This application relates generally to surgical access devices and more particularly to surgical access systems for surgical robotics.
Surgical robotics has been gaining acceptance and seeks to replace or assist in particular surgical procedures. In particular, some assistance provided by surgical robotics seeks to assist in complicated or repetitive tasks. However, surgical robotics provides challenges where procedures performed by a surgeon without robotic assistance would not encounter. One such area is with surgical access devices used in surgery to facilitate the introduction of various surgical instruments into natural biological vessels, conduits, orifices, cavities, and other interior regions of the body. Surgical robotic instruments or actuators impose other restrictions that are not encountered or not a limitation with other surgical instruments or actuators, e.g., a surgeon's hand. Such challenges are further exasperated by the limited or restricted surgical area or environment. For example, the surgical environment may require an introduction of laparoscopic or particular sized instruments or actuators into the abdomen of the body and/or introduced into regions that include fluid or gas under pressure.
In accordance with various embodiments, a surgical robotic access system is provided. The surgical robotic access system provides surgical robotic instruments and/or actuators access into a patient's body. In various embodiments, the surgical robotic access system comprises a surgical robotic access platform having a proximal portion disposed externally to a patient's body and a distal portion positioned within a patient's body. The proximal portion of the surgical robotic access platform includes a flexible seal. A robotic insertion tube has a proximal end disposed away from the proximal portion of the surgical robotic access platform and has a distal end embedded in the flexible seal of the surgical robotic access platform. The robotic insertion tube also has a lumen extending between the proximal end of the robotic insertion tube to the distal end of the robotic insertion tube through which a surgical robotic manipulator is insertable therethrough and through the flexible material.
In various embodiments, the surgical robotic access system comprises a sealing cap disposed externally to a patient's body in which the sealing cap includes a flexible seal. The surgical robotic access system also comprises a retractor with an outer ring removably connected to the sealing cap and an inner ring arranged to be positioned within the patient's body and a robotic insertion tube comprising an upper or outer access connector and a lower or inner access connector. The outer access connector is arranged to be removably coupled to a robotic sleeve and the inner access connector is embedded in the flexible seal of the sealing cap. The robotic insertion tube has a lumen extending through the outer access connector and the inner access connector and the flexible seal covering a portion of the lumen extending through the inner access connector and through which a surgical robotic manipulator insertable through the lumen is insertable through the flexible seal covering the portion of the lumen.
In various embodiments, the surgical robotic access system comprises a sealing cap disposed externally to a patient's body in which the sealing cap includes a flexible seal. The surgical robotic access system also comprises a robotic insertion tube comprising an outer access connector and an inner access connector. The outer access connector is arranged to be removably coupled to a robotic sleeve through which a robotic instrument is insertable therethrough and the inner access connector is embedded in the flexible seal of the sealing cap to permanently affix the inner access connector of the robotic insertion tube to the flexible seal. The flexible seal has a first region with a first thickness surrounding the robotic insertion tube and a second region having a second thickness disposed below the inner access connector of the robotic insertion tube. The first thickness of the flexible seal is greater than the second thickness of the flexible seal to provide a predetermined insertion force.
In various embodiments, the surgical robotic access system comprises a sealing cap disposed externally to a patient's body in which the sealing cap includes a flexible seal. The surgical robotic access system also comprises a robotic insertion tube comprising a first outer access connector and an inner access connector. The first outer access connector is removably coupled to a first robotic sleeve through which a first robotic manipulator is insertable therethrough and the inner access connector is embedded in the flexible seal of the sealing cap to permanently affix the robotic insertion tube to the flexible seal. A second outer access connector is removably coupled to a second robotic sleeve through which a first robotic manipulator is insertable therethrough. The first and second outer access connectors are arranged to be removably coupled to the inner access connector of the robotic insertion tube in that the first and second outer access connectors are interchangeable with the inner access connector.
Many of the attendant features of the present invention will be more readily appreciated as the same becomes better understood by reference to the foregoing and following description and considered in connection with the accompanying drawings in which like reference symbols designate like parts throughout.
In accordance with various embodiments, a surgical robotic access system provides access for surgical robotic manipulators that includes but is not limited to instruments, actuators and/or operative portions of a surgical robotic system. The robotic manipulators are robotically controlled by the surgical robotic system autonomously or through assistance of a surgeon without a surgeon in direct contact or physically grasping the surgical robotic manipulator. The surgical robotic access system provides for the introduction, operation and withdrawal of the surgical robotic manipulators into a body cavity without permitting the escape of pressurized fluid or gas. The surgical robotic access system also provides a multi-faceted range of movement without touching or effecting pressure on the opening in the patient. The surgical robotic access system in various embodiments provides laparoscopic or single site access, insufflation and/or smoke evacuation.
In accordance with various embodiments, as shown for example in
As shown, for example, in
The inner access connector 55 in various embodiments extends only partially through the flexible seal. As such, the flexible seal 15 of the sealing cap is disposed below or under portions of the inner access connector. The inner access connector defines or delimits an access passageway or lumen with an inner diameter 35 through which a robotics manipulator can extend there through and through the flexible seal. The flexible seal provides an instrument seal around or sealingly engages the outer surface of the inserted robotic manipulator as the manipulator is inserted, utilized or withdrawn from the inner access connector. The flexible seal also provides a zero seal in various embodiments in the absence of a robotic manipulator inserted in or through the inner access connector. Such seals prevent an escape of gas or fluids. In various embodiments, as shown for example in
In various embodiments, as shown for example in
The flexible seal disposed below the robotic insertion tube, e.g., the reduced portion of flexible includes a slit 152 to assist in insertion of a manipulator and sealing against the manipulator or in the absence of the manipulator. In various embodiments, the slit 152 is a single slit or a plurality of slits with one slit 153 orthogonal or angled from another slit 152 and positioned deeper or lower within the flexible seal than the other slit 152. The reduced portion of flexible seal also limits and thus predefines the amount of material the surgical robotic manipulator will encounter upon contact and insertion. With this predefined and constant amount, the forces needed by a surgical robotic manipulator to be inserted into and through the flexible seal can be predefined or determined to provide haptic or tactile feedback to the surgical robotic system to consistently identify when a surgical robotic manipulator has been inserted initially, partially and completely into the flexible seal, through the flexible seal or withdrawn from the flexible seal despite the geometry of the tips or distal end of the manipulator. In various embodiments, the distance or height 45 from the top or proximal end of the robotic insertion tube 50 to the inner surface 160 of the flexible seal 15 is greater than the maximum height 46 of the flexible seal 15. In various embodiments, the surgical robotic system includes a robotic sleeve surrounding and/or sealing or protecting the robotic manipulator. As such, this distance or height or difference in distance or height increases access for the robotic sleeve and enhances coupling of the robotic sleeve and freedom of movement of the robotic sleeve and the robotic insertion tube embedded in the flexible seal 15.
In various embodiments, the inner access connector has a distal or inner end 53 embedded in the flexible seal 15 and a proximal or outer end 52 that is not embedded in the flexible seal and thus is disposed outside, proximate or above the outer surface 159 of the flexible seal. The distal end of the inner access connector does not extend through the flexible seal and thus is disposed above or doesn't extend pass or through the inner surface 160 of the flexible seal. The flexible seal seals the opening through the inner access connector and the plurality of apertures around the inner access connector.
The flexible seal in various embodiments, as shown for example in
In the illustrated embodiment, a raised portion 158 of the flexible seal surrounds the cavity 151 to further secure or reinforce the attachment of the robotic insertion tube to the flexible seal. In various embodiments, the raised portion is removed to provide the flexible seal a uniform height or thickness throughout the seal. In various embodiments, a center cavity 154 is disposed within the cavity 151 to further assist in the insertion of a manipulator and sealing against the manipulator or in the absence of the manipulator. As such, the center cavity provides another reduced layer of thickness or increased flexibility relative to the surrounding cavity 151 and the surrounding flexible seal, e.g., the raised portion of flexible seal or the material within the cavity or between the cavity and the edge or outer periphery of the sealing cap.
In various embodiments, the inner and outer access connectors 55, 58 of the robotic insertion tube 50 are separate components. In various embodiments the inner access connector remains fixed and unchanged while the outer access connector may be disconnected and replaced or interchanged with another outer access connector with a different robotic coupling interface. As such, in various embodiments, the inner access connector and the outer access connector include mating connections 51, 56 such as threading, snaps or the like to removably couple the outer and inner access connectors together. Accordingly, the outer access connector can be interchanged with other outer access connectors that provide the associated connection particular for a specific robotic manipulator and/or sleeve. For example,
In cases where the outer access connector is permanently affixed to or not otherwise removable from the inner access connector to enhance stability of the robotic insertion tube, to interchange different outer access connectors or in particular different robotic coupling interfaces of the outer access connectors to accommodate different robotic sleeves, the entire sealing cap is replaceable with a different sealing cap. As such, a first sealing cap can include an inner access connector embedded in the flexible seal of the sealing cap with an outer access connector affixed to the inner access connector and a separate second sealing cap can include an inner access connector embedded in the flexible seal of the sealing cap with an outer access connector affixed to the inner access connector with this outer access connector having a different or specialized robotic coupling interface relative to the other robotic coupling interface of the outer access connector of the first sealing cap. As such, the first sealing cap can be interchanged with the second sealing cap as required for the corresponding needed robotic coupling interface. This can also be the case for access connectors that can be separated to provide alternative connections or quick changes if desired or required by the particular surgical or robotic system or procedure.
