Surgical robotic access system

Abstract
The surgical robotic access system provides access for robotic instruments and/or actuators including the introduction, operation and withdrawal of such robotic manipulators into a body cavity without permitting the escape of pressurized fluid or gas. The surgical robotic access system also provides a multi-faceted range of movement without touching or effecting pressure on the opening in the patient's body cavity.
Description
BACKGROUND

This application relates generally to surgical access devices and more particularly to surgical access systems for surgical robotics.


Surgical robotics has been gaining acceptance and seeks to replace or assist in particular surgical procedures. In particular, some assistance provided by surgical robotics seeks to assist in complicated or repetitive tasks. However, surgical robotics provides challenges where procedures performed by a surgeon without robotic assistance would not encounter. One such area is with surgical access devices used in surgery to facilitate the introduction of various surgical instruments into natural biological vessels, conduits, orifices, cavities, and other interior regions of the body. Surgical robotic instruments or actuators impose other restrictions that are not encountered or not a limitation with other surgical instruments or actuators, e.g., a surgeon's hand. Such challenges are further exasperated by the limited or restricted surgical area or environment. For example, the surgical environment may require an introduction of laparoscopic or particular sized instruments or actuators into the abdomen of the body and/or introduced into regions that include fluid or gas under pressure.


SUMMARY

In accordance with various embodiments, a surgical robotic access system is provided. The surgical robotic access system provides surgical robotic instruments and/or actuators access into a patient's body. In various embodiments, the surgical robotic access system comprises a surgical robotic access platform having a proximal portion disposed externally to a patient's body and a distal portion positioned within a patient's body. The proximal portion of the surgical robotic access platform includes a flexible seal. A robotic insertion tube has a proximal end disposed away from the proximal portion of the surgical robotic access platform and has a distal end embedded in the flexible seal of the surgical robotic access platform. The robotic insertion tube also has a lumen extending between the proximal end of the robotic insertion tube to the distal end of the robotic insertion tube through which a surgical robotic manipulator is insertable therethrough and through the flexible material.


In various embodiments, the surgical robotic access system comprises a sealing cap disposed externally to a patient's body in which the sealing cap includes a flexible seal. The surgical robotic access system also comprises a retractor with an outer ring removably connected to the sealing cap and an inner ring arranged to be positioned within the patient's body and a robotic insertion tube comprising an upper or outer access connector and a lower or inner access connector. The outer access connector is arranged to be removably coupled to a robotic sleeve and the inner access connector is embedded in the flexible seal of the sealing cap. The robotic insertion tube has a lumen extending through the outer access connector and the inner access connector and the flexible seal covering a portion of the lumen extending through the inner access connector and through which a surgical robotic manipulator insertable through the lumen is insertable through the flexible seal covering the portion of the lumen.


In various embodiments, the surgical robotic access system comprises a sealing cap disposed externally to a patient's body in which the sealing cap includes a flexible seal. The surgical robotic access system also comprises a robotic insertion tube comprising an outer access connector and an inner access connector. The outer access connector is arranged to be removably coupled to a robotic sleeve through which a robotic instrument is insertable therethrough and the inner access connector is embedded in the flexible seal of the sealing cap to permanently affix the inner access connector of the robotic insertion tube to the flexible seal. The flexible seal has a first region with a first thickness surrounding the robotic insertion tube and a second region having a second thickness disposed below the inner access connector of the robotic insertion tube. The first thickness of the flexible seal is greater than the second thickness of the flexible seal to provide a predetermined insertion force.


In various embodiments, the surgical robotic access system comprises a sealing cap disposed externally to a patient's body in which the sealing cap includes a flexible seal. The surgical robotic access system also comprises a robotic insertion tube comprising a first outer access connector and an inner access connector. The first outer access connector is removably coupled to a first robotic sleeve through which a first robotic manipulator is insertable therethrough and the inner access connector is embedded in the flexible seal of the sealing cap to permanently affix the robotic insertion tube to the flexible seal. A second outer access connector is removably coupled to a second robotic sleeve through which a first robotic manipulator is insertable therethrough. The first and second outer access connectors are arranged to be removably coupled to the inner access connector of the robotic insertion tube in that the first and second outer access connectors are interchangeable with the inner access connector.


Many of the attendant features of the present invention will be more readily appreciated as the same becomes better understood by reference to the foregoing and following description and considered in connection with the accompanying drawings in which like reference symbols designate like parts throughout.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a disassembled view of a surgical robotic access system in accordance with various embodiments.



FIG. 2 is a perspective view of a surgical robotic access system in accordance with various embodiments with portions of the system shown transparent.



FIG. 3 is a side view of a surgical robotic access system in accordance with various embodiments with portions of the system shown transparent.



FIG. 4 is a perspective view of a surgical robotic access system in accordance with various embodiments with portions of the system shown transparent.



FIG. 5 is a top view of a surgical robotic access system in accordance with various embodiments.



FIG. 6 is a top view of a surgical robotic access system in accordance with various embodiments with portions of the system shown transparent.



FIG. 7 is a top view of a surgical robotic access system in accordance with various embodiments with portions of the system shown transparent or removed.



FIG. 8 is a side view of a sealing cap of a surgical robotic access system in accordance with various embodiments.



FIG. 9 is a side view of a sealing cap of a surgical robotic access system in accordance with various embodiments with portions of the system shown transparent.



FIG. 10 is a perspective view of a sealing cap of a surgical robotic access system in accordance with various embodiments.



FIG. 11 is a perspective view of a sealing cap of a surgical robotic access system in accordance with various embodiments.



FIG. 12 is a bottom view of a sealing cap of a surgical robotic access system in accordance with various embodiments.



FIG. 13 is a perspective view of a robotic insertion tube of a surgical robotic access system in accordance with various embodiments.



FIG. 14 is a side view of a robotic insertion tube of a surgical robotic access system in accordance with various embodiments.



FIG. 15 is a perspective view of a robotic insertion tube of a surgical robotic access system in accordance with various embodiments.



FIG. 16 is a perspective view of a robotic insertion tube of a surgical robotic access system in accordance with various embodiments.



FIG. 17 is a perspective view of a sealing cap of a surgical robotic access system in accordance with various embodiments with portions of the sealing cap shown transparent or removed.



FIG. 18 is a perspective view of a sealing cap of a surgical robotic access system in accordance with various embodiments with portions of the sealing cap removed.



FIG. 19 is a cross-sectional view of a sealing cap of a surgical robotic access system in accordance with various embodiments with portions of the sealing cap removed.



FIG. 20 is a cross-sectional view of a sealing cap of a surgical robotic access system in accordance with various embodiments.



FIG. 21 is a perspective view of a surgical robotic access system in accordance with various embodiments with a robotic sleeve connected thereto and with portions of the sealing cap shown transparent.



FIG. 22 is a perspective view of a surgical robotic access system in accordance with various embodiments with a robotic sleeve connected thereto and with portions of the sealing cap shown transparent.



FIG. 23 is a perspective view of a surgical robotic access system in accordance with various embodiments with a robotic sleeve and with portions of the sealing cap shown transparent.



FIG. 24 is a cross-sectional view of a surgical robotic access system in accordance with various embodiments.



FIG. 25 is a top view of a surgical robotic access system in accordance with various embodiments.



FIG. 26 is a cross-sectional view of a surgical robotic access system in accordance with various embodiments.



FIG. 27 is a top view of a surgical robotic access system in accordance with various embodiments.



FIG. 28 is a cross-sectional view of a surgical robotic access system in accordance with various embodiments.



FIG. 29 is a top view of a surgical robotic access system in accordance with various embodiments.





DETAILED DESCRIPTION

In accordance with various embodiments, a surgical robotic access system provides access for surgical robotic manipulators that includes but is not limited to instruments, actuators and/or operative portions of a surgical robotic system. The robotic manipulators are robotically controlled by the surgical robotic system autonomously or through assistance of a surgeon without a surgeon in direct contact or physically grasping the surgical robotic manipulator. The surgical robotic access system provides for the introduction, operation and withdrawal of the surgical robotic manipulators into a body cavity without permitting the escape of pressurized fluid or gas. The surgical robotic access system also provides a multi-faceted range of movement without touching or effecting pressure on the opening in the patient. The surgical robotic access system in various embodiments provides laparoscopic or single site access, insufflation and/or smoke evacuation.


In accordance with various embodiments, as shown for example in FIGS. 1-29, the surgical robotic access system includes a surgical robotic access platform having a sealing cap 5 removably coupled to a retractor or protector 20. The sealing cap in various embodiments includes a robotic insertion tube 50. The robotic insertion tube provides access for surgical robotic manipulators, e.g., surgical robotic instruments or actuators. The sealing cap 5 comprises a flexible seal 15 that in various embodiments is made of a flexible material such as a gel material. The robotic insertion tube is embedded in flexible seal. By embedding the robotic insertion tube in the flexible seal, any forces that may dislodge the tube is eliminated or greatly reduced.


