8585583 | Sakaguchi et al. | Nov 2013 | B2 |
8585721 | Kirsch | Nov 2013 | B2 |
8590760 | Cummins et al. | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8590764 | Hartwick et al. | Nov 2013 | B2 |
8596515 | Okoniewski | Dec 2013 | B2 |
8597745 | Farnsworth et al. | Dec 2013 | B2 |
8599450 | Kubo et al. | Dec 2013 | B2 |
8602125 | King | Dec 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8603077 | Cooper et al. | Dec 2013 | B2 |
8603089 | Viola | Dec 2013 | B2 |
8603110 | Maruyama et al. | Dec 2013 | B2 |
8603135 | Mueller | Dec 2013 | B2 |
8608043 | Scirica | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8608046 | Laurent et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8613384 | Pastorelli et al. | Dec 2013 | B2 |
8616427 | Viola | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8617155 | Johnson et al. | Dec 2013 | B2 |
8620473 | Diolaiti et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8627993 | Smith et al. | Jan 2014 | B2 |
8627994 | Zemlok et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8628467 | Whitman et al. | Jan 2014 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8628544 | Farascioni | Jan 2014 | B2 |
8628545 | Cabrera et al. | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8631992 | Hausen et al. | Jan 2014 | B1 |
8631993 | Kostrzewski | Jan 2014 | B2 |
8632462 | Yoo et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8632535 | Shelton, IV et al. | Jan 2014 | B2 |
8632539 | Twomey et al. | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8636190 | Zemlok et al. | Jan 2014 | B2 |
8636191 | Meagher | Jan 2014 | B2 |
8636193 | Whitman et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8636766 | Milliman et al. | Jan 2014 | B2 |
8639936 | Hu et al. | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652151 | Lehman et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8656929 | Miller et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657175 | Sonnenschein et al. | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8657178 | Hueil et al. | Feb 2014 | B2 |
8657482 | Malackowski et al. | Feb 2014 | B2 |
8657808 | McPherson et al. | Feb 2014 | B2 |
8657814 | Werneth et al. | Feb 2014 | B2 |
8657821 | Palermo | Feb 2014 | B2 |
D701238 | Lai et al. | Mar 2014 | S |
8662370 | Takei | Mar 2014 | B2 |
8663106 | Stivoric et al. | Mar 2014 | B2 |
8663192 | Hester et al. | Mar 2014 | B2 |
8663245 | Francischelli et al. | Mar 2014 | B2 |
8663262 | Smith et al. | Mar 2014 | B2 |
8663270 | Donnigan et al. | Mar 2014 | B2 |
8664792 | Rebsdorf | Mar 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8668130 | Hess et al. | Mar 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8672207 | Shelton, IV et al. | Mar 2014 | B2 |
8672208 | Hess et al. | Mar 2014 | B2 |
8672209 | Crainich | Mar 2014 | B2 |
8672922 | Loh et al. | Mar 2014 | B2 |
8672935 | Okada et al. | Mar 2014 | B2 |
8672951 | Smith et al. | Mar 2014 | B2 |
8673210 | Deshays | Mar 2014 | B2 |
8675820 | Bale et al. | Mar 2014 | B2 |
8678263 | Viola | Mar 2014 | B2 |
8678994 | Sonnenschein et al. | Mar 2014 | B2 |
8679093 | Farra | Mar 2014 | B2 |
8679098 | Hart | Mar 2014 | B2 |
8679137 | Bauman et al. | Mar 2014 | B2 |
8679154 | Smith et al. | Mar 2014 | B2 |
8679156 | Smith et al. | Mar 2014 | B2 |
8679454 | Guire et al. | Mar 2014 | B2 |
8684248 | Milliman | Apr 2014 | B2 |
8684249 | Racenet et al. | Apr 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8684962 | Kirschenman et al. | Apr 2014 | B2 |
8685004 | Zemlock et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8690893 | Deitch et al. | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8701958 | Shelton, IV et al. | Apr 2014 | B2 |
8701959 | Shah | Apr 2014 | B2 |
8706316 | Hoevenaar | Apr 2014 | B1 |
8708210 | Zemlok et al. | Apr 2014 | B2 |
8708211 | Zemlok et al. | Apr 2014 | B2 |
8708212 | Williams | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709012 | Muller | Apr 2014 | B2 |
8714352 | Farascioni et al. | May 2014 | B2 |
8714429 | Demmy | May 2014 | B2 |
8714430 | Natarajan et al. | May 2014 | B2 |
8715256 | Greener | May 2014 | B2 |
8715302 | Ibrahim et al. | May 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8721630 | Ortiz et al. | May 2014 | B2 |
8721666 | Schroeder et al. | May 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8727199 | Wenchell | May 2014 | B2 |
8727200 | Roy | May 2014 | B2 |
8727961 | Ziv | May 2014 | B2 |
8728099 | Cohn et al. | May 2014 | B2 |
8728119 | Cummins | May 2014 | B2 |
8733470 | Matthias et al. | May 2014 | B2 |
8733611 | Milliman | May 2014 | B2 |
8733612 | Ma | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8733614 | Ross et al. | May 2014 | B2 |
8734336 | Bonadio et al. | May 2014 | B2 |
8734359 | Ibanez et al. | May 2014 | B2 |
8734478 | Widenhouse et al. | May 2014 | B2 |
8734831 | Kim et al. | May 2014 | B2 |
8739033 | Rosenberg | May 2014 | B2 |
8739417 | Tokunaga et al. | Jun 2014 | B2 |
8740034 | Morgan et al. | Jun 2014 | B2 |
8740037 | Shelton, IV et al. | Jun 2014 | B2 |
8740038 | Shelton, IV et al. | Jun 2014 | B2 |
8740987 | Geremakis et al. | Jun 2014 | B2 |
8746529 | Shelton, IV et al. | Jun 2014 | B2 |
8746530 | Giordano et al. | Jun 2014 | B2 |
8746533 | Whitman et al. | Jun 2014 | B2 |
8746535 | Shelton, IV et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747441 | Konieczynski et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752699 | Morgan et al. | Jun 2014 | B2 |
8752747 | Shelton, IV et al. | Jun 2014 | B2 |
8752748 | Whitman et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753664 | Dao et al. | Jun 2014 | B2 |
8757287 | Mak | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8758235 | Jaworek | Jun 2014 | B2 |
8758366 | McLean et al. | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8758438 | Boyce et al. | Jun 2014 | B2 |
8763875 | Morgan et al. | Jul 2014 | B2 |
8763876 | Kostrzewski | Jul 2014 | B2 |
8763877 | Schall et al. | Jul 2014 | B2 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8765942 | Feraud et al. | Jul 2014 | B2 |
8770458 | Scirica | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8770460 | Belzer | Jul 2014 | B2 |
8771169 | Whitman et al. | Jul 2014 | B2 |
8771260 | Conlon et al. | Jul 2014 | B2 |
8777004 | Shelton, IV et al. | Jul 2014 | B2 |
8777082 | Scirica | Jul 2014 | B2 |
8777083 | Racenet et al. | Jul 2014 | B2 |
8777898 | Suon et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8783542 | Riestenberg et al. | Jul 2014 | B2 |
8783543 | Shelton, IV et al. | Jul 2014 | B2 |
8784304 | Mikkaichi et al. | Jul 2014 | B2 |
8784404 | Doyle et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8789739 | Swensgard | Jul 2014 | B2 |
8789740 | Baxter, III et al. | Jul 2014 | B2 |
8789741 | Baxter, III et al. | Jul 2014 | B2 |
8790658 | Cigarini et al. | Jul 2014 | B2 |
8790684 | Dave et al. | Jul 2014 | B2 |
D711905 | Morrison et al. | Aug 2014 | S |
8794496 | Scirica | Aug 2014 | B2 |
8794497 | Zingman | Aug 2014 | B2 |
8795159 | Moriyama | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795308 | Valin | Aug 2014 | B2 |
8795324 | Kawai et al. | Aug 2014 | B2 |
8796995 | Cunanan et al. | Aug 2014 | B2 |
8800681 | Rousson et al. | Aug 2014 | B2 |
8800837 | Zemlok | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8800839 | Beetel | Aug 2014 | B2 |
8800840 | Jankowski | Aug 2014 | B2 |
8800841 | Ellerhorst et al. | Aug 2014 | B2 |
8801710 | Ullrich et al. | Aug 2014 | B2 |
8801734 | Shelton, IV et al. | Aug 2014 | B2 |
8801735 | Shelton, IV et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8801801 | Datta et al. | Aug 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8807414 | Ross et al. | Aug 2014 | B2 |
8808161 | Gregg et al. | Aug 2014 | B2 |
8808164 | Hoffman et al. | Aug 2014 | B2 |
8808274 | Hartwell | Aug 2014 | B2 |
8808294 | Fox et al. | Aug 2014 | B2 |
8808308 | Boukhny et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8808325 | Hess et al. | Aug 2014 | B2 |
8810197 | Juergens | Aug 2014 | B2 |
8811017 | Fujii et al. | Aug 2014 | B2 |
8813866 | Suzuki | Aug 2014 | B2 |
8814024 | Woodard, Jr. et al. | Aug 2014 | B2 |
8814025 | Miller et al. | Aug 2014 | B2 |
8814836 | Ignon et al. | Aug 2014 | B2 |
8815594 | Harris et al. | Aug 2014 | B2 |
8818523 | Olson et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8820607 | Marczyk | Sep 2014 | B2 |
8820608 | Miyamoto | Sep 2014 | B2 |
8821514 | Aranyi | Sep 2014 | B2 |
8822934 | Sayeh et al. | Sep 2014 | B2 |
8825164 | Tweden et al. | Sep 2014 | B2 |
8827133 | Shelton, IV et al. | Sep 2014 | B2 |
8827134 | Viola et al. | Sep 2014 | B2 |
8827903 | Shelton, IV et al. | Sep 2014 | B2 |
8828046 | Stefanchik et al. | Sep 2014 | B2 |
8831779 | Ortmaier et al. | Sep 2014 | B2 |
8833219 | Pierce | Sep 2014 | B2 |
8833630 | Milliman | Sep 2014 | B2 |
8833632 | Swensgard | Sep 2014 | B2 |
8834353 | Dejima et al. | Sep 2014 | B2 |
8834465 | Ramstein et al. | Sep 2014 | B2 |
8834498 | Byrum et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
8840603 | Shelton, IV et al. | Sep 2014 | B2 |
8840609 | Stuebe | Sep 2014 | B2 |
8840876 | Eemeta et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8844790 | Demmy et al. | Sep 2014 | B2 |
8845622 | Paik et al. | Sep 2014 | B2 |
8851215 | Goto | Oct 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8851355 | Aranyi et al. | Oct 2014 | B2 |
8852174 | Burbank | Oct 2014 | B2 |
8852185 | Twomey | Oct 2014 | B2 |
8852199 | Deslauriers et al. | Oct 2014 | B2 |
8852218 | Hughett, Sr. et al. | Oct 2014 | B2 |
8857693 | Schuckmann et al. | Oct 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8858538 | Belson et al. | Oct 2014 | B2 |
8858547 | Brogna | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8858590 | Shelton, IV et al. | Oct 2014 | B2 |
8864007 | Widenhouse et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8864010 | Williams | Oct 2014 | B2 |
8864750 | Ross et al. | Oct 2014 | B2 |
8869912 | Roβkamp et al. | Oct 2014 | B2 |
8869913 | Matthias et al. | Oct 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8870912 | Brisson et al. | Oct 2014 | B2 |
8875971 | Hall et al. | Nov 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8876857 | Burbank | Nov 2014 | B2 |
8876858 | Braun | Nov 2014 | B2 |
8882660 | Phee et al. | Nov 2014 | B2 |
8882792 | Dietz et al. | Nov 2014 | B2 |
8884560 | Ito | Nov 2014 | B2 |
8887979 | Mastri et al. | Nov 2014 | B2 |
8888688 | Julian et al. | Nov 2014 | B2 |
8888695 | Piskun et al. | Nov 2014 | B2 |
8888792 | Harris et al. | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8894647 | Beardsley et al. | Nov 2014 | B2 |
8894654 | Anderson | Nov 2014 | B2 |
8899460 | Wojcicki | Dec 2014 | B2 |
8899461 | Farascioni | Dec 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8899463 | Schall et al. | Dec 2014 | B2 |
8899464 | Hueil et al. | Dec 2014 | B2 |
8899465 | Shelton, IV et al. | Dec 2014 | B2 |
8899466 | Baxter, III et al. | Dec 2014 | B2 |
8900267 | Woolfson et al. | Dec 2014 | B2 |
8905287 | Racenet et al. | Dec 2014 | B2 |
8905977 | Shelton et al. | Dec 2014 | B2 |
8910846 | Viola | Dec 2014 | B2 |
8910847 | Nalagatla et al. | Dec 2014 | B2 |
8911426 | Coppeta et al. | Dec 2014 | B2 |
8911448 | Stein | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8911471 | Spivey et al. | Dec 2014 | B2 |
8912746 | Reid et al. | Dec 2014 | B2 |
8915842 | Weisenburgh, II et al. | Dec 2014 | B2 |
8920368 | Sandhu et al. | Dec 2014 | B2 |
8920433 | Barrier et al. | Dec 2014 | B2 |
8920435 | Smith et al. | Dec 2014 | B2 |
8920438 | Aranyi et al. | Dec 2014 | B2 |
8920443 | Hiles et al. | Dec 2014 | B2 |
8920444 | Hiles et al. | Dec 2014 | B2 |
8922163 | Macdonald | Dec 2014 | B2 |
8925782 | Shelton, IV | Jan 2015 | B2 |
8925783 | Zemlok et al. | Jan 2015 | B2 |
8925788 | Hess et al. | Jan 2015 | B2 |
8926506 | Widenhouse et al. | Jan 2015 | B2 |
8926598 | Mollere et al. | Jan 2015 | B2 |
8931576 | Iwata | Jan 2015 | B2 |
8931679 | Kostrzewski | Jan 2015 | B2 |
8931680 | Milliman | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939343 | Milliman et al. | Jan 2015 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8939898 | Omoto | Jan 2015 | B2 |
8944069 | Miller et al. | Feb 2015 | B2 |
8945095 | Blumenkranz et al. | Feb 2015 | B2 |
8945098 | Seibold et al. | Feb 2015 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8956342 | Russo et al. | Feb 2015 | B1 |
8956390 | Shah et al. | Feb 2015 | B2 |
8958860 | Banerjee et al. | Feb 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8960521 | Kostrzewski | Feb 2015 | B2 |
8961191 | Hanshew | Feb 2015 | B2 |
8961504 | Hoarau et al. | Feb 2015 | B2 |
8963714 | Medhal et al. | Feb 2015 | B2 |
D725674 | Jung et al. | Mar 2015 | S |
8967443 | McCuen | Mar 2015 | B2 |
8967444 | Beetel | Mar 2015 | B2 |
8967446 | Beardsley et al. | Mar 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968308 | Horner et al. | Mar 2015 | B2 |
8968312 | Marczyk et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8968340 | Chowaniec et al. | Mar 2015 | B2 |
8968355 | Malkowski et al. | Mar 2015 | B2 |
8968358 | Reschke | Mar 2015 | B2 |
8970507 | Holbein et al. | Mar 2015 | B2 |
8973803 | Hall et al. | Mar 2015 | B2 |
8973804 | Hess et al. | Mar 2015 | B2 |
8973805 | Scirica et al. | Mar 2015 | B2 |
8974440 | Farritor et al. | Mar 2015 | B2 |
8974542 | Fujimoto et al. | Mar 2015 | B2 |
8974932 | McGahan et al. | Mar 2015 | B2 |
8978954 | Shelton, IV et al. | Mar 2015 | B2 |
8978955 | Aronhalt et al. | Mar 2015 | B2 |
8978956 | Schall et al. | Mar 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8982195 | Claus et al. | Mar 2015 | B2 |
8984711 | Ota et al. | Mar 2015 | B2 |
8985240 | Winnard | Mar 2015 | B2 |
8985429 | Balek et al. | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991676 | Hess et al. | Mar 2015 | B2 |
8991677 | Moore et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992042 | Eichenholz | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992565 | Brisson et al. | Mar 2015 | B2 |
8996165 | Wang et al. | Mar 2015 | B2 |
8998058 | Moore et al. | Apr 2015 | B2 |
8998059 | Smith et al. | Apr 2015 | B2 |
8998060 | Bruewer et al. | Apr 2015 | B2 |
8998061 | Williams et al. | Apr 2015 | B2 |
8998939 | Price et al. | Apr 2015 | B2 |
9000720 | Stulen et al. | Apr 2015 | B2 |
9002518 | Manzo et al. | Apr 2015 | B2 |
9004339 | Park | Apr 2015 | B1 |
9005230 | Yates et al. | Apr 2015 | B2 |
9005238 | DeSantis et al. | Apr 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010606 | Aranyi et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010611 | Ross et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9011439 | Shalaby et al. | Apr 2015 | B2 |
9011471 | Timm et al. | Apr 2015 | B2 |
9014856 | Manzo et al. | Apr 2015 | B2 |
9016539 | Kostrzewski et al. | Apr 2015 | B2 |
9016540 | Whitman et al. | Apr 2015 | B2 |
9016541 | Viola et al. | Apr 2015 | B2 |
9016542 | Shelton, IV et al. | Apr 2015 | B2 |
9016545 | Aranyi et al. | Apr 2015 | B2 |
9017331 | Fox | Apr 2015 | B2 |
9017355 | Smith et al. | Apr 2015 | B2 |
9017369 | Renger et al. | Apr 2015 | B2 |
9017371 | Whitman et al. | Apr 2015 | B2 |
9017849 | Stulen et al. | Apr 2015 | B2 |
9017851 | Felder et al. | Apr 2015 | B2 |
D729274 | Clement et al. | May 2015 | S |
9021684 | Lenker et al. | May 2015 | B2 |
9023014 | Chowaniec et al. | May 2015 | B2 |
9023069 | Kasvikis et al. | May 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9026347 | Gadh et al. | May 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9028468 | Scarfogliero et al. | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028495 | Mueller et al. | May 2015 | B2 |
9028510 | Miyamoto et al. | May 2015 | B2 |
9028511 | Weller et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9030166 | Kano | May 2015 | B2 |
9030169 | Christensen et al. | May 2015 | B2 |
9033203 | Woodard, Jr. et al. | May 2015 | B2 |
9033204 | Shelton, IV et al. | May 2015 | B2 |
9034505 | Detry et al. | May 2015 | B2 |
9038881 | Schaller et al. | May 2015 | B1 |
9039690 | Kersten et al. | May 2015 | B2 |
9039694 | Ross et al. | May 2015 | B2 |
9039720 | Madan | May 2015 | B2 |
9040062 | Maeda et al. | May 2015 | B2 |
9043027 | Durant et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044228 | Woodard, Jr. et al. | Jun 2015 | B2 |
9044229 | Scheib et al. | Jun 2015 | B2 |
9044230 | Morgan et al. | Jun 2015 | B2 |
9044238 | Orszulak | Jun 2015 | B2 |
9044241 | Barner et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9044281 | Pool et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050084 | Schmid et al. | Jun 2015 | B2 |
9050089 | Orszulak | Jun 2015 | B2 |
9050100 | Yates et al. | Jun 2015 | B2 |
9050120 | Swarup et al. | Jun 2015 | B2 |
9050123 | Krause et al. | Jun 2015 | B2 |
9050176 | Datta et al. | Jun 2015 | B2 |
9050192 | Mansmann | Jun 2015 | B2 |
9055941 | Schmid et al. | Jun 2015 | B2 |
9055942 | Balbierz et al. | Jun 2015 | B2 |
9055943 | Zemlok et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060776 | Yates et al. | Jun 2015 | B2 |
9060794 | Kang et al. | Jun 2015 | B2 |
9060894 | Wubbeling | Jun 2015 | B2 |
9061392 | Forgues et al. | Jun 2015 | B2 |
9070068 | Coveley et al. | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9078654 | Whitman et al. | Jul 2015 | B2 |
9084601 | Moore et al. | Jul 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9086875 | Harrat et al. | Jul 2015 | B2 |
9089326 | Krumanaker et al. | Jul 2015 | B2 |
9089330 | Widenhouse et al. | Jul 2015 | B2 |
9089338 | Smith et al. | Jul 2015 | B2 |
9089352 | Jeong | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9091588 | Lefler | Jul 2015 | B2 |
D736792 | Brinda et al. | Aug 2015 | S |
9095339 | Moore et al. | Aug 2015 | B2 |
9095346 | Houser et al. | Aug 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9096033 | Holop et al. | Aug 2015 | B2 |
9098153 | Shen et al. | Aug 2015 | B2 |
9099863 | Smith et al. | Aug 2015 | B2 |
9099877 | Banos et al. | Aug 2015 | B2 |
9099922 | Toosky et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9101475 | Wei et al. | Aug 2015 | B2 |
9101621 | Is | Aug 2015 | B2 |
9107663 | Swensgard | Aug 2015 | B2 |
9107667 | Hodgkinson | Aug 2015 | B2 |
9107690 | Bales, Jr. et al. | Aug 2015 | B2 |
9110587 | Kim et al. | Aug 2015 | B2 |
9113862 | Morgan et al. | Aug 2015 | B2 |
9113864 | Morgan et al. | Aug 2015 | B2 |
9113865 | Shelton, IV et al. | Aug 2015 | B2 |
9113868 | Felder et al. | Aug 2015 | B2 |
9113873 | Marczyk et al. | Aug 2015 | B2 |
9113874 | Shelton, IV et al. | Aug 2015 | B2 |
9113875 | Viola et al. | Aug 2015 | B2 |
9113876 | Zemlok et al. | Aug 2015 | B2 |
9113879 | Felder et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9113881 | Scirica | Aug 2015 | B2 |
9113883 | Aronhalt et al. | Aug 2015 | B2 |
9113884 | Shelton, IV et al. | Aug 2015 | B2 |
9113887 | Behnke, II et al. | Aug 2015 | B2 |
9119615 | Felder et al. | Sep 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119898 | Bayon et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9123286 | Park | Sep 2015 | B2 |
9124097 | Cruz | Sep 2015 | B2 |
9125651 | Mandakolathur Vasudevan et al. | Sep 2015 | B2 |
9125654 | Aronhalt et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9126317 | Lawton et al. | Sep 2015 | B2 |
9131835 | Widenhouse et al. | Sep 2015 | B2 |
9131940 | Huitema et al. | Sep 2015 | B2 |
9131950 | Matthew | Sep 2015 | B2 |
9131957 | Skarbnik et al. | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9138226 | Racenet et al. | Sep 2015 | B2 |
9144455 | Kennedy et al. | Sep 2015 | B2 |
D740414 | Katsura | Oct 2015 | S |
D741882 | Shmilov et al. | Oct 2015 | S |
9149274 | Spivey et al. | Oct 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9153994 | Wood et al. | Oct 2015 | B2 |
9161753 | Prior | Oct 2015 | B2 |
9161769 | Stoddard et al. | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9161807 | Garrison | Oct 2015 | B2 |
9161855 | Rousseau et al. | Oct 2015 | B2 |
9164271 | Ebata et al. | Oct 2015 | B2 |
9168038 | Shelton, IV et al. | Oct 2015 | B2 |
9168039 | Knodel | Oct 2015 | B1 |
9168042 | Milliman | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168144 | Rivin et al. | Oct 2015 | B2 |
9171244 | Endou et al. | Oct 2015 | B2 |
9179832 | Diolaiti | Nov 2015 | B2 |
9179911 | Morgan et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9180223 | Yu et al. | Nov 2015 | B2 |
9182244 | Luke et al. | Nov 2015 | B2 |
9186046 | Ramamurthy et al. | Nov 2015 | B2 |
9186137 | Farascioni et al. | Nov 2015 | B2 |
9186140 | Hiles et al. | Nov 2015 | B2 |
9186142 | Fanelli et al. | Nov 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
9186148 | Felder et al. | Nov 2015 | B2 |
9186221 | Burbank | Nov 2015 | B2 |
9192376 | Almodovar | Nov 2015 | B2 |
9192380 | Racenet et al. | Nov 2015 | B2 |
9192384 | Bettuchi | Nov 2015 | B2 |
9192430 | Rachlin et al. | Nov 2015 | B2 |
9192434 | Twomey et al. | Nov 2015 | B2 |
9193045 | Saur et al. | Nov 2015 | B2 |
9197079 | Yip et al. | Nov 2015 | B2 |
D744528 | Agrawal | Dec 2015 | S |
D746459 | Kaercher et al. | Dec 2015 | S |
9198642 | Storz | Dec 2015 | B2 |
9198644 | Balek et al. | Dec 2015 | B2 |
9198661 | Swensgard | Dec 2015 | B2 |
9198662 | Barton et al. | Dec 2015 | B2 |
9198683 | Friedman et al. | Dec 2015 | B2 |
9204830 | Zand et al. | Dec 2015 | B2 |
9204877 | Whitman et al. | Dec 2015 | B2 |
9204878 | Hall et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204880 | Baxter, III et al. | Dec 2015 | B2 |
9204881 | Penna | Dec 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9204924 | Marczyk et al. | Dec 2015 | B2 |
9211120 | Scheib et al. | Dec 2015 | B2 |
9211121 | Hall et al. | Dec 2015 | B2 |
9211122 | Hagerty et al. | Dec 2015 | B2 |
9216013 | Scirica et al. | Dec 2015 | B2 |
9216019 | Schmid et al. | Dec 2015 | B2 |
9216020 | Zhang et al. | Dec 2015 | B2 |
9216030 | Fan et al. | Dec 2015 | B2 |
9216062 | Dugue et al. | Dec 2015 | B2 |
9220500 | Swayze et al. | Dec 2015 | B2 |
9220501 | Baxter, III et al. | Dec 2015 | B2 |
9220502 | Zemlok et al. | Dec 2015 | B2 |
9220504 | Viola et al. | Dec 2015 | B2 |
9220508 | Dannaher | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9220570 | Kim et al. | Dec 2015 | B2 |
D746854 | Shardlow et al. | Jan 2016 | S |
9226750 | Weir et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226754 | D'Agostino et al. | Jan 2016 | B2 |
9226760 | Shelton, IV | Jan 2016 | B2 |
9226761 | Burbank | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9232941 | Mandakolathur Vasudevan et al. | Jan 2016 | B2 |
9232945 | Zingman | Jan 2016 | B2 |
9232979 | Parihar et al. | Jan 2016 | B2 |
9233610 | Kim et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237892 | Hodgkinson | Jan 2016 | B2 |
9237895 | McCarthy et al. | Jan 2016 | B2 |
9237900 | Boudreaux et al. | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9239064 | Helbig et al. | Jan 2016 | B2 |
9240740 | Zeng et al. | Jan 2016 | B2 |
9241711 | Ivanko | Jan 2016 | B2 |
9241712 | Zemlok et al. | Jan 2016 | B2 |
9241714 | Timm et al. | Jan 2016 | B2 |
9241716 | Whitman | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9241758 | Franer et al. | Jan 2016 | B2 |