The outer access connector 58 in various embodiments provides a target area that is identifiable by the surgical robotic system to sense and/or locate for the insertion of a surgical robotic manipulator there through. In various embodiments, the outer access connector includes a robotic coupling interface configured to, engage, mate or sealingly mate with a corresponding robotic coupling interface of a robotic sleeve 500. In
In various embodiments, the outer access connector and inner access connector are integrated or locked together to form a single monolithic structure and/or made from the same material. In various embodiments, the outer access connector is adhered to the inner access connector. In various embodiments the outer access connector is removably coupled to the inner access connector, e.g., via snaps, tabs, pins, slots or other similar connections and as such the outer access connector can be removed if not needed or interchanged with another outer access connector with a different coupling interface as may be needed with a different robotic sleeve, manipulator or system. The robotic sleeve provides flexibility and/or protection to the surgical robotic manipulator extendable through and out the distal end of the sleeve. The outer access connector to the robotic sleeve connection ensures that the surgical robotic system remains connected to the surgical robotic access system and thus reduces or eliminates the need for the surgical robotic system to locate the opening in the patient or the surgical robotic access system.
The distal ends of the surgical robotic manipulator in various embodiments are removable and hot swappable with other distal ends of the surgical robotic manipulator that are arranged to preform specific surgical functions, such as stapling, electro-cautery, grasping, viewing, cutting and the like. In various embodiments, the outer access connector provides a fixed platform and seal for the robotic sleeve. The robotic sleeve remains static and in various embodiments the robotic coupling interface with the robotic sleeve and outer access connector also remains static. The surgical robotic manipulators can vary in shape and sizes and thus the inner access connector including the reduced or isolated flexible seal provides an adaptable yet static sealing arrangement to seal against the varied shapes and sizes of the surgical robotic manipulators or in the absence of a surgical robotic manipulator. The flexible seal also does not damage or disrupt the surgical robotic manipulator. The flexible seal surrounding the inner access connector also facilitates the seal with the opening in the body and allows freedom of movement of the outer access connector which facilitates the seal with or to robotic sleeve and manipulator and reduces potential damage to the robotic sleeve and/or manipulator due to off axis movements.
In various embodiments, a surgical robotic access system provides a double seal arrangement for a surgical robotic manipulator to be inserted there through or in the absence of a manipulator. The surgical robotic access system in various embodiments includes an outer access connector to removably attach to and seal with a robotic sleeve and an inner access connector to fixedly attach the outer and inner access connectors to a sealing cap attached to the patient and disposed over and sealing the opening in the patient. The flexible seal of the sealing cap in which the inner access connector is embedded or fixed allows freedom of movement of the outer and inner access connectors without adding stress or tension on the surgical robotic manipulator, robotic sleeve or the patient. The flexible seal within and/or below the inner access connector provides a seal for a surgical robotic manipulator to be inserted there through or in the absence of a manipulator inserted through the flexible seal. The reduced portion of the flexible seal defined and/or confined by the inner access connector provides a consistent density or consistency to provide a predefined or pre-known or predictable insertion force that may be used to generate haptic feedback or other similar sensor information to be recognized by the surgical robotics system to identify and/or simulate the insertion and withdrawal of the surgical robotic manipulator.
The sealing cap 5 of a surgical robotic access platform in various embodiments is incorporated with or removably attached to a retractor or protector 20 that provides retraction and/or protection of the incision or opening in the patient. In various embodiments, the retractor includes a sleeve, sheath or tube 22 extending between an inner ring 23 placed inside the patient and an outer ring 21 placed outside the patient. Both rings can be rigid, flexible or any combination thereof. The sheath is flexible and cylindrical. In various embodiments, the sheath has another shape, such as an oval or a more complex shape, is adjustable, is transparent or any combinations thereof. In various embodiments, the length of the sheath is adjustable by varying the location of the outer and inner rings or by gathering or winding portions of the sheath around the outer ring, the inner ring, an adaptor, other ring or the like and any combination thereof. In various embodiments, the sheath is non-adjustable defining a fixed length and diameter access channel. In various embodiments, the sheath includes one or more coatings such as a lubricious coating, anti-microbial coating or both. Examples of sealing caps, retractors and/or protectors are described in U.S. Patent Publication No. 2007/0088204 A1, the disclosure of which of incorporated by reference as if set forth in full herein. Examples of a flexible seal or material including gel material are described in U.S. patent application Ser. No. 10/381,220, filed Mar. 20, 2003, the disclosure of which is hereby incorporated by reference as if set forth in full herein.
In various embodiments, the sealing cap covers the proximal or outer portion of the retractor/protector. In various embodiments, the sealing cap provides additional access areas or portions. In the illustrated embodiment, the sealing cap includes a flexible seal or cover made of a flexible material, e.g., gel material, surrounding the robotic or central insertion tube and through which instruments may be inserted directly there through for additional access into the patient. In various embodiments, 12 mm and 5 mm removable access ports 38, 39 are provided for auxiliary surgical instruments or surgical robotic manipulators and are inserted around the robotic insertion tube. In various embodiments, the removable access ports comprise of a cannula with an attached or integrated seal assembly with an instrument seal, zero seal or both. The cannula in various embodiments having one or more support structures on the outer surface of the cannula to removably secure the removable access port to the flexible seal. In various embodiments, auxiliary surgical instruments are insertable directly through the flexible seal in portions around or adjacent the robotic insertion tube. The flexible seal provides a seal around or sealingly engages an outer surface of the surgical instruments as the instrument is inserted, utilized or withdrawn from the flexible seal around the inner access connector and a seal in various embodiments in the absence of a surgical instrument inserted in the flexible seal around the inner access connector.
The retractor/protector of a surgical robotic access platform provides a stable platform to connect the sealing cap to the patient. The stable platform allows movement of the robotic insertion tube without or reducing any additional movement or forces caused by any movement of the robotic insertion tube in the flexible seal. As such, the flexible seal reduces or dissociates movement of the flexible seal caused by movement of the robotic insertion tube relative to the rest of the sealing cap and the patient and the sealing cap attached to the retractor/protector further dissociates movement of the sealing cap on the patient caused by movement of the flexible seal of the sealing cap. The retractor/protector also atraumatically retracts the opening in the patient to increase range of access or mobility of the robotic manipulators and positions the tissue, around and through the opening, away from potential contact or trauma from the surgical robotic manipulators.
In various embodiments, an instrument shield or retractor shield 25 is provided to prevent or reduce potential damage to the retractor or protector and/or direct off-axis instruments towards the center or opening in the patient. In various embodiments, the sealing cap may be connected directly to the patient via sutures or adhesive and may be provided with or without the retractor, shield or both. In various embodiments, the surgical robotic access system provides access into a patient's body cavity for a 22 mm diameter surgical robotic manipulator. The surgical robotic access system provides a seal (zero-seal) when the robotic manipulator is not inserted through the surgical robotic access system. The surgical robotic access system also provides a seal (instrument seal) when the robotic manipulator is inserted through the surgical robotic access system. The seal prevents the loss or escape of fluids or gases. The surgical robotic access system in various embodiments also provides access for introducing or removing of gas or fluids such as insufflation gas, smoke or the like. The surgical robotic access system provides protection from distal tips of the robotic manipulator from damaging the surgical robotic access system. The surgical robotic access system in various embodiments provides auxiliary ports, e.g., a 5 mm, 12 mm or other dimensioned ports or access for similarly sized surgical instruments.
In various embodiments, as shown for example in
The protectors in one embodiment are cast into the flexible seal to protect or reinforce the flexible seal or material from being torn or punctured by the tips of the surgical robotic manipulators in such a way to effectively disrupt or make ineffective the zero sealing or instrument sealing capabilities of the sealing cap In various embodiments the protectors are made out of a soft and durable material, such as LDPE, to provide a lubricious surface for the tips of the robot manipulators to ride against during insertion or withdrawal of the robot manipulators. In various embodiments, the protectors are made from a material different, more durable and rigid or any combination thereof than the material of the flexible seal. In various embodiments, the protectors 31 are a plurality of planar curved or angled plastic or fabric sheets. In various embodiments, two protector sheets, each identical and mirror images of each other, meet together at an edge and in various embodiments over a midline of flexible seal or above the slit. The protectors having one edge elevated above the edge at the midline of the flexible seal provide a tapered entry to facilitate movement of the protectors and to direct the inserted robotic manipulator towards the slit in the flexible seal. In various embodiments, the flexible seal or material directly under the protectors are correspondingly shaped and sized to accommodate the shape and size of the protectors.