As shown, for example, in FIGS. 14-16, the robotic insertion tube 50 includes an inner access connector 55 and an outer access connector 58. In various embodiments, the inner access connector is embedded in the flexible seal 15. In various embodiments, the inner access connector is tubular or cylindrical extending from a proximal end 52a to a distal end 52b and connects to or extends into a distal flange or base 53. Within the distal base or at the distal end of the inner access connector are a plurality of apertures 54 that provide access points or anchors to allow the flexible seal 15 to attach and hold the distal base and the distal end of the inner access connector in place and embedded in the flexible seal. The flexibility or resiliency of the flexible seal however allows the inner access connector 55 to float, pivot or move in various directions unhindered but limited within the inner diameter or area delimited by the sealing cap 5. However, the inner access connector is embedded or otherwise fixed within or irremovable from the flexible seal and thus cannot be removed or dislodged from the flexible seal.


The inner access connector 55 in various embodiments extends only partially through the flexible seal. As such, the flexible seal 15 of the sealing cap is disposed below or under portions of the inner access connector. The inner access connector defines or delimits an access passageway or lumen with an inner diameter 35 through which a robotics manipulator can extend there through and through the flexible seal. The flexible seal provides an instrument seal around or sealingly engages the outer surface of the inserted robotic manipulator as the manipulator is inserted, utilized or withdrawn from the inner access connector. The flexible seal also provides a zero seal in various embodiments in the absence of a robotic manipulator inserted in or through the inner access connector. Such seals prevent an escape of gas or fluids. In various embodiments, as shown for example in FIG. 14, the inner access connector defines an outer diameter 36 that is greater than the defined inner diameter 35. The outer diameter 36 is similar to or equal to the outer diameter of the outer access connector 58. Similarly, the inner diameter 35 of the inner access connector is similar to or equal to the inner diameter of the outer access connector. The distal base 53 of the inner access connector also defines a secondary or maximum outer diameter 37 that is greater than the outer diameter 36 to further assist in the securement of the inner access connector to the flexible seal.


In various embodiments, as shown for example in FIGS. 17-19, the flexible seal has a cavity 151 disposed between the inner periphery of the inner access connector of the robotic insertion tube. As such, in various embodiments, the flexible seal has a predetermined or predefined maximum height 46 and where the inner access connector is embedded in the flexible seal, the flexible seal has a reduced height 47 relative to the surrounding flexible seal. This cavity or reduced portion of the flexible seal (e.g., reduced height, area or volume of flexible seal) is within and where the inner access connector is attached thereto. As such, the diameter or width of the cavity 151 is equal to the outer diameter 36 of the inner access connector. Also, the maximum diameter or width of the entire flexible seal is significantly greater than the diameter or width of the cavity 151. The cavity provides an area or free region or space for the flexible seal to displace as a surgical robotic manipulator is inserted there through and thereby easing or reducing insertion force. The displacement area however is also limited or confined by the inner periphery of the inner access connector and thus biases or causes the flexible seal to tend to seal against the inserted surgical robotic manipulator. The cavity also provides limited displacement of the flexible seal when pressurized from gases within the body cavity to further enhance the seal with or without a manipulator inserted there through.


The flexible seal disposed below the robotic insertion tube, e.g., the reduced portion of flexible includes a slit 152 to assist in insertion of a manipulator and sealing against the manipulator or in the absence of the manipulator. In various embodiments, the slit 152 is a single slit or a plurality of slits with one slit 153 orthogonal or angled from another slit 152 and positioned deeper or lower within the flexible seal than the other slit 152. The reduced portion of flexible seal also limits and thus predefines the amount of material the surgical robotic manipulator will encounter upon contact and insertion. With this predefined and constant amount, the forces needed by a surgical robotic manipulator to be inserted into and through the flexible seal can be predefined or determined to provide haptic or tactile feedback to the surgical robotic system to consistently identify when a surgical robotic manipulator has been inserted initially, partially and completely into the flexible seal, through the flexible seal or withdrawn from the flexible seal despite the geometry of the tips or distal end of the manipulator. In various embodiments, the distance or height 45 from the top or proximal end of the robotic insertion tube 50 to the inner surface 160 of the flexible seal 15 is greater than the maximum height 46 of the flexible seal 15. In various embodiments, the surgical robotic system includes a robotic sleeve surrounding and/or sealing or protecting the robotic manipulator. As such, this distance or height or difference in distance or height increases access for the robotic sleeve and enhances coupling of the robotic sleeve and freedom of movement of the robotic sleeve and the robotic insertion tube embedded in the flexible seal 15.


In various embodiments, the inner access connector has a distal or inner end 53 embedded in the flexible seal 15 and a proximal or outer end 52 that is not embedded in the flexible seal and thus is disposed outside, proximate or above the outer surface 159 of the flexible seal. The distal end of the inner access connector does not extend through the flexible seal and thus is disposed above or doesn't extend pass or through the inner surface 160 of the flexible seal. The flexible seal seals the opening through the inner access connector and the plurality of apertures around the inner access connector.


The flexible seal in various embodiments, as shown for example in FIGS. 1-12, is contained or attached to a ring 11 and in various embodiments an insufflation port 14, an evacuation port 12 or both are disposed there through and through the flexible seal to access the body cavity. As such, gas or fluid such as insufflation gas can be externally supplied via an inlet 141 of the insufflation port 14 from a gas source outside or external to the patient and the surgical robotic access system into the patient through an outlet 142 of the insufflation port while the flexible seal prevents any gas or fluid from escaping. Similarly, gas or fluid such as smoke may be extracted from within the patient through the inlet 122 of the evacuation port 12 and pulled out externally through an outlet 121 of the evacuation port 12 into an appropriate canister, suction or evacuation system to properly dispose of the potentially harmful or disruptive gas or fluid. In various embodiments, an outer portion or periphery of the flexible seal is coupled to the ring 11 and in one embodiment is molded to a plurality of apertures disposed along the periphery of the ring. In various embodiments, the ring 11 of the sealing cap includes a pivotably coupled latch 157 along with a stationary ledge or flange 156 to assist in removably coupling the sealing cap to the protector. In various embodiments, the ring and flexible seal are made of the same material and thus together form a monolithic structure.


In the illustrated embodiment, a raised portion 158 of the flexible seal surrounds the cavity 151 to further secure or reinforce the attachment of the robotic insertion tube to the flexible seal. In various embodiments, the raised portion is removed to provide the flexible seal a uniform height or thickness throughout the seal. In various embodiments, a center cavity 154 is disposed within the cavity 151 to further assist in the insertion of a manipulator and sealing against the manipulator or in the absence of the manipulator. As such, the center cavity provides another reduced layer of thickness or increased flexibility relative to the surrounding cavity 151 and the surrounding flexible seal, e.g., the raised portion of flexible seal or the material within the cavity or between the cavity and the edge or outer periphery of the sealing cap.


In various embodiments, the inner and outer access connectors 55, 58 of the robotic insertion tube 50 are separate components. In various embodiments the inner access connector remains fixed and unchanged while the outer access connector may be disconnected and replaced or interchanged with another outer access connector with a different robotic coupling interface. As such, in various embodiments, the inner access connector and the outer access connector include mating connections 51, 56 such as threading, snaps or the like to removably couple the outer and inner access connectors together. Accordingly, the outer access connector can be interchanged with other outer access connectors that provide the associated connection particular for a specific robotic manipulator and/or sleeve. For example, FIG. 16 illustrates an outer access connector 58′ similar to the outer access connector 58 but having apertures 60 to releasably connect to tabs or detents of a different robotic coupling interface of a different robotic sleeve. The apertures 60 do not extend into the lumen of the outer access connector thereby maintaining the seal integrity within the robotic insertion tube. Other portions of the outer access connector may also vary such as the seal on it outer surface along with different sizes and shapes to accommodate the varied coupling interface for other robotic sleeves. The different or varied robotic sleeves may be used for or to identify different robotic manipulators or other identifying indicia of the robotic manipulator operation, surgical robotic system or surgical procedure.


In cases where the outer access connector is permanently affixed to or not otherwise removable from the inner access connector to enhance stability of the robotic insertion tube, to interchange different outer access connectors or in particular different robotic coupling interfaces of the outer access connectors to accommodate different robotic sleeves, the entire sealing cap is replaceable with a different sealing cap. As such, a first sealing cap can include an inner access connector embedded in the flexible seal of the sealing cap with an outer access connector affixed to the inner access connector and a separate second sealing cap can include an inner access connector embedded in the flexible seal of the sealing cap with an outer access connector affixed to the inner access connector with this outer access connector having a different or specialized robotic coupling interface relative to the other robotic coupling interface of the outer access connector of the first sealing cap. As such, the first sealing cap can be interchanged with the second sealing cap as required for the corresponding needed robotic coupling interface. This can also be the case for access connectors that can be separated to provide alternative connections or quick changes if desired or required by the particular surgical or robotic system or procedure.