9244524 | Inoue et al. | Jan 2016 | B2 |
D748668 | Kim et al. | Feb 2016 | S |
D749128 | Perez et al. | Feb 2016 | S |
D749623 | Gray et al. | Feb 2016 | S |
D750122 | Shardlow et al. | Feb 2016 | S |
D750129 | Kwon | Feb 2016 | S |
9254131 | Soltz et al. | Feb 2016 | B2 |
9254170 | Parihar et al. | Feb 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9259274 | Prisco | Feb 2016 | B2 |
9259275 | Burbank | Feb 2016 | B2 |
9261172 | Solomon et al. | Feb 2016 | B2 |
9265500 | Sorrentino et al. | Feb 2016 | B2 |
9265510 | Dietzel et al. | Feb 2016 | B2 |
9265516 | Casey et al. | Feb 2016 | B2 |
9265585 | Wingardner et al. | Feb 2016 | B2 |
9271718 | Milad et al. | Mar 2016 | B2 |
9271727 | McGuckin, Jr. et al. | Mar 2016 | B2 |
9271753 | Butler et al. | Mar 2016 | B2 |
9271799 | Shelton, IV et al. | Mar 2016 | B2 |
9272406 | Aronhalt et al. | Mar 2016 | B2 |
9274095 | Humayun et al. | Mar 2016 | B2 |
9277919 | Timmer et al. | Mar 2016 | B2 |
9277922 | Carter et al. | Mar 2016 | B2 |
9277969 | Brannan et al. | Mar 2016 | B2 |
9282962 | Schmid et al. | Mar 2016 | B2 |
9282963 | Bryant | Mar 2016 | B2 |
9282966 | Shelton, IV et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283028 | Johnson | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9283054 | Morgan et al. | Mar 2016 | B2 |
9289206 | Hess et al. | Mar 2016 | B2 |
9289207 | Shelton, IV | Mar 2016 | B2 |
9289210 | Baxter, III et al. | Mar 2016 | B2 |
9289211 | Williams et al. | Mar 2016 | B2 |
9289212 | Shelton, IV et al. | Mar 2016 | B2 |
9289225 | Shelton, IV et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9293757 | Toussaint et al. | Mar 2016 | B2 |
9295464 | Shelton, IV et al. | Mar 2016 | B2 |
9295465 | Farascioni | Mar 2016 | B2 |
9295466 | Hodgkinson et al. | Mar 2016 | B2 |
9295467 | Scirica | Mar 2016 | B2 |
9295468 | Heinrich et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9295522 | Kostrzewski | Mar 2016 | B2 |
9295565 | McLean | Mar 2016 | B2 |
9295784 | Eggert et al. | Mar 2016 | B2 |
D753167 | Yu et al. | Apr 2016 | S |
9301691 | Hufnagel et al. | Apr 2016 | B2 |
9301752 | Mandakolathur Vasudevan et al. | Apr 2016 | B2 |
9301753 | Aldridge et al. | Apr 2016 | B2 |
9301755 | Shelton, IV et al. | Apr 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9301811 | Goldberg et al. | Apr 2016 | B2 |
9307965 | Ming et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9307987 | Swensgard et al. | Apr 2016 | B2 |
9307988 | Shelton, IV | Apr 2016 | B2 |
9307989 | Shelton, IV et al. | Apr 2016 | B2 |
9307994 | Gresham et al. | Apr 2016 | B2 |
9308009 | Madan et al. | Apr 2016 | B2 |
9308011 | Chao et al. | Apr 2016 | B2 |
9308646 | Lim et al. | Apr 2016 | B2 |
9313915 | Niu et al. | Apr 2016 | B2 |
9314246 | Shelton, IV et al. | Apr 2016 | B2 |
9314247 | Shelton, IV et al. | Apr 2016 | B2 |
9314261 | Bales, Jr. et al. | Apr 2016 | B2 |
9314291 | Schall et al. | Apr 2016 | B2 |
9314339 | Mansmann | Apr 2016 | B2 |
9314908 | Tanimoto et al. | Apr 2016 | B2 |
9320518 | Henderson et al. | Apr 2016 | B2 |
9320520 | Shelton, IV et al. | Apr 2016 | B2 |
9320521 | Shelton, IV et al. | Apr 2016 | B2 |
9320523 | Shelton, IV et al. | Apr 2016 | B2 |
9325516 | Pera et al. | Apr 2016 | B2 |
D755196 | Meyers et al. | May 2016 | S |
D756373 | Raskin et al. | May 2016 | S |
D756377 | Connolly et al. | May 2016 | S |
D757028 | Goldenberg et al. | May 2016 | S |
9326767 | Koch, Jr. et al. | May 2016 | B2 |
9326768 | Shelton, IV | May 2016 | B2 |
9326769 | Shelton, IV et al. | May 2016 | B2 |
9326770 | Shelton, IV et al. | May 2016 | B2 |
9326771 | Baxter, III et al. | May 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9326812 | Waaler et al. | May 2016 | B2 |
9326824 | Inoue et al. | May 2016 | B2 |
9327061 | Govil et al. | May 2016 | B2 |
9331721 | Martinez Nuevo et al. | May 2016 | B2 |
9332890 | Ozawa | May 2016 | B2 |
9332974 | Henderson et al. | May 2016 | B2 |
9332984 | Weaner et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9333040 | Shellenberger et al. | May 2016 | B2 |
9333082 | Wei et al. | May 2016 | B2 |
9337668 | Yip | May 2016 | B2 |
9339226 | van der Walt et al. | May 2016 | B2 |
9339342 | Prisco et al. | May 2016 | B2 |
9345477 | Anim et al. | May 2016 | B2 |
9345479 | Racenet et al. | May 2016 | B2 |
9345480 | Hessler et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9345503 | Ishida et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9351728 | Sniffin et al. | May 2016 | B2 |
9351730 | Schmid et al. | May 2016 | B2 |
9351731 | Carter et al. | May 2016 | B2 |
9351732 | Hodgkinson | May 2016 | B2 |
9352071 | Landgrebe et al. | May 2016 | B2 |
D758433 | Lee et al. | Jun 2016 | S |
D759063 | Chen | Jun 2016 | S |
9358003 | Hall et al. | Jun 2016 | B2 |
9358004 | Sniffin et al. | Jun 2016 | B2 |
9358005 | Shelton, IV et al. | Jun 2016 | B2 |
9358015 | Sorrentino et al. | Jun 2016 | B2 |
9358031 | Manzo | Jun 2016 | B2 |
9358065 | Ladtkow et al. | Jun 2016 | B2 |
9364217 | Kostrzewski et al. | Jun 2016 | B2 |
9364219 | Olson et al. | Jun 2016 | B2 |
9364220 | Williams | Jun 2016 | B2 |
9364223 | Scirica | Jun 2016 | B2 |
9364226 | Zemlok et al. | Jun 2016 | B2 |
9364229 | D'Agostino et al. | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9364231 | Wenchell | Jun 2016 | B2 |
9364233 | Alexander, III et al. | Jun 2016 | B2 |
9364279 | Houser et al. | Jun 2016 | B2 |
9368991 | Qahouq | Jun 2016 | B2 |
9370341 | Ceniccola et al. | Jun 2016 | B2 |
9370358 | Shelton, IV et al. | Jun 2016 | B2 |
9370362 | Petty et al. | Jun 2016 | B2 |
9370364 | Smith et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9375206 | Vidal et al. | Jun 2016 | B2 |
9375218 | Wheeler et al. | Jun 2016 | B2 |
9375230 | Ross et al. | Jun 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375255 | Houser et al. | Jun 2016 | B2 |
D761309 | Lee et al. | Jul 2016 | S |
9381058 | Houser et al. | Jul 2016 | B2 |
9383881 | Day et al. | Jul 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9386984 | Aronhalt et al. | Jul 2016 | B2 |
9386985 | Koch, Jr. et al. | Jul 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9387003 | Kaercher et al. | Jul 2016 | B2 |
9392885 | Vogler et al. | Jul 2016 | B2 |
9393015 | Laurent et al. | Jul 2016 | B2 |
9393017 | Flanagan et al. | Jul 2016 | B2 |
9393018 | Wang et al. | Jul 2016 | B2 |
9393354 | Freedman et al. | Jul 2016 | B2 |
9396369 | Whitehurst et al. | Jul 2016 | B1 |
9396669 | Karkanias et al. | Jul 2016 | B2 |
9398905 | Martin | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
D763277 | Ahmed et al. | Aug 2016 | S |
D764498 | Capela et al. | Aug 2016 | S |
9402604 | Williams et al. | Aug 2016 | B2 |
9402625 | Coleman et al. | Aug 2016 | B2 |
9402626 | Ortiz et al. | Aug 2016 | B2 |
9402627 | Stevenson et al. | Aug 2016 | B2 |
9402629 | Ehrenfels et al. | Aug 2016 | B2 |
9402679 | Ginnebaugh et al. | Aug 2016 | B2 |
9402688 | Min et al. | Aug 2016 | B2 |
9408604 | Shelton, IV et al. | Aug 2016 | B2 |
9408605 | Knodel et al. | Aug 2016 | B1 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9411370 | Benni et al. | Aug 2016 | B2 |
9413128 | Tien et al. | Aug 2016 | B2 |
9414838 | Shelton, IV et al. | Aug 2016 | B2 |
9414849 | Nagashimada | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9420967 | Zand et al. | Aug 2016 | B2 |
9421003 | Williams et al. | Aug 2016 | B2 |
9421014 | Ingmanson et al. | Aug 2016 | B2 |
9421030 | Cole et al. | Aug 2016 | B2 |
9421060 | Monson et al. | Aug 2016 | B2 |
9421062 | Houser et al. | Aug 2016 | B2 |
9421682 | McClaskey et al. | Aug 2016 | B2 |
9427223 | Park et al. | Aug 2016 | B2 |
9427231 | Racenet et al. | Aug 2016 | B2 |
9429204 | Stefan et al. | Aug 2016 | B2 |
D767624 | Lee et al. | Sep 2016 | S |
9433411 | Racenet et al. | Sep 2016 | B2 |
9433414 | Chen et al. | Sep 2016 | B2 |
9433419 | Gonzalez et al. | Sep 2016 | B2 |
9433420 | Hodgkinson | Sep 2016 | B2 |
9439649 | Shelton, IV et al. | Sep 2016 | B2 |
9439650 | McGuckin, Jr. et al. | Sep 2016 | B2 |
9439651 | Smith et al. | Sep 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9445808 | Woodard, Jr. et al. | Sep 2016 | B2 |
9445813 | Shelton, IV et al. | Sep 2016 | B2 |
9445816 | Swayze et al. | Sep 2016 | B2 |
9445817 | Bettuchi | Sep 2016 | B2 |
9446226 | Zilberman | Sep 2016 | B2 |
9451938 | Overes et al. | Sep 2016 | B2 |
9451958 | Shelton, IV et al. | Sep 2016 | B2 |
D768152 | Gutierrez et al. | Oct 2016 | S |
D768156 | Frincke | Oct 2016 | S |
D768167 | Jones et al. | Oct 2016 | S |
D769315 | Scotti | Oct 2016 | S |
D769930 | Agrawal | Oct 2016 | S |
9461340 | Li et al. | Oct 2016 | B2 |
9463012 | Bonutti et al. | Oct 2016 | B2 |
9463040 | Jeong et al. | Oct 2016 | B2 |
9463260 | Stopek | Oct 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
9468447 | Aman et al. | Oct 2016 | B2 |
9470297 | Aranyi et al. | Oct 2016 | B2 |
9471969 | Zeng et al. | Oct 2016 | B2 |
9474506 | Magnin et al. | Oct 2016 | B2 |
9474513 | Ishida et al. | Oct 2016 | B2 |
9474523 | Meade et al. | Oct 2016 | B2 |
9474540 | Stokes et al. | Oct 2016 | B2 |
9475180 | Eshleman et al. | Oct 2016 | B2 |
D770476 | Jitkoff et al. | Nov 2016 | S |
D770515 | Cho et al. | Nov 2016 | S |
D771116 | Dellinger et al. | Nov 2016 | S |
D772905 | Ingenlath | Nov 2016 | S |
9480476 | Aldridge et al. | Nov 2016 | B2 |
9480492 | Aranyi et al. | Nov 2016 | B2 |
9483095 | Tran et al. | Nov 2016 | B2 |
9486186 | Fiebig et al. | Nov 2016 | B2 |
9486213 | Altman et al. | Nov 2016 | B2 |
9486214 | Shelton, IV | Nov 2016 | B2 |
9486215 | Olson et al. | Nov 2016 | B2 |
9486302 | Boey et al. | Nov 2016 | B2 |
9488197 | Wi | Nov 2016 | B2 |
9492146 | Kostrzewski et al. | Nov 2016 | B2 |
9492167 | Shelton, IV et al. | Nov 2016 | B2 |
9492170 | Bear et al. | Nov 2016 | B2 |
9492172 | Weisshaupt et al. | Nov 2016 | B2 |
9492189 | Williams et al. | Nov 2016 | B2 |
9492192 | To et al. | Nov 2016 | B2 |
9492237 | Kang et al. | Nov 2016 | B2 |
9498213 | Marczyk et al. | Nov 2016 | B2 |
9498219 | Moore et al. | Nov 2016 | B2 |
9498231 | Haider et al. | Nov 2016 | B2 |
9504455 | Whitman et al. | Nov 2016 | B2 |
9504483 | Houser et al. | Nov 2016 | B2 |
9504520 | Worrell et al. | Nov 2016 | B2 |
9504521 | Deutmeyer et al. | Nov 2016 | B2 |
9504528 | Ivinson et al. | Nov 2016 | B2 |
9507399 | Chien | Nov 2016 | B2 |
D774547 | Capela et al. | Dec 2016 | S |
D775336 | Shelton, IV et al. | Dec 2016 | S |
9510827 | Kostrzewski | Dec 2016 | B2 |
9510828 | Yates et al. | Dec 2016 | B2 |
9510830 | Shelton, IV et al. | Dec 2016 | B2 |
9510846 | Sholev et al. | Dec 2016 | B2 |
9510895 | Houser et al. | Dec 2016 | B2 |
9510925 | Hotter et al. | Dec 2016 | B2 |
9517063 | Swayze et al. | Dec 2016 | B2 |
9517065 | Simms et al. | Dec 2016 | B2 |
9517068 | Shelton, IV et al. | Dec 2016 | B2 |
9517326 | Hinman et al. | Dec 2016 | B2 |
9521996 | Armstrong | Dec 2016 | B2 |
9522003 | Weir et al. | Dec 2016 | B2 |
9522014 | Nishizawa et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9526481 | Storz et al. | Dec 2016 | B2 |
9526499 | Kostrzewski et al. | Dec 2016 | B2 |
9526563 | Twomey | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9526921 | Kimball et al. | Dec 2016 | B2 |
D776683 | Gobinski et al. | Jan 2017 | S |
D777773 | Shi | Jan 2017 | S |
9532783 | Swayze et al. | Jan 2017 | B2 |
9539060 | Lightcap et al. | Jan 2017 | B2 |
9539726 | Simaan et al. | Jan 2017 | B2 |
9545253 | Worrell et al. | Jan 2017 | B2 |
9545258 | Smith et al. | Jan 2017 | B2 |
9549732 | Yates et al. | Jan 2017 | B2 |
9549733 | Knodel | Jan 2017 | B2 |
9549735 | Shelton, IV et al. | Jan 2017 | B2 |
9549750 | Shelton, IV et al. | Jan 2017 | B2 |
9554794 | Baber et al. | Jan 2017 | B2 |
9554796 | Kostrzewski | Jan 2017 | B2 |
9554803 | Smith et al. | Jan 2017 | B2 |
9554812 | Inkpen et al. | Jan 2017 | B2 |
9559624 | Philipp | Jan 2017 | B2 |
9561013 | Tsuchiya | Feb 2017 | B2 |
9561029 | Scheib et al. | Feb 2017 | B2 |
9561030 | Zhang et al. | Feb 2017 | B2 |
9561031 | Heinrich et al. | Feb 2017 | B2 |
9561032 | Shelton, IV et al. | Feb 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9561045 | Hinman et al. | Feb 2017 | B2 |
9561072 | Ko | Feb 2017 | B2 |
9566061 | Aronhalt et al. | Feb 2017 | B2 |
9566062 | Boudreaux | Feb 2017 | B2 |
9566065 | Knodel | Feb 2017 | B2 |
9566067 | Milliman et al. | Feb 2017 | B2 |
9572574 | Shelton, IV et al. | Feb 2017 | B2 |
9572576 | Hodgkinson et al. | Feb 2017 | B2 |
9572577 | Lloyd et al. | Feb 2017 | B2 |
9572592 | Price et al. | Feb 2017 | B2 |
9574644 | Parihar | Feb 2017 | B2 |
9579088 | Farritor et al. | Feb 2017 | B2 |
9579143 | Ullrich et al. | Feb 2017 | B2 |
9579158 | Brianza et al. | Feb 2017 | B2 |
D780803 | Gill et al. | Mar 2017 | S |
D781879 | Butcher et al. | Mar 2017 | S |
D782530 | Paek et al. | Mar 2017 | S |
9585550 | Abel et al. | Mar 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9585658 | Shelton, IV | Mar 2017 | B2 |
9585659 | Viola et al. | Mar 2017 | B2 |
9585660 | Laurent et al. | Mar 2017 | B2 |
9585662 | Shelton, IV et al. | Mar 2017 | B2 |
9585663 | Shelton, IV et al. | Mar 2017 | B2 |
9585672 | Bastia | Mar 2017 | B2 |
9590433 | Li | Mar 2017 | B2 |
9592050 | Schmid et al. | Mar 2017 | B2 |
9592052 | Shelton, IV | Mar 2017 | B2 |
9592053 | Shelton, IV et al. | Mar 2017 | B2 |
9592054 | Schmid et al. | Mar 2017 | B2 |
9597073 | Sorrentino et al. | Mar 2017 | B2 |
9597075 | Shelton, IV et al. | Mar 2017 | B2 |
9597078 | Scirica et al. | Mar 2017 | B2 |
9597080 | Milliman et al. | Mar 2017 | B2 |
9597104 | Nicholas et al. | Mar 2017 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9603595 | Shelton, IV et al. | Mar 2017 | B2 |
9603598 | Shelton, IV et al. | Mar 2017 | B2 |
9603599 | Miller et al. | Mar 2017 | B2 |
9603991 | Shelton, IV et al. | Mar 2017 | B2 |
D783658 | Hurst et al. | Apr 2017 | S |
9610068 | Kappel et al. | Apr 2017 | B2 |
9610079 | Kamei et al. | Apr 2017 | B2 |
9610080 | Whitfield et al. | Apr 2017 | B2 |
9610412 | Zemlok et al. | Apr 2017 | B2 |
9614258 | Takahashi et al. | Apr 2017 | B2 |
9615826 | Shelton, IV et al. | Apr 2017 | B2 |
9622745 | Ingmanson et al. | Apr 2017 | B2 |
9622746 | Simms et al. | Apr 2017 | B2 |
9629623 | Lytle, IV et al. | Apr 2017 | B2 |
9629626 | Soltz et al. | Apr 2017 | B2 |
9629627 | Kostrzewski et al. | Apr 2017 | B2 |
9629628 | Aranyi | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9629631 | Nicholas et al. | Apr 2017 | B2 |
9629632 | Linder et al. | Apr 2017 | B2 |
9629652 | Mumaw et al. | Apr 2017 | B2 |
9629814 | Widenhouse et al. | Apr 2017 | B2 |
D785794 | Magno, Jr. | May 2017 | S |
D786280 | Ma | May 2017 | S |
D786896 | Kim et al. | May 2017 | S |
D787547 | Basargin et al. | May 2017 | S |
D788123 | Shan et al. | May 2017 | S |
D788140 | Hemsley et al. | May 2017 | S |
9636091 | Beardsley et al. | May 2017 | B2 |
9636111 | Wenchell | May 2017 | B2 |
9636112 | Penna et al. | May 2017 | B2 |
9636113 | Wenchell | May 2017 | B2 |
9636850 | Stopek et al. | May 2017 | B2 |
9641122 | Romanowich et al. | May 2017 | B2 |
9642620 | Baxter, III et al. | May 2017 | B2 |
9642642 | Lim | May 2017 | B2 |
9649096 | Sholev | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649190 | Mathies | May 2017 | B2 |
9655613 | Schaller | May 2017 | B2 |
9655614 | Swensgard et al. | May 2017 | B2 |
9655615 | Knodel et al. | May 2017 | B2 |
9655616 | Aranyi | May 2017 | B2 |
9655624 | Shelton, IV et al. | May 2017 | B2 |
9661991 | Glossop | May 2017 | B2 |
9662108 | Williams | May 2017 | B2 |
9662110 | Huang et al. | May 2017 | B2 |
9662116 | Smith et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
D788792 | Alessandri et al. | Jun 2017 | S |
D789384 | Lin et al. | Jun 2017 | S |
D790570 | Butcher et al. | Jun 2017 | S |
9668728 | Williams et al. | Jun 2017 | B2 |
9668729 | Williams et al. | Jun 2017 | B2 |
9668732 | Patel et al. | Jun 2017 | B2 |
9668733 | Williams | Jun 2017 | B2 |
9668734 | Kostrzewski et al. | Jun 2017 | B2 |
9668735 | Beetel | Jun 2017 | B2 |
9675344 | Combrowski et al. | Jun 2017 | B2 |
9675348 | Smith et al. | Jun 2017 | B2 |
9675351 | Hodgkinson et al. | Jun 2017 | B2 |
9675354 | Weir et al. | Jun 2017 | B2 |
9675355 | Shelton, IV et al. | Jun 2017 | B2 |
9675368 | Guo et al. | Jun 2017 | B2 |
9675372 | Laurent et al. | Jun 2017 | B2 |
9675375 | Houser et al. | Jun 2017 | B2 |
9675405 | Trees et al. | Jun 2017 | B2 |
9675819 | Dunbar et al. | Jun 2017 | B2 |
9681870 | Baxter, III et al. | Jun 2017 | B2 |
9681872 | Jankowski et al. | Jun 2017 | B2 |
9681873 | Smith et al. | Jun 2017 | B2 |
9681884 | Clem et al. | Jun 2017 | B2 |
9687230 | Leimbach et al. | Jun 2017 | B2 |
9687231 | Baxter, III et al. | Jun 2017 | B2 |
9687232 | Shelton, IV et al. | Jun 2017 | B2 |
9687233 | Fernandez et al. | Jun 2017 | B2 |
9687236 | Leimbach et al. | Jun 2017 | B2 |
9687237 | Schmid et al. | Jun 2017 | B2 |
9687253 | Detry et al. | Jun 2017 | B2 |
9689466 | Kanai et al. | Jun 2017 | B2 |
9690362 | Leimbach et al. | Jun 2017 | B2 |
9693772 | Ingmanson et al. | Jul 2017 | B2 |
9693774 | Gettinger et al. | Jul 2017 | B2 |
9693775 | Agarwal et al. | Jul 2017 | B2 |
9693777 | Schellin et al. | Jul 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700310 | Morgan et al. | Jul 2017 | B2 |
9700312 | Kostrzewski et al. | Jul 2017 | B2 |
9700314 | Marczyk | Jul 2017 | B2 |
9700315 | Chen et al. | Jul 2017 | B2 |
9700317 | Aronhalt et al. | Jul 2017 | B2 |
9700318 | Scirica et al. | Jul 2017 | B2 |
9700319 | Motooka et al. | Jul 2017 | B2 |
9700320 | Dinardo et al. | Jul 2017 | B2 |
9700321 | Shelton, IV et al. | Jul 2017 | B2 |
9700334 | Hinman et al. | Jul 2017 | B2 |
9706674 | Collins et al. | Jul 2017 | B2 |
9706981 | Nicholas et al. | Jul 2017 | B2 |
9706991 | Hess et al. | Jul 2017 | B2 |
9706993 | Hessler et al. | Jul 2017 | B2 |
9707003 | Hoell, Jr. et al. | Jul 2017 | B2 |
9707005 | Strobl et al. | Jul 2017 | B2 |
9707026 | Malackowski et al. | Jul 2017 | B2 |
9707033 | Parihar et al. | Jul 2017 | B2 |
9707043 | Bozung | Jul 2017 | B2 |
9707684 | Ruiz Morales et al. | Jul 2017 | B2 |
9713468 | Harris et al. | Jul 2017 | B2 |
9713470 | Scirica et al. | Jul 2017 | B2 |
9713474 | Lorenz | Jul 2017 | B2 |
D795919 | Bischoff et al. | Aug 2017 | S |
9717497 | Zerkle et al. | Aug 2017 | B2 |
9717498 | Aranyi et al. | Aug 2017 | B2 |
9718190 | Larkin et al. | Aug 2017 | B2 |
9722236 | Sathrum | Aug 2017 | B2 |
9724091 | Shelton, IV et al. | Aug 2017 | B2 |
9724092 | Baxter, III et al. | Aug 2017 | B2 |
9724094 | Baber et al. | Aug 2017 | B2 |
9724095 | Gupta et al. | Aug 2017 | B2 |
9724096 | Thompson et al. | Aug 2017 | B2 |
9724098 | Baxter, III et al. | Aug 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9724163 | Orban | Aug 2017 | B2 |
9730692 | Shelton, IV et al. | Aug 2017 | B2 |
9730695 | Leimbach et al. | Aug 2017 | B2 |
9730697 | Morgan et al. | Aug 2017 | B2 |
9730717 | Katsuki et al. | Aug 2017 | B2 |
9731410 | Hirabayashi et al. | Aug 2017 | B2 |
9733663 | Leimbach et al. | Aug 2017 | B2 |
9737297 | Racenet et al. | Aug 2017 | B2 |
9737299 | Yan | Aug 2017 | B2 |
9737301 | Baber et al. | Aug 2017 | B2 |
9737302 | Shelton, IV et al. | Aug 2017 | B2 |
9737303 | Shelton, IV et al. | Aug 2017 | B2 |
9737365 | Hegeman et al. | Aug 2017 | B2 |
9743927 | Whitman | Aug 2017 | B2 |
9743928 | Shelton, IV et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
D798319 | Bergstrand et al. | Sep 2017 | S |
9750498 | Timm et al. | Sep 2017 | B2 |
9750499 | Leimbach et al. | Sep 2017 | B2 |
9750501 | Shelton, IV et al. | Sep 2017 | B2 |
9750502 | Scirica et al. | Sep 2017 | B2 |
9750503 | Milliman | Sep 2017 | B2 |
9750639 | Barnes et al. | Sep 2017 | B2 |
9757123 | Giordano et al. | Sep 2017 | B2 |
9757124 | Schellin et al. | Sep 2017 | B2 |
9757126 | Cappola | Sep 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757129 | Williams | Sep 2017 | B2 |
9757130 | Shelton, IV | Sep 2017 | B2 |
9763662 | Shelton, IV et al. | Sep 2017 | B2 |
9763668 | Whitfield et al. | Sep 2017 | B2 |
9770245 | Swayze et al. | Sep 2017 | B2 |
9770274 | Pool et al. | Sep 2017 | B2 |
D798886 | Prophete et al. | Oct 2017 | S |
D800742 | Rhodes | Oct 2017 | S |
D800744 | Jitkoff et al. | Oct 2017 | S |
D800766 | Park et al. | Oct 2017 | S |
D800904 | Leimbach et al. | Oct 2017 | S |
9775608 | Aronhalt et al. | Oct 2017 | B2 |
9775609 | Shelton, IV et al. | Oct 2017 | B2 |
9775610 | Nicholas et al. | Oct 2017 | B2 |
9775611 | Kostrzewski | Oct 2017 | B2 |
9775613 | Shelton, IV et al. | Oct 2017 | B2 |
9775614 | Shelton, IV et al. | Oct 2017 | B2 |
9775618 | Bettuchi et al. | Oct 2017 | B2 |
9775635 | Takei | Oct 2017 | B2 |
9775678 | Lohmeier | Oct 2017 | B2 |
9782169 | Kimsey et al. | Oct 2017 | B2 |
9782170 | Zemlok et al. | Oct 2017 | B2 |
9782180 | Smith et al. | Oct 2017 | B2 |
9782187 | Zergiebel et al. | Oct 2017 | B2 |
9782193 | Thistle | Oct 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788834 | Schmid et al. | Oct 2017 | B2 |
9788835 | Morgan et al. | Oct 2017 | B2 |
9788836 | Overmyer et al. | Oct 2017 | B2 |
9788847 | Jinno | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9788902 | Inoue et al. | Oct 2017 | B2 |
9795379 | Leimbach et al. | Oct 2017 | B2 |
9795380 | Shelton, IV et al. | Oct 2017 | B2 |
9795381 | Shelton, IV | Oct 2017 | B2 |
9795382 | Shelton, IV | Oct 2017 | B2 |
9795383 | Aldridge et al. | Oct 2017 | B2 |
9795384 | Weaner et al. | Oct 2017 | B2 |
9797486 | Zergiebel et al. | Oct 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9801627 | Harris et al. | Oct 2017 | B2 |
9801628 | Harris et al. | Oct 2017 | B2 |
9801634 | Shelton, IV et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9804618 | Leimbach et al. | Oct 2017 | B2 |
D803234 | Day et al. | Nov 2017 | S |
D803235 | Markson et al. | Nov 2017 | S |
D803850 | Chang et al. | Nov 2017 | S |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808246 | Shelton, IV et al. | Nov 2017 | B2 |
9808247 | Shelton, IV et al. | Nov 2017 | B2 |
9808248 | Hoffman | Nov 2017 | B2 |
9808249 | Shelton, IV | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814462 | Woodard, Jr. et al. | Nov 2017 | B2 |
9814463 | Williams et al. | Nov 2017 | B2 |
9814530 | Weir et al. | Nov 2017 | B2 |
9814561 | Forsell | Nov 2017 | B2 |
9815118 | Schmitt et al. | Nov 2017 | B1 |
9820445 | Simpson et al. | Nov 2017 | B2 |
9820737 | Beardsley et al. | Nov 2017 | B2 |
9820738 | Lytle, IV et al. | Nov 2017 | B2 |
9820741 | Kostrzewski | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9825455 | Sandhu et al. | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9826977 | Leimbach et al. | Nov 2017 | B2 |
9826978 | Shelton, IV et al. | Nov 2017 | B2 |
9829698 | Haraguchi et al. | Nov 2017 | B2 |
D806108 | Day | Dec 2017 | S |
9833235 | Penna et al. | Dec 2017 | B2 |
9833236 | Shelton, IV et al. | Dec 2017 | B2 |
9833238 | Baxter, III et al. | Dec 2017 | B2 |
9833239 | Yates et al. | Dec 2017 | B2 |
9833241 | Huitema et al. | Dec 2017 | B2 |
9833242 | Baxter, III et al. | Dec 2017 | B2 |
9839420 | Shelton, IV et al. | Dec 2017 | B2 |
9839421 | Zerkle et al. | Dec 2017 | B2 |