In various embodiments, the robotic insertion tube 50 comprises an outer access connector 58 that includes a robotic coupling interface such as bayonet pins and in various embodiments an inner access connector 55 connected to the outer access connector with the inner access connector cast or molded into the flexible material and in various embodiments above the protectors. The outer access connector in various embodiments has an O-ring fitted around the outer periphery of the outer access connector to provide a seal with a mating end or robotic coupling interface of a surgical robotic sleeve. The outer access connector as such maintains a seal with the robotic sleeve even when the seal in the flexible seal is disrupted by the insertion of a robot manipulator.
In various embodiments, as shown for example in
In various embodiments, as shown for example in
In accordance with various embodiments, the dashed line 18 represents an exemplary incision size of the patient and in which the robotic insertion tube and the other ports are delimited or confined within. The dashed lines 24 represents or exemplifies the protector and its film or sheath that may be twisted prior to its insertion into the opening in the patient. The film twisted can further assist in sealing the opening of the patient. In various embodiments, the dashed lines 28 represent or exemplify the body wall and the sheath of the retractor retracting the opening in the patient to ease access into the patient. In the illustrated embodiments, one or more of the components are shown transparent or translucent to better show some of the underlying components or features otherwise hidden by the flexible seal or sealing cap or other portions thereof. In various embodiments, the dashed line 18 outlines or exemplifies a different consistency or flexibility of the flexible seal relative to the surrounding material and in various embodiments the flexible seal within the dashed line 18 is firm or more rigid relative to the surrounding material and thus moves or translates freely relative to the ring while the robotic insertion tube remains static relative to the flexible seal immediately surrounding the tube. The dashed lines 3, 5 generally represent or exemplify the upper and lower surfaces of the body wall of a patient. The dashed line 7 represents or exemplifies the mid-line or longitudinal axis of the surgical robotic access system and in various embodiments represents an initial incision or opening in the patient.
In the illustrated embodiments, it is exemplified that the sealing cap may have different sizes and dimensions along with the robotic insertion tube. The dimensions and sizes may be dictated or determined based on the surgical procedures or the surgical robotic system. Similarly, the shape and materials of the access system may vary to optimize the surgical site space or connectivity to the surgical robotic system. The robotic or central insertion tube although provided as a tube or cylindrical may be of varied shapes and dimensions such as hour-glass, frustoconical or the like to optimize the surgical site space or sealing engagement with surgical robotic instruments or the sealing cap.
In various embodiments, the surgical robotic access system provides a consistent outer access connector and seal for a robotic sleeve and a consistent inner access connector and seal for a surgical robotic manipulator. Throughout a surgical procedure, the surgical robotic manipulator may be interchanged with other surgical robotic manipulator each having differing or varying geometry and/or dimensions.
The above description is provided to enable any person skilled in the art to make and use the surgical robotic access system described herein and sets forth the best modes contemplated by the inventors of carrying out their inventions. Various modifications, however, will remain apparent to those skilled in the art. It is contemplated that these modifications are within the scope of the present disclosure. Different embodiments or aspects of such embodiments may be shown in various figures and described throughout the specification. However, it should be noted that although shown or described separately each embodiment and aspects thereof may be combined with one or more of the other embodiments and aspects thereof unless expressly stated otherwise. It is merely for easing readability of the specification that each combination is not expressly set forth. It is therefore also to be understood that the system or devices may be practiced otherwise than specifically described, including various changes in the size, shape and materials. Thus, embodiments described should be considered in all respects as illustrative and not restrictive.
This application claims the benefit of U.S. Provisional Application No. 62/219,042, filed Sep. 15, 2015, the entire disclosure of which is hereby incorporated by reference as if set forth in full herein.
Number | Name | Date | Kind |
---|---|---|---|
558364 | Doolittle | Apr 1896 | A |
1157202 | Bates et al. | Oct 1915 | A |
1598284 | Kinney | Aug 1926 | A |
1690995 | Pratt | Nov 1928 | A |
1180466 | Deutsch | Jun 1931 | A |
1810466 | Deutsch | Jun 1931 | A |
2219564 | Reyniers | Oct 1940 | A |
2305289 | Coburg | Dec 1942 | A |
2478586 | Krapp | Aug 1949 | A |
2669991 | Curutchet | Feb 1954 | A |
2695608 | Gibbon | Nov 1954 | A |
2812758 | Blumenschein | Nov 1957 | A |
2835253 | Borgeson | May 1958 | A |
2853075 | Hoffman et al. | Sep 1958 | A |
3039468 | Price | Jun 1962 | A |
3057350 | Cowley | Oct 1962 | A |
3111943 | Orndorff | Nov 1963 | A |
3195934 | Parrish | Jul 1965 | A |
3244169 | Baxter | Apr 1966 | A |
3253594 | Matthews et al. | May 1966 | A |
3313299 | Spademan | Apr 1967 | A |
3329390 | Hulsey | Jul 1967 | A |
3332417 | Blanford et al. | Jul 1967 | A |
3347226 | Harrower | Oct 1967 | A |
3347227 | Harrower | Oct 1967 | A |
3397692 | Creager, Jr. et al. | Aug 1968 | A |
3402710 | Paleschuck | Sep 1968 | A |
3416520 | Creager, Jr. | Dec 1968 | A |
3447533 | Spicer | Jun 1969 | A |
3522800 | Lesser | Aug 1970 | A |
3523534 | Nolan | Aug 1970 | A |
3570475 | Weinstein | Mar 1971 | A |
3656485 | Robertson | Apr 1972 | A |
3685786 | Woodson | Aug 1972 | A |
3717151 | Collett | Feb 1973 | A |
3717883 | Mosher | Feb 1973 | A |
3729006 | Wilder et al. | Apr 1973 | A |
3729027 | Bare | Apr 1973 | A |
3782370 | McDonald | Jan 1974 | A |
3797478 | Walsh et al. | Mar 1974 | A |
3799166 | Marsan | Mar 1974 | A |
3807393 | McDonald | Apr 1974 | A |
3828764 | Jones | Aug 1974 | A |
3831583 | Edmunds et al. | Aug 1974 | A |
3841332 | Treacle | Oct 1974 | A |
3850172 | Cazalis | Nov 1974 | A |
3853126 | Schulte | Dec 1974 | A |
3853127 | Spademan | Dec 1974 | A |
3856021 | McIntosh | Dec 1974 | A |
3860274 | Ledstrom et al. | Jan 1975 | A |
3861416 | Wichterle | Jan 1975 | A |
3907389 | Cox et al. | Sep 1975 | A |