The outer access connector 58 in various embodiments provides a target area that is identifiable by the surgical robotic system to sense and/or locate for the insertion of a surgical robotic manipulator there through. In various embodiments, the outer access connector includes a robotic coupling interface configured to, engage, mate or sealingly mate with a corresponding robotic coupling interface of a robotic sleeve 500. In FIGS. 21-23, for example, the robotic coupling interface of the outer access connector includes a plurality of pins 59 and the robotic coupling interface of the robotic sleeve includes one or more slots 503 within a rotatable collar 502 to engage with the plurality of pins to form a bayonet like connection between the outer access connector and the robotic sleeve. In various embodiments, the robotic sleeve, the outer access connector or both includes a seal to seal the connection between the robotic sleeve and the robotic insertion tube. In one embodiment, the seal includes one or more compressible seals such as O-ring 57 disposed partially within one or more grooves in the outer surface of the outer access connector 58. In various embodiments, the robotic sleeve 500 is attached by a user to the outer access connector 58. The robotic manipulator, e.g., exemplary robotic instrument 504, is robotically controlled by a surgical robotic system autonomously or through assistance of a surgeon without a surgeon in direct contact or physically grasping the surgical robotic manipulator. In various embodiments, both the robotic sleeve and the robotic manipulators are robotically controlled. With the robotic sleeve 500 attached to the outer access connector 58, the surgical robotic system can identify or has a fixed or well-defined location of the surgical robotic access system and thus the opening in the patient. Additionally, the location is simplified by limiting the frame of reference relative to the patient. The surgical robotic manipulator can be maneuvered through the flexible robotic housing or tube 501 and collar 502 of the robotic sleeve 500 and into and through the surgical robotic access system without potential missteps as to the location of the opening of the patient.


In various embodiments, the outer access connector and inner access connector are integrated or locked together to form a single monolithic structure and/or made from the same material. In various embodiments, the outer access connector is adhered to the inner access connector. In various embodiments the outer access connector is removably coupled to the inner access connector, e.g., via snaps, tabs, pins, slots or other similar connections and as such the outer access connector can be removed if not needed or interchanged with another outer access connector with a different coupling interface as may be needed with a different robotic sleeve, manipulator or system. The robotic sleeve provides flexibility and/or protection to the surgical robotic manipulator extendable through and out the distal end of the sleeve. The outer access connector to the robotic sleeve connection ensures that the surgical robotic system remains connected to the surgical robotic access system and thus reduces or eliminates the need for the surgical robotic system to locate the opening in the patient or the surgical robotic access system.


The distal ends of the surgical robotic manipulator in various embodiments are removable and hot swappable with other distal ends of the surgical robotic manipulator that are arranged to preform specific surgical functions, such as stapling, electro-cautery, grasping, viewing, cutting and the like. In various embodiments, the outer access connector provides a fixed platform and seal for the robotic sleeve. The robotic sleeve remains static and in various embodiments the robotic coupling interface with the robotic sleeve and outer access connector also remains static. The surgical robotic manipulators can vary in shape and sizes and thus the inner access connector including the reduced or isolated flexible seal provides an adaptable yet static sealing arrangement to seal against the varied shapes and sizes of the surgical robotic manipulators or in the absence of a surgical robotic manipulator. The flexible seal also does not damage or disrupt the surgical robotic manipulator. The flexible seal surrounding the inner access connector also facilitates the seal with the opening in the body and allows freedom of movement of the outer access connector which facilitates the seal with or to robotic sleeve and manipulator and reduces potential damage to the robotic sleeve and/or manipulator due to off axis movements.


In various embodiments, a surgical robotic access system provides a double seal arrangement for a surgical robotic manipulator to be inserted there through or in the absence of a manipulator. The surgical robotic access system in various embodiments includes an outer access connector to removably attach to and seal with a robotic sleeve and an inner access connector to fixedly attach the outer and inner access connectors to a sealing cap attached to the patient and disposed over and sealing the opening in the patient. The flexible seal of the sealing cap in which the inner access connector is embedded or fixed allows freedom of movement of the outer and inner access connectors without adding stress or tension on the surgical robotic manipulator, robotic sleeve or the patient. The flexible seal within and/or below the inner access connector provides a seal for a surgical robotic manipulator to be inserted there through or in the absence of a manipulator inserted through the flexible seal. The reduced portion of the flexible seal defined and/or confined by the inner access connector provides a consistent density or consistency to provide a predefined or pre-known or predictable insertion force that may be used to generate haptic feedback or other similar sensor information to be recognized by the surgical robotics system to identify and/or simulate the insertion and withdrawal of the surgical robotic manipulator.


The sealing cap 5 of a surgical robotic access platform in various embodiments is incorporated with or removably attached to a retractor or protector 20 that provides retraction and/or protection of the incision or opening in the patient. In various embodiments, the retractor includes a sleeve, sheath or tube 22 extending between an inner ring 23 placed inside the patient and an outer ring 21 placed outside the patient. Both rings can be rigid, flexible or any combination thereof. The sheath is flexible and cylindrical. In various embodiments, the sheath has another shape, such as an oval or a more complex shape, is adjustable, is transparent or any combinations thereof. In various embodiments, the length of the sheath is adjustable by varying the location of the outer and inner rings or by gathering or winding portions of the sheath around the outer ring, the inner ring, an adaptor, other ring or the like and any combination thereof. In various embodiments, the sheath is non-adjustable defining a fixed length and diameter access channel. In various embodiments, the sheath includes one or more coatings such as a lubricious coating, anti-microbial coating or both. Examples of sealing caps, retractors and/or protectors are described in U.S. Patent Publication No. 2007/0088204 A1, the disclosure of which of incorporated by reference as if set forth in full herein. Examples of a flexible seal or material including gel material are described in U.S. patent application Ser. No. 10/381,220, filed Mar. 20, 2003, the disclosure of which is hereby incorporated by reference as if set forth in full herein.


In various embodiments, the sealing cap covers the proximal or outer portion of the retractor/protector. In various embodiments, the sealing cap provides additional access areas or portions. In the illustrated embodiment, the sealing cap includes a flexible seal or cover made of a flexible material, e.g., gel material, surrounding the robotic or central insertion tube and through which instruments may be inserted directly there through for additional access into the patient. In various embodiments, 12 mm and 5 mm removable access ports 38, 39 are provided for auxiliary surgical instruments or surgical robotic manipulators and are inserted around the robotic insertion tube. In various embodiments, the removable access ports comprise of a cannula with an attached or integrated seal assembly with an instrument seal, zero seal or both. The cannula in various embodiments having one or more support structures on the outer surface of the cannula to removably secure the removable access port to the flexible seal. In various embodiments, auxiliary surgical instruments are insertable directly through the flexible seal in portions around or adjacent the robotic insertion tube. The flexible seal provides a seal around or sealingly engages an outer surface of the surgical instruments as the instrument is inserted, utilized or withdrawn from the flexible seal around the inner access connector and a seal in various embodiments in the absence of a surgical instrument inserted in the flexible seal around the inner access connector.


The retractor/protector of a surgical robotic access platform provides a stable platform to connect the sealing cap to the patient. The stable platform allows movement of the robotic insertion tube without or reducing any additional movement or forces caused by any movement of the robotic insertion tube in the flexible seal. As such, the flexible seal reduces or dissociates movement of the flexible seal caused by movement of the robotic insertion tube relative to the rest of the sealing cap and the patient and the sealing cap attached to the retractor/protector further dissociates movement of the sealing cap on the patient caused by movement of the flexible seal of the sealing cap. The retractor/protector also atraumatically retracts the opening in the patient to increase range of access or mobility of the robotic manipulators and positions the tissue, around and through the opening, away from potential contact or trauma from the surgical robotic manipulators.


In various embodiments, an instrument shield or retractor shield 25 is provided to prevent or reduce potential damage to the retractor or protector and/or direct off-axis instruments towards the center or opening in the patient. In various embodiments, the sealing cap may be connected directly to the patient via sutures or adhesive and may be provided with or without the retractor, shield or both. In various embodiments, the surgical robotic access system provides access into a patient's body cavity for a 22 mm diameter surgical robotic manipulator. The surgical robotic access system provides a seal (zero-seal) when the robotic manipulator is not inserted through the surgical robotic access system. The surgical robotic access system also provides a seal (instrument seal) when the robotic manipulator is inserted through the surgical robotic access system. The seal prevents the loss or escape of fluids or gases. The surgical robotic access system in various embodiments also provides access for introducing or removing of gas or fluids such as insufflation gas, smoke or the like. The surgical robotic access system provides protection from distal tips of the robotic manipulator from damaging the surgical robotic access system. The surgical robotic access system in various embodiments provides auxiliary ports, e.g., a 5 mm, 12 mm or other dimensioned ports or access for similarly sized surgical instruments.


In various embodiments, as shown for example in FIGS. 24-25, a surgical robotic access system is provided in which a sealing cap includes protectors or shield leaves 31 to protect the flexible seal 15 attached to or integrated with a ring, cap or cover 11. In various embodiments, the protectors are embedded in the flexible seal below the robotic insertion tube 50 and inside the inner periphery of the sealing cap 5. In various embodiments, the protectors are positioned between the distal end of the robotic insertion tube and the inner surface of the flexible seal. The protectors are confined within the area or space adjacent to the robotic insertion tube to allow additional access through the surrounding flexible seal as well as to allow freedom of movement of the flexible seal unencumbered or obstructed by the protectors. The flexible seal in one embodiment is a gel material and in various embodiments an upper surface of the protectors are exposed within the lumen of the robotic insertion tube and a lower and/or side surfaces of the protectors are surrounded by or directly attached and embedded in the flexible seal.