9839422 | Schellin et al. | Dec 2017 | B2 |
9839423 | Vendely et al. | Dec 2017 | B2 |
9839427 | Swayze et al. | Dec 2017 | B2 |
9839428 | Baxter, III et al. | Dec 2017 | B2 |
9839429 | Weisenburgh, II et al. | Dec 2017 | B2 |
9839480 | Pribanic et al. | Dec 2017 | B2 |
9839481 | Blumenkranz et al. | Dec 2017 | B2 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9844369 | Huitema et al. | Dec 2017 | B2 |
9844372 | Shelton, IV et al. | Dec 2017 | B2 |
9844373 | Swayze et al. | Dec 2017 | B2 |
9844374 | Lytle, IV et al. | Dec 2017 | B2 |
9844375 | Overmyer et al. | Dec 2017 | B2 |
9844376 | Baxter, III et al. | Dec 2017 | B2 |
9844379 | Shelton, IV et al. | Dec 2017 | B2 |
9848871 | Harris et al. | Dec 2017 | B2 |
9848873 | Shelton, IV | Dec 2017 | B2 |
9848875 | Aronhalt et al. | Dec 2017 | B2 |
9848877 | Shelton, IV et al. | Dec 2017 | B2 |
9850994 | Schena | Dec 2017 | B2 |
D808989 | Ayvazian et al. | Jan 2018 | S |
9855039 | Racenet et al. | Jan 2018 | B2 |
9855040 | Kostrzewski | Jan 2018 | B2 |
9855662 | Ruiz Morales et al. | Jan 2018 | B2 |
9861261 | Shahinian | Jan 2018 | B2 |
9861359 | Shelton, IV et al. | Jan 2018 | B2 |
9861361 | Aronhalt et al. | Jan 2018 | B2 |
9861362 | Whitman et al. | Jan 2018 | B2 |
9861366 | Aranyi | Jan 2018 | B2 |
9861382 | Smith et al. | Jan 2018 | B2 |
9861446 | Lang | Jan 2018 | B2 |
9867612 | Parihar et al. | Jan 2018 | B2 |
9867613 | Marczyk et al. | Jan 2018 | B2 |
9867615 | Fanelli et al. | Jan 2018 | B2 |
9867617 | Ma | Jan 2018 | B2 |
9867618 | Hall et al. | Jan 2018 | B2 |
9867620 | Fischvogt et al. | Jan 2018 | B2 |
9868198 | Nicholas et al. | Jan 2018 | B2 |
9872682 | Hess et al. | Jan 2018 | B2 |
9872683 | Hopkins et al. | Jan 2018 | B2 |
9872684 | Hall et al. | Jan 2018 | B2 |
9872722 | Lech | Jan 2018 | B2 |
9877721 | Schellin et al. | Jan 2018 | B2 |
9877722 | Schellin et al. | Jan 2018 | B2 |
9877723 | Hall et al. | Jan 2018 | B2 |
9877776 | Boudreaux | Jan 2018 | B2 |
D810099 | Riedel | Feb 2018 | S |
9883843 | Garlow | Feb 2018 | B2 |
9883860 | Leimbach et al. | Feb 2018 | B2 |
9883861 | Shelton, IV et al. | Feb 2018 | B2 |
9884456 | Schellin et al. | Feb 2018 | B2 |
9888919 | Leimbach et al. | Feb 2018 | B2 |
9888921 | Williams et al. | Feb 2018 | B2 |
9888924 | Ebersole et al. | Feb 2018 | B2 |
9889230 | Bennett et al. | Feb 2018 | B2 |
9895147 | Shelton, IV | Feb 2018 | B2 |
9895148 | Shelton, IV et al. | Feb 2018 | B2 |
9895813 | Blumenkranz et al. | Feb 2018 | B2 |
9901339 | Farascioni | Feb 2018 | B2 |
9901341 | Kostrzewski | Feb 2018 | B2 |
9901342 | Shelton, IV et al. | Feb 2018 | B2 |
9901344 | Moore et al. | Feb 2018 | B2 |
9901345 | Moore et al. | Feb 2018 | B2 |
9901346 | Moore et al. | Feb 2018 | B2 |
9901406 | State et al. | Feb 2018 | B2 |
9901412 | Lathrop et al. | Feb 2018 | B2 |
D813899 | Erant et al. | Mar 2018 | S |
9907456 | Miyoshi | Mar 2018 | B2 |
9907552 | Measamer et al. | Mar 2018 | B2 |
9907553 | Cole et al. | Mar 2018 | B2 |
9907600 | Stulen et al. | Mar 2018 | B2 |
9907620 | Shelton, IV et al. | Mar 2018 | B2 |
9913641 | Takemoto et al. | Mar 2018 | B2 |
9913642 | Leimbach et al. | Mar 2018 | B2 |
9913644 | McCuen | Mar 2018 | B2 |
9913646 | Shelton, IV | Mar 2018 | B2 |
9913647 | Weisenburgh, II et al. | Mar 2018 | B2 |
9913648 | Shelton, IV et al. | Mar 2018 | B2 |
9913694 | Brisson | Mar 2018 | B2 |
9913733 | Piron et al. | Mar 2018 | B2 |
9918704 | Shelton, IV et al. | Mar 2018 | B2 |
9918714 | Gibbons, Jr. | Mar 2018 | B2 |
9918715 | Menn | Mar 2018 | B2 |
9918716 | Baxter, III et al. | Mar 2018 | B2 |
9918717 | Czernik | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9924941 | Burbank | Mar 2018 | B2 |
9924942 | Swayze et al. | Mar 2018 | B2 |
9924943 | Mohan Pinjala et al. | Mar 2018 | B2 |
9924944 | Shelton, IV et al. | Mar 2018 | B2 |
9924945 | Zheng et al. | Mar 2018 | B2 |
9924946 | Vendely et al. | Mar 2018 | B2 |
9924947 | Shelton, IV et al. | Mar 2018 | B2 |
9924961 | Shelton, IV et al. | Mar 2018 | B2 |
9931106 | Au et al. | Apr 2018 | B2 |
9931116 | Racenet et al. | Apr 2018 | B2 |
9931118 | Shelton, IV et al. | Apr 2018 | B2 |
9931120 | Chen et al. | Apr 2018 | B2 |
9936949 | Measamer et al. | Apr 2018 | B2 |
9936950 | Shelton, IV et al. | Apr 2018 | B2 |
9936951 | Hufnagel et al. | Apr 2018 | B2 |
9936952 | Demmy | Apr 2018 | B2 |
9936954 | Shelton, IV et al. | Apr 2018 | B2 |
9937626 | Rockrohr | Apr 2018 | B2 |
9943309 | Shelton, IV et al. | Apr 2018 | B2 |
9943310 | Harris et al. | Apr 2018 | B2 |
9943312 | Posada et al. | Apr 2018 | B2 |
9949754 | Newhauser et al. | Apr 2018 | B2 |
9953193 | Butler et al. | Apr 2018 | B2 |
D819072 | Clediere | May 2018 | S |
9955954 | Destoumieux et al. | May 2018 | B2 |
9955965 | Chen et al. | May 2018 | B2 |
9955966 | Zergiebel | May 2018 | B2 |
9956677 | Baskar et al. | May 2018 | B2 |
9962129 | Jerebko et al. | May 2018 | B2 |
9962157 | Sapre | May 2018 | B2 |
9962158 | Hall et al. | May 2018 | B2 |
9962159 | Heinrich et al. | May 2018 | B2 |
9962161 | Scheib et al. | May 2018 | B2 |
9968354 | Shelton, IV et al. | May 2018 | B2 |
9968355 | Shelton, IV et al. | May 2018 | B2 |
9968356 | Shelton, IV et al. | May 2018 | B2 |
9968397 | Taylor et al. | May 2018 | B2 |
9974529 | Shelton, IV et al. | May 2018 | B2 |
9974538 | Baxter, III et al. | May 2018 | B2 |
9974539 | Yates et al. | May 2018 | B2 |
9974541 | Calderoni | May 2018 | B2 |
9974542 | Hodgkinson | May 2018 | B2 |
9980630 | Larkin et al. | May 2018 | B2 |
9980713 | Aronhalt et al. | May 2018 | B2 |
9980724 | Farascioni et al. | May 2018 | B2 |
9980729 | Moore et al. | May 2018 | B2 |
9980769 | Trees et al. | May 2018 | B2 |
D819680 | Nguyen | Jun 2018 | S |
D819682 | Howard et al. | Jun 2018 | S |
D819684 | Dart | Jun 2018 | S |
D820307 | Jian et al. | Jun 2018 | S |
D820867 | Dickens et al. | Jun 2018 | S |
9987000 | Shelton, IV et al. | Jun 2018 | B2 |
9987003 | Timm et al. | Jun 2018 | B2 |
9987006 | Morgan et al. | Jun 2018 | B2 |
9987008 | Scirica et al. | Jun 2018 | B2 |
9987095 | Chowaniec et al. | Jun 2018 | B2 |
9987097 | Van Der Weide et al. | Jun 2018 | B2 |
9987099 | Chen et al. | Jun 2018 | B2 |
9993248 | Shelton, IV et al. | Jun 2018 | B2 |
9993258 | Shelton, IV et al. | Jun 2018 | B2 |
9993284 | Boudreaux | Jun 2018 | B2 |
9999408 | Boudreaux et al. | Jun 2018 | B2 |
9999423 | Schuckmann et al. | Jun 2018 | B2 |
9999426 | Moore et al. | Jun 2018 | B2 |
9999431 | Shelton, IV et al. | Jun 2018 | B2 |
9999472 | Weir et al. | Jun 2018 | B2 |
10004497 | Overmyer et al. | Jun 2018 | B2 |
10004498 | Morgan et al. | Jun 2018 | B2 |
10004500 | Shelton, IV et al. | Jun 2018 | B2 |
10004501 | Shelton, IV et al. | Jun 2018 | B2 |
10004505 | Moore et al. | Jun 2018 | B2 |
10004506 | Shelton, IV et al. | Jun 2018 | B2 |
D822206 | Shelton, IV et al. | Jul 2018 | S |
10010322 | Shelton, IV et al. | Jul 2018 | B2 |
10010324 | Huitema et al. | Jul 2018 | B2 |
10010395 | Puckett et al. | Jul 2018 | B2 |
10013049 | Leimbach et al. | Jul 2018 | B2 |
10016199 | Baber et al. | Jul 2018 | B2 |
10016656 | Devor et al. | Jul 2018 | B2 |
10022120 | Martin et al. | Jul 2018 | B2 |
10022123 | Williams et al. | Jul 2018 | B2 |
10022125 | Stopek et al. | Jul 2018 | B2 |
10024407 | Aranyi et al. | Jul 2018 | B2 |
10028742 | Shelton, IV et al. | Jul 2018 | B2 |
10028743 | Shelton, IV et al. | Jul 2018 | B2 |
10028744 | Shelton, IV et al. | Jul 2018 | B2 |
10028761 | Leimbach et al. | Jul 2018 | B2 |
10029108 | Powers et al. | Jul 2018 | B2 |
10029125 | Shapiro et al. | Jul 2018 | B2 |
10034344 | Yoshida | Jul 2018 | B2 |
10034668 | Ebner | Jul 2018 | B2 |
D826405 | Shelton, IV et al. | Aug 2018 | S |
10039440 | Fenech et al. | Aug 2018 | B2 |
10039529 | Kerr et al. | Aug 2018 | B2 |
10039532 | Srinivas et al. | Aug 2018 | B2 |
10039545 | Sadowski et al. | Aug 2018 | B2 |
10041822 | Zemlok | Aug 2018 | B2 |
10045769 | Aronhalt et al. | Aug 2018 | B2 |
10045776 | Shelton, IV et al. | Aug 2018 | B2 |
10045778 | Yates et al. | Aug 2018 | B2 |
10045779 | Savage et al. | Aug 2018 | B2 |
10045781 | Cropper et al. | Aug 2018 | B2 |
10045782 | Murthy Aravalli | Aug 2018 | B2 |
10045869 | Forsell | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10052099 | Morgan et al. | Aug 2018 | B2 |
10052100 | Morgan et al. | Aug 2018 | B2 |
10052102 | Baxter, III et al. | Aug 2018 | B2 |
10052104 | Shelton, IV et al. | Aug 2018 | B2 |
10052164 | Overmyer | Aug 2018 | B2 |
10058317 | Fan et al. | Aug 2018 | B2 |
10058327 | Weisenburgh, II et al. | Aug 2018 | B2 |
10058373 | Takashino et al. | Aug 2018 | B2 |
10058395 | Devengenzo et al. | Aug 2018 | B2 |
10058963 | Shelton, IV et al. | Aug 2018 | B2 |
10064620 | Gettinger et al. | Sep 2018 | B2 |
10064621 | Kerr et al. | Sep 2018 | B2 |
10064622 | Murthy Aravalli | Sep 2018 | B2 |
10064624 | Shelton, IV et al. | Sep 2018 | B2 |
10064639 | Ishida et al. | Sep 2018 | B2 |
10064649 | Golebieski et al. | Sep 2018 | B2 |
10064688 | Shelton, IV et al. | Sep 2018 | B2 |
10070861 | Spivey et al. | Sep 2018 | B2 |
10070863 | Swayze et al. | Sep 2018 | B2 |
10071452 | Shelton, IV et al. | Sep 2018 | B2 |
10076325 | Huang et al. | Sep 2018 | B2 |
10076326 | Yates et al. | Sep 2018 | B2 |
10076340 | Belagali et al. | Sep 2018 | B2 |
10080552 | Nicholas et al. | Sep 2018 | B2 |
D830550 | Miller et al. | Oct 2018 | S |
D831209 | Huitema et al. | Oct 2018 | S |
D831676 | Park et al. | Oct 2018 | S |
D832301 | Smith | Oct 2018 | S |
10085624 | Isoda et al. | Oct 2018 | B2 |
10085643 | Bandic et al. | Oct 2018 | B2 |
10085728 | Jogasaki et al. | Oct 2018 | B2 |
10085746 | Fischvogt | Oct 2018 | B2 |
10085748 | Morgan et al. | Oct 2018 | B2 |
10085749 | Cappola et al. | Oct 2018 | B2 |
10085750 | Zergiebel et al. | Oct 2018 | B2 |
10085751 | Overmyer et al. | Oct 2018 | B2 |
10085754 | Sniffin et al. | Oct 2018 | B2 |
10085806 | Hagn et al. | Oct 2018 | B2 |
10092290 | Yigit et al. | Oct 2018 | B2 |
10092292 | Boudreaux et al. | Oct 2018 | B2 |
10098635 | Burbank | Oct 2018 | B2 |
10098636 | Shelton, IV et al. | Oct 2018 | B2 |
10098640 | Bertolero et al. | Oct 2018 | B2 |
10098642 | Baxter, III et al. | Oct 2018 | B2 |
10099303 | Yoshida et al. | Oct 2018 | B2 |
10101861 | Kiyoto | Oct 2018 | B2 |
10105128 | Cooper et al. | Oct 2018 | B2 |
10105136 | Yates et al. | Oct 2018 | B2 |
10105139 | Yates et al. | Oct 2018 | B2 |
10105140 | Malinouskas et al. | Oct 2018 | B2 |
10105142 | Baxter, III et al. | Oct 2018 | B2 |
10105149 | Haider et al. | Oct 2018 | B2 |
10106932 | Anderson et al. | Oct 2018 | B2 |
10111657 | McCuen | Oct 2018 | B2 |
10111658 | Chowaniec et al. | Oct 2018 | B2 |
10111660 | Hemmann | Oct 2018 | B2 |
10111665 | Aranyi et al. | Oct 2018 | B2 |
10111679 | Baber et al. | Oct 2018 | B2 |
10111698 | Scheib et al. | Oct 2018 | B2 |
10111702 | Kostrzewski | Oct 2018 | B2 |
D833608 | Miller et al. | Nov 2018 | S |
10117649 | Baxter, III et al. | Nov 2018 | B2 |
10117650 | Nicholas et al. | Nov 2018 | B2 |
10117652 | Schmid et al. | Nov 2018 | B2 |
10117653 | Leimbach et al. | Nov 2018 | B2 |
10117654 | Ingmanson et al. | Nov 2018 | B2 |
10123798 | Baxter, III et al. | Nov 2018 | B2 |
10124493 | Rothfuss et al. | Nov 2018 | B2 |
10130352 | Widenhouse et al. | Nov 2018 | B2 |
10130359 | Hess et al. | Nov 2018 | B2 |
10130361 | Yates et al. | Nov 2018 | B2 |
10130363 | Huitema et al. | Nov 2018 | B2 |
10130366 | Shelton, IV et al. | Nov 2018 | B2 |
10130367 | Cappola et al. | Nov 2018 | B2 |
10130382 | Gladstone | Nov 2018 | B2 |
10130738 | Shelton, IV et al. | Nov 2018 | B2 |
10130830 | Miret Carceller et al. | Nov 2018 | B2 |
10133248 | Fitzsimmons et al. | Nov 2018 | B2 |
10135242 | Baber et al. | Nov 2018 | B2 |
10136879 | Ross et al. | Nov 2018 | B2 |
10136887 | Shelton, IV et al. | Nov 2018 | B2 |
10136889 | Shelton, IV et al. | Nov 2018 | B2 |
10136890 | Shelton, IV et al. | Nov 2018 | B2 |
10136891 | Shelton, IV et al. | Nov 2018 | B2 |
D835659 | Anzures et al. | Dec 2018 | S |
D836124 | Fan | Dec 2018 | S |
10143474 | Bucciaglia et al. | Dec 2018 | B2 |
10149679 | Shelton, IV et al. | Dec 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10149682 | Shelton, IV et al. | Dec 2018 | B2 |
10149683 | Smith et al. | Dec 2018 | B2 |
10149712 | Manwaring et al. | Dec 2018 | B2 |
10152789 | Carnes et al. | Dec 2018 | B2 |
10154841 | Weaner et al. | Dec 2018 | B2 |
10159481 | Whitman et al. | Dec 2018 | B2 |
10159482 | Swayze et al. | Dec 2018 | B2 |
10159483 | Beckman et al. | Dec 2018 | B2 |
10159506 | Boudreaux et al. | Dec 2018 | B2 |
10163065 | Koski et al. | Dec 2018 | B1 |
10163589 | Zergiebel et al. | Dec 2018 | B2 |
10164466 | Calderoni | Dec 2018 | B2 |
D837244 | Kuo et al. | Jan 2019 | S |
D837245 | Kuo et al. | Jan 2019 | S |
10166023 | Vendely et al. | Jan 2019 | B2 |
10166025 | Leimbach et al. | Jan 2019 | B2 |
10166026 | Shelton, IV et al. | Jan 2019 | B2 |
10172611 | Shelton, IV et al. | Jan 2019 | B2 |
10172615 | Marczyk et al. | Jan 2019 | B2 |
10172616 | Murray et al. | Jan 2019 | B2 |
10172617 | Shelton, IV et al. | Jan 2019 | B2 |
10172618 | Shelton, IV et al. | Jan 2019 | B2 |
10172619 | Harris et al. | Jan 2019 | B2 |
10172620 | Harris et al. | Jan 2019 | B2 |
10172636 | Stulen et al. | Jan 2019 | B2 |
10172669 | Felder et al. | Jan 2019 | B2 |
10175127 | Collins et al. | Jan 2019 | B2 |
10178992 | Wise et al. | Jan 2019 | B2 |
10180463 | Beckman et al. | Jan 2019 | B2 |
10182813 | Leimbach et al. | Jan 2019 | B2 |
10182815 | Williams et al. | Jan 2019 | B2 |
10182816 | Shelton, IV et al. | Jan 2019 | B2 |
10182818 | Hensel et al. | Jan 2019 | B2 |
10182819 | Shelton, IV | Jan 2019 | B2 |
10182868 | Meier et al. | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
10188389 | Vendely et al. | Jan 2019 | B2 |
10188393 | Smith et al. | Jan 2019 | B2 |
10188394 | Shelton, IV et al. | Jan 2019 | B2 |
10190888 | Hryb et al. | Jan 2019 | B2 |
D839900 | Gan | Feb 2019 | S |
D841667 | Coren | Feb 2019 | S |
10194801 | Elhawary et al. | Feb 2019 | B2 |
10194904 | Viola et al. | Feb 2019 | B2 |
10194907 | Marczyk et al. | Feb 2019 | B2 |
10194908 | Duque et al. | Feb 2019 | B2 |
10194910 | Shelton, IV et al. | Feb 2019 | B2 |
10194913 | Nalagatla et al. | Feb 2019 | B2 |
10194976 | Boudreaux | Feb 2019 | B2 |
10194992 | Robinson | Feb 2019 | B2 |
10201348 | Scheib et al. | Feb 2019 | B2 |
10201349 | Leimbach et al. | Feb 2019 | B2 |
10201363 | Shelton, IV | Feb 2019 | B2 |
10201364 | Leimbach et al. | Feb 2019 | B2 |
10201365 | Boudreaux et al. | Feb 2019 | B2 |
10201381 | Zergiebel et al. | Feb 2019 | B2 |
10206605 | Shelton, IV et al. | Feb 2019 | B2 |
10206676 | Shelton, IV | Feb 2019 | B2 |
10206677 | Harris et al. | Feb 2019 | B2 |
10206678 | Shelton, IV et al. | Feb 2019 | B2 |
10206748 | Burbank | Feb 2019 | B2 |
10210244 | Branavan et al. | Feb 2019 | B1 |
10211586 | Adams et al. | Feb 2019 | B2 |
10213198 | Aronhalt et al. | Feb 2019 | B2 |
10213201 | Shelton, IV et al. | Feb 2019 | B2 |
10213202 | Flanagan et al. | Feb 2019 | B2 |
10213203 | Swayze et al. | Feb 2019 | B2 |
10213204 | Aranyi et al. | Feb 2019 | B2 |
10213262 | Shelton, IV et al. | Feb 2019 | B2 |
D842328 | Jian et al. | Mar 2019 | S |
10219811 | Haider et al. | Mar 2019 | B2 |
10219832 | Bagwell et al. | Mar 2019 | B2 |
10220522 | Rockrohr | Mar 2019 | B2 |
10226239 | Nicholas et al. | Mar 2019 | B2 |
10226249 | Jaworek et al. | Mar 2019 | B2 |
10226250 | Beckman et al. | Mar 2019 | B2 |
10226251 | Scheib et al. | Mar 2019 | B2 |
10226274 | Worrell et al. | Mar 2019 | B2 |
10231634 | Zand et al. | Mar 2019 | B2 |
10231653 | Bohm et al. | Mar 2019 | B2 |
10231734 | Thompson et al. | Mar 2019 | B2 |
10231794 | Shelton, IV et al. | Mar 2019 | B2 |
10238385 | Yates et al. | Mar 2019 | B2 |
10238386 | Overmyer et al. | Mar 2019 | B2 |
10238387 | Yates et al. | Mar 2019 | B2 |
10238389 | Yates et al. | Mar 2019 | B2 |
10238390 | Harris et al. | Mar 2019 | B2 |
10238391 | Leimbach et al. | Mar 2019 | B2 |
D844666 | Espeleta et al. | Apr 2019 | S |
D844667 | Espeleta et al. | Apr 2019 | S |
D845342 | Espeleta et al. | Apr 2019 | S |
D847199 | Whitmore | Apr 2019 | S |
10244991 | Shademan et al. | Apr 2019 | B2 |
10245027 | Shelton, IV et al. | Apr 2019 | B2 |
10245028 | Shelton, IV et al. | Apr 2019 | B2 |
10245029 | Hunter et al. | Apr 2019 | B2 |
10245030 | Hunter et al. | Apr 2019 | B2 |
10245032 | Shelton, IV | Apr 2019 | B2 |
10245033 | Overmyer et al. | Apr 2019 | B2 |
10245034 | Shelton, IV et al. | Apr 2019 | B2 |
10245035 | Swayze et al. | Apr 2019 | B2 |
10245038 | Hopkins et al. | Apr 2019 | B2 |
10245058 | Omori et al. | Apr 2019 | B2 |
10251648 | Harris et al. | Apr 2019 | B2 |
10251649 | Schellin et al. | Apr 2019 | B2 |
10251725 | Valentine et al. | Apr 2019 | B2 |
10258322 | Fanton et al. | Apr 2019 | B2 |
10258330 | Shelton, IV et al. | Apr 2019 | B2 |
10258331 | Shelton, IV et al. | Apr 2019 | B2 |
10258332 | Schmid et al. | Apr 2019 | B2 |
10258333 | Shelton, IV et al. | Apr 2019 | B2 |
10258336 | Baxter, III et al. | Apr 2019 | B2 |
10258363 | Worrell et al. | Apr 2019 | B2 |
10258418 | Shelton, IV et al. | Apr 2019 | B2 |
10264797 | Zhang et al. | Apr 2019 | B2 |
10265065 | Shelton, IV et al. | Apr 2019 | B2 |
10265067 | Yates et al. | Apr 2019 | B2 |
10265068 | Harris et al. | Apr 2019 | B2 |
10265072 | Shelton, IV et al. | Apr 2019 | B2 |
10265073 | Scheib et al. | Apr 2019 | B2 |
10265074 | Shelton, IV et al. | Apr 2019 | B2 |
10265090 | Ingmanson et al. | Apr 2019 | B2 |
10271840 | Sapre | Apr 2019 | B2 |
10271844 | Valentine et al. | Apr 2019 | B2 |
10271845 | Shelton, IV | Apr 2019 | B2 |
10271846 | Shelton, IV et al. | Apr 2019 | B2 |
10271847 | Racenet et al. | Apr 2019 | B2 |
10271849 | Vendely et al. | Apr 2019 | B2 |
10271851 | Shelton, IV et al. | Apr 2019 | B2 |
D847989 | Shelton, IV et al. | May 2019 | S |
D848473 | Zhu et al. | May 2019 | S |
D849046 | Kuo et al. | May 2019 | S |
10278696 | Gurumurthy et al. | May 2019 | B2 |
10278697 | Shelton, IV et al. | May 2019 | B2 |
10278702 | Shelton, IV et al. | May 2019 | B2 |
10278703 | Nativ et al. | May 2019 | B2 |
10278707 | Thompson et al. | May 2019 | B2 |
10278722 | Shelton, IV et al. | May 2019 | B2 |
10278780 | Shelton, IV | May 2019 | B2 |
10285694 | Viola et al. | May 2019 | B2 |
10285695 | Jaworek et al. | May 2019 | B2 |
10285699 | Vendely et al. | May 2019 | B2 |
10285700 | Scheib | May 2019 | B2 |
10285705 | Shelton, IV et al. | May 2019 | B2 |
10292701 | Scheib et al. | May 2019 | B2 |
10292704 | Harris et al. | May 2019 | B2 |
10292707 | Shelton, IV et al. | May 2019 | B2 |
10293100 | Shelton, IV et al. | May 2019 | B2 |
10293553 | Racenet et al. | May 2019 | B2 |
10299787 | Shelton, IV | May 2019 | B2 |
10299788 | Heinrich et al. | May 2019 | B2 |
10299789 | Marczyk et al. | May 2019 | B2 |
10299790 | Beardsley | May 2019 | B2 |
10299792 | Huitema et al. | May 2019 | B2 |
10299817 | Shelton, IV et al. | May 2019 | B2 |
10299818 | Riva | May 2019 | B2 |
10299878 | Shelton, IV et al. | May 2019 | B2 |
10303851 | Nguyen et al. | May 2019 | B2 |
D850617 | Shelton, IV et al. | Jun 2019 | S |
D851676 | Foss et al. | Jun 2019 | S |
D851762 | Shelton, IV et al. | Jun 2019 | S |
10307159 | Harris et al. | Jun 2019 | B2 |
10307160 | Vendely et al. | Jun 2019 | B2 |
10307161 | Jankowski | Jun 2019 | B2 |
10307163 | Moore et al. | Jun 2019 | B2 |
10307170 | Parfett et al. | Jun 2019 | B2 |
10307202 | Smith et al. | Jun 2019 | B2 |
10314559 | Razzaque et al. | Jun 2019 | B2 |
10314577 | Laurent et al. | Jun 2019 | B2 |
10314578 | Leimbach et al. | Jun 2019 | B2 |
10314580 | Scheib et al. | Jun 2019 | B2 |
10314582 | Shelton, IV et al. | Jun 2019 | B2 |
10314584 | Scirica et al. | Jun 2019 | B2 |
10314587 | Harris et al. | Jun 2019 | B2 |
10314588 | Turner et al. | Jun 2019 | B2 |
10314589 | Shelton, IV et al. | Jun 2019 | B2 |
10314590 | Shelton, IV et al. | Jun 2019 | B2 |
10315566 | Choi et al. | Jun 2019 | B2 |
10321907 | Shelton, IV et al. | Jun 2019 | B2 |
10321909 | Shelton, IV et al. | Jun 2019 | B2 |
10321927 | Hinman | Jun 2019 | B2 |
10327743 | St. Goar et al. | Jun 2019 | B2 |
10327764 | Harris et al. | Jun 2019 | B2 |
10327765 | Timm et al. | Jun 2019 | B2 |
10327767 | Shelton, IV et al. | Jun 2019 | B2 |
10327769 | Overmyer et al. | Jun 2019 | B2 |
10327776 | Harris et al. | Jun 2019 | B2 |
10327777 | Harris et al. | Jun 2019 | B2 |
D854032 | Jones et al. | Jul 2019 | S |
D854151 | Shelton, IV et al. | Jul 2019 | S |
10335144 | Shelton, IV et al. | Jul 2019 | B2 |
10335145 | Harris et al. | Jul 2019 | B2 |
10335147 | Rector et al. | Jul 2019 | B2 |
10335148 | Shelton, IV et al. | Jul 2019 | B2 |
10335149 | Baxter, III et al. | Jul 2019 | B2 |
10335150 | Shelton, IV | Jul 2019 | B2 |
10335151 | Shelton, IV et al. | Jul 2019 | B2 |
10337148 | Rouse et al. | Jul 2019 | B2 |
10342533 | Shelton, IV et al. | Jul 2019 | B2 |
10342535 | Scheib et al. | Jul 2019 | B2 |
10342541 | Shelton, IV et al. | Jul 2019 | B2 |
10342543 | Shelton, IV et al. | Jul 2019 | B2 |
10342623 | Huelman et al. | Jul 2019 | B2 |
10349937 | Williams | Jul 2019 | B2 |
10349939 | Shelton, IV et al. | Jul 2019 | B2 |
10349941 | Marczyk et al. | Jul 2019 | B2 |
10349963 | Fiksen et al. | Jul 2019 | B2 |
10350016 | Burbank et al. | Jul 2019 | B2 |
10357246 | Shelton, IV et al. | Jul 2019 | B2 |
10357247 | Shelton, IV et al. | Jul 2019 | B2 |
10357248 | Dalessandro et al. | Jul 2019 | B2 |
10357252 | Harris et al. | Jul 2019 | B2 |
10363031 | Alexander, III et al. | Jul 2019 | B2 |
10363033 | Timm et al. | Jul 2019 | B2 |
10363036 | Yates et al. | Jul 2019 | B2 |
10363037 | Aronhalt et al. | Jul 2019 | B2 |
D855634 | Kim | Aug 2019 | S |
D856359 | Huang et al. | Aug 2019 | S |
10368838 | Williams et al. | Aug 2019 | B2 |
10368861 | Baxter, III et al. | Aug 2019 | B2 |
10368863 | Timm et al. | Aug 2019 | B2 |
10368864 | Harris et al. | Aug 2019 | B2 |
10368865 | Harris et al. | Aug 2019 | B2 |
10368867 | Harris et al. | Aug 2019 | B2 |
10368892 | Stulen et al. | Aug 2019 | B2 |
10376263 | Morgan et al. | Aug 2019 | B2 |
10383626 | Soltz | Aug 2019 | B2 |
10383628 | Kang et al. | Aug 2019 | B2 |
10383629 | Ross et al. | Aug 2019 | B2 |
10383630 | Shelton, IV et al. | Aug 2019 | B2 |
10383633 | Shelton, IV et al. | Aug 2019 | B2 |
10383634 | Shelton, IV et al. | Aug 2019 | B2 |
10390823 | Shelton, IV et al. | Aug 2019 | B2 |
10390825 | Shelton, IV et al. | Aug 2019 | B2 |
10390828 | Vendely et al. | Aug 2019 | B2 |
10390829 | Eckert et al. | Aug 2019 | B2 |
10390830 | Schulz | Aug 2019 | B2 |
10390841 | Shelton, IV et al. | Aug 2019 | B2 |
10390897 | Kostrzewski | Aug 2019 | B2 |
D860219 | Rasmussen et al. | Sep 2019 | S |
D861035 | Park et al. | Sep 2019 | S |
10398433 | Boudreaux et al. | Sep 2019 | B2 |
10398434 | Shelton, IV et al. | Sep 2019 | B2 |
10398436 | Shelton, IV et al. | Sep 2019 | B2 |
10398460 | Overmyer | Sep 2019 | B2 |
10404136 | Oktavec et al. | Sep 2019 | B2 |
10405854 | Schmid et al. | Sep 2019 | B2 |
10405857 | Shelton, IV et al. | Sep 2019 | B2 |
10405859 | Harris et al. | Sep 2019 | B2 |
10405863 | Wise et al. | Sep 2019 | B2 |
10405914 | Manwaring et al. | Sep 2019 | B2 |