3915171 | Shermeta | Oct 1975 | A |
3965890 | Gauthier | Jun 1976 | A |
3970089 | Saice | Jul 1976 | A |
3996623 | Kaster | Dec 1976 | A |
4000739 | Stevens | Jan 1977 | A |
4016884 | Kwan-Gett | Apr 1977 | A |
4024872 | Muldoon | May 1977 | A |
4030500 | Ronnquist | Jun 1977 | A |
4043328 | Cawood, Jr. et al. | Aug 1977 | A |
4069913 | Harrigan | Jan 1978 | A |
4083370 | Taylor | Apr 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4112932 | Chiulli | Sep 1978 | A |
4117847 | Clayton | Oct 1978 | A |
4130113 | Graham | Dec 1978 | A |
4177814 | Knepshield et al. | Dec 1979 | A |
4183357 | Bentley et al. | Jan 1980 | A |
4187849 | Stim | Feb 1980 | A |
4188945 | Wenander | Feb 1980 | A |
4217664 | Faso | Aug 1980 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4228792 | Rhys-Davies | Oct 1980 | A |
4239036 | Krieger | Dec 1980 | A |
4240411 | Hosono | Dec 1980 | A |
4253201 | Ross et al. | Mar 1981 | A |
4254973 | Banjamin | Mar 1981 | A |
4306562 | Osborne | Dec 1981 | A |
4321915 | Leighton | Mar 1982 | A |
4331138 | Jessen | May 1982 | A |
4338934 | Spademan | Jul 1982 | A |
4338937 | Lerman | Jul 1982 | A |
4367728 | Mutke | Jan 1983 | A |
4369284 | Chen | Jan 1983 | A |
4399816 | Spangler | Aug 1983 | A |
4402683 | Kopman | Sep 1983 | A |
4411659 | Jensen et al. | Oct 1983 | A |
4421296 | Stephens | Dec 1983 | A |
4424833 | Spector et al. | Jan 1984 | A |
4428364 | Bartolo | Jan 1984 | A |
4430081 | Timmermans | Feb 1984 | A |
4434791 | Darnell | Mar 1984 | A |
4436519 | O'Neill | Mar 1984 | A |
4454873 | Laufenberg et al. | Jun 1984 | A |
4473067 | Schiff | Sep 1984 | A |
4475548 | Muto | Oct 1984 | A |
4485490 | Akers et al. | Dec 1984 | A |
4488877 | Klein | Dec 1984 | A |
4543088 | Bootman et al. | Sep 1985 | A |
4550713 | Hyman | Nov 1985 | A |
4553537 | Rosenberg | Nov 1985 | A |
4555242 | Saudagar | Nov 1985 | A |
4556996 | Wallace | Dec 1985 | A |
4601710 | Moll | Jul 1986 | A |
4610665 | Matsumoto et al. | Sep 1986 | A |
4626245 | Weinstein | Dec 1986 | A |
4634424 | O'Boyle | Jan 1987 | A |
4634432 | Kocak | Jan 1987 | A |
4644951 | Bays | Feb 1987 | A |
4649904 | Krauter | Mar 1987 | A |
4653476 | Bonnet | Mar 1987 | A |
4654030 | Moll et al. | Mar 1987 | A |
4655752 | Honkanen et al. | Apr 1987 | A |
4673393 | Suzuki et al. | Jun 1987 | A |
4673394 | Fenton | Jun 1987 | A |
4691942 | Ford | Sep 1987 | A |
4714749 | Hughes et al. | Dec 1987 | A |
4738666 | Fuqua | Apr 1988 | A |
4755170 | Golden | Jul 1988 | A |
4760933 | Christner et al. | Aug 1988 | A |
4776843 | Martinez et al. | Oct 1988 | A |
4777943 | Chvapil | Oct 1988 | A |
4784646 | Feingold | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4798594 | Hillstead | Jan 1989 | A |
4802694 | Vargo | Feb 1989 | A |
4808168 | Warring | Feb 1989 | A |
4809679 | Shimonaka et al. | Mar 1989 | A |
4828554 | Griffin | May 1989 | A |
4842931 | Zook | Jun 1989 | A |
4848575 | Nakamura et al. | Jul 1989 | A |
4856502 | Ersfeld et al. | Aug 1989 | A |
4863430 | Klyce et al. | Sep 1989 | A |
4863438 | Gauderer et al. | Sep 1989 | A |
4889107 | Kaufman | Dec 1989 | A |
4895565 | Hillstead | Jan 1990 | A |
4897081 | Poirier | Jan 1990 | A |
4903710 | Jessamine et al. | Feb 1990 | A |
4911974 | Shimizu et al. | Mar 1990 | A |
4915132 | Hodge et al. | Apr 1990 | A |
4926882 | Lawrence | May 1990 | A |
4929235 | Merry et al. | May 1990 | A |
4944732 | Russo | Jul 1990 | A |
4950222 | Scott et al. | Aug 1990 | A |
4950223 | Silvanov | Aug 1990 | A |
4984564 | Yuen | Jan 1991 | A |
4991593 | LeVahn | Feb 1991 | A |
4998538 | Charowsky et al. | Mar 1991 | A |
5000745 | Guest et al. | Mar 1991 | A |
5009224 | Cole | Apr 1991 | A |
5015228 | Columbus et al. | May 1991 | A |
5019101 | Purkait et al. | May 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5037379 | Clayman et al. | Aug 1991 | A |
5041095 | Littrell | Aug 1991 | A |
5045070 | Grodecki et al. | Sep 1991 | A |
D320658 | Quigley et al. | Oct 1991 | S |
5071411 | Hillstead | Dec 1991 | A |
5073169 | Raiken | Dec 1991 | A |
5074878 | Bark et al. | Dec 1991 | A |
5082005 | Kaldany | Jan 1992 | A |
5086763 | Hathman | Feb 1992 | A |
5092846 | Nishijima et al. | Mar 1992 | A |
5104389 | Deem | Apr 1992 | A |
5125396 | Ray | Jun 1992 | A |
5125897 | Quinn et al. | Jun 1992 | A |
5127626 | Hilal et al. | Jul 1992 | A |
5129885 | Green et al. | Jul 1992 | A |
5141498 | Christian | Aug 1992 | A |
5149327 | Oshiyama | Sep 1992 | A |
5156617 | Reid | Oct 1992 | A |
5158553 | Berry et al. | Oct 1992 | A |
5159921 | Hoover | Nov 1992 | A |
5161773 | Tower | Nov 1992 | A |
5167636 | Clement | Dec 1992 | A |
5167637 | Okada et al. | Dec 1992 | A |
5176648 | Holmes et al. | Jan 1993 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5176697 | Hasson et al. | Jan 1993 | A |
5178162 | Bose | Jan 1993 | A |
5180365 | Ensminger et al. | Jan 1993 | A |
5183471 | Wilk | Feb 1993 | A |
5188595 | Jacobi | Feb 1993 | A |
5188607 | Wu | Feb 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5197955 | Stephens et al. | Mar 1993 | A |
5207656 | Kranys | May 1993 | A |
5209737 | Rirchart et al. | May 1993 | A |
5211370 | Powers | May 1993 | A |
5211633 | Stouder, Jr. | May 1993 | A |
5213114 | Bailey, Jr. | May 1993 | A |
5226890 | Ianniruberto et al. | Jul 1993 | A |
5234455 | Mulhollan | Aug 1993 | A |
5241968 | Slater | Sep 1993 | A |
5242400 | Blake, III et al. | Sep 1993 | A |
5242409 | Buelna | Sep 1993 | A |
5242412 | Blake, III et al. | Sep 1993 | A |
5242415 | Kantrowitz et al. | Sep 1993 | A |
5248304 | Vigdorchik et al. | Sep 1993 | A |
5256150 | Quiachon et al. | Oct 1993 | A |
5257973 | Villasuso | Nov 1993 | A |
5257975 | Foshee | Nov 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5261883 | Hood et al. | Nov 1993 | A |
5262468 | Chen | Nov 1993 | A |
5263922 | Soya et al. | Nov 1993 | A |
5269763 | Boehmer et al. | Dec 1993 | A |
5269772 | Wilk | Dec 1993 | A |
5273449 | Mattis et al. | Dec 1993 | A |
5273545 | Hunt et al. | Dec 1993 | A |
D343236 | Quigley et al. | Jan 1994 | S |
5279575 | Sugarbaker | Jan 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
D346022 | Quigley et al. | Apr 1994 | S |
5299582 | Potts | Apr 1994 | A |
5300034 | Behnke | Apr 1994 | A |
5300035 | Clement | Apr 1994 | A |
5300036 | Mueller et al. | Apr 1994 | A |
5308336 | Hart et al. | May 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5312391 | Wilk | May 1994 | A |
5314417 | Stephens et al. | May 1994 | A |
5316541 | Fischer | May 1994 | A |
5320611 | Bonutti et al. | Jun 1994 | A |
5330437 | Durman | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5330497 | Freitas et al. | Jul 1994 | A |
5331975 | Bonutti | Jul 1994 | A |
5334143 | Carroll | Aug 1994 | A |
5334646 | Chen | Aug 1994 | A |
5336192 | Palestrant | Aug 1994 | A |
5336708 | Chen | Aug 1994 | A |
5338313 | Mollenauer et al. | Aug 1994 | A |
5342315 | Rowe et al. | Aug 1994 | A |
5342385 | Norelli et al. | Aug 1994 | A |