The protectors in one embodiment are cast into the flexible seal to protect or reinforce the flexible seal or material from being torn or punctured by the tips of the surgical robotic manipulators in such a way to effectively disrupt or make ineffective the zero sealing or instrument sealing capabilities of the sealing cap In various embodiments the protectors are made out of a soft and durable material, such as LDPE, to provide a lubricious surface for the tips of the robot manipulators to ride against during insertion or withdrawal of the robot manipulators. In various embodiments, the protectors are made from a material different, more durable and rigid or any combination thereof than the material of the flexible seal. In various embodiments, the protectors 31 are a plurality of planar curved or angled plastic or fabric sheets. In various embodiments, two protector sheets, each identical and mirror images of each other, meet together at an edge and in various embodiments over a midline of flexible seal or above the slit. The protectors having one edge elevated above the edge at the midline of the flexible seal provide a tapered entry to facilitate movement of the protectors and to direct the inserted robotic manipulator towards the slit in the flexible seal. In various embodiments, the flexible seal or material directly under the protectors are correspondingly shaped and sized to accommodate the shape and size of the protectors.


In various embodiments, the robotic insertion tube 50 comprises an outer access connector 58 that includes a robotic coupling interface such as bayonet pins and in various embodiments an inner access connector 55 connected to the outer access connector with the inner access connector cast or molded into the flexible material and in various embodiments above the protectors. The outer access connector in various embodiments has an O-ring fitted around the outer periphery of the outer access connector to provide a seal with a mating end or robotic coupling interface of a surgical robotic sleeve. The outer access connector as such maintains a seal with the robotic sleeve even when the seal in the flexible seal is disrupted by the insertion of a robot manipulator.


In various embodiments, as shown for example in FIGS. 26-27, a double duckbill seal 41 is cast into the flexible seal 15 to provide an additional or separate zero seal or seal in absence of a surgical robotic manipulator. The duckbill seal in various embodiments is made of a material different from the material of the flexible seal 15. The duckbill seal is compressible by the surrounding flexible seal to further enhance the seal of the duckbill seal. In various embodiments, the duckbill seal does not extend through the flexible seal and instead is completely embedded in the flexible seal to further enhance the seal of the sealing cap and the duckbill seal. The protectors, illustrated in FIGS. 24-25, may be included and may proceed the duckbill seal.


In various embodiments, as shown for example in FIGS. 28-29, a surgical robotic access system is provided including robotic insertion tube 50 embedded in a flexible seal 15 of a sealing cap 5, 12 mm trocar or access port 71 with an additional stopcock 14 and a simplified/exemplified 5 mm auxiliary port 38. In various embodiments, the robotic insertion tube includes a duckbill seal 61 that provides a separate or additional zero seal for the robotic insertion tube. In the illustrated embodiment, the robotic insertion tube includes an evacuation and/or insufflation port 12 to remove or introduce gas, e.g., insufflation gas, to or from an external source through the robotic insertion tube and from or into the patient's body cavity. As such, the duckbill seal also provides a zero seal as gas or fluids are removed and/or introduced. In various embodiments the robotic insertion tube and the access ports are utilized together to increase triangulation manipulation or viewing for the surgical procedure.


In accordance with various embodiments, the dashed line 18 represents an exemplary incision size of the patient and in which the robotic insertion tube and the other ports are delimited or confined within. The dashed lines 24 represents or exemplifies the protector and its film or sheath that may be twisted prior to its insertion into the opening in the patient. The film twisted can further assist in sealing the opening of the patient. In various embodiments, the dashed lines 28 represent or exemplify the body wall and the sheath of the retractor retracting the opening in the patient to ease access into the patient. In the illustrated embodiments, one or more of the components are shown transparent or translucent to better show some of the underlying components or features otherwise hidden by the flexible seal or sealing cap or other portions thereof. In various embodiments, the dashed line 18 outlines or exemplifies a different consistency or flexibility of the flexible seal relative to the surrounding material and in various embodiments the flexible seal within the dashed line 18 is firm or more rigid relative to the surrounding material and thus moves or translates freely relative to the ring while the robotic insertion tube remains static relative to the flexible seal immediately surrounding the tube. The dashed lines 3, 5 generally represent or exemplify the upper and lower surfaces of the body wall of a patient. The dashed line 7 represents or exemplifies the mid-line or longitudinal axis of the surgical robotic access system and in various embodiments represents an initial incision or opening in the patient.


In the illustrated embodiments, it is exemplified that the sealing cap may have different sizes and dimensions along with the robotic insertion tube. The dimensions and sizes may be dictated or determined based on the surgical procedures or the surgical robotic system. Similarly, the shape and materials of the access system may vary to optimize the surgical site space or connectivity to the surgical robotic system. The robotic or central insertion tube although provided as a tube or cylindrical may be of varied shapes and dimensions such as hour-glass, frustoconical or the like to optimize the surgical site space or sealing engagement with surgical robotic instruments or the sealing cap.


In various embodiments, the surgical robotic access system provides a consistent outer access connector and seal for a robotic sleeve and a consistent inner access connector and seal for a surgical robotic manipulator. Throughout a surgical procedure, the surgical robotic manipulator may be interchanged with other surgical robotic manipulator each having differing or varying geometry and/or dimensions.