10405932 | Overmyer | Sep 2019 | B2 |
10405937 | Black et al. | Sep 2019 | B2 |
10413155 | Inoue | Sep 2019 | B2 |
10413291 | Worthington et al. | Sep 2019 | B2 |
10413293 | Shelton, IV et al. | Sep 2019 | B2 |
10413294 | Shelton, IV et al. | Sep 2019 | B2 |
10413297 | Harris et al. | Sep 2019 | B2 |
10413370 | Yates et al. | Sep 2019 | B2 |
10413373 | Yates et al. | Sep 2019 | B2 |
10420548 | Whitman et al. | Sep 2019 | B2 |
10420549 | Yates et al. | Sep 2019 | B2 |
10420550 | Shelton, IV | Sep 2019 | B2 |
10420551 | Calderoni | Sep 2019 | B2 |
10420552 | Shelton, IV et al. | Sep 2019 | B2 |
10420553 | Shelton, IV et al. | Sep 2019 | B2 |
10420554 | Collings et al. | Sep 2019 | B2 |
10420555 | Shelton, IV | Sep 2019 | B2 |
10420558 | Nalagatla et al. | Sep 2019 | B2 |
10420559 | Marczyk et al. | Sep 2019 | B2 |
10420560 | Shelton, IV et al. | Sep 2019 | B2 |
10420561 | Shelton, IV et al. | Sep 2019 | B2 |
10420577 | Chowaniec et al. | Sep 2019 | B2 |
D861707 | Yang | Oct 2019 | S |
D862518 | Niven et al. | Oct 2019 | S |
D863343 | Mazlish et al. | Oct 2019 | S |
D864388 | Barber | Oct 2019 | S |
D865174 | Auld et al. | Oct 2019 | S |
D865175 | Widenhouse et al. | Oct 2019 | S |
10426463 | Shelton, IV et al. | Oct 2019 | B2 |
10426466 | Contini et al. | Oct 2019 | B2 |
10426467 | Miller et al. | Oct 2019 | B2 |
10426468 | Contini et al. | Oct 2019 | B2 |
10426469 | Shelton, IV et al. | Oct 2019 | B2 |
10426471 | Shelton, IV et al. | Oct 2019 | B2 |
10426476 | Harris et al. | Oct 2019 | B2 |
10426477 | Harris et al. | Oct 2019 | B2 |
10426478 | Shelton, IV et al. | Oct 2019 | B2 |
10426481 | Aronhalt et al. | Oct 2019 | B2 |
10426555 | Crowley et al. | Oct 2019 | B2 |
10433837 | Worthington et al. | Oct 2019 | B2 |
10433839 | Scheib et al. | Oct 2019 | B2 |
10433840 | Shelton, IV et al. | Oct 2019 | B2 |
10433844 | Shelton, IV et al. | Oct 2019 | B2 |
10433845 | Baxter, III et al. | Oct 2019 | B2 |
10433846 | Vendely et al. | Oct 2019 | B2 |
10433849 | Shelton, IV et al. | Oct 2019 | B2 |
10433918 | Shelton, IV et al. | Oct 2019 | B2 |
10441279 | Shelton, IV et al. | Oct 2019 | B2 |
10441280 | Timm et al. | Oct 2019 | B2 |
10441281 | Shelton, IV et al. | Oct 2019 | B2 |
10441285 | Shelton, IV et al. | Oct 2019 | B2 |
10441286 | Shelton, IV et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10441369 | Shelton, IV et al. | Oct 2019 | B2 |
10448948 | Shelton, IV et al. | Oct 2019 | B2 |
10448950 | Shelton, IV et al. | Oct 2019 | B2 |
10448952 | Shelton, IV et al. | Oct 2019 | B2 |
10456122 | Koltz et al. | Oct 2019 | B2 |
10456132 | Gettinger et al. | Oct 2019 | B2 |
10456133 | Yates et al. | Oct 2019 | B2 |
10456137 | Vendely et al. | Oct 2019 | B2 |
10456140 | Shelton, IV et al. | Oct 2019 | B2 |
D865796 | Xu et al. | Nov 2019 | S |
10463367 | Kostrzewski et al. | Nov 2019 | B2 |
10463369 | Shelton, IV et al. | Nov 2019 | B2 |
10463370 | Yates et al. | Nov 2019 | B2 |
10463371 | Kostrzewski | Nov 2019 | B2 |
10463372 | Shelton, IV et al. | Nov 2019 | B2 |
10463373 | Mozdzierz et al. | Nov 2019 | B2 |
10463382 | Ingmanson et al. | Nov 2019 | B2 |
10463383 | Shelton, IV et al. | Nov 2019 | B2 |
10463384 | Shelton, IV et al. | Nov 2019 | B2 |
10470762 | Leimbach et al. | Nov 2019 | B2 |
10470763 | Yates et al. | Nov 2019 | B2 |
10470764 | Baxter, III et al. | Nov 2019 | B2 |
10470767 | Gleiman et al. | Nov 2019 | B2 |
10470768 | Harris et al. | Nov 2019 | B2 |
10470769 | Shelton, IV et al. | Nov 2019 | B2 |
10470770 | Shelton, IV et al. | Nov 2019 | B2 |
10471282 | Kirk et al. | Nov 2019 | B2 |
10471576 | Totsu | Nov 2019 | B2 |
10471607 | Butt | Nov 2019 | B2 |
10478181 | Shelton, IV et al. | Nov 2019 | B2 |
10478182 | Taylor | Nov 2019 | B2 |
10478185 | Nicholas | Nov 2019 | B2 |
10478187 | Shelton, IV et al. | Nov 2019 | B2 |
10478188 | Harris et al. | Nov 2019 | B2 |
10478189 | Bear et al. | Nov 2019 | B2 |
10478190 | Miller et al. | Nov 2019 | B2 |
10478207 | Lathrop | Nov 2019 | B2 |
10482292 | Clouser et al. | Nov 2019 | B2 |
10485536 | Ming et al. | Nov 2019 | B2 |
10485537 | Yates et al. | Nov 2019 | B2 |
10485539 | Shelton, IV et al. | Nov 2019 | B2 |
10485541 | Shelton, IV et al. | Nov 2019 | B2 |
10485542 | Shelton, IV et al. | Nov 2019 | B2 |
10485543 | Shelton, IV et al. | Nov 2019 | B2 |
10485546 | Shelton, IV et al. | Nov 2019 | B2 |
10485547 | Shelton, IV et al. | Nov 2019 | B2 |
D869655 | Shelton, IV et al. | Dec 2019 | S |
D870742 | Cornell | Dec 2019 | S |
10492783 | Shelton, IV et al. | Dec 2019 | B2 |
10492785 | Overmyer et al. | Dec 2019 | B2 |
10492787 | Smith et al. | Dec 2019 | B2 |
10492814 | Snow et al. | Dec 2019 | B2 |
10492847 | Godara et al. | Dec 2019 | B2 |
10492851 | Hughett, Sr. et al. | Dec 2019 | B2 |
10498269 | Zemlok et al. | Dec 2019 | B2 |
10499890 | Shelton, IV et al. | Dec 2019 | B2 |
10499914 | Huang et al. | Dec 2019 | B2 |
10499917 | Scheib et al. | Dec 2019 | B2 |
10499918 | Schellin et al. | Dec 2019 | B2 |
10500000 | Swayze et al. | Dec 2019 | B2 |
10500309 | Shah et al. | Dec 2019 | B2 |
10508720 | Nicholas | Dec 2019 | B2 |
10512461 | Gupta et al. | Dec 2019 | B2 |
10517590 | Giordano et al. | Dec 2019 | B2 |
10517592 | Shelton, IV et al. | Dec 2019 | B2 |
10517594 | Shelton, IV et al. | Dec 2019 | B2 |
10517595 | Hunter et al. | Dec 2019 | B2 |
10517596 | Hunter et al. | Dec 2019 | B2 |
10517599 | Baxter, III et al. | Dec 2019 | B2 |
10517682 | Giordano et al. | Dec 2019 | B2 |
10524784 | Kostrzewski | Jan 2020 | B2 |
10524787 | Shelton, IV et al. | Jan 2020 | B2 |
10524788 | Vendely et al. | Jan 2020 | B2 |
10524789 | Swayze et al. | Jan 2020 | B2 |
10524790 | Shelton, IV et al. | Jan 2020 | B2 |
10524795 | Nalagatla et al. | Jan 2020 | B2 |
10531874 | Morgan et al. | Jan 2020 | B2 |
10531887 | Shelton, IV et al. | Jan 2020 | B2 |
10537324 | Shelton, IV et al. | Jan 2020 | B2 |
10537325 | Bakos et al. | Jan 2020 | B2 |
10537351 | Shelton, IV et al. | Jan 2020 | B2 |
10542908 | Mei et al. | Jan 2020 | B2 |
10542974 | Yates et al. | Jan 2020 | B2 |
10542976 | Calderoni et al. | Jan 2020 | B2 |
10542978 | Chowaniec et al. | Jan 2020 | B2 |
10542979 | Shelton, IV et al. | Jan 2020 | B2 |
10542982 | Beckman et al. | Jan 2020 | B2 |
10542985 | Zhan et al. | Jan 2020 | B2 |
10542988 | Schellin et al. | Jan 2020 | B2 |
10542991 | Shelton, IV et al. | Jan 2020 | B2 |
10548504 | Shelton, IV et al. | Feb 2020 | B2 |
10548593 | Shelton, IV et al. | Feb 2020 | B2 |
10548600 | Shelton, IV et al. | Feb 2020 | B2 |
10548673 | Harris et al. | Feb 2020 | B2 |
10561418 | Richard et al. | Feb 2020 | B2 |
10561419 | Beardsley | Feb 2020 | B2 |
10561420 | Harris et al. | Feb 2020 | B2 |
10561422 | Schellin et al. | Feb 2020 | B2 |
10561432 | Estrella et al. | Feb 2020 | B2 |
10561474 | Adams et al. | Feb 2020 | B2 |
10562160 | Iwata et al. | Feb 2020 | B2 |
10568493 | Blase et al. | Feb 2020 | B2 |
10568621 | Shelton, IV et al. | Feb 2020 | B2 |
10568624 | Shelton, IV et al. | Feb 2020 | B2 |
10568625 | Harris et al. | Feb 2020 | B2 |
10568626 | Shelton, IV et al. | Feb 2020 | B2 |
10568629 | Shelton, IV et al. | Feb 2020 | B2 |
10568632 | Miller et al. | Feb 2020 | B2 |
10568652 | Hess et al. | Feb 2020 | B2 |
10569071 | Harris et al. | Feb 2020 | B2 |
D879808 | Harris et al. | Mar 2020 | S |
D879809 | Harris et al. | Mar 2020 | S |
10575868 | Hall et al. | Mar 2020 | B2 |
10580320 | Kamiguchi et al. | Mar 2020 | B2 |
10582928 | Hunter et al. | Mar 2020 | B2 |
10588231 | Sgroi, Jr. et al. | Mar 2020 | B2 |
10588623 | Schmid et al. | Mar 2020 | B2 |
10588625 | Weaner et al. | Mar 2020 | B2 |
10588626 | Overmyer et al. | Mar 2020 | B2 |
10588629 | Malinouskas et al. | Mar 2020 | B2 |
10588630 | Shelton, IV et al. | Mar 2020 | B2 |
10588631 | Shelton, IV et al. | Mar 2020 | B2 |
10588632 | Shelton, IV et al. | Mar 2020 | B2 |
10588633 | Shelton, IV et al. | Mar 2020 | B2 |
10595835 | Kerr et al. | Mar 2020 | B2 |
10595862 | Shelton, IV et al. | Mar 2020 | B2 |
10595882 | Parfett et al. | Mar 2020 | B2 |
10595887 | Shelton, IV et al. | Mar 2020 | B2 |
10595929 | Boudreaux et al. | Mar 2020 | B2 |
10603036 | Hunter et al. | Mar 2020 | B2 |
10603039 | Vendely et al. | Mar 2020 | B2 |
10603041 | Miller et al. | Mar 2020 | B2 |
10603117 | Schings et al. | Mar 2020 | B2 |
10603128 | Zergiebel et al. | Mar 2020 | B2 |
10610224 | Shelton, IV et al. | Apr 2020 | B2 |
10610236 | Baril | Apr 2020 | B2 |
10610313 | Bailey et al. | Apr 2020 | B2 |
10610346 | Schwartz | Apr 2020 | B2 |
10617411 | Williams | Apr 2020 | B2 |
10617412 | Shelton, IV et al. | Apr 2020 | B2 |
10617413 | Shelton, IV et al. | Apr 2020 | B2 |
10617414 | Shelton, IV et al. | Apr 2020 | B2 |
10617416 | Leimbach et al. | Apr 2020 | B2 |
10617417 | Baxter, III et al. | Apr 2020 | B2 |
10617418 | Barton et al. | Apr 2020 | B2 |
10617420 | Shelton, IV et al. | Apr 2020 | B2 |
10617438 | O'Keefe et al. | Apr 2020 | B2 |
10624616 | Mukherjee et al. | Apr 2020 | B2 |
10624630 | Deville et al. | Apr 2020 | B2 |
10624633 | Shelton, IV et al. | Apr 2020 | B2 |
10624634 | Shelton, IV et al. | Apr 2020 | B2 |
10624635 | Harris et al. | Apr 2020 | B2 |
10624709 | Remm | Apr 2020 | B2 |
10624861 | Widenhouse et al. | Apr 2020 | B2 |
10625062 | Matlock et al. | Apr 2020 | B2 |
10631857 | Kostrzewski | Apr 2020 | B2 |
10631858 | Burbank | Apr 2020 | B2 |
10631859 | Shelton, IV et al. | Apr 2020 | B2 |
10631860 | Bakos et al. | Apr 2020 | B2 |
10636104 | Mazar et al. | Apr 2020 | B2 |
10639018 | Shelton, IV et al. | May 2020 | B2 |
10639034 | Harris et al. | May 2020 | B2 |
10639035 | Shelton, IV et al. | May 2020 | B2 |
10639036 | Yates et al. | May 2020 | B2 |
10639037 | Shelton, IV et al. | May 2020 | B2 |
10639089 | Manwaring et al. | May 2020 | B2 |
10639115 | Shelton, IV et al. | May 2020 | B2 |
10645905 | Gandola et al. | May 2020 | B2 |
10646220 | Shelton, IV et al. | May 2020 | B2 |
10646292 | Solomon et al. | May 2020 | B2 |
10653413 | Worthington et al. | May 2020 | B2 |
10653417 | Shelton, IV et al. | May 2020 | B2 |
10653435 | Shelton, IV et al. | May 2020 | B2 |
10660640 | Yates et al. | May 2020 | B2 |
10667408 | Sgroi, Jr. et al. | May 2020 | B2 |
D888953 | Baxter, III et al. | Jun 2020 | S |
10667808 | Baxter, III et al. | Jun 2020 | B2 |
10667809 | Bakos et al. | Jun 2020 | B2 |
10667810 | Shelton, IV et al. | Jun 2020 | B2 |
10667811 | Harris et al. | Jun 2020 | B2 |
10667818 | McLain et al. | Jun 2020 | B2 |
10674895 | Yeung et al. | Jun 2020 | B2 |
10675021 | Harris et al. | Jun 2020 | B2 |
10675024 | Shelton, IV et al. | Jun 2020 | B2 |
10675025 | Swayze et al. | Jun 2020 | B2 |
10675026 | Harris et al. | Jun 2020 | B2 |
10675028 | Shelton, IV et al. | Jun 2020 | B2 |
10675035 | Zingman | Jun 2020 | B2 |
10675102 | Forgione et al. | Jun 2020 | B2 |
10677035 | Balan et al. | Jun 2020 | B2 |
10682134 | Shelton, IV et al. | Jun 2020 | B2 |
10682136 | Harris et al. | Jun 2020 | B2 |
10682138 | Shelton, IV et al. | Jun 2020 | B2 |
10682141 | Moore et al. | Jun 2020 | B2 |
10682142 | Shelton, IV et al. | Jun 2020 | B2 |
10687806 | Shelton, IV et al. | Jun 2020 | B2 |
10687809 | Shelton, IV et al. | Jun 2020 | B2 |
10687810 | Shelton, IV et al. | Jun 2020 | B2 |
10687812 | Shelton, IV et al. | Jun 2020 | B2 |
10687813 | Shelton, IV et al. | Jun 2020 | B2 |
10687817 | Shelton, IV et al. | Jun 2020 | B2 |
10687819 | Stokes et al. | Jun 2020 | B2 |
10687904 | Harris et al. | Jun 2020 | B2 |
10695053 | Hess et al. | Jun 2020 | B2 |
10695055 | Shelton, IV et al. | Jun 2020 | B2 |
10695057 | Shelton, IV et al. | Jun 2020 | B2 |
10695058 | Lytle, IV et al. | Jun 2020 | B2 |
10695062 | Leimbach et al. | Jun 2020 | B2 |
10695063 | Morgan et al. | Jun 2020 | B2 |
10695074 | Carusillo | Jun 2020 | B2 |
10695081 | Shelton, IV et al. | Jun 2020 | B2 |
10695123 | Allen, IV | Jun 2020 | B2 |
10695187 | Moskowitz et al. | Jun 2020 | B2 |
D890784 | Shelton, IV et al. | Jul 2020 | S |
10702266 | Parihar et al. | Jul 2020 | B2 |
10702267 | Hess et al. | Jul 2020 | B2 |
10702270 | Shelton, IV et al. | Jul 2020 | B2 |
10702271 | Aranyi et al. | Jul 2020 | B2 |
10705660 | Xiao | Jul 2020 | B2 |
10709446 | Harris et al. | Jul 2020 | B2 |
10709468 | Shelton, IV et al. | Jul 2020 | B2 |
10709469 | Shelton, IV et al. | Jul 2020 | B2 |
10709496 | Moua et al. | Jul 2020 | B2 |
10716563 | Shelton, IV et al. | Jul 2020 | B2 |
10716565 | Shelton, IV et al. | Jul 2020 | B2 |
10716568 | Hall et al. | Jul 2020 | B2 |
10716614 | Yates et al. | Jul 2020 | B2 |
10717179 | Koenig et al. | Jul 2020 | B2 |
10722232 | Yates et al. | Jul 2020 | B2 |
10722233 | Wellman | Jul 2020 | B2 |
10722292 | Arya et al. | Jul 2020 | B2 |
10722293 | Arya et al. | Jul 2020 | B2 |
10722317 | Ward et al. | Jul 2020 | B2 |
D893717 | Messerly et al. | Aug 2020 | S |
10729432 | Shelton, IV et al. | Aug 2020 | B2 |
10729436 | Shelton, IV et al. | Aug 2020 | B2 |
10729443 | Cabrera et al. | Aug 2020 | B2 |
10729458 | Stoddard et al. | Aug 2020 | B2 |
10729501 | Leimbach et al. | Aug 2020 | B2 |
10729509 | Shelton, IV et al. | Aug 2020 | B2 |
10736616 | Scheib et al. | Aug 2020 | B2 |
10736628 | Yates et al. | Aug 2020 | B2 |
10736629 | Shelton, IV et al. | Aug 2020 | B2 |
10736630 | Huang et al. | Aug 2020 | B2 |
10736633 | Vendely et al. | Aug 2020 | B2 |
10736634 | Shelton, IV et al. | Aug 2020 | B2 |
10736636 | Baxter, III et al. | Aug 2020 | B2 |
10736644 | Windolf et al. | Aug 2020 | B2 |
10743849 | Shelton, IV et al. | Aug 2020 | B2 |
10743851 | Swayze et al. | Aug 2020 | B2 |
10743868 | Shelton, IV et al. | Aug 2020 | B2 |
10743870 | Hall et al. | Aug 2020 | B2 |
10743872 | Leimbach et al. | Aug 2020 | B2 |
10743873 | Overmyer et al. | Aug 2020 | B2 |
10743874 | Shelton, IV et al. | Aug 2020 | B2 |
10743875 | Shelton, IV et al. | Aug 2020 | B2 |
10743877 | Shelton, IV et al. | Aug 2020 | B2 |
10743930 | Nagtegaal | Aug 2020 | B2 |
10751048 | Whitman et al. | Aug 2020 | B2 |
10751053 | Harris et al. | Aug 2020 | B2 |
10751076 | Laurent et al. | Aug 2020 | B2 |
10751138 | Giordano et al. | Aug 2020 | B2 |
10758229 | Shelton, IV et al. | Sep 2020 | B2 |
10758230 | Shelton, IV et al. | Sep 2020 | B2 |
10758232 | Shelton, IV et al. | Sep 2020 | B2 |
10758233 | Scheib et al. | Sep 2020 | B2 |
10758259 | Demmy et al. | Sep 2020 | B2 |
10765425 | Yates et al. | Sep 2020 | B2 |
10765427 | Shelton, IV et al. | Sep 2020 | B2 |
10765429 | Leimbach et al. | Sep 2020 | B2 |
10765430 | Wixey | Sep 2020 | B2 |
10765432 | Moore et al. | Sep 2020 | B2 |
10765442 | Strobl | Sep 2020 | B2 |
10772625 | Shelton, IV et al. | Sep 2020 | B2 |
10772628 | Chen et al. | Sep 2020 | B2 |
10772629 | Shelton, IV et al. | Sep 2020 | B2 |
10772630 | Wixey | Sep 2020 | B2 |
10772631 | Zergiebel et al. | Sep 2020 | B2 |
10772632 | Kostrzewski | Sep 2020 | B2 |
10772651 | Shelton, IV et al. | Sep 2020 | B2 |
10779818 | Zemlok et al. | Sep 2020 | B2 |
10779820 | Harris et al. | Sep 2020 | B2 |
10779821 | Harris et al. | Sep 2020 | B2 |
10779822 | Yates et al. | Sep 2020 | B2 |
10779823 | Shelton, IV et al. | Sep 2020 | B2 |
10779824 | Shelton, IV et al. | Sep 2020 | B2 |
10779825 | Shelton, IV et al. | Sep 2020 | B2 |
10779826 | Shelton, IV et al. | Sep 2020 | B2 |
10779903 | Wise et al. | Sep 2020 | B2 |
10780539 | Shelton, IV et al. | Sep 2020 | B2 |
10786248 | Rousseau et al. | Sep 2020 | B2 |
10786253 | Shelton, IV et al. | Sep 2020 | B2 |
10786255 | Hodgkinson et al. | Sep 2020 | B2 |
10792038 | Becerra et al. | Oct 2020 | B2 |
10796471 | Leimbach et al. | Oct 2020 | B2 |
10799240 | Shelton, IV et al. | Oct 2020 | B2 |
10799306 | Robinson et al. | Oct 2020 | B2 |
10806448 | Shelton, IV et al. | Oct 2020 | B2 |
10806449 | Shelton, IV et al. | Oct 2020 | B2 |
10806450 | Yates et al. | Oct 2020 | B2 |
10806451 | Harris et al. | Oct 2020 | B2 |
10806453 | Chen et al. | Oct 2020 | B2 |
10806479 | Shelton, IV et al. | Oct 2020 | B2 |
10813638 | Shelton, IV et al. | Oct 2020 | B2 |
10813639 | Shelton, IV et al. | Oct 2020 | B2 |
10813640 | Adams et al. | Oct 2020 | B2 |
10813641 | Setser et al. | Oct 2020 | B2 |
10813683 | Baxter, III et al. | Oct 2020 | B2 |
10813705 | Hares et al. | Oct 2020 | B2 |
10813710 | Grubbs | Oct 2020 | B2 |
10820939 | Sartor | Nov 2020 | B2 |
10828028 | Harris et al. | Nov 2020 | B2 |
10828030 | Weir et al. | Nov 2020 | B2 |
10828032 | Leimbach et al. | Nov 2020 | B2 |
10828033 | Shelton, IV et al. | Nov 2020 | B2 |
10828089 | Clark et al. | Nov 2020 | B2 |
10835245 | Swayze et al. | Nov 2020 | B2 |
10835246 | Shelton, IV et al. | Nov 2020 | B2 |
10835247 | Shelton, IV et al. | Nov 2020 | B2 |
10835249 | Schellin et al. | Nov 2020 | B2 |
10835251 | Shelton, IV et al. | Nov 2020 | B2 |
10835330 | Shelton, IV et al. | Nov 2020 | B2 |
10842357 | Moskowitz et al. | Nov 2020 | B2 |
10842473 | Scheib et al. | Nov 2020 | B2 |
10842488 | Swayze et al. | Nov 2020 | B2 |
10842489 | Shelton, IV | Nov 2020 | B2 |
10842490 | DiNardo et al. | Nov 2020 | B2 |
10842491 | Shelton, IV et al. | Nov 2020 | B2 |
10842492 | Shelton, IV et al. | Nov 2020 | B2 |
D904612 | Wynn et al. | Dec 2020 | S |
D906355 | Messerly et al. | Dec 2020 | S |
10849621 | Whitfield et al. | Dec 2020 | B2 |
10849623 | Dunki-Jacobs et al. | Dec 2020 | B2 |
10849697 | Yates et al. | Dec 2020 | B2 |
10856866 | Shelton, IV et al. | Dec 2020 | B2 |
10856867 | Shelton, IV et al. | Dec 2020 | B2 |
10856868 | Shelton, IV et al. | Dec 2020 | B2 |
10856869 | Shelton, IV et al. | Dec 2020 | B2 |
10856870 | Harris et al. | Dec 2020 | B2 |
10863981 | Overmyer et al. | Dec 2020 | B2 |
10863984 | Shelton, IV et al. | Dec 2020 | B2 |
10863986 | Yates et al. | Dec 2020 | B2 |
10869664 | Shelton, IV | Dec 2020 | B2 |
10869665 | Shelton, IV et al. | Dec 2020 | B2 |
10869666 | Shelton, IV et al. | Dec 2020 | B2 |
10869669 | Shelton, IV et al. | Dec 2020 | B2 |
10874290 | Walen et al. | Dec 2020 | B2 |
10874391 | Shelton, IV et al. | Dec 2020 | B2 |
10874392 | Scirica et al. | Dec 2020 | B2 |
10874393 | Satti, III et al. | Dec 2020 | B2 |
10874396 | Moore et al. | Dec 2020 | B2 |
10874399 | Zhang | Dec 2020 | B2 |
10879275 | Li et al. | Dec 2020 | B2 |
D907647 | Siebel et al. | Jan 2021 | S |
D907648 | Siebel et al. | Jan 2021 | S |
D908216 | Messerly et al. | Jan 2021 | S |
10881395 | Merchant et al. | Jan 2021 | B2 |
10881396 | Shelton, IV et al. | Jan 2021 | B2 |
10881399 | Shelton, IV et al. | Jan 2021 | B2 |
10881401 | Baber et al. | Jan 2021 | B2 |
10881446 | Strobl | Jan 2021 | B2 |
10888318 | Parihar et al. | Jan 2021 | B2 |
10888321 | Shelton, IV et al. | Jan 2021 | B2 |
10888322 | Morgan et al. | Jan 2021 | B2 |
10888325 | Harris et al. | Jan 2021 | B2 |
10888328 | Shelton, IV et al. | Jan 2021 | B2 |
10888329 | Moore et al. | Jan 2021 | B2 |
10888330 | Moore et al. | Jan 2021 | B2 |
10888369 | Messerly et al. | Jan 2021 | B2 |
10892899 | Shelton, IV et al. | Jan 2021 | B2 |
10893853 | Shelton, IV et al. | Jan 2021 | B2 |
10893863 | Shelton, IV et al. | Jan 2021 | B2 |
10893864 | Harris et al. | Jan 2021 | B2 |
10893867 | Leimbach et al. | Jan 2021 | B2 |
10898183 | Shelton, IV et al. | Jan 2021 | B2 |
10898184 | Yates et al. | Jan 2021 | B2 |
10898185 | Overmyer et al. | Jan 2021 | B2 |
10898186 | Bakos et al. | Jan 2021 | B2 |
10898190 | Yates et al. | Jan 2021 | B2 |
10898193 | Shelton, IV et al. | Jan 2021 | B2 |
10898194 | Moore et al. | Jan 2021 | B2 |
10898195 | Moore et al. | Jan 2021 | B2 |
10903685 | Yates et al. | Jan 2021 | B2 |
D910847 | Shelton, IV et al. | Feb 2021 | S |
10905415 | DiNardo et al. | Feb 2021 | B2 |
10905418 | Shelton, IV et al. | Feb 2021 | B2 |
10905420 | Jasemian et al. | Feb 2021 | B2 |
10905422 | Bakos et al. | Feb 2021 | B2 |
10905423 | Baber et al. | Feb 2021 | B2 |
10905426 | Moore et al. | Feb 2021 | B2 |
10905427 | Moore et al. | Feb 2021 | B2 |
10911515 | Blasi et al. | Feb 2021 | B2 |
10912559 | Harris et al. | Feb 2021 | B2 |
10912562 | Dunki-Jacobs et al. | Feb 2021 | B2 |
10912575 | Shelton, IV et al. | Feb 2021 | B2 |
10918364 | Applegate et al. | Feb 2021 | B2 |
10918380 | Morgan et al. | Feb 2021 | B2 |
10918385 | Overmyer et al. | Feb 2021 | B2 |
10918386 | Shelton, IV et al. | Feb 2021 | B2 |
10925600 | McCuen | Feb 2021 | B2 |
10925605 | Moore et al. | Feb 2021 | B2 |
D914878 | Shelton, IV et al. | Mar 2021 | S |
10932772 | Shelton, IV et al. | Mar 2021 | B2 |
10932774 | Shelton, IV | Mar 2021 | B2 |
10932775 | Shelton, IV et al. | Mar 2021 | B2 |
10932778 | Smith et al. | Mar 2021 | B2 |
10932779 | Vendely et al. | Mar 2021 | B2 |
10932804 | Scheib et al. | Mar 2021 | B2 |
10932806 | Shelton, IV et al. | Mar 2021 | B2 |
10932872 | Shelton, IV et al. | Mar 2021 | B2 |
10944728 | Wiener et al. | Mar 2021 | B2 |
10945727 | Shelton, IV et al. | Mar 2021 | B2 |
10945728 | Morgan et al. | Mar 2021 | B2 |
10945729 | Shelton, IV et al. | Mar 2021 | B2 |
10945731 | Baxter, III et al. | Mar 2021 | B2 |
10952708 | Scheib et al. | Mar 2021 | B2 |
10952726 | Chowaniec | Mar 2021 | B2 |
10952727 | Giordano et al. | Mar 2021 | B2 |
10952728 | Shelton, IV et al. | Mar 2021 | B2 |
10952759 | Messerly et al. | Mar 2021 | B2 |
10952767 | Kostrzewski et al. | Mar 2021 | B2 |
10959722 | Morgan et al. | Mar 2021 | B2 |
10959725 | Kerr et al. | Mar 2021 | B2 |
10959727 | Hunter et al. | Mar 2021 | B2 |
10959731 | Casasanta, Jr. et al. | Mar 2021 | B2 |
10959744 | Shelton, IV et al. | Mar 2021 | B2 |
10959797 | Licht | Mar 2021 | B2 |
D917500 | Siebel et al. | Apr 2021 | S |
10966627 | Shelton, IV et al. | Apr 2021 | B2 |
10966717 | Shah et al. | Apr 2021 | B2 |
10966718 | Shelton, IV et al. | Apr 2021 | B2 |
10966791 | Harris et al. | Apr 2021 | B2 |
10973515 | Harris et al. | Apr 2021 | B2 |
10973516 | Shelton, IV et al. | Apr 2021 | B2 |
10973517 | Wixey | Apr 2021 | B2 |
10973519 | Weir et al. | Apr 2021 | B2 |
10973520 | Shelton, IV et al. | Apr 2021 | B2 |
10980534 | Yates et al. | Apr 2021 | B2 |
10980535 | Yates et al. | Apr 2021 | B2 |
10980536 | Weaner et al. | Apr 2021 | B2 |
10980537 | Shelton, IV et al. | Apr 2021 | B2 |
10980538 | Nalagatla et al. | Apr 2021 | B2 |
10980539 | Harris et al. | Apr 2021 | B2 |
10980560 | Shelton, IV et al. | Apr 2021 | B2 |
10983646 | Yoon et al. | Apr 2021 | B2 |
10987102 | Gonzalez et al. | Apr 2021 | B2 |
10987178 | Shelton, IV et al. | Apr 2021 | B2 |
10993713 | Shelton, IV et al. | May 2021 | B2 |
10993715 | Shelton, IV et al. | May 2021 | B2 |
10993716 | Shelton, IV et al. | May 2021 | B2 |
10993717 | Shelton, IV et al. | May 2021 | B2 |
11000274 | Shelton, IV et al. | May 2021 | B2 |
11000275 | Shelton, IV et al. | May 2021 | B2 |
11000277 | Giordano et al. | May 2021 | B2 |
11000278 | Shelton, IV et al. | May 2021 | B2 |
11000279 | Shelton, IV et al. | May 2021 | B2 |
11006951 | Giordano et al. | May 2021 | B2 |
11006955 | Shelton, IV et al. | May 2021 | B2 |
11007004 | Shelton, IV et al. | May 2021 | B2 |
11007022 | Shelton, IV et al. | May 2021 | B2 |
11013511 | Huang et al. | May 2021 | B2 |
11013552 | Widenhouse et al. | May 2021 | B2 |
11013563 | Shelton, IV et al. | May 2021 | B2 |
11020016 | Wallace et al. | Jun 2021 | B2 |
11020112 | Shelton, IV et al. | Jun 2021 | B2 |