5350364 | Stephens et al. | Sep 1994 | A |
5353786 | Wilk | Oct 1994 | A |
5354280 | Haber et al. | Oct 1994 | A |
5360417 | Gravener et al. | Nov 1994 | A |
5364345 | Lowery et al. | Nov 1994 | A |
5364372 | Danks et al. | Nov 1994 | A |
5366446 | Tal et al. | Nov 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5368545 | Schaller et al. | Nov 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5380288 | Hart et al. | Jan 1995 | A |
5383861 | Hempel et al. | Jan 1995 | A |
5385552 | Haber et al. | Jan 1995 | A |
5385553 | Hart et al. | Jan 1995 | A |
5385560 | Wulf | Jan 1995 | A |
5389080 | Yoon | Feb 1995 | A |
5389081 | Castro | Feb 1995 | A |
5391153 | Haber et al. | Feb 1995 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5395367 | Wilk | Mar 1995 | A |
5403264 | Wohlers et al. | Apr 1995 | A |
5403336 | Kieturakis et al. | Apr 1995 | A |
5407433 | Loomas | Apr 1995 | A |
5411483 | Loomas | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5423848 | Washizuka et al. | Jun 1995 | A |
5429609 | Yoon | Jul 1995 | A |
5431676 | Durdal et al. | Jul 1995 | A |
5437683 | Neumann et al. | Aug 1995 | A |
5439455 | Kieturakis et al. | Aug 1995 | A |
5441486 | Yoon | Aug 1995 | A |
5443452 | Hart et al. | Aug 1995 | A |
5456284 | Ryan et al. | Oct 1995 | A |
5460170 | Hammerslag | Oct 1995 | A |
5460616 | Weinstein et al. | Oct 1995 | A |
5468248 | Chin et al. | Nov 1995 | A |
5476475 | Gadberry | Dec 1995 | A |
5480410 | Cuschieri et al. | Jan 1996 | A |
5486426 | McGee et al. | Jan 1996 | A |
5490843 | Hildwein et al. | Feb 1996 | A |
5492304 | Smith et al. | Feb 1996 | A |
5496280 | Vandenbroek et al. | Mar 1996 | A |
5503112 | Luhman et al. | Apr 1996 | A |
5507758 | Thomason et al. | Apr 1996 | A |
5508334 | Chen | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514109 | Mollenauer et al. | May 1996 | A |
5514133 | Golub et al. | May 1996 | A |
5514153 | Bonutti | May 1996 | A |
5518278 | Sampson | May 1996 | A |
5520632 | Leveen | May 1996 | A |
5522791 | Leyva | Jun 1996 | A |
5522824 | Ashby | Jun 1996 | A |
5524644 | Crook | Jun 1996 | A |
5526536 | Cartmill | Jun 1996 | A |
5531758 | Uschold et al. | Jul 1996 | A |
5538509 | Dunlap et al. | Jul 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5540711 | Kieturakis et al. | Jul 1996 | A |
5545150 | Danks et al. | Aug 1996 | A |
5545179 | Williamson, IV | Aug 1996 | A |
5549563 | Kronner | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5554124 | Alvarado | Sep 1996 | A |
5562632 | Davila et al. | Oct 1996 | A |
5562677 | Hildwein et al. | Oct 1996 | A |
5562688 | Riza | Oct 1996 | A |
5571115 | Nicholas | Nov 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5577993 | Zhu et al. | Nov 1996 | A |
5578048 | Pasqualucci et al. | Nov 1996 | A |
5580344 | Hasson | Dec 1996 | A |
5584850 | Hart et al. | Dec 1996 | A |
5601579 | Semertzides | Feb 1997 | A |
5601581 | Fogarty et al. | Feb 1997 | A |
5603702 | Smith et al. | Feb 1997 | A |
5607443 | Kieturakis et al. | Mar 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620420 | Kriesel | Apr 1997 | A |
5628732 | Antoon, Jr. et al. | May 1997 | A |
5632284 | Graether | May 1997 | A |
5632979 | Goldberg et al. | May 1997 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5634937 | Mollenauer et al. | Jun 1997 | A |
5636645 | Ou | Jun 1997 | A |
5640977 | Leahy et al. | Jun 1997 | A |
5643301 | Mollenauer | Jul 1997 | A |
5649550 | Crook | Jul 1997 | A |
5651771 | Tangherlini et al. | Jul 1997 | A |
5653705 | de la Torre et al. | Aug 1997 | A |
5657963 | Hinchliffe et al. | Aug 1997 | A |
5658272 | Hasson | Aug 1997 | A |
5658306 | Kieturakis | Aug 1997 | A |
5662615 | Blake, III | Sep 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5681341 | Lunsford et al. | Oct 1997 | A |
5683378 | Christy | Nov 1997 | A |
5685854 | Green et al. | Nov 1997 | A |
5685857 | Negus et al. | Nov 1997 | A |
5697914 | Brimhall | Dec 1997 | A |
5707703 | Rothrum et al. | Jan 1998 | A |
5709664 | Vandenbroek et al. | Jan 1998 | A |
5713858 | Heruth et al. | Feb 1998 | A |
5713869 | Morejon | Feb 1998 | A |
5720730 | Blake, III | Feb 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5728103 | Picha et al. | Mar 1998 | A |
5730748 | Fogarty et al. | Mar 1998 | A |
5735791 | Alexander et al. | Apr 1998 | A |
5738628 | Sierocuk et al. | Apr 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5741298 | MacLeod | Apr 1998 | A |
5743884 | Hasson et al. | Apr 1998 | A |
5749882 | Hart et al. | May 1998 | A |
5755660 | Tyagi | May 1998 | A |
5760117 | Chen | Jun 1998 | A |
5769783 | Fowler | Jun 1998 | A |
5782812 | Hart et al. | Jul 1998 | A |
5782817 | Franzel et al. | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5788676 | Yoon | Aug 1998 | A |
5792119 | Marx | Aug 1998 | A |
5795290 | Bridges | Aug 1998 | A |
5803919 | Hart et al. | Sep 1998 | A |
5803921 | Bonadio | Sep 1998 | A |
5803923 | Singh-Derewa et al. | Sep 1998 | A |
5807350 | Diaz | Sep 1998 | A |
5810712 | Dunn | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5813409 | Leahy et al. | Sep 1998 | A |
5814026 | Yoon | Sep 1998 | A |
5817062 | Flom et al. | Oct 1998 | A |
5819375 | Kastner | Oct 1998 | A |
5820555 | Watkins, III et al. | Oct 1998 | A |
5820600 | Carlson et al. | Oct 1998 | A |
5830191 | Hildwein et al. | Nov 1998 | A |
5832925 | Rothrum | Nov 1998 | A |
5836871 | Wallace et al. | Nov 1998 | A |
5841298 | Huang | Nov 1998 | A |
5842971 | Yoon | Dec 1998 | A |
5848992 | Hart et al. | Dec 1998 | A |
5853395 | Crook et al. | Dec 1998 | A |
5853417 | Fogarty et al. | Dec 1998 | A |
5857461 | Levitsky et al. | Jan 1999 | A |
5860995 | Berkelaar | Jan 1999 | A |
5865728 | Moll et al. | Feb 1999 | A |
5865729 | Meehan et al. | Feb 1999 | A |
5865807 | Blake, III | Feb 1999 | A |
5865817 | Moenning et al. | Feb 1999 | A |
5871474 | Hermann et al. | Feb 1999 | A |
5876413 | Fogarty et al. | Mar 1999 | A |
5879368 | Hoskin et al. | Mar 1999 | A |
5882344 | Strouder, Jr. | Mar 1999 | A |
5884639 | Chen | Mar 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5895377 | Smith et al. | Apr 1999 | A |
5899208 | Bonadio | May 1999 | A |
5899913 | Fogarty et al. | May 1999 | A |
5904703 | Gilson | May 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5913847 | Yoon | Jun 1999 | A |
5916198 | Dillow | Jun 1999 | A |
5916232 | Hart | Jun 1999 | A |
5919476 | Fischer et al. | Jul 1999 | A |
5931832 | Jensen | Aug 1999 | A |
5947922 | MacLeod | Sep 1999 | A |
5951467 | Picha et al. | Sep 1999 | A |
5951588 | Moenning | Sep 1999 | A |
5957888 | Hinchiffe et al. | Sep 1999 | A |
5957913 | de la Torre et al. | Sep 1999 | A |
5962572 | Chen | Oct 1999 | A |
5964781 | Mollenauer et al. | Oct 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5989232 | Yoon | Nov 1999 | A |
5989233 | Yoon | Nov 1999 | A |
5989266 | Foster | Nov 1999 | A |
5993471 | Riza et al. | Nov 1999 | A |
5993485 | Beckers | Nov 1999 | A |