The above description is provided to enable any person skilled in the art to make and use the surgical robotic access system described herein and sets forth the best modes contemplated by the inventors of carrying out their inventions. Various modifications, however, will remain apparent to those skilled in the art. It is contemplated that these modifications are within the scope of the present disclosure. Different embodiments or aspects of such embodiments may be shown in various figures and described throughout the specification. However, it should be noted that although shown or described separately each embodiment and aspects thereof may be combined with one or more of the other embodiments and aspects thereof unless expressly stated otherwise. It is merely for easing readability of the specification that each combination is not expressly set forth. It is therefore also to be understood that the system or devices may be practiced otherwise than specifically described, including various changes in the size, shape and materials. Thus, embodiments described should be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A surgical robotic access system providing robotic manipulator access into a patient's body, the surgical robotic access system comprising: a sealing cap arranged to be disposed externally to a patient's body, the sealing cap including a flexible seal;a retractor comprising an outer ring removably connected to the sealing cap and an inner ring arranged to be positioned within a patient's body; anda robotic insertion tube comprising an outer access connector and an inner access connector, the outer access connector removably coupled to a robotic sleeve and the inner access connector embedded in the flexible seal of the sealing cap, the robotic insertion tube having a lumen extending through the outer access connector and the inner access connector and the flexible seal covering a portion of the lumen extending through the inner access connector and through which a surgical robotic manipulator insertable through the lumen is insertable through the flexible seal covering the portion of the lumen; wherein the retractor further comprises a sheath connecting the outer ring of the retractor to the inner ring of the retractor, the sheath having an adjustable length.
  • 2. The system of claim 1 wherein the inner access connector of the robotic insertion tube is embedded in the flexible seal to permanently affixed the inner access connector of the robotic insertion tube to the flexible seal.
  • 3. The system of claim 2 wherein the outer access connector of the robotic insertion tube is removably connected to the inner access connector of the robotic insertion tube.
  • 4. The system of claim 2 wherein the outer access connector of the robotic insertion tube includes a robotic coupling interface to sealingly engage a corresponding robotic coupling interface of the robotic sleeve.
  • 5. The system of claim 2 wherein the outer access connector of the robotic insertion tube includes a plurality of pins extending from an outer surface of the outer access connector of the robotic insertion tube and the robotic sleeve having at least one slot to engage at least one pin of the plurality of pins of the outer access connector to removably couple and sealingly engage the outer access connector of the robotic insertion tube to the robotic sleeve.
  • 6. The system of claim 5 wherein the outer access connector of the robotic insertion tube has a compressible seal disposed within a groove in an outer surface of the outer access connector of the robotic insertion tube, the compressible seal and the groove in the outer surface of the outer access connector are disposed above the plurality of pins of the outer access connector and the first robotic sleeve is arranged to be disposed externally to the patient's body.
  • 7. The system of claim 2 wherein the flexible seal surrounds the inner access connector of the robotic insertion tube and is disposed under the inner access connector of the robotic insertion tube.
  • 8. The system of claim 2 wherein the flexible seal has a first region with a first thickness surrounding the robotic insertion tube and a second region having a second thickness disposed under the inner access connector of the robotic insertion tube, the first thickness of the flexible seal being greater than the second thickness of the flexible seal to provide a predetermined insertion force.
  • 9. The system of claim 8 wherein the outer access connector of the robotic insertion tube has a seal on an outer surface of the outer access connector of the robotic insertion tube.
  • 10. The system of claim 9 wherein the outer access connector of the robotic insertion tube is removably coupled to the inner access connector of the robotic insertion tube.
  • 11. The system of claim 2 wherein the flexible seal is disposed along and around an outer surface of the inner access connector, the outer surface of the inner access connector extending between a proximal end of the inner access connector and a distal end of the inner access connector and the flexible seal having a resiliency allowing the inner access connector to pivot relative to the sealing cap.
  • 12. The system of claim 11 wherein the flexible seal has a cavity and a raised portion disposed around and surrounding the cavity, the inner access connector being disposed in the cavity of the flexible seal and the raised portion of the flexible seal being disposed surrounding the outer surface of the inner access connector.
  • 13. The system of claim 2 wherein the inner access connector has an outer diameter equal to an outer diameter of the outer access connector and the inner access connector comprises a distal base at a distal end of the inner access connector, the distal base having an outer diameter greater than the outer diameter of the outer access connector and the sealing cap further comprising a ring connected to the flexible seal and a distance between the ring and the inner access connector being greater than the outer diameter of the inner access connector.
  • 14. The system of claim 2 wherein the flexible seal is disposed above and below the distal end of the inner access connector, the flexible seal disposed above the distal end of the inner access connector having a thickness greater than a thickness of the flexible seal disposed below the distal end of the inner access connector.
  • 15. A surgical robotic access system providing robotic instrument access into a patient's body, the surgical robotic access system comprising: a sealing cap arranged to be disposed externally to a patient's body, the sealing cap including a flexible seal;a robotic insertion tube comprising: a first outer access connector and an inner access connector, the first outer access connector removably coupled to a first robotic sleeve through which a first robotic manipulator is insertable therethrough and the inner access connector is embedded in the flexible seal of the sealing cap to permanently affix the inner access connector to the flexible seal, anda second outer access connector removably coupled to a second robotic sleeve through which a second robotic manipulator is insertable therethrough, the first and second outer access connectors arranged to be removably coupled to the inner access connector of the robotic insertion tube in that the first and second outer access connectors are interchangeable with the inner access connector; wherein the first outer access connector includes a first robotic coupling interface to sealingly mate with a corresponding first robotic coupling interface of the first robotic sleeve and the second outer access connector includes a second robotic coupling interface to sealingly mate with a corresponding second robotic coupling interface of the second robotic sleeve, the first robotic coupling interface of the first outer access connector being different from the second robotic coupling interface of the second outer access connector.
  • 16. A surgical robotic access providing robotic instrument access into a patient's body, the surgical robotic access system comprising: a sealing cap arranged to be disposed externally to a patient's body, the sealing cap including a flexible seal;a robotic insertion tube comprising: a first outer access connector and an inner access connector, the first outer access connector removably coupled to a first robotic sleeve through which a first robotic manipulator is insertable therethrough and the inner access connector is embedded in the flexible seal of the sealing cap to permanently affix the inner access connector to the flexible seal, anda second outer access connector removably coupled to a second robotic sleeve through which a second robotic manipulator is insertable therethrough, the first and second outer access connectors arranged to be removably coupled to the inner access connector of the robotic insertion tube in that the first and second outer access connectors are interchangeable with the inner access connector; wherein the second outer access connector comprises a plurality of apertures disposed around a periphery of the second outer access connector, the plurality of apertures not extending into a lumen of the second outer access connector and the first robotic sleeve is arranged to be disposed externally to the patient's body.
  • 17. A surgical robotic access system providing robotic manipulator access into a patient's body, the surgical robotic access system comprising: a sealing cap arranged to be disposed externally to a patient's body, the sealing cap including a flexible seal;a retractor comprising an outer ring removably connected to the sealing cap and an inner ring arranged to be positioned within a patient's body; anda robotic insertion tube comprising an outer access connector and an inner access connector, the outer access connector removably coupled to a robotic sleeve and the inner access connector embedded in the flexible seal of the sealing cap, the robotic insertion tube having a lumen extending through the outer access connector and the inner access connector and the flexible seal covering a portion of the lumen extending through the inner access connector and through which a surgical robotic manipulator insertable through the lumen is insertable through the flexible seal covering the portion of the lumen; wherein the inner access connector comprises a plurality of apertures disposed around a periphery of the inner access connector at a distal portion of the inner access connector through which the flexible seal extends there through to hold the distal portion of the inner access connector in place and permanently affixed in the flexible seal.
  • 18. A surgical robotic access system providing robotic manipulator access into a patient's body, the surgical robotic access system comprising: a sealing cap arranged to be disposed externally to a patient's body, the sealing cap including a flexible seal;a retractor comprising an outer ring removably connected to the sealing cap and an inner ring arranged to be positioned within a patient's body; anda robotic insertion tube comprising an outer access connector and an inner access connector, the outer access connector removably coupled to a robotic sleeve and the inner access connector embedded in the flexible seal of the sealing cap, the robotic insertion tube having a lumen extending through the outer access connector and the inner access connector and the flexible seal covering a portion of the lumen extending through the inner access connector and through which a surgical robotic manipulator insertable through the lumen is insertable through the flexible seal covering the portion of the lumen; wherein the sealing cap further comprises a ring surrounding and connected to the flexible seal; a insufflation port disposed through the flexible seal and the ring, the insufflation port having an inlet disposed at a periphery of the ring and an outlet disposed below the flexible seal and arranged to supply insufflation gas into a patient; and an evacuation port disposed through the flexible seal and the ring, the evacuation port having an inlet disposed below the flexible seal and an outlet disposed at the periphery of the ring and arranged to extract smoke from a patient.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/219,042, filed Sep. 15, 2015, the entire disclosure of which is hereby incorporated by reference as if set forth in full herein.