11020113 | Shelton, IV et al. | Jun 2021 | B2 |
11020114 | Shelton, IV et al. | Jun 2021 | B2 |
11020115 | Scheib et al. | Jun 2021 | B2 |
11026678 | Overmyer et al. | Jun 2021 | B2 |
11026680 | Shelton, IV et al. | Jun 2021 | B2 |
11026684 | Shelton, IV et al. | Jun 2021 | B2 |
11026687 | Shelton, IV et al. | Jun 2021 | B2 |
11026712 | Shelton, IV et al. | Jun 2021 | B2 |
11026713 | Stokes et al. | Jun 2021 | B2 |
11026751 | Shelton, IV et al. | Jun 2021 | B2 |
11033267 | Shelton, IV et al. | Jun 2021 | B2 |
11039834 | Harris et al. | Jun 2021 | B2 |
11039836 | Shelton, IV et al. | Jun 2021 | B2 |
11039837 | Shelton, IV et al. | Jun 2021 | B2 |
11045189 | Yates et al. | Jun 2021 | B2 |
11045191 | Shelton, IV et al. | Jun 2021 | B2 |
11045192 | Harris et al. | Jun 2021 | B2 |
11045197 | Shelton, IV et al. | Jun 2021 | B2 |
11045270 | Shelton, IV et al. | Jun 2021 | B2 |
11051807 | Shelton, IV et al. | Jul 2021 | B2 |
11051810 | Harris et al. | Jul 2021 | B2 |
11051811 | Shelton, IV et al. | Jul 2021 | B2 |
11051813 | Shelton, IV et al. | Jul 2021 | B2 |
11051836 | Shelton, IV et al. | Jul 2021 | B2 |
11051840 | Shelton, IV et al. | Jul 2021 | B2 |
11051873 | Wiener et al. | Jul 2021 | B2 |
11058418 | Shelton, IV et al. | Jul 2021 | B2 |
11058420 | Shelton, IV et al. | Jul 2021 | B2 |
11058422 | Harris et al. | Jul 2021 | B2 |
11058423 | Shelton, IV et al. | Jul 2021 | B2 |
11058424 | Shelton, IV et al. | Jul 2021 | B2 |
11058425 | Widenhouse et al. | Jul 2021 | B2 |
11058426 | Nalagatla et al. | Jul 2021 | B2 |
11058498 | Shelton, IV et al. | Jul 2021 | B2 |
11064997 | Shelton, IV et al. | Jul 2021 | B2 |
11064998 | Shelton, IV | Jul 2021 | B2 |
11065048 | Messerly et al. | Jul 2021 | B2 |
11069012 | Shelton, IV et al. | Jul 2021 | B2 |
11071543 | Shelton, IV et al. | Jul 2021 | B2 |
11071545 | Baber et al. | Jul 2021 | B2 |
11071554 | Parfett et al. | Jul 2021 | B2 |
11071560 | Deck et al. | Jul 2021 | B2 |
11076853 | Parfett et al. | Aug 2021 | B2 |
11076854 | Baber et al. | Aug 2021 | B2 |
11076921 | Shelton, IV et al. | Aug 2021 | B2 |
11076929 | Shelton, IV et al. | Aug 2021 | B2 |
11083452 | Schmid et al. | Aug 2021 | B2 |
11083453 | Shelton, IV et al. | Aug 2021 | B2 |
11083454 | Harris et al. | Aug 2021 | B2 |
11083455 | Shelton, IV et al. | Aug 2021 | B2 |
11083456 | Shelton, IV et al. | Aug 2021 | B2 |
11083457 | Shelton, IV et al. | Aug 2021 | B2 |
11083458 | Harris et al. | Aug 2021 | B2 |
11090045 | Shelton, IV | Aug 2021 | B2 |
11090046 | Shelton, IV et al. | Aug 2021 | B2 |
11090047 | Shelton, IV et al. | Aug 2021 | B2 |
11090048 | Fanelli et al. | Aug 2021 | B2 |
11090049 | Bakos et al. | Aug 2021 | B2 |
11090075 | Hunter et al. | Aug 2021 | B2 |
11096688 | Shelton, IV et al. | Aug 2021 | B2 |
11096689 | Overmyer et al. | Aug 2021 | B2 |
11100631 | Yates et al. | Aug 2021 | B2 |
11103241 | Yates et al. | Aug 2021 | B2 |
11103248 | Shelton, IV et al. | Aug 2021 | B2 |
11103268 | Shelton, IV et al. | Aug 2021 | B2 |
11103269 | Shelton, IV et al. | Aug 2021 | B2 |
11109858 | Shelton, IV et al. | Sep 2021 | B2 |
11109859 | Overmyer et al. | Sep 2021 | B2 |
11109860 | Shelton, IV et al. | Sep 2021 | B2 |
11109866 | Shelton, IV et al. | Sep 2021 | B2 |
11109878 | Shelton, IV et al. | Sep 2021 | B2 |
11109925 | Cooper et al. | Sep 2021 | B2 |
11116485 | Scheib et al. | Sep 2021 | B2 |
11116502 | Shelton, IV et al. | Sep 2021 | B2 |
11116594 | Beardsley | Sep 2021 | B2 |
11123070 | Shelton, IV et al. | Sep 2021 | B2 |
11129611 | Shelton, IV et al. | Sep 2021 | B2 |
11129613 | Harris et al. | Sep 2021 | B2 |
11129615 | Scheib et al. | Sep 2021 | B2 |
11129616 | Shelton, IV et al. | Sep 2021 | B2 |
11129634 | Scheib et al. | Sep 2021 | B2 |
11129636 | Shelton, IV et al. | Sep 2021 | B2 |
11129666 | Messerly et al. | Sep 2021 | B2 |
11129680 | Shelton, IV et al. | Sep 2021 | B2 |
11132462 | Shelton, IV et al. | Sep 2021 | B2 |
11133106 | Shelton, IV et al. | Sep 2021 | B2 |
11134938 | Timm et al. | Oct 2021 | B2 |
11134940 | Shelton, IV et al. | Oct 2021 | B2 |
11134942 | Harris et al. | Oct 2021 | B2 |
11134943 | Giordano et al. | Oct 2021 | B2 |
11134944 | Wise et al. | Oct 2021 | B2 |
11134947 | Shelton, IV et al. | Oct 2021 | B2 |
11135352 | Shelton, IV et al. | Oct 2021 | B2 |
11141153 | Shelton, IV et al. | Oct 2021 | B2 |
11141154 | Shelton, IV et al. | Oct 2021 | B2 |
11141155 | Shelton, IV | Oct 2021 | B2 |
11141156 | Shelton, IV | Oct 2021 | B2 |
11141160 | Shelton, IV et al. | Oct 2021 | B2 |
11147547 | Shelton, IV et al. | Oct 2021 | B2 |
11147549 | Timm et al. | Oct 2021 | B2 |
11147551 | Shelton, IV | Oct 2021 | B2 |
11147553 | Shelton, IV | Oct 2021 | B2 |
11147554 | Aronhalt et al. | Oct 2021 | B2 |
11154296 | Aronhalt et al. | Oct 2021 | B2 |
11154297 | Swayze et al. | Oct 2021 | B2 |
11154298 | Timm et al. | Oct 2021 | B2 |
11154299 | Shelton, IV et al. | Oct 2021 | B2 |
11154300 | Nalagatla et al. | Oct 2021 | B2 |
11154301 | Beckman et al. | Oct 2021 | B2 |
11160551 | Shelton, IV et al. | Nov 2021 | B2 |
11160553 | Simms et al. | Nov 2021 | B2 |
11160601 | Worrell et al. | Nov 2021 | B2 |
11166716 | Shelton, IV et al. | Nov 2021 | B2 |
11166717 | Shelton, IV et al. | Nov 2021 | B2 |
11166720 | Giordano et al. | Nov 2021 | B2 |
11166772 | Shelton, IV et al. | Nov 2021 | B2 |
11172927 | Shelton, IV | Nov 2021 | B2 |
11172929 | Shelton, IV | Nov 2021 | B2 |
11179150 | Yates et al. | Nov 2021 | B2 |
11179151 | Shelton, IV et al. | Nov 2021 | B2 |
11179152 | Morgan et al. | Nov 2021 | B2 |
11179153 | Shelton, IV | Nov 2021 | B2 |
11179155 | Shelton, IV et al. | Nov 2021 | B2 |
11179208 | Yates et al. | Nov 2021 | B2 |
11185325 | Shelton, IV et al. | Nov 2021 | B2 |
11185330 | Huitema et al. | Nov 2021 | B2 |
11191539 | Overmyer et al. | Dec 2021 | B2 |
11191540 | Aronhalt et al. | Dec 2021 | B2 |
11191543 | Overmyer et al. | Dec 2021 | B2 |
11191545 | Vendely et al. | Dec 2021 | B2 |
11197668 | Shelton, IV et al. | Dec 2021 | B2 |
11197670 | Shelton, IV et al. | Dec 2021 | B2 |
11197671 | Shelton, IV et al. | Dec 2021 | B2 |
11202570 | Shelton, IV et al. | Dec 2021 | B2 |
11202631 | Shelton, IV et al. | Dec 2021 | B2 |
11207064 | Shelton, IV et al. | Dec 2021 | B2 |
11207065 | Harris et al. | Dec 2021 | B2 |
11207067 | Shelton, IV et al. | Dec 2021 | B2 |
11207090 | Shelton, IV et al. | Dec 2021 | B2 |
11207146 | Shelton, IV et al. | Dec 2021 | B2 |
11213293 | Worthington et al. | Jan 2022 | B2 |
11213294 | Shelton, IV et al. | Jan 2022 | B2 |
11213302 | Parfett et al. | Jan 2022 | B2 |
11213359 | Shelton, IV et al. | Jan 2022 | B2 |
11219453 | Shelton, IV et al. | Jan 2022 | B2 |
11219455 | Shelton, IV et al. | Jan 2022 | B2 |
11224423 | Shelton, IV et al. | Jan 2022 | B2 |
11224426 | Shelton, IV et al. | Jan 2022 | B2 |
11224427 | Shelton, IV et al. | Jan 2022 | B2 |
11224428 | Scott et al. | Jan 2022 | B2 |
11224454 | Shelton, IV et al. | Jan 2022 | B2 |
11224497 | Shelton, IV et al. | Jan 2022 | B2 |
11229436 | Shelton, IV et al. | Jan 2022 | B2 |
11229437 | Shelton, IV et al. | Jan 2022 | B2 |
11234698 | Shelton, IV et al. | Feb 2022 | B2 |
11234700 | Ragosta et al. | Feb 2022 | B2 |
11241229 | Shelton, IV et al. | Feb 2022 | B2 |
11241230 | Shelton, IV et al. | Feb 2022 | B2 |
11241235 | Shelton, IV et al. | Feb 2022 | B2 |
11246590 | Swayze et al. | Feb 2022 | B2 |
11246592 | Shelton, IV et al. | Feb 2022 | B2 |
11246616 | Shelton, IV et al. | Feb 2022 | B2 |
11246618 | Hall et al. | Feb 2022 | B2 |
11246678 | Shelton, IV et al. | Feb 2022 | B2 |
11253254 | Kimball et al. | Feb 2022 | B2 |
11253256 | Harris et al. | Feb 2022 | B2 |
11259799 | Overmyer et al. | Mar 2022 | B2 |
11259803 | Shelton, IV et al. | Mar 2022 | B2 |
11259805 | Shelton, IV et al. | Mar 2022 | B2 |
11259806 | Shelton, IV et al. | Mar 2022 | B2 |
11259807 | Shelton, IV et al. | Mar 2022 | B2 |
11266405 | Shelton, IV et al. | Mar 2022 | B2 |
11266406 | Leimbach et al. | Mar 2022 | B2 |
11266409 | Huitema et al. | Mar 2022 | B2 |
11266410 | Shelton, IV et al. | Mar 2022 | B2 |
11266468 | Shelton, IV et al. | Mar 2022 | B2 |
11272927 | Swayze et al. | Mar 2022 | B2 |
11272928 | Shelton, IV | Mar 2022 | B2 |
11272931 | Boudreaux et al. | Mar 2022 | B2 |
11272938 | Shelton, IV et al. | Mar 2022 | B2 |
11278279 | Morgan et al. | Mar 2022 | B2 |
11278280 | Shelton, IV et al. | Mar 2022 | B2 |
11278284 | Shelton, IV et al. | Mar 2022 | B2 |
11284890 | Nalagatla et al. | Mar 2022 | B2 |
11284891 | Shelton, IV et al. | Mar 2022 | B2 |
11284898 | Baxter, III et al. | Mar 2022 | B2 |
11284953 | Shelton, IV et al. | Mar 2022 | B2 |
11291440 | Harris et al. | Apr 2022 | B2 |
11291441 | Giordano et al. | Apr 2022 | B2 |
11291444 | Boudreaux et al. | Apr 2022 | B2 |
11291445 | Shelton, IV et al. | Apr 2022 | B2 |
11291447 | Shelton, IV et al. | Apr 2022 | B2 |
11291449 | Swensgard et al. | Apr 2022 | B2 |
11291451 | Shelton, IV | Apr 2022 | B2 |
11291465 | Parihar et al. | Apr 2022 | B2 |
11291510 | Shelton, IV et al. | Apr 2022 | B2 |
11298125 | Ming et al. | Apr 2022 | B2 |
11298127 | Shelton, IV | Apr 2022 | B2 |
11298128 | Messerly et al. | Apr 2022 | B2 |
11298129 | Bakos et al. | Apr 2022 | B2 |
11298130 | Bakos et al. | Apr 2022 | B2 |
11298132 | Shelton, IV et al. | Apr 2022 | B2 |
11298134 | Huitema et al. | Apr 2022 | B2 |
11304695 | Shelton, IV et al. | Apr 2022 | B2 |
11304696 | Shelton, IV et al. | Apr 2022 | B2 |
11304699 | Shelton, IV et al. | Apr 2022 | B2 |
11311290 | Shelton, IV et al. | Apr 2022 | B2 |
11311292 | Shelton, IV et al. | Apr 2022 | B2 |
11311294 | Swayze et al. | Apr 2022 | B2 |
11311342 | Parihar et al. | Apr 2022 | B2 |
11317910 | Miller et al. | May 2022 | B2 |
11317913 | Shelton, IV et al. | May 2022 | B2 |
11317915 | Boudreaux et al. | May 2022 | B2 |
11317917 | Shelton, IV et al. | May 2022 | B2 |
11317919 | Shelton, IV et al. | May 2022 | B2 |
11324501 | Shelton, IV et al. | May 2022 | B2 |
11324503 | Shelton, IV et al. | May 2022 | B2 |
11324506 | Beckman et al. | May 2022 | B2 |
11324557 | Shelton, IV et al. | May 2022 | B2 |
11331100 | Boudreaux et al. | May 2022 | B2 |
11331101 | Harris et al. | May 2022 | B2 |
11337691 | Widenhouse et al. | May 2022 | B2 |
11337693 | Hess et al. | May 2022 | B2 |
11337698 | Baxter, III et al. | May 2022 | B2 |
11344299 | Yates et al. | May 2022 | B2 |
11344303 | Shelton, IV et al. | May 2022 | B2 |
11350843 | Shelton, IV et al. | Jun 2022 | B2 |
11350916 | Shelton, IV et al. | Jun 2022 | B2 |
11350928 | Shelton, IV et al. | Jun 2022 | B2 |
11350929 | Giordano et al. | Jun 2022 | B2 |
11350932 | Shelton, IV et al. | Jun 2022 | B2 |
11350934 | Bakos et al. | Jun 2022 | B2 |
11350935 | Shelton, IV et al. | Jun 2022 | B2 |
11350938 | Shelton, IV et al. | Jun 2022 | B2 |
11357503 | Bakos et al. | Jun 2022 | B2 |
11361176 | Shelton, IV et al. | Jun 2022 | B2 |
11364027 | Harris et al. | Jun 2022 | B2 |
11364046 | Shelton, IV et al. | Jun 2022 | B2 |
11369368 | Shelton, IV et al. | Jun 2022 | B2 |
11369376 | Simms et al. | Jun 2022 | B2 |
11369377 | Boudreaux et al. | Jun 2022 | B2 |
11373755 | Shelton, IV et al. | Jun 2022 | B2 |
11376001 | Shelton, IV et al. | Jul 2022 | B2 |
11376098 | Shelton, IV et al. | Jul 2022 | B2 |
11382625 | Huitema et al. | Jul 2022 | B2 |
11382626 | Shelton, IV et al. | Jul 2022 | B2 |
11382627 | Huitema et al. | Jul 2022 | B2 |
11382628 | Baxter, III et al. | Jul 2022 | B2 |
11382638 | Harris et al. | Jul 2022 | B2 |
11382697 | Shelton, IV et al. | Jul 2022 | B2 |
11389160 | Shelton, IV et al. | Jul 2022 | B2 |
11389161 | Shelton, IV et al. | Jul 2022 | B2 |
11389162 | Baber et al. | Jul 2022 | B2 |
11389164 | Yates et al. | Jul 2022 | B2 |
11395651 | Shelton, IV et al. | Jul 2022 | B2 |
11395652 | Parihar et al. | Jul 2022 | B2 |
11399828 | Swayze et al. | Aug 2022 | B2 |
11399829 | Leimbach et al. | Aug 2022 | B2 |
11399831 | Overmyer et al. | Aug 2022 | B2 |
11399837 | Shelton, IV et al. | Aug 2022 | B2 |
11406377 | Schmid et al. | Aug 2022 | B2 |
11406378 | Baxter, III et al. | Aug 2022 | B2 |
11406380 | Yates et al. | Aug 2022 | B2 |
11406381 | Parihar et al. | Aug 2022 | B2 |
11406382 | Shelton, IV et al. | Aug 2022 | B2 |
11406386 | Baber et al. | Aug 2022 | B2 |
11406390 | Shelton, IV et al. | Aug 2022 | B2 |
11406442 | Davison | Aug 2022 | B2 |
11410259 | Harris et al. | Aug 2022 | B2 |
11413042 | Shelton, IV et al. | Aug 2022 | B2 |
11413102 | Shelton, IV et al. | Aug 2022 | B2 |
11419606 | Overmyer et al. | Aug 2022 | B2 |
11419630 | Yates et al. | Aug 2022 | B2 |
11424027 | Shelton, IV | Aug 2022 | B2 |
11426160 | Shelton, IV et al. | Aug 2022 | B2 |
11426167 | Shelton, IV et al. | Aug 2022 | B2 |
11426251 | Kimball et al. | Aug 2022 | B2 |
11432816 | Leimbach et al. | Sep 2022 | B2 |
11432885 | Shelton, IV et al. | Sep 2022 | B2 |
11439470 | Spivey et al. | Sep 2022 | B2 |
11446029 | Shelton, IV et al. | Sep 2022 | B2 |
11446034 | Shelton, IV et al. | Sep 2022 | B2 |
11452528 | Leimbach et al. | Sep 2022 | B2 |
11457918 | Shelton, IV et al. | Oct 2022 | B2 |
11464511 | Timm et al. | Oct 2022 | B2 |
11464512 | Shelton, IV et al. | Oct 2022 | B2 |
11464513 | Shelton, IV et al. | Oct 2022 | B2 |
11464514 | Yates et al. | Oct 2022 | B2 |
11464601 | Shelton, IV et al. | Oct 2022 | B2 |
11471155 | Shelton, IV et al. | Oct 2022 | B2 |
11471156 | Shelton, IV et al. | Oct 2022 | B2 |
11471157 | Baxter, III et al. | Oct 2022 | B2 |
11478241 | Shelton, IV et al. | Oct 2022 | B2 |
11478242 | Shelton, IV et al. | Oct 2022 | B2 |
11478244 | DiNardo et al. | Oct 2022 | B2 |
11478247 | Shelton, IV et al. | Oct 2022 | B2 |
11484307 | Hall et al. | Nov 2022 | B2 |
11484310 | Shelton, IV et al. | Nov 2022 | B2 |
11484311 | Shelton, IV et al. | Nov 2022 | B2 |
11490889 | Overmyer et al. | Nov 2022 | B2 |
11497488 | Leimbach et al. | Nov 2022 | B2 |
11497489 | Baxter, III et al. | Nov 2022 | B2 |
11497492 | Shelton, IV | Nov 2022 | B2 |
11497499 | Shelton, IV et al. | Nov 2022 | B2 |
11504116 | Schmid et al. | Nov 2022 | B2 |
11504119 | Shelton, IV et al. | Nov 2022 | B2 |
11504122 | Shelton, IV et al. | Nov 2022 | B2 |
11504192 | Shelton, IV et al. | Nov 2022 | B2 |
11510671 | Shelton, IV et al. | Nov 2022 | B2 |
11510741 | Shelton, IV et al. | Nov 2022 | B2 |
11517304 | Yates et al. | Dec 2022 | B2 |
11517306 | Miller et al. | Dec 2022 | B2 |
11517309 | Bakos et al. | Dec 2022 | B2 |
11517311 | Lytle, IV et al. | Dec 2022 | B2 |
11517315 | Huitema et al. | Dec 2022 | B2 |
11517325 | Shelton, IV et al. | Dec 2022 | B2 |
11523821 | Harris et al. | Dec 2022 | B2 |
11523822 | Shelton, IV et al. | Dec 2022 | B2 |
11523823 | Hunter et al. | Dec 2022 | B2 |
11529137 | Shelton, IV et al. | Dec 2022 | B2 |
11529138 | Jaworek et al. | Dec 2022 | B2 |
11529139 | Shelton, IV et al. | Dec 2022 | B2 |
11529140 | Shelton, IV et al. | Dec 2022 | B2 |
11529142 | Leimbach et al. | Dec 2022 | B2 |
11534162 | Shelton, IV | Dec 2022 | B2 |
11540824 | Shelton, IV et al. | Jan 2023 | B2 |
11540829 | Shelton, IV et al. | Jan 2023 | B2 |
11547403 | Shelton, IV et al. | Jan 2023 | B2 |
11547404 | Shelton, IV et al. | Jan 2023 | B2 |
11553916 | Vendely et al. | Jan 2023 | B2 |
11553971 | Shelton, IV et al. | Jan 2023 | B2 |
20010000531 | Casscells et al. | Apr 2001 | A1 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010034530 | Malackowski et al. | Oct 2001 | A1 |
20020014510 | Richter et al. | Feb 2002 | A1 |
20020022810 | Urich | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020022861 | Jacobs et al. | Feb 2002 | A1 |
20020029032 | Arkin | Mar 2002 | A1 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020042620 | Julian et al. | Apr 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020091374 | Cooper | Jul 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020103494 | Pacey | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20020116063 | Giannetti et al. | Aug 2002 | A1 |
20020117534 | Green et al. | Aug 2002 | A1 |
20020127265 | Bowman et al. | Sep 2002 | A1 |
20020128633 | Brock et al. | Sep 2002 | A1 |
20020134811 | Napier et al. | Sep 2002 | A1 |
20020135474 | Sylliassen | Sep 2002 | A1 |
20020138086 | Sixto et al. | Sep 2002 | A1 |
20020143340 | Kaneko | Oct 2002 | A1 |
20020151770 | Noll et al. | Oct 2002 | A1 |
20020158593 | Henderson et al. | Oct 2002 | A1 |
20020177848 | Truckai et al. | Nov 2002 | A1 |
20020185514 | Adams et al. | Dec 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20020188287 | Zvulonl et al. | Dec 2002 | A1 |
20030009193 | Corsaro | Jan 2003 | A1 |
20030011245 | Fiebig | Jan 2003 | A1 |
20030012805 | Chen et al. | Jan 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030040670 | Govari | Feb 2003 | A1 |
20030045835 | Anderson et al. | Mar 2003 | A1 |
20030047230 | Kim | Mar 2003 | A1 |
20030050654 | Whitman et al. | Mar 2003 | A1 |
20030066858 | Holgersson | Apr 2003 | A1 |
20030078647 | Vallana et al. | Apr 2003 | A1 |
20030083648 | Wang et al. | May 2003 | A1 |
20030084983 | Rangachari et al. | May 2003 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030094356 | Waldron | May 2003 | A1 |
20030096158 | Takano et al. | May 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030121586 | Mitra et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030149406 | Martineau et al. | Aug 2003 | A1 |
20030153908 | Goble et al. | Aug 2003 | A1 |
20030153968 | Geis et al. | Aug 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030164172 | Chumas et al. | Sep 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030190584 | Heasley | Oct 2003 | A1 |
20030195387 | Kortenbach et al. | Oct 2003 | A1 |
20030205029 | Chapolini et al. | Nov 2003 | A1 |
20030212005 | Petito et al. | Nov 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20040006335 | Garrison | Jan 2004 | A1 |
20040006340 | Latterell et al. | Jan 2004 | A1 |
20040007608 | Ehrenfels et al. | Jan 2004 | A1 |
20040024457 | Boyce et al. | Feb 2004 | A1 |
20040028502 | Cummins | Feb 2004 | A1 |
20040030333 | Goble | Feb 2004 | A1 |
20040034287 | Hickle | Feb 2004 | A1 |
20040034357 | Beane et al. | Feb 2004 | A1 |
20040044295 | Reinert et al. | Mar 2004 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040049121 | Yaron | Mar 2004 | A1 |
20040049172 | Root et al. | Mar 2004 | A1 |
20040059362 | Knodel et al. | Mar 2004 | A1 |
20040068161 | Couvillon | Apr 2004 | A1 |
20040068224 | Couvillon et al. | Apr 2004 | A1 |
20040068307 | Goble | Apr 2004 | A1 |
20040070369 | Sakakibara | Apr 2004 | A1 |
20040073222 | Koseki | Apr 2004 | A1 |
20040078037 | Batchelor et al. | Apr 2004 | A1 |
20040082952 | Dycus et al. | Apr 2004 | A1 |
20040085180 | Juang | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040093024 | Lousararian et al. | May 2004 | A1 |
20040098040 | Taniguchi et al. | May 2004 | A1 |
20040101822 | Wiesner et al. | May 2004 | A1 |
20040102783 | Sutterlin et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040110439 | Chaikof et al. | Jun 2004 | A1 |
20040115022 | Albertson et al. | Jun 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040119185 | Chen | Jun 2004 | A1 |
20040122419 | Neuberger | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040133095 | Dunki-Jacobs et al. | Jul 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040143297 | Ramsey | Jul 2004 | A1 |
20040147909 | Johnston et al. | Jul 2004 | A1 |
20040153100 | Ahlberg et al. | Aug 2004 | A1 |
20040158261 | Vu | Aug 2004 | A1 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20040166169 | Malaviya et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040181219 | Goble et al. | Sep 2004 | A1 |
20040193189 | Kortenbach et al. | Sep 2004 | A1 |
20040197367 | Rezania et al. | Oct 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040204735 | Shiroff et al. | Oct 2004 | A1 |
20040218451 | Said et al. | Nov 2004 | A1 |
20040222268 | Bilotti et al. | Nov 2004 | A1 |
20040225186 | Horne et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040236352 | Wang et al. | Nov 2004 | A1 |
20040239582 | Seymour | Dec 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040243151 | Demmy et al. | Dec 2004 | A1 |
20040243163 | Casiano et al. | Dec 2004 | A1 |
20040247415 | Mangone | Dec 2004 | A1 |
20040249366 | Kunz | Dec 2004 | A1 |
20040254455 | Iddan | Dec 2004 | A1 |
20040254566 | Plicchi et al. | Dec 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050010158 | Brugger et al. | Jan 2005 | A1 |
20050010213 | Stad et al. | Jan 2005 | A1 |
20050021078 | Vleugels et al. | Jan 2005 | A1 |
20050032511 | Malone et al. | Feb 2005 | A1 |
20050033352 | Zepf et al. | Feb 2005 | A1 |
20050051163 | Deem et al. | Mar 2005 | A1 |
20050054946 | Krzyzanowski | Mar 2005 | A1 |
20050057225 | Marquet | Mar 2005 | A1 |
20050058890 | Brazell et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050075561 | Golden | Apr 2005 | A1 |
20050080342 | Gilreath et al. | Apr 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050116673 | Carl et al. | Jun 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050125897 | Wyslucha et al. | Jun 2005 | A1 |
20050129735 | Cook et al. | Jun 2005 | A1 |
20050130682 | Takara et al. | Jun 2005 | A1 |
20050131173 | McDaniel et al. | Jun 2005 | A1 |
20050131211 | Bayley et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050131436 | Johnston et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050137455 | Ewers et al. | Jun 2005 | A1 |
20050139636 | Schwemberger et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050145671 | Viola | Jul 2005 | A1 |
20050150928 | Kameyama et al. | Jul 2005 | A1 |
20050154258 | Tartaglia et al. | Jul 2005 | A1 |
20050154406 | Bombard et al. | Jul 2005 | A1 |
20050159778 | Heinrich et al. | Jul 2005 | A1 |
20050165419 | Sauer et al. | Jul 2005 | A1 |
20050169974 | Tenerz et al. | Aug 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177176 | Gerbi et al. | Aug 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050177249 | Kladakis et al. | Aug 2005 | A1 |
20050182298 | Ikeda et al. | Aug 2005 | A1 |
20050182443 | Jonn et al. | Aug 2005 | A1 |
20050184121 | Heinrich | Aug 2005 | A1 |
20050186240 | Ringeisen et al. | Aug 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050203550 | Laufer et al. | Sep 2005 | A1 |
20050209614 | Fenter et al. | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050222587 | Jinno et al. | Oct 2005 | A1 |
20050222611 | Weitkamp | Oct 2005 | A1 |
20050222616 | Rethy et al. | Oct 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050228446 | Mooradian et al. | Oct 2005 | A1 |
20050230453 | Viola | Oct 2005 | A1 |
20050240178 | Morley et al. | Oct 2005 | A1 |
20050242950 | Lindsay et al. | Nov 2005 | A1 |
20050245965 | Orban, III et al. | Nov 2005 | A1 |
20050246881 | Kelly et al. | Nov 2005 | A1 |
20050251063 | Basude | Nov 2005 | A1 |
20050256452 | DeMarchi et al. | Nov 2005 | A1 |
20050258963 | Rodriguez et al. | Nov 2005 | A1 |
20050261676 | Hall et al. | Nov 2005 | A1 |
20050263563 | Racenet et al. | Dec 2005 | A1 |
20050267455 | Eggers et al. | Dec 2005 | A1 |
20050274034 | Hayashida et al. | Dec 2005 | A1 |
20050283188 | Loshakove et al. | Dec 2005 | A1 |
20050283226 | Haverkost | Dec 2005 | A1 |