5994450 | Pearce | Nov 1999 | A |
5997515 | de la Torre et al. | Dec 1999 | A |
6004303 | Peterson | Dec 1999 | A |
6010494 | Schafer et al. | Jan 2000 | A |
6017355 | Hessel et al. | Jan 2000 | A |
6018094 | Fox | Jan 2000 | A |
6024736 | de la Torre et al. | Feb 2000 | A |
6025067 | Fay | Feb 2000 | A |
6033426 | Kaji | Mar 2000 | A |
6033428 | Sardella | Mar 2000 | A |
6035559 | Freed et al. | Mar 2000 | A |
6042573 | Lucey | Mar 2000 | A |
6045535 | Ben Nun | Apr 2000 | A |
6048309 | Flom et al. | Apr 2000 | A |
6050871 | Chen | Apr 2000 | A |
6053934 | Andrews et al. | Apr 2000 | A |
6059816 | Moenning | May 2000 | A |
6066117 | Fox et al. | May 2000 | A |
6068639 | Fogarty et al. | May 2000 | A |
6076560 | Stahle et al. | Jun 2000 | A |
6077288 | Shimomura | Jun 2000 | A |
6086603 | Termin et al. | Jul 2000 | A |
6090043 | Austin et al. | Jul 2000 | A |
6099506 | Macoviak et al. | Aug 2000 | A |
6110154 | Shimomura et al. | Aug 2000 | A |
6123689 | To et al. | Sep 2000 | A |
6142935 | Flom et al. | Nov 2000 | A |
6142936 | Beane et al. | Nov 2000 | A |
6149642 | Gerhart et al. | Nov 2000 | A |
6150608 | Wambeke et al. | Nov 2000 | A |
6159182 | Davis | Dec 2000 | A |
6162172 | Cosgrove et al. | Dec 2000 | A |
6162196 | Hart et al. | Dec 2000 | A |
6162206 | Bindokas | Dec 2000 | A |
6163949 | Neuenschwander | Dec 2000 | A |
6164279 | Tweedle | Dec 2000 | A |
6171282 | Ragsdale | Jan 2001 | B1 |
6183486 | Snow et al. | Feb 2001 | B1 |
6197002 | Peterson | Mar 2001 | B1 |
6217555 | Hart et al. | Apr 2001 | B1 |
6217590 | Levinson | Apr 2001 | B1 |
6224612 | Bates et al. | May 2001 | B1 |
6228063 | Aboul-Hosn | May 2001 | B1 |
6238373 | de la Torre et al. | May 2001 | B1 |
6241768 | Agarwal et al. | Jun 2001 | B1 |
6254533 | Fadem et al. | Jul 2001 | B1 |
6254534 | Butler et al. | Jul 2001 | B1 |
6258065 | Dennis et al. | Jul 2001 | B1 |
6264604 | Kieturakis et al. | Jul 2001 | B1 |
6267751 | Mangosong | Jul 2001 | B1 |
6276661 | Laird | Aug 2001 | B1 |
6287280 | Lampropoulos et al. | Sep 2001 | B1 |
6315770 | de la Torre et al. | Nov 2001 | B1 |
6319246 | de la Torre et al. | Nov 2001 | B1 |
6322541 | West | Nov 2001 | B2 |
6325384 | Berry, Sr. et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6371968 | Kogasaka et al. | Apr 2002 | B1 |
6382211 | Crook | May 2002 | B1 |
6383162 | Sugarbaker | May 2002 | B1 |
6391043 | Moll et al. | May 2002 | B1 |
6413244 | Bestetti et al. | Jul 2002 | B1 |
6413458 | Pearce | Jul 2002 | B1 |
6420475 | Chen | Jul 2002 | B1 |
6423036 | Van Huizen | Jul 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6440063 | Beane et al. | Aug 2002 | B1 |
6443957 | Addis | Sep 2002 | B1 |
6447489 | Peterson | Sep 2002 | B1 |
6450983 | Rambo | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6464686 | O'Hara et al. | Oct 2002 | B1 |
6468292 | Mollenauer et al. | Oct 2002 | B1 |
6482181 | Racenet et al. | Nov 2002 | B1 |
6485435 | Bakal | Nov 2002 | B1 |
6485467 | Crook et al. | Nov 2002 | B1 |
6488620 | Segermark et al. | Dec 2002 | B1 |
6488692 | Spence et al. | Dec 2002 | B1 |
6494893 | Dubrul et al. | Dec 2002 | B2 |
6527787 | Fogarty et al. | Mar 2003 | B1 |
6533734 | Corley, III et al. | Mar 2003 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6551276 | Mann et al. | Apr 2003 | B1 |
6551344 | Thill | Apr 2003 | B2 |
6552109 | Chen | Apr 2003 | B1 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6558371 | Dorn | May 2003 | B2 |
6569120 | Green | May 2003 | B1 |
6578577 | Bonadio et al. | Jun 2003 | B2 |
6579281 | Palmer et al. | Jun 2003 | B2 |
6582364 | Butler et al. | Jun 2003 | B2 |
6589167 | Shimomura et al. | Jul 2003 | B1 |
6589211 | MacLeod | Jul 2003 | B1 |
6607504 | Haarala et al. | Aug 2003 | B2 |
6613952 | Rambo | Sep 2003 | B2 |
6623426 | Bonadio et al. | Sep 2003 | B2 |
6627275 | Chen | Sep 2003 | B1 |
6663598 | Carrillo et al. | Dec 2003 | B1 |
6669674 | Macoviak et al. | Dec 2003 | B1 |
6676639 | Ternström | Jan 2004 | B1 |
6702787 | Racenet et al. | Mar 2004 | B2 |
6705989 | Cuschieri et al. | Mar 2004 | B2 |
6706050 | Giannadakis | Mar 2004 | B1 |
6714298 | Ryer | Mar 2004 | B2 |
6716201 | Blanco | Apr 2004 | B2 |
6723044 | Pulford et al. | Apr 2004 | B2 |
6723088 | Gaskill, III et al. | Apr 2004 | B2 |
6725080 | Melkent et al. | Apr 2004 | B2 |
6793621 | Butler et al. | Sep 2004 | B2 |
6794440 | Chen | Sep 2004 | B2 |
6796940 | Bonadio et al. | Sep 2004 | B2 |
6797765 | Pearce | Sep 2004 | B2 |
6800084 | Davison et al. | Oct 2004 | B2 |
6811546 | Callas et al. | Nov 2004 | B1 |
6814078 | Crook | Nov 2004 | B2 |
6814700 | Mueller et al. | Nov 2004 | B1 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6830578 | O'Heeron et al. | Dec 2004 | B2 |
6837893 | Miller | Jan 2005 | B2 |
6840946 | Fogarty et al. | Jan 2005 | B2 |
6840951 | de la Torre et al. | Jan 2005 | B2 |
6846287 | Bonadio et al. | Jan 2005 | B2 |
6860463 | Hartley | Mar 2005 | B2 |
6863674 | Kasahara et al. | Mar 2005 | B2 |
6866861 | Luhman | Mar 2005 | B1 |
6867253 | Chen | Mar 2005 | B1 |
6869393 | Butler | Mar 2005 | B2 |
6878110 | Yang et al. | Apr 2005 | B2 |
6884253 | McFarlane | Apr 2005 | B1 |
6890295 | Michels et al. | May 2005 | B2 |
6895965 | Scarberry et al. | May 2005 | B2 |
6902541 | McNally et al. | Jun 2005 | B2 |
6902569 | Parmer et al. | Jun 2005 | B2 |
6908430 | Caldwell et al. | Jun 2005 | B2 |
6909220 | Chen | Jun 2005 | B2 |
6913609 | Yencho et al. | Jul 2005 | B2 |
6916310 | Sommerich | Jul 2005 | B2 |
6916331 | Mollenauer et al. | Jul 2005 | B2 |
6929637 | Gonzalez et al. | Aug 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6939296 | Ewers et al. | Sep 2005 | B2 |
6945932 | Caldwell et al. | Sep 2005 | B1 |
6958037 | Ewers et al. | Oct 2005 | B2 |
6972026 | Caldwell et al. | Dec 2005 | B1 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
6991602 | Nakazawa et al. | Jan 2006 | B2 |
6997909 | Goldberg | Feb 2006 | B2 |
7001397 | Davison et al. | Feb 2006 | B2 |
7008377 | Beane et al. | Mar 2006 | B2 |
7014628 | Bousquet | Mar 2006 | B2 |
7033319 | Pulford et al. | Apr 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7056304 | Bacher et al. | Jun 2006 | B2 |
7056321 | Pagliuca et al. | Jun 2006 | B2 |
7067583 | Chen | Jun 2006 | B2 |
7077852 | Fogarty et al. | Jul 2006 | B2 |
7081089 | Bonadio et al. | Jul 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7093599 | Chen | Aug 2006 | B2 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101353 | Liu et al. | Sep 2006 | B2 |
7105009 | Johnson | Sep 2006 | B2 |
7105607 | Chen | Sep 2006 | B2 |
7112185 | Hart et al. | Sep 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7134929 | Chen | Nov 2006 | B2 |
7153261 | Wenchell | Dec 2006 | B2 |
7163510 | Kahle et al. | Jan 2007 | B2 |
7192436 | Sing et al. | Mar 2007 | B2 |
7193002 | Chen | Mar 2007 | B2 |
7195590 | Butler et al. | Mar 2007 | B2 |
7214185 | Rosney et al. | May 2007 | B1 |
7217277 | Parihar et al. | May 2007 | B2 |