US Referenced Citations (818)
Number Name Date Kind
558364 Doolittle Apr 1896 A
1157202 Bates et al. Oct 1915 A
1598284 Kinney Aug 1926 A
1690995 Pratt Nov 1928 A
1180466 Deutsch Jun 1931 A
1810466 Deutsch Jun 1931 A
2219564 Reyniers Oct 1940 A
2305289 Coburg Dec 1942 A
2478586 Krapp Aug 1949 A
2669991 Curutchet Feb 1954 A
2695608 Gibbon Nov 1954 A
2812758 Blumenschein Nov 1957 A
2835253 Borgeson May 1958 A
2853075 Hoffman et al. Sep 1958 A
3039468 Price Jun 1962 A
3057350 Cowley Oct 1962 A
3111943 Orndorff Nov 1963 A
3195934 Parrish Jul 1965 A
3244169 Baxter Apr 1966 A
3253594 Matthews et al. May 1966 A
3313299 Spademan Apr 1967 A
3329390 Hulsey Jul 1967 A
3332417 Blanford et al. Jul 1967 A
3347226 Harrower Oct 1967 A
3347227 Harrower Oct 1967 A
3397692 Creager, Jr. et al. Aug 1968 A
3402710 Paleschuck Sep 1968 A
3416520 Creager, Jr. Dec 1968 A
3447533 Spicer Jun 1969 A
3522800 Lesser Aug 1970 A
3523534 Nolan Aug 1970 A
3570475 Weinstein Mar 1971 A
3656485 Robertson Apr 1972 A
3685786 Woodson Aug 1972 A
3717151 Collett Feb 1973 A
3717883 Mosher Feb 1973 A
3729006 Wilder et al. Apr 1973 A
3729027 Bare Apr 1973 A
3782370 McDonald Jan 1974 A
3797478 Walsh et al. Mar 1974 A
3799166 Marsan Mar 1974 A
3807393 McDonald Apr 1974 A
3828764 Jones Aug 1974 A
3831583 Edmunds et al. Aug 1974 A
3841332 Treacle Oct 1974 A
3850172 Cazalis Nov 1974 A
3853126 Schulte Dec 1974 A
3853127 Spademan Dec 1974 A
3856021 McIntosh Dec 1974 A
3860274 Ledstrom et al. Jan 1975 A
3861416 Wichterle Jan 1975 A
3907389 Cox et al. Sep 1975 A
3915171 Shermeta Oct 1975 A
3965890 Gauthier Jun 1976 A
3970089 Saice Jul 1976 A
3996623 Kaster Dec 1976 A
4000739 Stevens Jan 1977 A
4016884 Kwan-Gett Apr 1977 A
4024872 Muldoon May 1977 A
4030500 Ronnquist Jun 1977 A
4043328 Cawood, Jr. et al. Aug 1977 A
4069913 Harrigan Jan 1978 A
4083370 Taylor Apr 1978 A
4096853 Weigand Jun 1978 A
4112932 Chiulli Sep 1978 A
4117847 Clayton Oct 1978 A
4130113 Graham Dec 1978 A
4177814 Knepshield et al. Dec 1979 A
4183357 Bentley et al. Jan 1980 A
4187849 Stim Feb 1980 A
4188945 Wenander Feb 1980 A
4217664 Faso Aug 1980 A
4222126 Boretos et al. Sep 1980 A
4228792 Rhys-Davies Oct 1980 A
4239036 Krieger Dec 1980 A
4240411 Hosono Dec 1980 A
4253201 Ross et al. Mar 1981 A
4254973 Banjamin Mar 1981 A
4306562 Osborne Dec 1981 A
4321915 Leighton Mar 1982 A
4331138 Jessen May 1982 A
4338934 Spademan Jul 1982 A
4338937 Lerman Jul 1982 A
4367728 Mutke Jan 1983 A
4369284 Chen Jan 1983 A
4399816 Spangler Aug 1983 A
4402683 Kopman Sep 1983 A
4411659 Jensen et al. Oct 1983 A
4421296 Stephens Dec 1983 A
4424833 Spector et al. Jan 1984 A
4428364 Bartolo Jan 1984 A
4430081 Timmermans Feb 1984 A
4434791 Darnell Mar 1984 A
4436519 O'Neill Mar 1984 A
4454873 Laufenberg et al. Jun 1984 A
4473067 Schiff Sep 1984 A
4475548 Muto Oct 1984 A
4485490 Akers et al. Dec 1984 A
4488877 Klein Dec 1984 A
4543088 Bootman et al. Sep 1985 A
4550713 Hyman Nov 1985 A
4553537 Rosenberg Nov 1985 A
4555242 Saudagar Nov 1985 A
4556996 Wallace Dec 1985 A
4601710 Moll Jul 1986 A
4610665 Matsumoto et al. Sep 1986 A
4626245 Weinstein Dec 1986 A
4634424 O'Boyle Jan 1987 A
4634432 Kocak Jan 1987 A
4644951 Bays Feb 1987 A
4649904 Krauter Mar 1987 A
4653476 Bonnet Mar 1987 A
4654030 Moll et al. Mar 1987 A
4655752 Honkanen et al. Apr 1987 A
4673393 Suzuki et al. Jun 1987 A
4673394 Fenton Jun 1987 A
4691942 Ford Sep 1987 A
4714749 Hughes et al. Dec 1987 A
4738666 Fuqua Apr 1988 A
4755170 Golden Jul 1988 A
4760933 Christner et al. Aug 1988 A
4776843 Martinez et al. Oct 1988 A
4777943 Chvapil Oct 1988 A
4784646 Feingold Nov 1988 A
4796629 Grayzel Jan 1989 A
4798594 Hillstead Jan 1989 A
4802694 Vargo Feb 1989 A
4808168 Warring Feb 1989 A
4809679 Shimonaka et al. Mar 1989 A
4828554 Griffin May 1989 A
4842931 Zook Jun 1989 A
4848575 Nakamura et al. Jul 1989 A
4856502 Ersfeld et al. Aug 1989 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4889107 Kaufman Dec 1989 A
4895565 Hillstead Jan 1990 A
4897081 Poirier Jan 1990 A
4903710 Jessamine et al. Feb 1990 A
4911974 Shimizu et al. Mar 1990 A
4915132 Hodge et al. Apr 1990 A
4926882 Lawrence May 1990 A
4929235 Merry et al. May 1990 A
4944732 Russo Jul 1990 A
4950222 Scott et al. Aug 1990 A
4950223 Silvanov Aug 1990 A
4984564 Yuen Jan 1991 A
4991593 LeVahn Feb 1991 A
4998538 Charowsky et al. Mar 1991 A
5000745 Guest et al. Mar 1991 A
5009224 Cole Apr 1991 A
5015228 Columbus et al. May 1991 A
5019101 Purkait et al. May 1991 A
5026366 Leckrone Jun 1991 A
5037379 Clayman et al. Aug 1991 A
5041095 Littrell Aug 1991 A
5045070 Grodecki et al. Sep 1991 A
D320658 Quigley et al. Oct 1991 S
5071411 Hillstead Dec 1991 A
5073169 Raiken Dec 1991 A
5074878 Bark et al. Dec 1991 A
5082005 Kaldany Jan 1992 A
5086763 Hathman Feb 1992 A
5092846 Nishijima et al. Mar 1992 A
5104389 Deem Apr 1992 A
5125396 Ray Jun 1992 A
5125897 Quinn et al. Jun 1992 A
5127626 Hilal et al. Jul 1992 A
5129885 Green et al. Jul 1992 A
5141498 Christian Aug 1992 A
5149327 Oshiyama Sep 1992 A
5156617 Reid Oct 1992 A
5158553 Berry et al. Oct 1992 A
5159921 Hoover Nov 1992 A
5161773 Tower Nov 1992 A
5167636 Clement Dec 1992 A
5167637 Okada et al. Dec 1992 A
5176648 Holmes et al. Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5178162 Bose Jan 1993 A
5180365 Ensminger et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5188595 Jacobi Feb 1993 A
5188607 Wu Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5197955 Stephens et al. Mar 1993 A
5207656 Kranys May 1993 A
5209737 Rirchart et al. May 1993 A
5211370 Powers May 1993 A
5211633 Stouder, Jr. May 1993 A
5213114 Bailey, Jr. May 1993 A
5226890 Ianniruberto et al. Jul 1993 A
5234455 Mulhollan Aug 1993 A
5241968 Slater Sep 1993 A
5242400 Blake, III et al. Sep 1993 A
5242409 Buelna Sep 1993 A
5242412 Blake, III et al. Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5248304 Vigdorchik et al. Sep 1993 A
5256150 Quiachon et al. Oct 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5261883 Hood et al. Nov 1993 A
5262468 Chen Nov 1993 A
5263922 Soya et al. Nov 1993 A
5269763 Boehmer et al. Dec 1993 A
5269772 Wilk Dec 1993 A
5273449 Mattis et al. Dec 1993 A
5273545 Hunt et al. Dec 1993 A
D343236 Quigley et al. Jan 1994 S
5279575 Sugarbaker Jan 1994 A
5290310 Makower et al. Mar 1994 A
D346022 Quigley et al. Apr 1994 S
5299582 Potts Apr 1994 A
5300034 Behnke Apr 1994 A
5300035 Clement Apr 1994 A
5300036 Mueller et al. Apr 1994 A
5308336 Hart et al. May 1994 A
5309896 Moll et al. May 1994 A
5312391 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5316541 Fischer May 1994 A
5320611 Bonutti et al. Jun 1994 A
5330437 Durman Jul 1994 A
5330486 Wilk Jul 1994 A
5330497 Freitas et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5334143 Carroll Aug 1994 A
5334646 Chen Aug 1994 A
5336192 Palestrant Aug 1994 A
5336708 Chen Aug 1994 A
5338313 Mollenauer et al. Aug 1994 A
5342315 Rowe et al. Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5350364 Stephens et al. Sep 1994 A
5353786 Wilk Oct 1994 A
5354280 Haber et al. Oct 1994 A
5360417 Gravener et al. Nov 1994 A
5364345 Lowery et al. Nov 1994 A
5364372 Danks et al. Nov 1994 A
5366446 Tal et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5368545 Schaller et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5380288 Hart et al. Jan 1995 A
5383861 Hempel et al. Jan 1995 A
5385552 Haber et al. Jan 1995 A
5385553 Hart et al. Jan 1995 A
5385560 Wulf Jan 1995 A
5389080 Yoon Feb 1995 A
5389081 Castro Feb 1995 A
5391153 Haber et al. Feb 1995 A
5391156 Hildwein et al. Feb 1995 A
5395367 Wilk Mar 1995 A
5403264 Wohlers et al. Apr 1995 A
5403336 Kieturakis et al. Apr 1995 A
5407433 Loomas Apr 1995 A
5411483 Loomas May 1995 A
5413571 Katsaros et al. May 1995 A
5423848 Washizuka et al. Jun 1995 A
5429609 Yoon Jul 1995 A
5431676 Durdal et al. Jul 1995 A
5437683 Neumann et al. Aug 1995 A
5439455 Kieturakis et al. Aug 1995 A
5441486 Yoon Aug 1995 A
5443452 Hart et al. Aug 1995 A
5456284 Ryan et al. Oct 1995 A
5460170 Hammerslag Oct 1995 A
5460616 Weinstein et al. Oct 1995 A
5468248 Chin et al. Nov 1995 A
5476475 Gadberry Dec 1995 A
5480410 Cuschieri et al. Jan 1996 A
5486426 McGee et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5492304 Smith et al. Feb 1996 A
5496280 Vandenbroek et al. Mar 1996 A
5503112 Luhman et al. Apr 1996 A
5507758 Thomason et al. Apr 1996 A
5508334 Chen Apr 1996 A
5511564 Wilk Apr 1996 A
5514109 Mollenauer et al. May 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5518278 Sampson May 1996 A
5520632 Leveen May 1996 A
5522791 Leyva Jun 1996 A
5522824 Ashby Jun 1996 A
5524644 Crook Jun 1996 A
5526536 Cartmill Jun 1996 A
5531758 Uschold et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5549563 Kronner Aug 1996 A
5549637 Crainich Aug 1996 A