20060008787 | Hayman et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060020167 | Sitzmann | Jan 2006 | A1 |
20060020258 | Strauss et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025812 | Shelton | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060047275 | Goble | Mar 2006 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052824 | Ransick et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060079735 | Martone et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060086032 | Valencic et al. | Apr 2006 | A1 |
20060087746 | Lipow | Apr 2006 | A1 |
20060089535 | Raz et al. | Apr 2006 | A1 |
20060097699 | Kamenoff | May 2006 | A1 |
20060100643 | Laufer et al. | May 2006 | A1 |
20060100649 | Hart | May 2006 | A1 |
20060106369 | Desai et al. | May 2006 | A1 |
20060111210 | Hinman | May 2006 | A1 |
20060111711 | Goble | May 2006 | A1 |
20060111723 | Chapolini et al. | May 2006 | A1 |
20060116634 | Shachar | Jun 2006 | A1 |
20060142772 | Ralph et al. | Jun 2006 | A1 |
20060144898 | Bilotti et al. | Jul 2006 | A1 |
20060154546 | Murphy et al. | Jul 2006 | A1 |
20060161050 | Butler et al. | Jul 2006 | A1 |
20060161185 | Saadat et al. | Jul 2006 | A1 |
20060167471 | Phillips | Jul 2006 | A1 |
20060173290 | Lavallee et al. | Aug 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060176031 | Forman et al. | Aug 2006 | A1 |
20060176242 | Jaramaz et al. | Aug 2006 | A1 |
20060178556 | Hasser et al. | Aug 2006 | A1 |
20060180633 | Emmons | Aug 2006 | A1 |
20060180634 | Shelton et al. | Aug 2006 | A1 |
20060185682 | Marczyk | Aug 2006 | A1 |
20060199999 | Ikeda et al. | Sep 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20060206100 | Eskridge et al. | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060226957 | Miller et al. | Oct 2006 | A1 |
20060235368 | Oz | Oct 2006 | A1 |
20060241666 | Briggs et al. | Oct 2006 | A1 |
20060244460 | Weaver | Nov 2006 | A1 |
20060252981 | Matsuda et al. | Nov 2006 | A1 |
20060252990 | Kubach | Nov 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060258904 | Stefanchik et al. | Nov 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060261763 | Iott et al. | Nov 2006 | A1 |
20060263444 | Ming et al. | Nov 2006 | A1 |
20060264831 | Skwarek et al. | Nov 2006 | A1 |
20060264929 | Goble et al. | Nov 2006 | A1 |
20060271042 | Latterell et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060282064 | Shimizu et al. | Dec 2006 | A1 |
20060284730 | Schmid et al. | Dec 2006 | A1 |
20060287576 | Tsuji et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20060291981 | Viola et al. | Dec 2006 | A1 |
20070005045 | Mintz et al. | Jan 2007 | A1 |
20070009570 | Kim et al. | Jan 2007 | A1 |
20070010702 | Wang et al. | Jan 2007 | A1 |
20070010838 | Shelton et al. | Jan 2007 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070018958 | Tavakoli et al. | Jan 2007 | A1 |
20070026039 | Drumheller et al. | Feb 2007 | A1 |
20070026040 | Crawley | Feb 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070027551 | Farnsworth et al. | Feb 2007 | A1 |
20070043387 | Vargas et al. | Feb 2007 | A1 |
20070049951 | Menn | Mar 2007 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070073389 | Bolduc et al. | Mar 2007 | A1 |
20070078328 | Ozaki et al. | Apr 2007 | A1 |
20070078484 | Talarico et al. | Apr 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070088376 | Zacharias | Apr 2007 | A1 |
20070090788 | Hansford et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070103437 | Rosenberg | May 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070134251 | Ashkenazi et al. | Jun 2007 | A1 |
20070135686 | Pruitt et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070152612 | Chen et al. | Jul 2007 | A1 |
20070152829 | Lindsay et al. | Jul 2007 | A1 |
20070155010 | Farnsworth et al. | Jul 2007 | A1 |
20070170225 | Shelton et al. | Jul 2007 | A1 |
20070173687 | Shima et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070179477 | Danger | Aug 2007 | A1 |
20070185545 | Duke | Aug 2007 | A1 |
20070187857 | Riley et al. | Aug 2007 | A1 |
20070190110 | Pameijer et al. | Aug 2007 | A1 |
20070191868 | Theroux et al. | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070197954 | Keenan | Aug 2007 | A1 |
20070198039 | Jones et al. | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070207010 | Caspi | Sep 2007 | A1 |
20070208359 | Hoffman | Sep 2007 | A1 |
20070208375 | Nishizawa et al. | Sep 2007 | A1 |
20070213750 | Weadock | Sep 2007 | A1 |
20070225562 | Spivey et al. | Sep 2007 | A1 |
20070233163 | Bombard et al. | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070244471 | Malackowski | Oct 2007 | A1 |
20070244496 | Hellenkamp | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070260132 | Sterling | Nov 2007 | A1 |
20070262592 | Hwang et al. | Nov 2007 | A1 |
20070270660 | Caylor et al. | Nov 2007 | A1 |
20070275035 | Herman et al. | Nov 2007 | A1 |
20070276409 | Ortiz et al. | Nov 2007 | A1 |
20070279011 | Jones et al. | Dec 2007 | A1 |
20070286892 | Herzberg et al. | Dec 2007 | A1 |
20070290027 | Maatta et al. | Dec 2007 | A1 |
20070296286 | Avenell | Dec 2007 | A1 |
20080003196 | Jonn et al. | Jan 2008 | A1 |
20080015598 | Prommersberger | Jan 2008 | A1 |
20080021486 | Oyola et al. | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080030170 | Dacquay et al. | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080042861 | Dacquay et al. | Feb 2008 | A1 |
20080051833 | Gramuglia et al. | Feb 2008 | A1 |
20080064920 | Bakos et al. | Mar 2008 | A1 |
20080064921 | Larkin et al. | Mar 2008 | A1 |
20080065153 | Allard et al. | Mar 2008 | A1 |
20080069736 | Mingerink et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080077158 | Haider et al. | Mar 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080081948 | Weisenburgh et al. | Apr 2008 | A1 |
20080082114 | McKenna et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080083807 | Beardsley et al. | Apr 2008 | A1 |
20080083811 | Marczyk | Apr 2008 | A1 |
20080085296 | Powell et al. | Apr 2008 | A1 |
20080086078 | Powell et al. | Apr 2008 | A1 |
20080091072 | Omori et al. | Apr 2008 | A1 |
20080108443 | Jinno et al. | May 2008 | A1 |
20080114250 | Urbano et al. | May 2008 | A1 |
20080125634 | Ryan et al. | May 2008 | A1 |
20080125749 | Olson | May 2008 | A1 |
20080128469 | Dalessandro et al. | Jun 2008 | A1 |
20080129253 | Shiue et al. | Jun 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080140159 | Bornhoft et al. | Jun 2008 | A1 |
20080149682 | Uhm | Jun 2008 | A1 |
20080154299 | Livneh | Jun 2008 | A1 |
20080154335 | Thrope et al. | Jun 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080172087 | Fuchs et al. | Jul 2008 | A1 |
20080177392 | Williams et al. | Jul 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080196253 | Ezra et al. | Aug 2008 | A1 |
20080196419 | Dube | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080200755 | Bakos | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080200835 | Monson et al. | Aug 2008 | A1 |
20080200911 | Long | Aug 2008 | A1 |
20080200933 | Bakos et al. | Aug 2008 | A1 |
20080200934 | Fox | Aug 2008 | A1 |
20080206186 | Butler et al. | Aug 2008 | A1 |
20080208058 | Sabata et al. | Aug 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080242939 | Johnston | Oct 2008 | A1 |
20080243088 | Evans | Oct 2008 | A1 |
20080249536 | Stabler et al. | Oct 2008 | A1 |
20080249608 | Dave | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255420 | Lee et al. | Oct 2008 | A1 |
20080255663 | Akpek et al. | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080269596 | Revie et al. | Oct 2008 | A1 |
20080281171 | Fennell et al. | Nov 2008 | A1 |
20080281332 | Taylor | Nov 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20080293910 | Kapiamba et al. | Nov 2008 | A1 |
20080294179 | Balbierz et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080297287 | Shachar et al. | Dec 2008 | A1 |
20080298784 | Kastner | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20080312686 | Ellingwood | Dec 2008 | A1 |
20080312687 | Blier | Dec 2008 | A1 |
20080315829 | Jones et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090004455 | Gravagna et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090012534 | Madhani et al. | Jan 2009 | A1 |
20090015195 | Loth-Krausser | Jan 2009 | A1 |
20090020958 | Soul | Jan 2009 | A1 |
20090048583 | Williams et al. | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090078736 | Van Lue | Mar 2009 | A1 |
20090081313 | Aghion et al. | Mar 2009 | A1 |
20090088659 | Graham et al. | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099579 | Nentwick et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090110533 | Jinno | Apr 2009 | A1 |
20090112234 | Crainich et al. | Apr 2009 | A1 |
20090118762 | Crainch et al. | May 2009 | A1 |
20090119011 | Kondo et al. | May 2009 | A1 |
20090131819 | Ritchie et al. | May 2009 | A1 |
20090132400 | Conway | May 2009 | A1 |
20090143855 | Weber et al. | Jun 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090177218 | Young et al. | Jul 2009 | A1 |
20090177226 | Reinprecht et al. | Jul 2009 | A1 |
20090181290 | Baldwin et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090192534 | Ortiz et al. | Jul 2009 | A1 |
20090198272 | Kerver et al. | Aug 2009 | A1 |
20090204108 | Steffen | Aug 2009 | A1 |
20090204109 | Grove et al. | Aug 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090221993 | Sohi et al. | Sep 2009 | A1 |
20090227834 | Nakamoto et al. | Sep 2009 | A1 |
20090234273 | Intoccia et al. | Sep 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090246873 | Yamamoto et al. | Oct 2009 | A1 |
20090247368 | Chiang | Oct 2009 | A1 |
20090247901 | Zimmer | Oct 2009 | A1 |
20090248100 | Vaisnys et al. | Oct 2009 | A1 |
20090253959 | Yoshie et al. | Oct 2009 | A1 |
20090255974 | Viola | Oct 2009 | A1 |
20090261141 | Stratton et al. | Oct 2009 | A1 |
20090262078 | Pizzi | Oct 2009 | A1 |
20090270895 | Churchill et al. | Oct 2009 | A1 |
20090277288 | Doepker et al. | Nov 2009 | A1 |
20090278406 | Hoffman | Nov 2009 | A1 |
20090290016 | Suda | Nov 2009 | A1 |
20090292283 | Odom | Nov 2009 | A1 |
20090306639 | Nevo et al. | Dec 2009 | A1 |
20090308907 | Nalagatla et al. | Dec 2009 | A1 |
20090318557 | Stockel | Dec 2009 | A1 |
20090325859 | Ameer et al. | Dec 2009 | A1 |
20100005035 | Carpenter et al. | Jan 2010 | A1 |
20100012703 | Calabrese et al. | Jan 2010 | A1 |
20100015104 | Fraser et al. | Jan 2010 | A1 |
20100016853 | Burbank | Jan 2010 | A1 |
20100016888 | Calabrese et al. | Jan 2010 | A1 |
20100017715 | Balassanian | Jan 2010 | A1 |
20100023024 | Zeiner et al. | Jan 2010 | A1 |
20100030233 | Whitman et al. | Feb 2010 | A1 |
20100030239 | Viola et al. | Feb 2010 | A1 |
20100032179 | Hanspers et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100051668 | Milliman et al. | Mar 2010 | A1 |
20100057118 | Dietz et al. | Mar 2010 | A1 |
20100065604 | Weng | Mar 2010 | A1 |
20100069833 | Wenderow et al. | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100076483 | Imuta | Mar 2010 | A1 |
20100076489 | Stopek et al. | Mar 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100094340 | Stopek et al. | Apr 2010 | A1 |
20100100123 | Bennett | Apr 2010 | A1 |
20100100124 | Calabrese et al. | Apr 2010 | A1 |
20100116519 | Garels | May 2010 | A1 |
20100122339 | Boccacci | May 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100137990 | Apatsidis et al. | Jun 2010 | A1 |
20100138659 | Carmichael et al. | Jun 2010 | A1 |
20100145146 | Melder | Jun 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100159435 | Mueller et al. | Jun 2010 | A1 |
20100179022 | Shirokoshi | Jul 2010 | A1 |
20100180711 | Kilibarda et al. | Jul 2010 | A1 |
20100191262 | Harris et al. | Jul 2010 | A1 |
20100191292 | DeMeo et al. | Jul 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100204717 | Knodel | Aug 2010 | A1 |
20100204721 | Young et al. | Aug 2010 | A1 |
20100217281 | Matsuoka et al. | Aug 2010 | A1 |
20100222901 | Swayze et al. | Sep 2010 | A1 |
20100228250 | Brogna | Sep 2010 | A1 |
20100234687 | Azarbarzin et al. | Sep 2010 | A1 |
20100241137 | Doyle et al. | Sep 2010 | A1 |
20100245102 | Yokoi | Sep 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100249947 | Lesh et al. | Sep 2010 | A1 |
20100256675 | Romans | Oct 2010 | A1 |
20100258327 | Esenwein et al. | Oct 2010 | A1 |
20100267662 | Fielder et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100292540 | Hess et al. | Nov 2010 | A1 |
20100298636 | Castro et al. | Nov 2010 | A1 |
20100301097 | Scirica et al. | Dec 2010 | A1 |
20100310623 | Laurencin et al. | Dec 2010 | A1 |
20100312261 | Suzuki et al. | Dec 2010 | A1 |
20100318085 | Austin et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110009694 | Schultz et al. | Jan 2011 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110016960 | Debrailly | Jan 2011 | A1 |
20110021871 | Berkelaar | Jan 2011 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110024477 | Hall | Feb 2011 | A1 |
20110024478 | Shelton, IV | Feb 2011 | A1 |
20110025311 | Chauvin et al. | Feb 2011 | A1 |
20110029270 | Mueglitz | Feb 2011 | A1 |
20110036891 | Zemlok et al. | Feb 2011 | A1 |
20110046667 | Culligan et al. | Feb 2011 | A1 |
20110052660 | Yang et al. | Mar 2011 | A1 |
20110056717 | Herisse | Mar 2011 | A1 |
20110060363 | Hess et al. | Mar 2011 | A1 |
20110066156 | McGahan et al. | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110088921 | Forgues et al. | Apr 2011 | A1 |
20110091515 | Zilberman et al. | Apr 2011 | A1 |
20110095064 | Taylor et al. | Apr 2011 | A1 |
20110095067 | Ohdaira | Apr 2011 | A1 |
20110101069 | Bombard et al. | May 2011 | A1 |
20110101794 | Schroeder et al. | May 2011 | A1 |
20110112517 | Peine et al. | May 2011 | A1 |
20110112530 | Keller | May 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110118708 | Burbank et al. | May 2011 | A1 |
20110125149 | El-Galley et al. | May 2011 | A1 |
20110125176 | Yates et al. | May 2011 | A1 |
20110127945 | Yoneda | Jun 2011 | A1 |
20110129706 | Takahashi et al. | Jun 2011 | A1 |
20110144764 | Bagga et al. | Jun 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110160725 | Kabaya et al. | Jun 2011 | A1 |
20110163146 | Ortiz et al. | Jul 2011 | A1 |
20110172495 | Armstrong | Jul 2011 | A1 |
20110174861 | Shelton, IV et al. | Jul 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110199225 | Touchberry et al. | Aug 2011 | A1 |
20110218400 | Ma et al. | Sep 2011 | A1 |
20110218550 | Ma | Sep 2011 | A1 |
20110220381 | Friese et al. | Sep 2011 | A1 |
20110225105 | Scholer et al. | Sep 2011 | A1 |
20110230713 | Kleemann et al. | Sep 2011 | A1 |
20110235168 | Sander | Sep 2011 | A1 |
20110238044 | Main et al. | Sep 2011 | A1 |
20110241597 | Zhu et al. | Oct 2011 | A1 |
20110256266 | Orme et al. | Oct 2011 | A1 |
20110271186 | Owens | Nov 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110279268 | Konishi et al. | Nov 2011 | A1 |
20110285507 | Nelson | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110290858 | Whitman et al. | Dec 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110313894 | Dye et al. | Dec 2011 | A1 |
20110315413 | Fisher et al. | Dec 2011 | A1 |
20120004636 | Lo | Jan 2012 | A1 |
20120007442 | Rhodes et al. | Jan 2012 | A1 |
20120008880 | Toth | Jan 2012 | A1 |
20120016239 | Barthe et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120016467 | Chen et al. | Jan 2012 | A1 |
20120029272 | Shelton, IV et al. | Feb 2012 | A1 |
20120033360 | Hsu | Feb 2012 | A1 |
20120059286 | Hastings et al. | Mar 2012 | A1 |
20120064483 | Lint et al. | Mar 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120078243 | Worrell et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120080478 | Morgan et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120086276 | Sawyers | Apr 2012 | A1 |
20120095458 | Cybulski et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116261 | Mumaw et al. | May 2012 | A1 |
20120116262 | Houser et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116266 | Houser et al. | May 2012 | A1 |
20120116381 | Houser et al. | May 2012 | A1 |
20120118595 | Pellenc | May 2012 | A1 |
20120123463 | Jacobs | May 2012 | A1 |
20120125792 | Cassivi | May 2012 | A1 |
20120130217 | Kauphusman et al. | May 2012 | A1 |
20120132286 | Lim et al. | May 2012 | A1 |
20120171539 | Rejman et al. | Jul 2012 | A1 |
20120175398 | Sandborn et al. | Jul 2012 | A1 |
20120190964 | Hyde et al. | Jul 2012 | A1 |
20120197239 | Smith et al. | Aug 2012 | A1 |
20120197272 | Oray et al. | Aug 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120220990 | Mckenzie et al. | Aug 2012 | A1 |
20120234895 | O'Connor et al. | Sep 2012 | A1 |
20120234897 | Shelton, IV et al. | Sep 2012 | A1 |
20120239068 | Morris et al. | Sep 2012 | A1 |
20120248169 | Widenhouse et al. | Oct 2012 | A1 |
20120251861 | Liang et al. | Oct 2012 | A1 |
20120253328 | Cunningham et al. | Oct 2012 | A1 |
20120271327 | West et al. | Oct 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120289811 | Viola et al. | Nov 2012 | A1 |
20120289979 | Eskaros et al. | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120296342 | Haglund Wendelschafer | Nov 2012 | A1 |
20120298722 | Hess et al. | Nov 2012 | A1 |
20120301498 | Altreuter et al. | Nov 2012 | A1 |
20120316424 | Stopek | Dec 2012 | A1 |
20120330329 | Harris et al. | Dec 2012 | A1 |
20130006227 | Takashino | Jan 2013 | A1 |
20130008937 | Viola | Jan 2013 | A1 |
20130012983 | Kleyman | Jan 2013 | A1 |
20130018400 | Milton et al. | Jan 2013 | A1 |
20130020375 | Shelton, IV et al. | Jan 2013 | A1 |
20130020376 | Shelton, IV et al. | Jan 2013 | A1 |
20130023861 | Shelton, IV et al. | Jan 2013 | A1 |
20130023910 | Solomon et al. | Jan 2013 | A1 |
20130026208 | Shelton, IV et al. | Jan 2013 | A1 |
20130026210 | Shelton, IV et al. | Jan 2013 | A1 |
20130030462 | Keating et al. | Jan 2013 | A1 |
20130041292 | Cunningham | Feb 2013 | A1 |
20130057162 | Pollischansky | Mar 2013 | A1 |
20130068816 | Mandakolathur Vasudevan et al. | Mar 2013 | A1 |
20130087597 | Shelton, IV et al. | Apr 2013 | A1 |
20130090534 | Bums et al. | Apr 2013 | A1 |
20130096568 | Justis | Apr 2013 | A1 |
20130098970 | Racenet et al. | Apr 2013 | A1 |
20130106352 | Nagamine | May 2013 | A1 |
20130116669 | Shelton, IV et al. | May 2013 | A1 |
20130123816 | Hodgkinson et al. | May 2013 | A1 |
20130126202 | Oomori et al. | May 2013 | A1 |
20130131476 | Siu et al. | May 2013 | A1 |
20130131651 | Strobl et al. | May 2013 | A1 |
20130136969 | Yasui et al. | May 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130158390 | Tan et al. | Jun 2013 | A1 |
20130162198 | Yokota et al. | Jun 2013 | A1 |
20130169217 | Watanabe et al. | Jul 2013 | A1 |
20130172713 | Kirschenman | Jul 2013 | A1 |
20130172878 | Smith | Jul 2013 | A1 |
20130175317 | Yates et al. | Jul 2013 | A1 |
20130183769 | Tajima | Jul 2013 | A1 |
20130211244 | Nathaniel | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130215449 | Yamasaki | Aug 2013 | A1 |
20130231681 | Robinson et al. | Sep 2013 | A1 |
20130233906 | Hess et al. | Sep 2013 | A1 |
20130238021 | Gross et al. | Sep 2013 | A1 |
20130248578 | Arteaga Gonzalez | Sep 2013 | A1 |
20130253480 | Kimball et al. | Sep 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130267978 | Trissel | Oct 2013 | A1 |
20130270322 | Scheib et al. | Oct 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130293353 | McPherson et al. | Nov 2013 | A1 |
20130304084 | Beira | Nov 2013 | A1 |
20130306704 | Balbierz et al. | Nov 2013 | A1 |
20130327552 | Lovelass et al. | Dec 2013 | A1 |
20130333910 | Tanimoto et al. | Dec 2013 | A1 |
20130334280 | Krehel et al. | Dec 2013 | A1 |
20130334283 | Swayze et al. | Dec 2013 | A1 |
20130334285 | Swayze et al. | Dec 2013 | A1 |
20130341374 | Shelton, IV et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140008289 | Williams et al. | Jan 2014 | A1 |
20140014704 | Onukuri et al. | Jan 2014 | A1 |
20140014705 | Baxter, III | Jan 2014 | A1 |
20140014707 | Onukuri et al. | Jan 2014 | A1 |
20140018832 | Shelton, IV | Jan 2014 | A1 |
20140022283 | Chan et al. | Jan 2014 | A1 |
20140039549 | Belsky et al. | Feb 2014 | A1 |
20140041191 | Knodel | Feb 2014 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140081176 | Hassan | Mar 2014 | A1 |
20140094681 | Valentine et al. | Apr 2014 | A1 |
20140100558 | Schmitz et al. | Apr 2014 | A1 |
20140107697 | Patani et al. | Apr 2014 | A1 |
20140115229 | Kothamasu et al. | Apr 2014 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140135832 | Park et al. | May 2014 | A1 |
20140151433 | Shelton, IV et al. | Jun 2014 | A1 |
20140155916 | Hodgkinson et al. | Jun 2014 | A1 |
20140158747 | Measamer et al. | Jun 2014 | A1 |
20140166723 | Beardsley et al. | Jun 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140166725 | Schellin et al. | Jun 2014 | A1 |
20140166726 | Schellin et al. | Jun 2014 | A1 |
20140175147 | Manoux et al. | Jun 2014 | A1 |
20140175150 | Shelton, IV et al. | Jun 2014 | A1 |
20140175152 | Hess et al. | Jun 2014 | A1 |
20140181710 | Baalu et al. | Jun 2014 | A1 |
20140183244 | Duque et al. | Jul 2014 | A1 |
20140188091 | Vidal et al. | Jul 2014 | A1 |
20140188159 | Steege | Jul 2014 | A1 |
20140207124 | Aldridge et al. | Jul 2014 | A1 |
20140209658 | Skalla et al. | Jul 2014 | A1 |
20140224857 | Schmid | Aug 2014 | A1 |
20140228632 | Sholev et al. | Aug 2014 | A1 |
20140228867 | Thomas et al. | Aug 2014 | A1 |
20140239047 | Hodgkinson et al. | Aug 2014 | A1 |
20140243865 | Swayze et al. | Aug 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140248167 | Sugimoto et al. | Sep 2014 | A1 |
20140249557 | Koch, Jr. et al. | Sep 2014 | A1 |
20140249573 | Arav | Sep 2014 | A1 |
20140262408 | Woodard | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140263558 | Hausen et al. | Sep 2014 | A1 |
20140276730 | Boudreaux et al. | Sep 2014 | A1 |
20140284371 | Morgan et al. | Sep 2014 | A1 |
20140288460 | Ouyang et al. | Sep 2014 | A1 |
20140291379 | Schellin et al. | Oct 2014 | A1 |
20140291383 | Spivey et al. | Oct 2014 | A1 |
20140299648 | Shelton, IV et al. | Oct 2014 | A1 |
20140303645 | Morgan et al. | Oct 2014 | A1 |
20140303660 | Boyden et al. | Oct 2014 | A1 |
20140330161 | Swayze et al. | Nov 2014 | A1 |
20140330298 | Arshonsky et al. | Nov 2014 | A1 |
20140330579 | Cashman et al. | Nov 2014 | A1 |
20140358163 | Farin et al. | Dec 2014 | A1 |
20140367445 | Ingmanson et al. | Dec 2014 | A1 |
20140374130 | Nakamura et al. | Dec 2014 | A1 |
20140378950 | Chiu | Dec 2014 | A1 |
20150001272 | Sniffin et al. | Jan 2015 | A1 |
20150002089 | Rejman et al. | Jan 2015 | A1 |
20150025549 | Kilroy et al. | Jan 2015 | A1 |
20150025571 | Suzuki et al. | Jan 2015 | A1 |
20150053737 | Leimbach et al. | Feb 2015 | A1 |
20150053743 | Yates et al. | Feb 2015 | A1 |
20150053746 | Shelton, IV et al. | Feb 2015 | A1 |
20150053748 | Yates et al. | Feb 2015 | A1 |
20150060519 | Shelton, IV et al. | Mar 2015 | A1 |
20150060520 | Shelton, IV et al. | Mar 2015 | A1 |
20150060521 | Weisenburgh, II et al. | Mar 2015 | A1 |
20150066000 | An et al. | Mar 2015 | A1 |