7222380 | Chen | May 2007 | B2 |
7223257 | Shubayev et al. | May 2007 | B2 |
7223278 | Davison et al. | May 2007 | B2 |
7226484 | Chen | Jun 2007 | B2 |
7235062 | Brustad | Jun 2007 | B2 |
7235084 | Skakoon et al. | Jun 2007 | B2 |
7238154 | Ewers et al. | Jul 2007 | B2 |
7244244 | Racenet et al. | Jul 2007 | B2 |
7276075 | Callas et al. | Oct 2007 | B1 |
7290367 | Chen | Nov 2007 | B2 |
7294103 | Bertolero et al. | Nov 2007 | B2 |
7297106 | Yamada et al. | Nov 2007 | B2 |
7300399 | Bonadio et al. | Nov 2007 | B2 |
7316699 | McFarlane | Jan 2008 | B2 |
7331940 | Sommerich | Feb 2008 | B2 |
7338473 | Campbell et al. | Mar 2008 | B2 |
7344546 | Wulfman et al. | Mar 2008 | B2 |
7344547 | Piskun | Mar 2008 | B2 |
7344568 | Chen | Mar 2008 | B2 |
7377898 | Ewers et al. | May 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7412977 | Fields et al. | Aug 2008 | B2 |
7445597 | Butler et al. | Nov 2008 | B2 |
7473221 | Ewers et al. | Jan 2009 | B2 |
7481765 | Ewers et al. | Jan 2009 | B2 |
7537564 | Bonadio et al. | May 2009 | B2 |
7540839 | Butler et al. | Jun 2009 | B2 |
7559893 | Bonadio et al. | Jul 2009 | B2 |
7578832 | Johnson | Aug 2009 | B2 |
7645232 | Shluzas | Jan 2010 | B2 |
7650887 | Nguyen et al. | Jan 2010 | B2 |
7661164 | Chen | Feb 2010 | B2 |
7704207 | Albrecht et al. | Apr 2010 | B2 |
7717847 | Smith | May 2010 | B2 |
7727146 | Albrecht et al. | Jun 2010 | B2 |
7727255 | Taylor et al. | Jun 2010 | B2 |
7736306 | Brustad et al. | Jun 2010 | B2 |
7749415 | Brustad et al. | Jul 2010 | B2 |
7753901 | Piskun et al. | Jul 2010 | B2 |
7758500 | Boyd et al. | Jul 2010 | B2 |
7766824 | Jensen et al. | Aug 2010 | B2 |
7811251 | Wenchell et al. | Oct 2010 | B2 |
7815567 | Albrecht et al. | Oct 2010 | B2 |
7837612 | Gill et al. | Nov 2010 | B2 |
7841765 | Keller | Nov 2010 | B2 |
7850667 | Gresham | Dec 2010 | B2 |
7867164 | Butler et al. | Jan 2011 | B2 |
7878974 | Brustad et al. | Feb 2011 | B2 |
7896889 | Mazzocchi et al. | Mar 2011 | B2 |
7909760 | Albrecht et al. | Mar 2011 | B2 |
7930782 | Chen | Apr 2011 | B2 |
20010037053 | Bonadio et al. | Nov 2001 | A1 |
20010047188 | Bonadio et al. | Nov 2001 | A1 |
20020002324 | McManus | Jan 2002 | A1 |
20020010389 | Butler et al. | Jan 2002 | A1 |
20020013542 | Bonadio et al. | Jan 2002 | A1 |
20020016607 | Bonadio et al. | Feb 2002 | A1 |
20020026230 | Moll et al. | Feb 2002 | A1 |
20020038077 | de la Torre et al. | Mar 2002 | A1 |
20020072762 | Bonadio et al. | Jun 2002 | A1 |
20020111536 | Cuschieri et al. | Aug 2002 | A1 |
20020147429 | Cowan | Oct 2002 | A1 |
20030004253 | Chen | Jan 2003 | A1 |
20030014076 | Mollenauer et al. | Jan 2003 | A1 |
20030028179 | Piskun | Feb 2003 | A1 |
20030040711 | Racenet et al. | Feb 2003 | A1 |
20030078478 | Bonadio et al. | Apr 2003 | A1 |
20030139756 | Brustad | Jul 2003 | A1 |
20030167040 | Bacher et al. | Sep 2003 | A1 |
20030187376 | Rambo | Oct 2003 | A1 |
20030192553 | Rambo | Oct 2003 | A1 |
20030225392 | McMichael et al. | Dec 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040015185 | Ewers et al. | Jan 2004 | A1 |
20040024363 | Goldberg | Feb 2004 | A1 |
20040049099 | Ewers et al. | Mar 2004 | A1 |
20040049100 | Butler | Mar 2004 | A1 |
20040054353 | Taylor | Mar 2004 | A1 |
20040063833 | Chen | Apr 2004 | A1 |
20040068232 | Hart et al. | Apr 2004 | A1 |
20040070187 | Chen | Apr 2004 | A1 |
20040072942 | Chen | Apr 2004 | A1 |
20040073090 | Butler | Apr 2004 | A1 |
20040092795 | Bonadio et al. | May 2004 | A1 |
20040092796 | Butler et al. | May 2004 | A1 |
20040093018 | Johnson | May 2004 | A1 |
20040097793 | Butler et al. | May 2004 | A1 |
20040106942 | Taylor et al. | Jun 2004 | A1 |
20040111061 | Curran | Jun 2004 | A1 |
20040127772 | Ewers et al. | Jul 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040143158 | Hart et al. | Jul 2004 | A1 |
20040154624 | Bonadio et al. | Aug 2004 | A1 |
20040167559 | Taylor et al. | Aug 2004 | A1 |
20040173218 | Yamada et al. | Sep 2004 | A1 |
20040215063 | Bonadio et al. | Oct 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040243144 | Bonadio et al. | Dec 2004 | A1 |
20040249248 | Bonadio et al. | Dec 2004 | A1 |
20040254426 | Wenchell | Dec 2004 | A1 |
20040260244 | Piechowicz et al. | Dec 2004 | A1 |
20040267096 | Caldwell et al. | Dec 2004 | A1 |
20050020884 | Hart et al. | Jan 2005 | A1 |
20050033246 | Ahlbert et al. | Feb 2005 | A1 |
20050059865 | Kahle et al. | Mar 2005 | A1 |
20050065475 | Hart et al. | Mar 2005 | A1 |
20050065543 | Kahle et al. | Mar 2005 | A1 |
20050080319 | Dinkler II et al. | Apr 2005 | A1 |
20050090713 | Gozales et al. | Apr 2005 | A1 |
20050090716 | Bonadio et al. | Apr 2005 | A1 |
20050090717 | Bonadio et al. | Apr 2005 | A1 |
20050096695 | Olich | May 2005 | A1 |
20050131349 | Albrecht et al. | Jun 2005 | A1 |
20050148823 | Vaugh et al. | Jul 2005 | A1 |
20050155611 | Vaugh et al. | Jul 2005 | A1 |
20050159647 | Hart et al. | Jul 2005 | A1 |
20050192483 | Bonadio et al. | Sep 2005 | A1 |
20050192598 | Johnson et al. | Sep 2005 | A1 |
20050197537 | Bonadio et al. | Sep 2005 | A1 |
20050203346 | Bonadio et al. | Sep 2005 | A1 |
20050209510 | Bonadio et al. | Sep 2005 | A1 |
20050222582 | Wenchell | Oct 2005 | A1 |
20050240082 | Bonadio et al. | Oct 2005 | A1 |
20050241647 | Nguyen | Nov 2005 | A1 |
20050251124 | Zvuloni et al. | Nov 2005 | A1 |
20050251144 | Wilson | Nov 2005 | A1 |
20050261720 | Caldwell et al. | Nov 2005 | A1 |
20050267419 | Smith | Dec 2005 | A1 |
20050277946 | Greenhalgh | Dec 2005 | A1 |
20050283050 | Gundlapalli et al. | Dec 2005 | A1 |
20050288558 | Ewers et al. | Dec 2005 | A1 |
20050288634 | O'Heeron et al. | Dec 2005 | A1 |
20060020164 | Butler et al. | Jan 2006 | A1 |
20060020241 | Piskun et al. | Jan 2006 | A1 |
20060030755 | Ewers et al. | Feb 2006 | A1 |
20060041270 | Lenker | Feb 2006 | A1 |
20060047284 | Gresham | Mar 2006 | A1 |
20060047293 | Haberland et al. | Mar 2006 | A1 |
20060052669 | Hart | Mar 2006 | A1 |
20060084842 | Hart et al. | Apr 2006 | A1 |
20060106402 | McLucas | May 2006 | A1 |
20060129165 | Edoga et al. | Jun 2006 | A1 |
20060149137 | Pingleton et al. | Jul 2006 | A1 |
20060149306 | Hart et al. | Jul 2006 | A1 |
20060161049 | Beane et al. | Jul 2006 | A1 |
20060161050 | Butler et al. | Jul 2006 | A1 |
20060241651 | Wilk | Oct 2006 | A1 |
20060247498 | Bonadio et al. | Nov 2006 | A1 |
20060247499 | Butler et al. | Nov 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060247516 | Hess et al. | Nov 2006 | A1 |
20060247586 | Voegele et al. | Nov 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060247678 | Weisenburgh, II et al. | Nov 2006 | A1 |
20060258899 | Gill et al. | Nov 2006 | A1 |
20060264706 | Piskun | Nov 2006 | A1 |
20060270911 | Voegele et al. | Nov 2006 | A1 |
20070004968 | Bonadio et al. | Jan 2007 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070088202 | Albrecht et al. | Apr 2007 | A1 |
20070088204 | Albrecht | Apr 2007 | A1 |