5554124 Alvarado Sep 1996 A
5562632 Davila et al. Oct 1996 A
5562677 Hildwein et al. Oct 1996 A
5562688 Riza Oct 1996 A
5571115 Nicholas Nov 1996 A
5571137 Marlow et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577993 Zhu et al. Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5580344 Hasson Dec 1996 A
5584850 Hart et al. Dec 1996 A
5601579 Semertzides Feb 1997 A
5601581 Fogarty et al. Feb 1997 A
5603702 Smith et al. Feb 1997 A
5607443 Kieturakis et al. Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620420 Kriesel Apr 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5632284 Graether May 1997 A
5632979 Goldberg et al. May 1997 A
5634911 Hermann et al. Jun 1997 A
5634936 Linden et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5636645 Ou Jun 1997 A
5640977 Leahy et al. Jun 1997 A
5643301 Mollenauer Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5657963 Hinchliffe et al. Aug 1997 A
5658272 Hasson Aug 1997 A
5658306 Kieturakis Aug 1997 A
5662615 Blake, III Sep 1997 A
5672168 de la Torre et al. Sep 1997 A
5681341 Lunsford et al. Oct 1997 A
5683378 Christy Nov 1997 A
5685854 Green et al. Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697914 Brimhall Dec 1997 A
5707703 Rothrum et al. Jan 1998 A
5709664 Vandenbroek et al. Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5720730 Blake, III Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander et al. Apr 1998 A
5738628 Sierocuk et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741298 MacLeod Apr 1998 A
5743884 Hasson et al. Apr 1998 A
5749882 Hart et al. May 1998 A
5755660 Tyagi May 1998 A
5760117 Chen Jun 1998 A
5769783 Fowler Jun 1998 A
5782812 Hart et al. Jul 1998 A
5782817 Franzel et al. Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5788676 Yoon Aug 1998 A
5792119 Marx Aug 1998 A
5795290 Bridges Aug 1998 A
5803919 Hart et al. Sep 1998 A
5803921 Bonadio Sep 1998 A
5803923 Singh-Derewa et al. Sep 1998 A
5807350 Diaz Sep 1998 A
5810712 Dunn Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5814026 Yoon Sep 1998 A
5817062 Flom et al. Oct 1998 A
5819375 Kastner Oct 1998 A
5820555 Watkins, III et al. Oct 1998 A
5820600 Carlson et al. Oct 1998 A
5830191 Hildwein et al. Nov 1998 A
5832925 Rothrum Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5841298 Huang Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853395 Crook et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5865728 Moll et al. Feb 1999 A
5865729 Meehan et al. Feb 1999 A
5865807 Blake, III Feb 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5879368 Hoskin et al. Mar 1999 A
5882344 Strouder, Jr. Mar 1999 A
5884639 Chen Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5895377 Smith et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5913847 Yoon Jun 1999 A
5916198 Dillow Jun 1999 A
5916232 Hart Jun 1999 A
5919476 Fischer et al. Jul 1999 A
5931832 Jensen Aug 1999 A
5947922 MacLeod Sep 1999 A
5951467 Picha et al. Sep 1999 A
5951588 Moenning Sep 1999 A
5957888 Hinchiffe et al. Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5962572 Chen Oct 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5989232 Yoon Nov 1999 A
5989233 Yoon Nov 1999 A
5989266 Foster Nov 1999 A
5993471 Riza et al. Nov 1999 A
5993485 Beckers Nov 1999 A
5994450 Pearce Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6004303 Peterson Dec 1999 A
6010494 Schafer et al. Jan 2000 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6025067 Fay Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6035559 Freed et al. Mar 2000 A
6042573 Lucey Mar 2000 A
6045535 Ben Nun Apr 2000 A
6048309 Flom et al. Apr 2000 A
6050871 Chen Apr 2000 A
6053934 Andrews et al. Apr 2000 A
6059816 Moenning May 2000 A
6066117 Fox et al. May 2000 A
6068639 Fogarty et al. May 2000 A
6076560 Stahle et al. Jun 2000 A
6077288 Shimomura Jun 2000 A
6086603 Termin et al. Jul 2000 A
6090043 Austin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6123689 To et al. Sep 2000 A
6142935 Flom et al. Nov 2000 A
6142936 Beane et al. Nov 2000 A
6149642 Gerhart et al. Nov 2000 A
6150608 Wambeke et al. Nov 2000 A
6159182 Davis Dec 2000 A
6162172 Cosgrove et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6162206 Bindokas Dec 2000 A
6163949 Neuenschwander Dec 2000 A
6164279 Tweedle Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6183486 Snow et al. Feb 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6224612 Bates et al. May 2001 B1
6228063 Aboul-Hosn May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6254533 Fadem et al. Jul 2001 B1
6254534 Butler et al. Jul 2001 B1
6258065 Dennis et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6267751 Mangosong Jul 2001 B1
6276661 Laird Aug 2001 B1
6287280 Lampropoulos et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6322541 West Nov 2001 B2
6325384 Berry, Sr. et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6383162 Sugarbaker May 2002 B1
6391043 Moll et al. May 2002 B1
6413244 Bestetti et al. Jul 2002 B1
6413458 Pearce Jul 2002 B1
6420475 Chen Jul 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6482181 Racenet et al. Nov 2002 B1
6485435 Bakal Nov 2002 B1
6485467 Crook et al. Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6527787 Fogarty et al. Mar 2003 B1
6533734 Corley, III et al. Mar 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6552109 Chen Apr 2003 B1
6554793 Pauker et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6569120 Green May 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6579281 Palmer et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589211 MacLeod Jul 2003 B1
6607504 Haarala et al. Aug 2003 B2
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6627275 Chen Sep 2003 B1
6663598 Carrillo et al. Dec 2003 B1
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternström Jan 2004 B1
6702787 Racenet et al. Mar 2004 B2
6705989 Cuschieri et al. Mar 2004 B2
6706050 Giannadakis Mar 2004 B1
6714298 Ryer Mar 2004 B2
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6793621 Butler et al. Sep 2004 B2
6794440 Chen Sep 2004 B2
6796940 Bonadio et al. Sep 2004 B2
6797765 Pearce Sep 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6814700 Mueller et al. Nov 2004 B1
6817974 Cooper et al. Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6860463 Hartley Mar 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6866861 Luhman Mar 2005 B1
6867253 Chen Mar 2005 B1
6869393 Butler Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6895965 Scarberry et al. May 2005 B2
6902541 McNally et al. Jun 2005 B2
6902569 Parmer et al. Jun 2005 B2
6908430 Caldwell et al. Jun 2005 B2
6909220 Chen Jun 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6936037 Bubb et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6979324 Bybordi et al. Dec 2005 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056304 Bacher et al. Jun 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7067583 Chen Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7093599 Chen Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Liu et al. Sep 2006 B2
7105009 Johnson Sep 2006 B2
7105607 Chen Sep 2006 B2
7112185 Hart et al. Sep 2006 B2
7118528 Piskun Oct 2006 B1
7134929 Chen Nov 2006 B2
7153261 Wenchell Dec 2006 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7193002 Chen Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7222380 Chen May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7226484 Chen Jun 2007 B2
7235062 Brustad Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7244244 Racenet et al. Jul 2007 B2
7276075 Callas et al. Oct 2007 B1
7290367 Chen Nov 2007 B2
7294103 Bertolero et al. Nov 2007 B2
7297106 Yamada et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7338473 Campbell et al. Mar 2008 B2
7344546 Wulfman et al. Mar 2008 B2
7344547 Piskun Mar 2008 B2
7344568 Chen Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390317 Taylor et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7445597 Butler et al. Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7578832 Johnson Aug 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7661164 Chen Feb 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717847 Smith May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7727255 Taylor et al. Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7749415 Brustad et al. Jul 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7841765 Keller Nov 2010 B2
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7878974 Brustad et al. Feb 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7930782 Chen Apr 2011 B2
20010037053 Bonadio et al. Nov 2001 A1
20010047188 Bonadio et al. Nov 2001 A1
20020002324 McManus Jan 2002 A1
20020010389 Butler et al. Jan 2002 A1