20150076208 | Shelton, IV | Mar 2015 | A1 |
20150076209 | Shelton, IV et al. | Mar 2015 | A1 |
20150076210 | Shelton, IV et al. | Mar 2015 | A1 |
20150076211 | Irka et al. | Mar 2015 | A1 |
20150082624 | Craig et al. | Mar 2015 | A1 |
20150083781 | Giordano et al. | Mar 2015 | A1 |
20150087952 | Albert et al. | Mar 2015 | A1 |
20150088127 | Craig et al. | Mar 2015 | A1 |
20150088547 | Balram et al. | Mar 2015 | A1 |
20150090760 | Giordano et al. | Apr 2015 | A1 |
20150090762 | Giordano et al. | Apr 2015 | A1 |
20150127021 | Harris et al. | May 2015 | A1 |
20150134077 | Shelton, IV et al. | May 2015 | A1 |
20150150620 | Miyamoto et al. | Jun 2015 | A1 |
20150173749 | Shelton, IV et al. | Jun 2015 | A1 |
20150173756 | Baxter, III et al. | Jun 2015 | A1 |
20150173789 | Baxter, III et al. | Jun 2015 | A1 |
20150196295 | Shelton, IV et al. | Jul 2015 | A1 |
20150196299 | Swayze et al. | Jul 2015 | A1 |
20150201918 | Kumar et al. | Jul 2015 | A1 |
20150201932 | Swayze et al. | Jul 2015 | A1 |
20150201936 | Swayze et al. | Jul 2015 | A1 |
20150201937 | Swayze et al. | Jul 2015 | A1 |
20150201938 | Swayze et al. | Jul 2015 | A1 |
20150201939 | Swayze et al. | Jul 2015 | A1 |
20150201940 | Swayze et al. | Jul 2015 | A1 |
20150201941 | Swayze et al. | Jul 2015 | A1 |
20150209045 | Hodgkinson et al. | Jul 2015 | A1 |
20150222212 | Iwata | Aug 2015 | A1 |
20150223868 | Brandt et al. | Aug 2015 | A1 |
20150230697 | Phee et al. | Aug 2015 | A1 |
20150231409 | Racenet et al. | Aug 2015 | A1 |
20150238118 | Legassey et al. | Aug 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150297200 | Fitzsimmons et al. | Oct 2015 | A1 |
20150297222 | Huitema et al. | Oct 2015 | A1 |
20150297223 | Huitema et al. | Oct 2015 | A1 |
20150297225 | Huitema et al. | Oct 2015 | A1 |
20150297824 | Cabiri et al. | Oct 2015 | A1 |
20150303417 | Koeder et al. | Oct 2015 | A1 |
20150313594 | Shelton, IV et al. | Nov 2015 | A1 |
20150324317 | Collins et al. | Nov 2015 | A1 |
20150352699 | Sakai et al. | Dec 2015 | A1 |
20150366585 | Lemay et al. | Dec 2015 | A1 |
20150367497 | Ito et al. | Dec 2015 | A1 |
20150372265 | Morisaku et al. | Dec 2015 | A1 |
20150374372 | Zergiebel et al. | Dec 2015 | A1 |
20150374378 | Giordano et al. | Dec 2015 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160000452 | Yates et al. | Jan 2016 | A1 |
20160000453 | Yates et al. | Jan 2016 | A1 |
20160030042 | Heinrich et al. | Feb 2016 | A1 |
20160030043 | Fanelli et al. | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160066913 | Swayze et al. | Mar 2016 | A1 |
20160069449 | Kanai et al. | Mar 2016 | A1 |
20160074035 | Whitman et al. | Mar 2016 | A1 |
20160074040 | Widenhouse et al. | Mar 2016 | A1 |
20160082161 | Zilberman et al. | Mar 2016 | A1 |
20160135835 | Onuma | May 2016 | A1 |
20160135895 | Faasse et al. | May 2016 | A1 |
20160139666 | Rubin et al. | May 2016 | A1 |
20160183939 | Shelton, IV et al. | Jun 2016 | A1 |
20160183943 | Shelton, IV | Jun 2016 | A1 |
20160183944 | Swensgard et al. | Jun 2016 | A1 |
20160192960 | Bueno et al. | Jul 2016 | A1 |
20160199063 | Mandakolathur Vasudevan et al. | Jul 2016 | A1 |
20160199956 | Shelton, IV et al. | Jul 2016 | A1 |
20160235494 | Shelton, IV et al. | Aug 2016 | A1 |
20160242783 | Shelton, IV et al. | Aug 2016 | A1 |
20160249910 | Shelton, IV et al. | Sep 2016 | A1 |
20160249922 | Morgan et al. | Sep 2016 | A1 |
20160256159 | Pinjala et al. | Sep 2016 | A1 |
20160256221 | Smith | Sep 2016 | A1 |
20160256229 | Morgan et al. | Sep 2016 | A1 |
20160262745 | Morgan et al. | Sep 2016 | A1 |
20160262921 | Balbierz et al. | Sep 2016 | A1 |
20160270781 | Scirica | Sep 2016 | A1 |
20160287265 | Macdonald et al. | Oct 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160302820 | Hibner et al. | Oct 2016 | A1 |
20160310143 | Bettuchi | Oct 2016 | A1 |
20160314716 | Grubbs | Oct 2016 | A1 |
20160314717 | Grubbs | Oct 2016 | A1 |
20160367122 | Ichimura et al. | Dec 2016 | A1 |
20160374716 | Kessler | Dec 2016 | A1 |
20170007234 | Chin et al. | Jan 2017 | A1 |
20170007244 | Shelton, IV et al. | Jan 2017 | A1 |
20170007245 | Shelton, IV et al. | Jan 2017 | A1 |
20170007347 | Jaworek et al. | Jan 2017 | A1 |
20170055819 | Hansen et al. | Mar 2017 | A1 |
20170066054 | Birky | Mar 2017 | A1 |
20170079642 | Overmyer et al. | Mar 2017 | A1 |
20170086829 | Vendely et al. | Mar 2017 | A1 |
20170086830 | Yates et al. | Mar 2017 | A1 |
20170086842 | Shelton, IV et al. | Mar 2017 | A1 |
20170086930 | Thompson et al. | Mar 2017 | A1 |
20170105733 | Scheib et al. | Apr 2017 | A1 |
20170135695 | Shelton, IV | May 2017 | A1 |
20170135711 | Overmyer et al. | May 2017 | A1 |
20170135717 | Boudreaux et al. | May 2017 | A1 |
20170135747 | Broderick et al. | May 2017 | A1 |
20170172382 | Nir et al. | Jun 2017 | A1 |
20170172549 | Smaby et al. | Jun 2017 | A1 |
20170172662 | Panescu et al. | Jun 2017 | A1 |
20170182195 | Wagner | Jun 2017 | A1 |
20170182211 | Raxworthy et al. | Jun 2017 | A1 |
20170196558 | Morgan et al. | Jul 2017 | A1 |
20170196649 | Yates et al. | Jul 2017 | A1 |
20170202770 | Friedrich et al. | Jul 2017 | A1 |
20170224332 | Hunter et al. | Aug 2017 | A1 |
20170231628 | Shelton, IV et al. | Aug 2017 | A1 |
20170231629 | Stopek et al. | Aug 2017 | A1 |
20170238962 | Hansen et al. | Aug 2017 | A1 |
20170242455 | Dickens | Aug 2017 | A1 |
20170249431 | Shelton, IV et al. | Aug 2017 | A1 |
20170255799 | Zhao et al. | Sep 2017 | A1 |
20170262110 | Polishchuk et al. | Sep 2017 | A1 |
20170265774 | Johnson et al. | Sep 2017 | A1 |
20170281186 | Shelton, IV et al. | Oct 2017 | A1 |
20170296173 | Shelton, IV et al. | Oct 2017 | A1 |
20170296185 | Swensgard et al. | Oct 2017 | A1 |
20170296213 | Swensgard et al. | Oct 2017 | A1 |
20170312042 | Giordano et al. | Nov 2017 | A1 |
20170319201 | Morgan et al. | Nov 2017 | A1 |
20170333034 | Morgan et al. | Nov 2017 | A1 |
20170333035 | Morgan et al. | Nov 2017 | A1 |
20170348010 | Chiang | Dec 2017 | A1 |
20170348043 | Wang et al. | Dec 2017 | A1 |
20170354413 | Chen et al. | Dec 2017 | A1 |
20170358052 | Yuan | Dec 2017 | A1 |
20170360441 | Sgroi | Dec 2017 | A1 |
20180049794 | Swayze et al. | Feb 2018 | A1 |
20180051780 | Shelton, IV et al. | Feb 2018 | A1 |
20180055501 | Zemlok et al. | Mar 2018 | A1 |
20180085117 | Shelton, IV et al. | Mar 2018 | A1 |
20180092710 | Bosisio et al. | Apr 2018 | A1 |
20180114591 | Pribanic et al. | Apr 2018 | A1 |
20180116658 | Aronhalt, IV et al. | May 2018 | A1 |
20180125481 | Yates et al. | May 2018 | A1 |
20180125487 | Beardsley | May 2018 | A1 |
20180125488 | Morgan et al. | May 2018 | A1 |
20180125594 | Beardsley | May 2018 | A1 |
20180132849 | Miller et al. | May 2018 | A1 |
20180132850 | Leimbach et al. | May 2018 | A1 |
20180132926 | Asher et al. | May 2018 | A1 |
20180132952 | Spivey et al. | May 2018 | A1 |
20180133521 | Frushour et al. | May 2018 | A1 |
20180140299 | Weaner et al. | May 2018 | A1 |
20180146960 | Shelton, IV et al. | May 2018 | A1 |
20180153542 | Shelton, IV et al. | Jun 2018 | A1 |
20180153634 | Zemlok et al. | Jun 2018 | A1 |
20180168574 | Robinson et al. | Jun 2018 | A1 |
20180168575 | Simms et al. | Jun 2018 | A1 |
20180168577 | Aronhalt et al. | Jun 2018 | A1 |
20180168579 | Aronhalt et al. | Jun 2018 | A1 |
20180168598 | Shelton, IV et al. | Jun 2018 | A1 |
20180168608 | Shelton, IV et al. | Jun 2018 | A1 |
20180168609 | Fanelli et al. | Jun 2018 | A1 |
20180168610 | Shelton, IV et al. | Jun 2018 | A1 |
20180168615 | Shelton, IV et al. | Jun 2018 | A1 |
20180168618 | Scott et al. | Jun 2018 | A1 |
20180168619 | Scott et al. | Jun 2018 | A1 |
20180168623 | Simms et al. | Jun 2018 | A1 |
20180168625 | Posada et al. | Jun 2018 | A1 |
20180168633 | Shelton, IV et al. | Jun 2018 | A1 |
20180168647 | Shelton, IV et al. | Jun 2018 | A1 |
20180168648 | Shelton, IV et al. | Jun 2018 | A1 |
20180168650 | Shelton, IV et al. | Jun 2018 | A1 |
20180168754 | Overmyer | Jun 2018 | A1 |
20180206904 | Felder | Jul 2018 | A1 |
20180228490 | Richard et al. | Aug 2018 | A1 |
20180235609 | Harris et al. | Aug 2018 | A1 |
20180236181 | Marlin et al. | Aug 2018 | A1 |
20180242970 | Mozdzierz | Aug 2018 | A1 |
20180271604 | Grout et al. | Sep 2018 | A1 |
20180273597 | Stimson | Sep 2018 | A1 |
20180289371 | Wang et al. | Oct 2018 | A1 |
20180296216 | Shelton, IV et al. | Oct 2018 | A1 |
20180333169 | Leimbach et al. | Nov 2018 | A1 |
20180360446 | Shelton, IV et al. | Dec 2018 | A1 |
20180360456 | Shelton, IV et al. | Dec 2018 | A1 |
20180368844 | Bakos et al. | Dec 2018 | A1 |
20190000459 | Shelton, IV et al. | Jan 2019 | A1 |
20190000461 | Shelton, IV et al. | Jan 2019 | A1 |
20190000470 | Yates et al. | Jan 2019 | A1 |
20190000475 | Shelton, IV et al. | Jan 2019 | A1 |
20190000477 | Shelton, IV et al. | Jan 2019 | A1 |
20190000481 | Harris et al. | Jan 2019 | A1 |
20190015102 | Baber et al. | Jan 2019 | A1 |
20190015165 | Giordano et al. | Jan 2019 | A1 |
20190029682 | Huitema et al. | Jan 2019 | A1 |
20190029701 | Shelton, IV et al. | Jan 2019 | A1 |
20190038281 | Shelton, IV et al. | Feb 2019 | A1 |
20190038283 | Shelton, IV et al. | Feb 2019 | A1 |
20190038285 | Mozdzierz | Feb 2019 | A1 |
20190059986 | Shelton, IV et al. | Feb 2019 | A1 |
20190076143 | Smith | Mar 2019 | A1 |
20190090871 | Shelton, IV et al. | Mar 2019 | A1 |
20190091183 | Tomat et al. | Mar 2019 | A1 |
20190104919 | Shelton, IV et al. | Apr 2019 | A1 |
20190105035 | Shelton, IV et al. | Apr 2019 | A1 |
20190105036 | Morgan et al. | Apr 2019 | A1 |
20190105037 | Morgan et al. | Apr 2019 | A1 |
20190105039 | Morgan et al. | Apr 2019 | A1 |
20190105044 | Shelton, IV et al. | Apr 2019 | A1 |
20190110779 | Gardner et al. | Apr 2019 | A1 |
20190110791 | Shelton, IV et al. | Apr 2019 | A1 |
20190117224 | Setser et al. | Apr 2019 | A1 |
20190125320 | Shelton, IV et al. | May 2019 | A1 |
20190125335 | Shelton, IV et al. | May 2019 | A1 |
20190125336 | Deck et al. | May 2019 | A1 |
20190125338 | Shelton, IV et al. | May 2019 | A1 |
20190125342 | Beardsley et al. | May 2019 | A1 |
20190125361 | Shelton, IV et al. | May 2019 | A1 |
20190125377 | Shelton, IV | May 2019 | A1 |
20190125378 | Shelton, IV et al. | May 2019 | A1 |
20190125388 | Shelton, IV et al. | May 2019 | A1 |
20190125430 | Shelton, IV et al. | May 2019 | A1 |
20190125431 | Shelton, IV et al. | May 2019 | A1 |
20190125432 | Shelton, IV et al. | May 2019 | A1 |
20190125454 | Stokes et al. | May 2019 | A1 |
20190125455 | Shelton, IV et al. | May 2019 | A1 |
20190125476 | Shelton, IV et al. | May 2019 | A1 |
20190133422 | Nakamura | May 2019 | A1 |
20190138770 | Compaijen et al. | May 2019 | A1 |
20190150925 | Marczyk et al. | May 2019 | A1 |
20190151029 | Robinson | May 2019 | A1 |
20190183502 | Shelton, IV et al. | Jun 2019 | A1 |
20190192141 | Shelton, IV et al. | Jun 2019 | A1 |
20190192146 | Widenhouse et al. | Jun 2019 | A1 |
20190192147 | Shelton, IV et al. | Jun 2019 | A1 |
20190192148 | Shelton, IV et al. | Jun 2019 | A1 |
20190192151 | Shelton, IV et al. | Jun 2019 | A1 |
20190192153 | Shelton, IV et al. | Jun 2019 | A1 |
20190192155 | Shelton, IV et al. | Jun 2019 | A1 |
20190192157 | Scott et al. | Jun 2019 | A1 |
20190200844 | Shelton, IV et al. | Jul 2019 | A1 |
20190200905 | Shelton, IV et al. | Jul 2019 | A1 |
20190200906 | Shelton, IV et al. | Jul 2019 | A1 |
20190200977 | Shelton, IV et al. | Jul 2019 | A1 |
20190200981 | Harris et al. | Jul 2019 | A1 |
20190201024 | Shelton, IV et al. | Jul 2019 | A1 |
20190201025 | Shelton, IV et al. | Jul 2019 | A1 |
20190201026 | Shelton, IV et al. | Jul 2019 | A1 |
20190201027 | Shelton, IV et al. | Jul 2019 | A1 |
20190201029 | Shelton, IV et al. | Jul 2019 | A1 |
20190201030 | Shelton, IV et al. | Jul 2019 | A1 |
20190201034 | Shelton, IV et al. | Jul 2019 | A1 |
20190201045 | Yates et al. | Jul 2019 | A1 |
20190201046 | Shelton, IV et al. | Jul 2019 | A1 |
20190201047 | Yates et al. | Jul 2019 | A1 |
20190201104 | Shelton, IV et al. | Jul 2019 | A1 |
20190201112 | Wiener et al. | Jul 2019 | A1 |
20190201113 | Shelton, IV et al. | Jul 2019 | A1 |
20190201115 | Shelton, IV et al. | Jul 2019 | A1 |
20190201118 | Shelton, IV et al. | Jul 2019 | A1 |
20190201136 | Shelton, IV et al. | Jul 2019 | A1 |
20190201137 | Shelton, IV et al. | Jul 2019 | A1 |
20190201139 | Shelton, IV et al. | Jul 2019 | A1 |
20190201140 | Yates et al. | Jul 2019 | A1 |
20190201142 | Shelton, IV et al. | Jul 2019 | A1 |
20190201594 | Shelton, IV et al. | Jul 2019 | A1 |
20190205001 | Messerly et al. | Jul 2019 | A1 |
20190205567 | Shelton, IV et al. | Jul 2019 | A1 |
20190206551 | Yates et al. | Jul 2019 | A1 |
20190206555 | Morgan et al. | Jul 2019 | A1 |
20190206561 | Shelton, IV et al. | Jul 2019 | A1 |
20190206562 | Shelton, IV et al. | Jul 2019 | A1 |
20190206564 | Shelton, IV et al. | Jul 2019 | A1 |
20190206569 | Shelton, IV et al. | Jul 2019 | A1 |
20190209172 | Shelton, IV et al. | Jul 2019 | A1 |
20190209247 | Giordano et al. | Jul 2019 | A1 |
20190209248 | Giordano et al. | Jul 2019 | A1 |
20190209249 | Giordano et al. | Jul 2019 | A1 |
20190209250 | Giordano et al. | Jul 2019 | A1 |
20190216558 | Giordano et al. | Jul 2019 | A1 |
20190261983 | Granger et al. | Aug 2019 | A1 |
20190261984 | Nelson et al. | Aug 2019 | A1 |
20190261987 | Viola et al. | Aug 2019 | A1 |
20190269400 | Mandakolathur Vasudevan et al. | Sep 2019 | A1 |
20190269402 | Murray et al. | Sep 2019 | A1 |
20190269428 | Allen et al. | Sep 2019 | A1 |
20190274685 | Olson et al. | Sep 2019 | A1 |
20190282233 | Burbank et al. | Sep 2019 | A1 |
20190290264 | Morgan et al. | Sep 2019 | A1 |
20190290266 | Scheib et al. | Sep 2019 | A1 |
20190290267 | Baxter, III et al. | Sep 2019 | A1 |
20190290297 | Haider et al. | Sep 2019 | A1 |
20190298350 | Shelton, IV et al. | Oct 2019 | A1 |
20190298353 | Shelton, IV et al. | Oct 2019 | A1 |
20190298360 | Shelton, IV et al. | Oct 2019 | A1 |
20190298361 | Shelton, IV et al. | Oct 2019 | A1 |
20190298362 | Shelton, IV et al. | Oct 2019 | A1 |
20190307452 | Shelton, IV et al. | Oct 2019 | A1 |
20190307453 | Shelton, IV et al. | Oct 2019 | A1 |
20190307454 | Shelton, IV et al. | Oct 2019 | A1 |
20190307456 | Shelton, IV et al. | Oct 2019 | A1 |
20190321040 | Shelton, IV | Oct 2019 | A1 |
20190328387 | Overmyer et al. | Oct 2019 | A1 |
20190343515 | Morgan et al. | Nov 2019 | A1 |
20190357909 | Huitema et al. | Nov 2019 | A1 |
20200000531 | Giordano et al. | Jan 2020 | A1 |
20200008802 | Aronhalt et al. | Jan 2020 | A1 |
20200008809 | Shelton, IV et al. | Jan 2020 | A1 |
20200015819 | Shelton, IV et al. | Jan 2020 | A1 |
20200015915 | Swayze et al. | Jan 2020 | A1 |
20200038016 | Shelton, IV et al. | Feb 2020 | A1 |
20200038018 | Shelton, IV et al. | Feb 2020 | A1 |
20200038020 | Yates et al. | Feb 2020 | A1 |
20200054321 | Harris et al. | Feb 2020 | A1 |
20200054332 | Shelton, IV et al. | Feb 2020 | A1 |
20200054333 | Shelton, IV et al. | Feb 2020 | A1 |
20200054334 | Shelton, IV et al. | Feb 2020 | A1 |
20200054355 | Laurent et al. | Feb 2020 | A1 |
20200060523 | Matsuda et al. | Feb 2020 | A1 |
20200060713 | Leimbach et al. | Feb 2020 | A1 |
20200085431 | Swayze et al. | Mar 2020 | A1 |
20200085435 | Shelton, IV et al. | Mar 2020 | A1 |
20200085518 | Giordano et al. | Mar 2020 | A1 |
20200093484 | Shelton, IV et al. | Mar 2020 | A1 |
20200093506 | Leimbach et al. | Mar 2020 | A1 |
20200093550 | Spivey et al. | Mar 2020 | A1 |
20200100783 | Yates et al. | Apr 2020 | A1 |
20200107829 | Shelton, IV et al. | Apr 2020 | A1 |
20200138436 | Yates et al. | May 2020 | A1 |
20200138507 | Davison | May 2020 | A1 |
20200138534 | Garcia Kilroy et al. | May 2020 | A1 |
20200146741 | Long et al. | May 2020 | A1 |
20200187943 | Shelton, IV et al. | Jun 2020 | A1 |
20200197027 | Hershberger et al. | Jun 2020 | A1 |
20200214706 | Vendely et al. | Jul 2020 | A1 |
20200214731 | Shelton, IV et al. | Jul 2020 | A1 |
20200237371 | Huitema et al. | Jul 2020 | A1 |
20200253605 | Swayze et al. | Aug 2020 | A1 |
20200261086 | Zeiner et al. | Aug 2020 | A1 |
20200261106 | Hess et al. | Aug 2020 | A1 |
20200268377 | Schmid et al. | Aug 2020 | A1 |
20200275927 | Shelton, IV et al. | Sep 2020 | A1 |
20200275930 | Harris et al. | Sep 2020 | A1 |
20200281585 | Timm et al. | Sep 2020 | A1 |
20200289112 | Whitfield et al. | Sep 2020 | A1 |
20200297341 | Yates et al. | Sep 2020 | A1 |
20200297346 | Shelton, IV et al. | Sep 2020 | A1 |
20200305862 | Yates et al. | Oct 2020 | A1 |
20200305863 | Yates et al. | Oct 2020 | A1 |
20200305864 | Yates et al. | Oct 2020 | A1 |
20200305870 | Shelton, IV | Oct 2020 | A1 |
20200305872 | Weidner et al. | Oct 2020 | A1 |
20200305874 | Huitema et al. | Oct 2020 | A1 |
20200315612 | Shelton, IV et al. | Oct 2020 | A1 |
20200315983 | Widenhouse et al. | Oct 2020 | A1 |
20200323526 | Huang et al. | Oct 2020 | A1 |
20200330092 | Shelton, IV et al. | Oct 2020 | A1 |
20200330093 | Shelton, IV et al. | Oct 2020 | A1 |
20200330096 | Shelton, IV et al. | Oct 2020 | A1 |
20200337693 | Shelton, IV et al. | Oct 2020 | A1 |
20200337791 | Shelton, IV et al. | Oct 2020 | A1 |
20200345346 | Shelton, IV et al. | Nov 2020 | A1 |
20200345352 | Shelton, IV et al. | Nov 2020 | A1 |
20200345353 | Leimbach et al. | Nov 2020 | A1 |
20200345356 | Leimbach et al. | Nov 2020 | A1 |
20200345357 | Leimbach et al. | Nov 2020 | A1 |
20200345358 | Jenkins | Nov 2020 | A1 |
20200345359 | Baxter, III et al. | Nov 2020 | A1 |
20200345435 | Traina | Nov 2020 | A1 |
20200352562 | Timm et al. | Nov 2020 | A1 |
20200367886 | Shelton, IV et al. | Nov 2020 | A1 |
20200375585 | Swayze et al. | Dec 2020 | A1 |
20200375597 | Shelton, IV et al. | Dec 2020 | A1 |
20200390444 | Harris et al. | Dec 2020 | A1 |
20200405292 | Shelton, IV et al. | Dec 2020 | A1 |
20200405293 | Shelton, IV et al. | Dec 2020 | A1 |
20200405296 | Shelton, IV et al. | Dec 2020 | A1 |
20200405302 | Shelton, IV et al. | Dec 2020 | A1 |
20200405306 | Shelton, IV et al. | Dec 2020 | A1 |
20200405307 | Shelton, IV et al. | Dec 2020 | A1 |
20200405308 | Shelton, IV | Dec 2020 | A1 |
20200405316 | Shelton, IV et al. | Dec 2020 | A1 |
20200405341 | Hess et al. | Dec 2020 | A1 |
20200405410 | Shelton, IV | Dec 2020 | A1 |
20200405439 | Shelton, IV et al. | Dec 2020 | A1 |
20200410177 | Shelton, IV | Dec 2020 | A1 |
20210000466 | Leimbach et al. | Jan 2021 | A1 |
20210000467 | Shelton, IV et al. | Jan 2021 | A1 |
20210015480 | Shelton, IV et al. | Jan 2021 | A1 |
20210030416 | Shelton, IV et al. | Feb 2021 | A1 |
20210045742 | Shelton, IV et al. | Feb 2021 | A1 |
20210052271 | Harris et al. | Feb 2021 | A1 |
20210059661 | Schmid et al. | Mar 2021 | A1 |
20210059662 | Shelton, IV | Mar 2021 | A1 |
20210059664 | Hensel et al. | Mar 2021 | A1 |
20210059670 | Overmyer et al. | Mar 2021 | A1 |
20210059672 | Giordano et al. | Mar 2021 | A1 |
20210059673 | Shelton, IV et al. | Mar 2021 | A1 |
20210068820 | Parihar et al. | Mar 2021 | A1 |
20210068832 | Yates et al. | Mar 2021 | A1 |
20210068835 | Shelton, IV et al. | Mar 2021 | A1 |
20210077099 | Shelton, IV et al. | Mar 2021 | A1 |
20210077100 | Shelton, IV et al. | Mar 2021 | A1 |
20210077109 | Harris et al. | Mar 2021 | A1 |
20210085313 | Morgan et al. | Mar 2021 | A1 |
20210085314 | Schmid et al. | Mar 2021 | A1 |
20210085315 | Aronhalt et al. | Mar 2021 | A1 |
20210085316 | Harris et al. | Mar 2021 | A1 |
20210085318 | Swayze et al. | Mar 2021 | A1 |
20210085320 | Leimbach et al. | Mar 2021 | A1 |
20210085321 | Shelton, IV et al. | Mar 2021 | A1 |
20210085325 | Shelton, IV et al. | Mar 2021 | A1 |
20210093321 | Auld et al. | Apr 2021 | A1 |
20210093323 | Scirica et al. | Apr 2021 | A1 |
20210100541 | Shelton, IV et al. | Apr 2021 | A1 |
20210100982 | Laby et al. | Apr 2021 | A1 |
20210106333 | Shelton, IV et al. | Apr 2021 | A1 |
20210107031 | Bales, Jr. et al. | Apr 2021 | A1 |
20210121175 | Yates et al. | Apr 2021 | A1 |
20210128146 | Shelton, IV et al. | May 2021 | A1 |
20210137522 | Shelton, IV et al. | May 2021 | A1 |
20210186492 | Shelton, IV et al. | Jun 2021 | A1 |
20210186493 | Shelton, IV et al. | Jun 2021 | A1 |
20210186495 | Shelton, IV et al. | Jun 2021 | A1 |
20210186497 | Shelton, IV et al. | Jun 2021 | A1 |
20210186498 | Boudreaux et al. | Jun 2021 | A1 |
20210186499 | Shelton, IV et al. | Jun 2021 | A1 |
20210186501 | Shelton, IV et al. | Jun 2021 | A1 |
20210186502 | Shelton, IV et al. | Jun 2021 | A1 |
20210204941 | Dewaele et al. | Jul 2021 | A1 |
20210212691 | Smith et al. | Jul 2021 | A1 |
20210228209 | Shelton, IV et al. | Jul 2021 | A1 |
20210236117 | Morgan et al. | Aug 2021 | A1 |
20210236124 | Shelton, IV et al. | Aug 2021 | A1 |
20210244406 | Kerr et al. | Aug 2021 | A1 |
20210244407 | Shelton, IV et al. | Aug 2021 | A1 |
20210244410 | Swayze et al. | Aug 2021 | A1 |
20210244412 | Vendely et al. | Aug 2021 | A1 |
20210259681 | Shelton, IV et al. | Aug 2021 | A1 |
20210259687 | Gonzalez et al. | Aug 2021 | A1 |
20210259986 | Widenhouse et al. | Aug 2021 | A1 |
20210259987 | Widenhouse et al. | Aug 2021 | A1 |
20210267589 | Swayze et al. | Sep 2021 | A1 |
20210267594 | Morgan et al. | Sep 2021 | A1 |
20210267595 | Posada et al. | Sep 2021 | A1 |
20210267596 | Fanelli et al. | Sep 2021 | A1 |
20210275053 | Shelton, IV et al. | Sep 2021 | A1 |
20210275172 | Harris et al. | Sep 2021 | A1 |
20210275173 | Shelton, IV et al. | Sep 2021 | A1 |
20210275176 | Beckman et al. | Sep 2021 | A1 |
20210282767 | Shelton, IV et al. | Sep 2021 | A1 |
20210282769 | Baxter, III et al. | Sep 2021 | A1 |
20210282776 | Overmyer et al. | Sep 2021 | A1 |
20210290226 | Mandakolathur Vasudevan et al. | Sep 2021 | A1 |
20210290231 | Baxter, III et al. | Sep 2021 | A1 |
20210290232 | Harris et al. | Sep 2021 | A1 |
20210290233 | Shelton, IV et al. | Sep 2021 | A1 |
20210290236 | Moore et al. | Sep 2021 | A1 |
20210290322 | Traina | Sep 2021 | A1 |
20210353284 | Yang et al. | Nov 2021 | A1 |
20220031313 | Bakos et al. | Feb 2022 | A1 |
20220031314 | Bakos et al. | Feb 2022 | A1 |
20220031315 | Bakos et al. | Feb 2022 | A1 |
20220031319 | Witte et al. | Feb 2022 | A1 |
20220031320 | Hall et al. | Feb 2022 | A1 |
20220031322 | Parks | Feb 2022 | A1 |
20220031324 | Hall et al. | Feb 2022 | A1 |
20220031345 | Witte | Feb 2022 | A1 |
20220031346 | Parks | Feb 2022 | A1 |
20220031350 | Witte | Feb 2022 | A1 |
20220031351 | Moubarak et al. | Feb 2022 | A1 |
20220071632 | Patel et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
2012200594 | Feb 2012 | AU |
2012203035 | Jun 2012 | AU |
2012268848 | Jan 2013 | AU |
2011218702 | Jun 2013 | AU |
2012200178 | Jul 2013 | AU |
112013027777 | Jan 2017 | BR |
1015829 | Aug 1977 | CA |
1125615 | Jun 1982 | CA |
2520413 | Mar 2007 | CA |
2725181 | Nov 2007 | CA |
2851239 | Nov 2007 | CA |
2664874 | Nov 2009 | CA |
2813230 | Apr 2012 | CA |
2940510 | Aug 2015 | CA |
2698728 | Aug 2016 | CA |
1163558 | Oct 1997 | CN |
2488482 | May 2002 | CN |
1634601 | Jul 2005 | CN |
2716900 | Aug 2005 | CN |
2738962 | Nov 2005 | CN |
1777406 | May 2006 | CN |
2796654 | Jul 2006 | CN |
2868212 | Feb 2007 | CN |
200942099 | Sep 2007 | CN |
200984209 | Dec 2007 | CN |
200991269 | Dec 2007 | CN |
201001747 | Jan 2008 | CN |