20070093695 | Bonadio et al. | Apr 2007 | A1 |
20070118175 | Butler et al. | May 2007 | A1 |
20070149859 | Albrecht | Jun 2007 | A1 |
20070151566 | Kahle et al. | Jul 2007 | A1 |
20070156023 | Frasier et al. | Jul 2007 | A1 |
20070185387 | Albrecht et al. | Aug 2007 | A1 |
20070203398 | Bonadio et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070255219 | Vaugh et al. | Nov 2007 | A1 |
20070270752 | Labombard | Nov 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080027476 | Piskun | Jan 2008 | A1 |
20080048011 | Weller | Feb 2008 | A1 |
20080097162 | Bonadio et al. | Apr 2008 | A1 |
20080097163 | Butler et al. | Apr 2008 | A1 |
20080200767 | Ewers et al. | Aug 2008 | A1 |
20080255519 | Piskun et al. | Oct 2008 | A1 |
20080281161 | Albrecht et al. | Nov 2008 | A1 |
20080281162 | Albrecht et al. | Nov 2008 | A1 |
20090012477 | Norton et al. | Jan 2009 | A1 |
20090036745 | Bonadio et al. | Feb 2009 | A1 |
20090069837 | Bonadio et al. | Mar 2009 | A1 |
20090093683 | Richard et al. | Apr 2009 | A1 |
20090093752 | Richard et al. | Apr 2009 | A1 |
20090131754 | Ewers et al. | May 2009 | A1 |
20090137879 | Ewers et al. | May 2009 | A1 |
20090149714 | Bonadio | Jun 2009 | A1 |
20090182279 | Wenchell et al. | Jul 2009 | A1 |
20090182282 | Okihisa | Jul 2009 | A1 |
20090187079 | Albrecht et al. | Jul 2009 | A1 |
20090227843 | Smith et al. | Sep 2009 | A1 |
20090292176 | Bonadio et al. | Nov 2009 | A1 |
20090326330 | Bonadio et al. | Dec 2009 | A1 |
20100063362 | Bonadio et al. | Mar 2010 | A1 |
20100063364 | Bonadio et al. | Mar 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100100043 | Racenet | Apr 2010 | A1 |
20100113882 | Widenhouse et al. | May 2010 | A1 |
20100217087 | Bonadio et al. | Aug 2010 | A1 |
20100228091 | Widenhouse et al. | Sep 2010 | A1 |
20100228092 | Ortiz et al. | Sep 2010 | A1 |
20100228094 | Ortiz et al. | Sep 2010 | A1 |
20100240960 | Richard | Sep 2010 | A1 |
20100249523 | Spiegel et al. | Sep 2010 | A1 |
20100249524 | Ransden et al. | Sep 2010 | A1 |
20100249525 | Shelton, IV et al. | Sep 2010 | A1 |
20100249694 | Choi et al. | Sep 2010 | A1 |
20100261972 | Widenhouse et al. | Oct 2010 | A1 |
20100261975 | Huey et al. | Oct 2010 | A1 |
20100286484 | Stellon et al. | Nov 2010 | A1 |
20100298646 | Stellon et al. | Nov 2010 | A1 |
20110021877 | Fortier et al. | Jan 2011 | A1 |
20110028891 | Okoniewski | Feb 2011 | A1 |
20110034935 | Kleyman | Feb 2011 | A1 |
20110034946 | Kleyman | Feb 2011 | A1 |
20110034947 | Kleyman | Feb 2011 | A1 |
20110071462 | Ewers et al. | Mar 2011 | A1 |
20110071463 | Ewers et al. | Mar 2011 | A1 |
20110251466 | Kleyman et al. | Oct 2011 | A1 |
20120095297 | Dang et al. | Apr 2012 | A1 |
20140039268 | Richard | Feb 2014 | A1 |
20140058205 | Frederick | Feb 2014 | A1 |
20140163326 | Forsell | Jun 2014 | A1 |
20140276437 | Hart et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
26 05 148 | Aug 1977 | DE |
33 36 279 | Jan 1986 | DE |
37 39 532 | Dec 1988 | DE |
37 37 121 | May 1989 | DE |
296 00 939 | Jun 1996 | DE |
19828099 | Dec 1999 | DE |
0 113 520 | Jul 1984 | EP |
0 142 262 | May 1985 | EP |
0 517 248 | Dec 1992 | EP |
0 537 768 | Apr 1993 | EP |
0 807 416 | Nov 1997 | EP |
0 849 517 | Jun 1998 | EP |
0950376 | Oct 1999 | EP |
1 118 657 | Jul 2001 | EP |
1 125 552 | Aug 2001 | EP |
1 312 318 | May 2003 | EP |
1 407 715 | Apr 2004 | EP |
2 044 889 | Apr 2009 | EP |
1 948 047 | Sep 2010 | EP |
2 272 449 | Jan 2011 | EP |
2 272 450 | Jan 2011 | EP |
2 340 792 | Jul 2011 | EP |
1456623 | Sep 1966 | FR |
1151993 | May 1969 | GB |
1355611 | Jun 1974 | GB |
1372491 | Oct 1974 | GB |
1379772 | Jan 1975 | GB |
1400808 | Jul 1975 | GB |
1407023 | Sep 1975 | GB |
1482857 | Aug 1977 | GB |
1496696 | Dec 1977 | GB |
2071502 | Sep 1981 | GB |
2255019 | Oct 1992 | GB |
2275420 | Aug 1994 | GB |
2298906 | Sep 1996 | GB |
930649 | Sep 1993 | IE |
930650 | Sep 1993 | IE |
S940150 | Feb 1994 | IE |
S940613 | Aug 1994 | IE |
S940960 | Dec 1994 | IE |
S950055 | Jan 1995 | IE |
S950266 | Apr 1995 | IE |
S71634 | Feb 1997 | IE |
S75368 | Aug 1997 | IE |
S960196 | Aug 1997 | IE |
S970810 | Nov 1997 | IE |
991010 | Jul 2000 | IE |
990218 | Nov 2000 | IE |
990219 | Nov 2000 | IE |
990220 | Nov 2000 | IE |
990660 | Feb 2001 | IE |
990795 | Mar 2001 | IE |
10-108868 | Apr 1998 | JP |
11-290327 | Oct 1999 | JP |
2001-61850 | Mar 2001 | JP |
2002-28163 | Jan 2002 | JP |
02003 235879 | Aug 2003 | JP |
2004-195037 | Jul 2004 | JP |
1342485 | Oct 1987 | SU |
WO 8606272 | Nov 1986 | WO |
WO 8606316 | Nov 1986 | WO |
WO 9211880 | Jul 1992 | WO |
WO 9221292 | Dec 1992 | WO |
WO 9305740 | Apr 1993 | WO |
WO 9314801 | Aug 1993 | WO |
WO 9404067 | Mar 1994 | WO |
WO 9422357 | Oct 1994 | WO |
WO 9505207 | Feb 1995 | WO |
WO 9507056 | Mar 1995 | WO |
WO 9522289 | Aug 1995 | WO |
WO 9524864 | Sep 1995 | WO |
WO 9527445 | Oct 1995 | WO |
WO 9527468 | Oct 1995 | WO |
WO 9636283 | Nov 1996 | WO |
WO 9711642 | Apr 1997 | WO |
WO 9732514 | Sep 1997 | WO |
WO 9732515 | Sep 1997 | WO |
WO 9742889 | Nov 1997 | WO |
WO 9819853 | May 1998 | WO |
WO 9835614 | Aug 1998 | WO |
WO 9848724 | Nov 1998 | WO |
WO 9903416 | Jan 1999 | WO |
WO 9915068 | Apr 1999 | WO |
WO 9916368 | Apr 1999 | WO |
WO 9922804 | May 1999 | WO |
WO 9925268 | May 1999 | WO |
WO 9929250 | Jun 1999 | WO |
WO 0032116 | Jun 2000 | WO |
WO 0032117 | Jun 2000 | WO |
WO 0032119 | Jun 2000 | WO |
WO 0032120 | Jun 2000 | WO |
WO 0035356 | Jun 2000 | WO |
WO 0054675 | Sep 2000 | WO |
WO 0054676 | Sep 2000 | WO |
WO 0054677 | Sep 2000 | WO |
WO 0108563 | Feb 2001 | WO |
WO 0108581 | Feb 2001 | WO |
WO 0126558 | Apr 2001 | WO |
WO 0126559 | Apr 2001 | WO |
WO 0145568 | Jun 2001 | WO |
WO 0149363 | Jul 2001 | WO |
WO 0191652 | Dec 2001 | WO |
WO 0207611 | Jan 2002 | WO |
WO 0217800 | Mar 2002 | WO |
WO 0234108 | May 2002 | WO |
WO 03011153 | Feb 2003 | WO |
WO 03011551 | Feb 2003 | WO |
WO 03026512 | Apr 2003 | WO |
WO 03032819 | Apr 2003 | WO |
WO 03034908 | May 2003 | WO |
WO 03061480 | Jul 2003 | WO |
WO 03077726 | Sep 2003 | WO |
WO 03103548 | Dec 2003 | WO |
WO 2004026153 | Apr 2004 | WO |
WO 2004030547 | Apr 2004 | WO |
WO 2004075730 | Sep 2004 | WO |
WO 2004075741 | Sep 2004 | WO |
WO 2004075930 | Sep 2004 | WO |
WO 2005009257 | Feb 2005 | WO |
WO 2005013803 | Feb 2005 | WO |
WO 2005034766 | Apr 2005 | WO |
WO 2005089661 | Sep 2005 | WO |
WO 2006040748 | Apr 2006 | WO |
WO 2006059318 | Jun 2006 | WO |
WO 2006100658 | Sep 2006 | WO |
WO 2007044849 | Apr 2007 | WO |
WO 2008015566 | Feb 2008 | WO |
WO 2008093313 | Aug 2008 | WO |
WO 2008121294 | Oct 2008 | WO |
WO 2010045253 | Apr 2010 | WO |
WO 2010082722 | Jul 2010 | WO |
WO 2010104259 | Sep 2010 | WO |
Entry |
---|
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049740 titled “Surgical Robotic Access System”, dated Nov. 21, 2016, 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20170071629 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62219042 | Sep 2015 | US |