20020013542 Bonadio et al. Jan 2002 A1
20020016607 Bonadio et al. Feb 2002 A1
20020026230 Moll et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020072762 Bonadio et al. Jun 2002 A1
20020111536 Cuschieri et al. Aug 2002 A1
20020147429 Cowan Oct 2002 A1
20030004253 Chen Jan 2003 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030028179 Piskun Feb 2003 A1
20030040711 Racenet et al. Feb 2003 A1
20030078478 Bonadio et al. Apr 2003 A1
20030139756 Brustad Jul 2003 A1
20030167040 Bacher et al. Sep 2003 A1
20030187376 Rambo Oct 2003 A1
20030192553 Rambo Oct 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040015185 Ewers et al. Jan 2004 A1
20040024363 Goldberg Feb 2004 A1
20040049099 Ewers et al. Mar 2004 A1
20040049100 Butler Mar 2004 A1
20040054353 Taylor Mar 2004 A1
20040063833 Chen Apr 2004 A1
20040068232 Hart et al. Apr 2004 A1
20040070187 Chen Apr 2004 A1
20040072942 Chen Apr 2004 A1
20040073090 Butler Apr 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040092796 Butler et al. May 2004 A1
20040093018 Johnson May 2004 A1
20040097793 Butler et al. May 2004 A1
20040106942 Taylor et al. Jun 2004 A1
20040111061 Curran Jun 2004 A1
20040127772 Ewers et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040143158 Hart et al. Jul 2004 A1
20040154624 Bonadio et al. Aug 2004 A1
20040167559 Taylor et al. Aug 2004 A1
20040173218 Yamada et al. Sep 2004 A1
20040215063 Bonadio et al. Oct 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243144 Bonadio et al. Dec 2004 A1
20040249248 Bonadio et al. Dec 2004 A1
20040254426 Wenchell Dec 2004 A1
20040260244 Piechowicz et al. Dec 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050033246 Ahlbert et al. Feb 2005 A1
20050059865 Kahle et al. Mar 2005 A1
20050065475 Hart et al. Mar 2005 A1
20050065543 Kahle et al. Mar 2005 A1
20050080319 Dinkler II et al. Apr 2005 A1
20050090713 Gozales et al. Apr 2005 A1
20050090716 Bonadio et al. Apr 2005 A1
20050090717 Bonadio et al. Apr 2005 A1
20050096695 Olich May 2005 A1
20050131349 Albrecht et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050155611 Vaugh et al. Jul 2005 A1
20050159647 Hart et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050197537 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209510 Bonadio et al. Sep 2005 A1
20050222582 Wenchell Oct 2005 A1
20050240082 Bonadio et al. Oct 2005 A1
20050241647 Nguyen Nov 2005 A1
20050251124 Zvuloni et al. Nov 2005 A1
20050251144 Wilson Nov 2005 A1
20050261720 Caldwell et al. Nov 2005 A1
20050267419 Smith Dec 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20050283050 Gundlapalli et al. Dec 2005 A1
20050288558 Ewers et al. Dec 2005 A1
20050288634 O'Heeron et al. Dec 2005 A1
20060020164 Butler et al. Jan 2006 A1
20060020241 Piskun et al. Jan 2006 A1
20060030755 Ewers et al. Feb 2006 A1
20060041270 Lenker Feb 2006 A1
20060047284 Gresham Mar 2006 A1
20060047293 Haberland et al. Mar 2006 A1
20060052669 Hart Mar 2006 A1
20060084842 Hart et al. Apr 2006 A1
20060106402 McLucas May 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh, II et al. Nov 2006 A1
20060258899 Gill et al. Nov 2006 A1
20060264706 Piskun Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070004968 Bonadio et al. Jan 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070088202 Albrecht et al. Apr 2007 A1
20070088204 Albrecht Apr 2007 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070149859 Albrecht Jun 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070156023 Frasier et al. Jul 2007 A1
20070185387 Albrecht et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070255219 Vaugh et al. Nov 2007 A1
20070270752 Labombard Nov 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097163 Butler et al. Apr 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080281161 Albrecht et al. Nov 2008 A1
20080281162 Albrecht et al. Nov 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090069837 Bonadio et al. Mar 2009 A1
20090093683 Richard et al. Apr 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090131754 Ewers et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090149714 Bonadio Jun 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182282 Okihisa Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090292176 Bonadio et al. Nov 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20100063362 Bonadio et al. Mar 2010 A1
20100063364 Bonadio et al. Mar 2010 A1
20100081880 Widenhouse et al. Apr 2010 A1
20100081881 Murray et al. Apr 2010 A1
20100081995 Widenhouse et al. Apr 2010 A1
20100100043 Racenet Apr 2010 A1
20100113882 Widenhouse et al. May 2010 A1
20100217087 Bonadio et al. Aug 2010 A1
20100228091 Widenhouse et al. Sep 2010 A1
20100228092 Ortiz et al. Sep 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249523 Spiegel et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100249525 Shelton, IV et al. Sep 2010 A1
20100249694 Choi et al. Sep 2010 A1
20100261972 Widenhouse et al. Oct 2010 A1
20100261975 Huey et al. Oct 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034935 Kleyman Feb 2011 A1
20110034946 Kleyman Feb 2011 A1
20110034947 Kleyman Feb 2011 A1
20110071462 Ewers et al. Mar 2011 A1
20110071463 Ewers et al. Mar 2011 A1
20110251466 Kleyman et al. Oct 2011 A1
20120095297 Dang et al. Apr 2012 A1
20140039268 Richard Feb 2014 A1
20140058205 Frederick Feb 2014 A1
20140163326 Forsell Jun 2014 A1
20140276437 Hart et al. Sep 2014 A1
Foreign Referenced Citations (132)
Number Date Country
26 05 148 Aug 1977 DE
33 36 279 Jan 1986 DE
37 39 532 Dec 1988 DE
37 37 121 May 1989 DE
296 00 939 Jun 1996 DE
19828099 Dec 1999 DE
0 113 520 Jul 1984 EP
0 142 262 May 1985 EP
0 517 248 Dec 1992 EP
0 537 768 Apr 1993 EP
0 807 416 Nov 1997 EP
0 849 517 Jun 1998 EP
0950376 Oct 1999 EP
1 118 657 Jul 2001 EP
1 125 552 Aug 2001 EP
1 312 318 May 2003 EP
1 407 715 Apr 2004 EP
2 044 889 Apr 2009 EP
1 948 047 Sep 2010 EP
2 272 449 Jan 2011 EP
2 272 450 Jan 2011 EP
2 340 792 Jul 2011 EP
1456623 Sep 1966 FR
1151993 May 1969 GB
1355611 Jun 1974 GB
1372491 Oct 1974 GB
1379772 Jan 1975 GB
1400808 Jul 1975 GB
1407023 Sep 1975 GB
1482857 Aug 1977 GB
1496696 Dec 1977 GB
2071502 Sep 1981 GB
2255019 Oct 1992 GB
2275420 Aug 1994 GB
2298906 Sep 1996 GB
930649 Sep 1993 IE
930650 Sep 1993 IE
S940150 Feb 1994 IE
S940613 Aug 1994 IE
S940960 Dec 1994 IE
S950055 Jan 1995 IE
S950266 Apr 1995 IE
S71634 Feb 1997 IE
S75368 Aug 1997 IE
S960196 Aug 1997 IE
S970810 Nov 1997 IE
991010 Jul 2000 IE
990218 Nov 2000 IE
990219 Nov 2000 IE
990220 Nov 2000 IE
990660 Feb 2001 IE
990795 Mar 2001 IE
10-108868 Apr 1998 JP
11-290327 Oct 1999 JP
2001-61850 Mar 2001 JP
2002-28163 Jan 2002 JP
02003 235879 Aug 2003 JP
2004-195037 Jul 2004 JP
1342485 Oct 1987 SU
WO 8606272 Nov 1986 WO
WO 8606316 Nov 1986 WO
WO 9211880 Jul 1992 WO
WO 9221292 Dec 1992 WO
WO 9305740 Apr 1993 WO
WO 9314801 Aug 1993 WO
WO 9404067 Mar 1994 WO
WO 9422357 Oct 1994 WO
WO 9505207 Feb 1995 WO
WO 9507056 Mar 1995 WO
WO 9522289 Aug 1995 WO
WO 9524864 Sep 1995 WO
WO 9527445 Oct 1995 WO
WO 9527468 Oct 1995 WO
WO 9636283 Nov 1996 WO
WO 9711642 Apr 1997 WO
WO 9732514 Sep 1997 WO
WO 9732515 Sep 1997 WO
WO 9742889 Nov 1997 WO
WO 9819853 May 1998 WO
WO 9835614 Aug 1998 WO
WO 9848724 Nov 1998 WO
WO 9903416 Jan 1999 WO
WO 9915068 Apr 1999 WO
WO 9916368 Apr 1999 WO
WO 9922804 May 1999 WO
WO 9925268 May 1999 WO
WO 9929250 Jun 1999 WO
WO 0032116 Jun 2000 WO
WO 0032117 Jun 2000 WO
WO 0032119 Jun 2000 WO
WO 0032120 Jun 2000 WO
WO 0035356 Jun 2000 WO
WO 0054675 Sep 2000 WO
WO 0054676 Sep 2000 WO
WO 0054677 Sep 2000 WO
WO 0108563 Feb 2001 WO
WO 0108581 Feb 2001 WO
WO 0126558 Apr 2001 WO
WO 0126559 Apr 2001 WO
WO 0145568 Jun 2001 WO
WO 0149363 Jul 2001 WO
WO 0191652 Dec 2001 WO
WO 0207611 Jan 2002 WO
WO 0217800 Mar 2002 WO
WO 0234108 May 2002 WO
WO 03011153 Feb 2003 WO
WO 03011551 Feb 2003 WO
WO 03026512 Apr 2003 WO
WO 03032819 Apr 2003 WO
WO 03034908 May 2003 WO
WO 03061480 Jul 2003 WO
WO 03077726 Sep 2003 WO
WO 03103548 Dec 2003 WO
WO 2004026153 Apr 2004 WO
WO 2004030547 Apr 2004 WO
WO 2004075730 Sep 2004 WO
WO 2004075741 Sep 2004 WO
WO 2004075930 Sep 2004 WO
WO 2005009257 Feb 2005 WO
WO 2005013803 Feb 2005 WO
WO 2005034766 Apr 2005 WO
WO 2005089661 Sep 2005 WO
WO 2006040748 Apr 2006 WO
WO 2006059318 Jun 2006 WO
WO 2006100658 Sep 2006 WO
WO 2007044849 Apr 2007 WO
WO 2008015566 Feb 2008 WO
WO 2008093313 Aug 2008 WO
WO 2008121294 Oct 2008 WO
WO 2010045253 Apr 2010 WO
WO 2010082722 Jul 2010 WO
WO 2010104259 Sep 2010 WO
Non-Patent Literature Citations (1)
Entry
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049740 titled “Surgical Robotic Access System”, dated Nov. 21, 2016, 11 pgs.
Related Publications (1)
Number Date Country
20170071629 A1 Mar 2017 US
Provisional Applications (1)
Number Date Country
62219042 Sep 2015 US