101143105 | Mar 2008 | CN |
201029899 | Mar 2008 | CN |
101188900 | May 2008 | CN |
101203085 | Jun 2008 | CN |
101273908 | Oct 2008 | CN |
101378791 | Mar 2009 | CN |
101507635 | Aug 2009 | CN |
101522120 | Sep 2009 | CN |
101669833 | Mar 2010 | CN |
101721236 | Jun 2010 | CN |
101756727 | Jun 2010 | CN |
101828940 | Sep 2010 | CN |
101873834 | Oct 2010 | CN |
201719298 | Jan 2011 | CN |
102038532 | May 2011 | CN |
201879759 | Jun 2011 | CN |
201949071 | Aug 2011 | CN |
102217961 | Oct 2011 | CN |
102217963 | Oct 2011 | CN |
102243850 | Nov 2011 | CN |
102247183 | Nov 2011 | CN |
101779977 | Dec 2011 | CN |
101912284 | Jul 2012 | CN |
102125450 | Jul 2012 | CN |
202313537 | Jul 2012 | CN |
202397539 | Aug 2012 | CN |
202426586 | Sep 2012 | CN |
102743201 | Oct 2012 | CN |
202489990 | Oct 2012 | CN |
102228387 | Nov 2012 | CN |
102835977 | Dec 2012 | CN |
202568350 | Dec 2012 | CN |
103037781 | Apr 2013 | CN |
103083053 | May 2013 | CN |
103391037 | Nov 2013 | CN |
203328751 | Dec 2013 | CN |
103505264 | Jan 2014 | CN |
103584893 | Feb 2014 | CN |
103635150 | Mar 2014 | CN |
103690212 | Apr 2014 | CN |
203564285 | Apr 2014 | CN |
203564287 | Apr 2014 | CN |
203597997 | May 2014 | CN |
103829981 | Jun 2014 | CN |
103829983 | Jun 2014 | CN |
103860221 | Jun 2014 | CN |
103908313 | Jul 2014 | CN |
203693685 | Jul 2014 | CN |
203736251 | Jul 2014 | CN |
103981635 | Aug 2014 | CN |
104027145 | Sep 2014 | CN |
203815517 | Sep 2014 | CN |
102783741 | Oct 2014 | CN |
102973300 | Oct 2014 | CN |
204092074 | Jan 2015 | CN |
104337556 | Feb 2015 | CN |
204158440 | Feb 2015 | CN |
204158441 | Feb 2015 | CN |
102469995 | Mar 2015 | CN |
104422849 | Mar 2015 | CN |
104586463 | May 2015 | CN |
204520822 | Aug 2015 | CN |
204636451 | Sep 2015 | CN |
103860225 | Mar 2016 | CN |
103750872 | May 2016 | CN |
105919642 | Sep 2016 | CN |
103648410 | Oct 2016 | CN |
105997173 | Oct 2016 | CN |
106344091 | Jan 2017 | CN |
104349800 | Nov 2017 | CN |
107635483 | Jan 2018 | CN |
208625784 | Mar 2019 | CN |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
3036217 | Apr 1982 | DE |
3210466 | Sep 1983 | DE |
3709067 | Sep 1988 | DE |
19534043 | Mar 1997 | DE |
19851291 | Jan 2000 | DE |
19924311 | Nov 2000 | DE |
20016423 | Feb 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
202004012389 | Sep 2004 | DE |
10314072 | Oct 2004 | DE |
102004014011 | Oct 2005 | DE |
102004041871 | Mar 2006 | DE |
102004063606 | Jul 2006 | DE |
202007003114 | Jun 2007 | DE |
102010013150 | Sep 2011 | DE |
102012213322 | Jan 2014 | DE |
102013101158 | Aug 2014 | DE |
002220467-0008 | Apr 2013 | EM |
0000756 | Feb 1979 | EP |
0122046 | Oct 1984 | EP |
0129442 | Nov 1987 | EP |
0255631 | Feb 1988 | EP |
0169044 | Jun 1991 | EP |
0541950 | May 1993 | EP |
0548998 | Jun 1993 | EP |
0594148 | Apr 1994 | EP |
0646357 | Apr 1995 | EP |
0505036 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0705571 | Apr 1996 | EP |
0528478 | May 1996 | EP |
0770355 | May 1997 | EP |
0625335 | Nov 1997 | EP |
0879742 | Nov 1998 | EP |
0650701 | Mar 1999 | EP |
0923907 | Jun 1999 | EP |
0484677 | Jul 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
0726632 | Oct 2000 | EP |
1053719 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1064882 | Jan 2001 | EP |
1080694 | Mar 2001 | EP |
1090592 | Apr 2001 | EP |
1095627 | May 2001 | EP |
0806914 | Sep 2001 | EP |
1234587 | Aug 2002 | EP |
1284120 | Feb 2003 | EP |
0717967 | May 2003 | EP |
0869742 | May 2003 | EP |
1374788 | Jan 2004 | EP |
1407719 | Apr 2004 | EP |
0996378 | Jun 2004 | EP |
1558161 | Aug 2005 | EP |
1157666 | Sep 2005 | EP |
0880338 | Oct 2005 | EP |
1158917 | Nov 2005 | EP |
1344498 | Nov 2005 | EP |
1330989 | Dec 2005 | EP |
1632191 | Mar 2006 | EP |
1082944 | May 2006 | EP |
1253866 | Jul 2006 | EP |
1723914 | Nov 2006 | EP |
1285633 | Dec 2006 | EP |
1011494 | Jan 2007 | EP |
1767163 | Mar 2007 | EP |
1837041 | Sep 2007 | EP |
0922435 | Oct 2007 | EP |
1599146 | Oct 2007 | EP |
1330201 | Jun 2008 | EP |
2039302 | Mar 2009 | EP |
1719461 | Jun 2009 | EP |
2116196 | Nov 2009 | EP |
1769754 | Jun 2010 | EP |
1627605 | Dec 2010 | EP |
2316345 | May 2011 | EP |
1962711 | Feb 2012 | EP |
2486862 | Aug 2012 | EP |
2486868 | Aug 2012 | EP |
2517638 | Oct 2012 | EP |
2606812 | Jun 2013 | EP |
2649948 | Oct 2013 | EP |
2649949 | Oct 2013 | EP |
2668910 | Dec 2013 | EP |
2687164 | Jan 2014 | EP |
2713902 | Apr 2014 | EP |
2743042 | Jun 2014 | EP |
2764827 | Aug 2014 | EP |
2777524 | Sep 2014 | EP |
2789299 | Oct 2014 | EP |
2842500 | Mar 2015 | EP |
2853220 | Apr 2015 | EP |
2298220 | Jun 2016 | EP |
2510891 | Jun 2016 | EP |
3031404 | Jun 2016 | EP |
3047806 | Jul 2016 | EP |
3078334 | Oct 2016 | EP |
2364651 | Nov 2016 | EP |
2747235 | Nov 2016 | EP |
3095399 | Nov 2016 | EP |
3120781 | Jan 2017 | EP |
3135225 | Mar 2017 | EP |
2789299 | May 2017 | EP |
3225190 | Oct 2017 | EP |
3326548 | May 2018 | EP |
3363378 | Aug 2018 | EP |
3476334 | May 2019 | EP |
3275378 | Jul 2019 | EP |
3539495 | Sep 2019 | EP |
1070456 | Sep 2009 | ES |
459743 | Nov 1913 | FR |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2598905 | Nov 1987 | FR |
2689749 | Jul 1994 | FR |
2765794 | Jan 1999 | FR |
2815842 | May 2002 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
1217159 | Dec 1970 | GB |
1339394 | Dec 1973 | GB |
2024012 | Jan 1980 | GB |
2109241 | Jun 1983 | GB |
2090534 | Jun 1984 | GB |
2272159 | May 1994 | GB |
2336214 | Oct 1999 | GB |
2509523 | Jul 2014 | GB |
930100110 | Nov 1993 | GR |
S4711908 | May 1972 | JP |
S5033988 | Apr 1975 | JP |
S5367286 | Jun 1978 | JP |
S56112235 | Sep 1981 | JP |
S60113007 | Jun 1985 | JP |
S62170011 | Oct 1987 | JP |
S63270040 | Nov 1988 | JP |
S63318824 | Dec 1988 | JP |
H0129503 | Jun 1989 | JP |
H02106189 | Apr 1990 | JP |
H0378514 | Aug 1991 | JP |
H0385009 | Aug 1991 | JP |
H04215747 | Aug 1992 | JP |
H04131860 | Dec 1992 | JP |
H0584252 | Apr 1993 | JP |
H05123325 | May 1993 | JP |
H05226945 | Sep 1993 | JP |
H0630945 | Feb 1994 | JP |
H06237937 | Aug 1994 | JP |
H06327684 | Nov 1994 | JP |
H079622 | Feb 1995 | JP |
H07124166 | May 1995 | JP |
H07163573 | Jun 1995 | JP |
H07255735 | Oct 1995 | JP |
H07285089 | Oct 1995 | JP |
H0833642 | Feb 1996 | JP |
H08164141 | Jun 1996 | JP |
H08182684 | Jul 1996 | JP |
H08507708 | Aug 1996 | JP |
H08229050 | Sep 1996 | JP |
H08289895 | Nov 1996 | JP |
H09-323068 | Dec 1997 | JP |
H10118090 | May 1998 | JP |
H10-200699 | Jul 1998 | JP |
H10296660 | Nov 1998 | JP |
2000014632 | Jan 2000 | JP |
2000033071 | Feb 2000 | JP |
2000112002 | Apr 2000 | JP |
2000166932 | Jun 2000 | JP |
2000171730 | Jun 2000 | JP |
2000210299 | Aug 2000 | JP |
2000271141 | Oct 2000 | JP |
2000287987 | Oct 2000 | JP |
2000325303 | Nov 2000 | JP |
2001-69758 | Mar 2001 | JP |
2001087272 | Apr 2001 | JP |
2001208655 | Aug 2001 | JP |
2001514541 | Sep 2001 | JP |
2001276091 | Oct 2001 | JP |
2002051974 | Feb 2002 | JP |
2002054903 | Feb 2002 | JP |
2002085415 | Mar 2002 | JP |
2002143078 | May 2002 | JP |
2002153481 | May 2002 | JP |
2002528161 | Sep 2002 | JP |
2002314298 | Oct 2002 | JP |
2003135473 | May 2003 | JP |
2003521301 | Jul 2003 | JP |
3442423 | Sep 2003 | JP |
2003300416 | Oct 2003 | JP |
2004147701 | May 2004 | JP |
2004162035 | Jun 2004 | JP |
2004229976 | Aug 2004 | JP |
2005013573 | Jan 2005 | JP |
2005080702 | Mar 2005 | JP |
2005131163 | May 2005 | JP |
2005131164 | May 2005 | JP |
2005131173 | May 2005 | JP |
2005131211 | May 2005 | JP |
2005131212 | May 2005 | JP |
2005137423 | Jun 2005 | JP |
2005187954 | Jul 2005 | JP |
2005211455 | Aug 2005 | JP |
2005328882 | Dec 2005 | JP |
2005335432 | Dec 2005 | JP |
2005342267 | Dec 2005 | JP |
3791856 | Jun 2006 | JP |
2006187649 | Jul 2006 | JP |
2006218228 | Aug 2006 | JP |
2006281405 | Oct 2006 | JP |
2006291180 | Oct 2006 | JP |
2006346445 | Dec 2006 | JP |
2007-97252 | Apr 2007 | JP |
2007289715 | Nov 2007 | JP |
2007304057 | Nov 2007 | JP |
2007306710 | Nov 2007 | JP |
D1322057 | Feb 2008 | JP |
2008154804 | Jul 2008 | JP |
2008220032 | Sep 2008 | JP |
2009507526 | Feb 2009 | JP |
2009189838 | Aug 2009 | JP |
2009189846 | Aug 2009 | JP |
2009207260 | Sep 2009 | JP |
2009226028 | Oct 2009 | JP |
2009538684 | Nov 2009 | JP |
2009539420 | Nov 2009 | JP |
D1383743 | Feb 2010 | JP |
2010065594 | Mar 2010 | JP |
2010069307 | Apr 2010 | JP |
2010069310 | Apr 2010 | JP |
2010098844 | Apr 2010 | JP |
2010214128 | Sep 2010 | JP |
2011072574 | Apr 2011 | JP |
4722849 | Jul 2011 | JP |
4728996 | Jul 2011 | JP |
2011524199 | Sep 2011 | JP |
2011200665 | Oct 2011 | JP |
D1432094 | Dec 2011 | JP |
2012115542 | Jun 2012 | JP |
2012143283 | Aug 2012 | JP |
5154710 | Feb 2013 | JP |
2013099551 | May 2013 | JP |
2013126430 | Jun 2013 | JP |
D1481426 | Sep 2013 | JP |
2013541982 | Nov 2013 | JP |
2013541983 | Nov 2013 | JP |
2013541997 | Nov 2013 | JP |
D1492363 | Feb 2014 | JP |
2014121599 | Jul 2014 | JP |
2014171879 | Sep 2014 | JP |
1517663 | Feb 2015 | JP |
2015512725 | Apr 2015 | JP |
2015513956 | May 2015 | JP |
2015513958 | May 2015 | JP |
2015514471 | May 2015 | JP |
2015516838 | Jun 2015 | JP |
2015521524 | Jul 2015 | JP |
2015521525 | Jul 2015 | JP |
2016007800 | Jan 2016 | JP |
2016512057 | Apr 2016 | JP |
2016530949 | Oct 2016 | JP |
2017513563 | Jun 2017 | JP |
1601498 | Apr 2018 | JP |
2019513530 | May 2019 | JP |
20100110134 | Oct 2010 | KR |
20110003229 | Jan 2011 | KR |
300631507 | Mar 2012 | KR |
300747646 | Jun 2014 | KR |
1814161 | May 1993 | RU |
2008830 | Mar 1994 | RU |
2052979 | Jan 1996 | RU |
2066128 | Sep 1996 | RU |
2069981 | Dec 1996 | RU |
2098025 | Dec 1997 | RU |
2104671 | Feb 1998 | RU |
2110965 | May 1998 | RU |
2141279 | Nov 1999 | RU |
2144791 | Jan 2000 | RU |
2161450 | Jan 2001 | RU |
2181566 | Apr 2002 | RU |
2187249 | Aug 2002 | RU |
32984 | Oct 2003 | RU |
2225170 | Mar 2004 | RU |
42750 | Dec 2004 | RU |
61114 | Feb 2007 | RU |
61122 | Feb 2007 | RU |
2430692 | Oct 2011 | RU |
189517 | Jan 1967 | SU |
297156 | May 1971 | SU |
328636 | Sep 1972 | SU |
511939 | Apr 1976 | SU |
674747 | Jul 1979 | SU |
728848 | Apr 1980 | SU |
1009439 | Apr 1983 | SU |
1271497 | Nov 1986 | SU |
1333319 | Aug 1987 | SU |
1377052 | Feb 1988 | SU |
1377053 | Feb 1988 | SU |
1443874 | Dec 1988 | SU |
1509051 | Sep 1989 | SU |
1561964 | May 1990 | SU |
1708312 | Jan 1992 | SU |
1722476 | Mar 1992 | SU |
1752361 | Aug 1992 | SU |
1814161 | May 1993 | SU |
WO-9308754 | May 1993 | WO |
WO-9315648 | Aug 1993 | WO |
WO-9420030 | Sep 1994 | WO |
WO-9517855 | Jul 1995 | WO |
WO-9520360 | Aug 1995 | WO |
WO-9623448 | Aug 1996 | WO |
WO-9635464 | Nov 1996 | WO |
WO-9639086 | Dec 1996 | WO |
WO-9639088 | Dec 1996 | WO |
WO-9724073 | Jul 1997 | WO |
WO-9734533 | Sep 1997 | WO |
WO-9827870 | Jul 1998 | WO |
WO-9903407 | Jan 1999 | WO |
WO-9903409 | Jan 1999 | WO |
WO-9948430 | Sep 1999 | WO |
WO-0024322 | May 2000 | WO |
WO-0024330 | May 2000 | WO |
WO-0053112 | Sep 2000 | WO |
WO-0024448 | Oct 2000 | WO |
WO-0057796 | Oct 2000 | WO |
WO-0105702 | Jan 2001 | WO |
WO-0154594 | Aug 2001 | WO |
WO-0158371 | Aug 2001 | WO |
WO-0162164 | Aug 2001 | WO |
WO-0162169 | Aug 2001 | WO |
WO-0191646 | Dec 2001 | WO |
WO-0219932 | Mar 2002 | WO |
WO-0226143 | Apr 2002 | WO |
WO-0236028 | May 2002 | WO |
WO-02065933 | Aug 2002 | WO |
WO-03055402 | Jul 2003 | WO |
WO-03094747 | Nov 2003 | WO |
WO-03079909 | Mar 2004 | WO |
WO-2004019803 | Mar 2004 | WO |
WO-2004032783 | Apr 2004 | WO |
WO-2004047626 | Jun 2004 | WO |
WO-2004047653 | Jun 2004 | WO |
WO-2004056277 | Jul 2004 | WO |
WO-2004078050 | Sep 2004 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2004096015 | Nov 2004 | WO |
WO-2006044581 | Apr 2006 | WO |
WO-2006051252 | May 2006 | WO |
WO-2006059067 | Jun 2006 | WO |
WO-2006073581 | Jul 2006 | WO |
WO-2006085389 | Aug 2006 | WO |
WO-2007015971 | Feb 2007 | WO |
WO-2007074430 | Jul 2007 | WO |
WO-2007129121 | Nov 2007 | WO |
WO-2007137304 | Nov 2007 | WO |
WO-2007142625 | Dec 2007 | WO |
WO-2008021969 | Feb 2008 | WO |
WO-2008061566 | May 2008 | WO |
WO-2008089404 | Jul 2008 | WO |
WO-2009005969 | Jan 2009 | WO |
WO-2009067649 | May 2009 | WO |
WO-2009091497 | Jul 2009 | WO |
WO-2010126129 | Nov 2010 | WO |
WO-2010134913 | Nov 2010 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044343 | Apr 2011 | WO |
WO-2012006306 | Jan 2012 | WO |
WO-2012013577 | Feb 2012 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012061725 | May 2012 | WO |
WO-2012072133 | Jun 2012 | WO |
WO-2012166503 | Dec 2012 | WO |
WO-2013087092 | Jun 2013 | WO |
WO-2013151888 | Oct 2013 | WO |
WO-2014004209 | Jan 2014 | WO |
WO-2014113438 | Jul 2014 | WO |
WO-2014175894 | Oct 2014 | WO |
WO-2015032797 | Mar 2015 | WO |
WO-2015076780 | May 2015 | WO |
WO-2015137040 | Sep 2015 | WO |
WO-2015138760 | Sep 2015 | WO |
WO-2015187107 | Dec 2015 | WO |
WO-2016100682 | Jun 2016 | WO |
WO-2016107448 | Jul 2016 | WO |
WO 2018049211 | Mar 2018 | WO |
WO-2019036490 | Feb 2019 | WO |
WO 20200600792 | Mar 2020 | WO |
Entry |
---|
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000). |
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010). |
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005). |
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005). |
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008. |
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwellsynergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages). |
D. Tuite, Ed., “Get The Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages). |
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages. |
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001). |
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98. |
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51. |
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages. |
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12. |
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246. |
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986. |
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986). |
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345. |
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504. |
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523. |
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages). |
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages). |
Covidien Brochure “iDrive™ Ultra Powered Stapling System,” (6 pages). |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages. |
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004. |
Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001), Mar. 1, 2001. |
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached. |
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en. |
Data Sheet of LM4F230H5QR, 2007. |
Seiis et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages). |
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161. |
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012. |
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671. |
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991). |
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Biomedical Coatings, Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page). |
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages. |
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748. |
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012. |
Lyon et al. “The Relationship Between Current Load and Temperature for Quasi-Steady State and Transient Conditions,” SPIE—International Society for Optical Engineering. Proceedings, vol. 4020, (pp. 62-70), Mar. 30, 2000. |
Anonymous: “Sense & Control Application Note Current Sensing Using Linear Hall Sensors,” Feb. 3, 2009, pp. 1-18. Retrieved from the Internet: URL: http://www.infineon.com/dgdl/Current_Sensing_Rev.1.1.pdf?fileId=db3a304332d040720132d939503e5f17 [retrieved on Oct. 18, 2016]. |
Mouser Electronics, “LM317M 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Mar. 31, 2014 (Mar. 31, 2014), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-8. |
Mouser Electronics, “LM317 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Sep. 30, 2016 (Sep. 30, 2016), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-9. |
Cuper et al., “The Use of Near-Infrared Light for Safe and Effective Visualization of Subsurface Blood Vessels to Facilitate Blood Withdrawal in Children,” Medical Engineering & Physics, vol. 35, No. 4, pp. 433-440 (2013). |
Yan et al., Comparison of the effects of Mg—6Zn and Ti—3Al-2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages. |
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517. |
Anonymous, Analog Devices Wiki, Chapter 11: The Current Mirror, Aug. 20, 2017, 22 pages. https://wiki.analog.com/university/courses/electronics/text/chapter-11 ?rev=1503222341. |
Yan et al., “Comparison of the effects of Mg-6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages. |
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95. |
Texas Instruments: “Current Recirculation and Decay Modes,” Application Report SLVA321—Mar. 2009; Retrieved from the Internet: URL:http://www.ti.com/lit/an/slva321/slva321 [retrieved on Apr. 25, 2017], 7 pages. |
Qiu Li Loh et al.: “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size”, Tissue Engineering Part B—Reviews, vol. 19, No. 6, Dec. 1, 2013, pp. 485-502. |
Gao et al., “Mechanical Signature Enhancement of Response Vibrations in the Time Lag Domain,” Fifth International Congress on Sound and Vibration, Dec. 15-18, 1997, pp. 1-8. |
Trendafilova et al., “Vibration-based Methods for Structural and Machinery Fault Diagnosis Based on Nonlinear Dynamics Tools,” In: Fault Diagnosis in Robotic and Industrial Systems, IConcept Press LTD, 2012, pp. 1-29. |
Youtube.com; video by Fibran (retrieved from URL https://www.youtube.com/watch?v=vN2Qjt51gFQ); (Year: 2018). |
Foot and Ankle: Core Knowledge in Orthopaedics; by DiGiovanni MD, Elsevier; (p. 27, left column, heading “Materials for Soft Orthoses”, 7th bullet point); (Year: 2007). |
Lee, Youbok, “Antenna Circuit Design for RFID Applications,” 2003, pp. 1-50, DS00710C, Microchip Technology Inc., Available: http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf. |
Kawamura, Atsuo, et al. “Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications,” Journal, May/Jun. 1996, pp. 503-508, vol. 32, No. 3, IEEE Transactions on Industry Applications. |
Honda HS1332AT and ATD Model Info, powerequipment.honda.com [online], published on or before Mar. 22, 2016, [retrieved on May 31, 2019], retrieved from the Internet [URL: https://powerequipment.honda.com/snowblowers/models/hss1332at-hss1332atd] {Year: 2016). |
Slow Safety Sign, shutterstock.com [online], published on or before May 9, 2017, [retrieved on May 31, 2019], retrieved from the https://www.shutterstock.com/image-victor/slow-safety-sign-twodimensional-turtle-symbolizing- . . . see PDF in file for full URL] (Year: 2017). |
Warning Sign Beveled Buttons, by Peter, flarestock.com [online], published on or before Jan. 1, 2017, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.flarestock.com/stock-images/warning-sign-beveled-buttons/70257] (Year: 2017). |
Arrow Sign Icon Next Button, by Blan-k, shutterstock.com [online], published on or before Aug. 6, 2014, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL:https://www.shutterstock.com/de/image-vector/arrow-sign-icon-next-button-navigation-207700303?irgwc=1&utm . . . see PDF in file for full URL] (Year: 2014). |
Elite Icons, by smart/icons, iconfinder.com [online], published on Aug. 18, 2016, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.iconfinder.com/iconsets/elite] (Year: 2016). |
Tutorial overview of inductively coupled RFID Systems, UPM, May 2003, pp. 1-7, UPM Rafsec,<httD://cdn.mobiusconsulting.com/papers/rfidsystems.pdf>. |
Schroeter, John, “Demystifying UHF Gen 2 RFID, HF RFID,” Online Article, Jun. 2, 2008, pp. 1-3, <https://www.edn.com/design/industrial-control/4019123/Demystifying-UHF-Gen-2-RFID-HF-RFID>. |
Adeeb, et al., “An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications,” Research Article, Nov. 14, 2011, pp. 1-12, vol. 2012, Article ID 879294, Hindawi Publishing Corporation. |
Pushing Pixels (GIF), published on dribble.com, 2013. |
Sodium stearate C18H35NaO2, Chemspider Search and Share Chemistry, Royal Society of Chemistry, pp. 1-3, 2015, http://www.chemspider.com/Chemical-Structure.12639.html, accessed May 23, 2016. |
NF Monographs: Sodium Stearate, U.S. Pharmacopeia, http://www.pharmacopeia.cn/v29240/usp29nf24s0_m77360.html, accessed May 23, 2016. |
Fischer, Martin H, “Colloid-Chemical Studies on Soaps”, The Chemical Engineer, pp. 184-193, Aug. 1919. |
V.K. Ahluwalia and Madhuri Goyal, A Textbook of Organic Chemistry, Section 19.11.3, p. 356, 2000. |
A.V. Kasture and S.G. Wadodkar, Pharmaceutical Chemistry—II: Second Year Diploma in Pharmacy, Nirali Prakashan, p. 339, 2007. |
Forum discussion regarding “Speed is Faster”, published on Oct. 1, 2014 and retrieved on Nov. 8, 2019 from URL https://english.stackexchange.com/questions/199018/how-is-that-correct-speed-is-faster-or-prices-are-cheaper (Year: 2014). |
“Understanding the Requirements of ISO/IEC 14443 for Type B Proximity Contactless Identification Cards,” retrieved from https://www.digchip.com/application-notes/22/15746.php on Mar. 2, 2020, pp. 1-28 (Nov. 2005). |
Jauchem, J.R., “Effects of low-level radio-frequency (3 kHz to 300 GHz) enery on human cardiovascular, reproductive, immune, and other systems: A review of the recent literatured,” Int. J. Hyg. Environ. Health 211 (2008) 1-29. |
Sandvik, “Welding Handbook,” https://www.meting.rs/wp-content/uploads/2018/05/welding-handbook.pdf, retrieved on Jun. 22, 2020. pp. 5-6. |
Ludois, Daniel C., “Capacitive Power Transfer for Rotor Field Current in Synchronous Machines,” IEEE Transactions on Power Electronics, Institute of Electrical and Electronics Engineers, USA, vol. 27, No. 11, Nov. 1, 2012, pp. 4638-4645. |
Rotary Systems: Sealed Slip Ring Categories, Rotary Systems, May 22, 2017, retrieved from the internet: http://web.archive.org/we/20170522174710/http:/rotarysystems.com: 80/slip-rings/sealed/, retrieved on Aug. 12, 2020, pp. 1-2. |
IEEE Std 802.3-2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012. |
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committee, published Aug. 2003. |
Yang et al.; “4D printing reconfigurable, deployable and mechanically tunable metamaterials,” Material Horizions, vol. 6, pp. 1244-1250 (2019). |
“Council Directive 93/42/EEC of Jun. 14, 1993 Concerning Medical Devices,” Official Journal of the European Communities, L&C. Ligislation and Competition, S, No. L 169, Jun. 14, 1993, pp. 1-43. |
International Search Report and Written Opinion dated Oct. 29, 2021 for Application No. PCT/IB2021/056759, 10 pgs. |
International Search Report and Written Opinion dated Oct. 25, 2021 for Application No. PCT/IB2021/056746, 15 pgs. |
Number | Date | Country | |
---|---|---|---|
20220031323 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
63057430 | Jul 2020 | US | |
63057432 | Jul 2020 | US |