The invention generally relates to surgical slings and related methods. More particularly, in one embodiment, the invention relates to surgical slings, such as midurethral slings, that promote growth of collagenous tissue, such as scar tissue, in a well-organized manner.
Urinary incontinence affects over 13 million men and women of all ages in the United States. Stress urinary incontinence (SUI) affects primarily women and is generally caused by two conditions, intrinsic sphincter deficiency (ISD) and hypermobility. These conditions may occur independently or in combination. In ISD, the urinary sphincter valve, located within the urethra, fails to close properly (coapt), causing urine to leak out of the urethra during stressful activity. Hypermobility is a condition in which the pelvic floor is distended, weakened, or damaged, causing the bladder neck and proximal urethra to rotate and descend in response to increases in intra-abdominal pressure (e.g., due to sneezing, coughing, straining, etc.). The result is that there is an insufficient response time to promote urethral closure and, consequently, urine leakage and/or flow results. A popular treatment of SUI is the use of a sling, which is permanently placed under a patient's bladder neck or mid-urethra to provide a urethral platform. Placement of the sling limits the endopelvic fascia drop, while providing compression to the urethral sphincter to improve coaptation.
However, permanently placing the sling in a patient's periurethral tissues may cause complications necessitating further surgical intervention. For instance, changes in a patient's body weight and/or anatomy over the course of his/her life, may cause the sling to contact the patient's urethra, an undesirable side effect that may result in discomfort and more serious medical problems such as urethral erosion for the patient. As further examples, a patient with a sling permanently placed in her periurethral tissues may suffer vaginal mucosal erosion of the vaginal incision and/or permanent urinary retention. These complications also require further surgical intervention to resect the sling.
Due to deficiencies in the prior art, improved surgically implantable slings are needed.
The invention provides, in one embodiment, a surgically implantable sling (hereinafter a “surgical sling”) that includes a pharmaceutical agent (e.g., an agent or other therapeutic treatment) or mixture of pharmaceutical agents (hereinafter collectively an “agent”). According to one feature, the surgical sling is, at least in part, biodegradable, while the agent, by stimulating the patient's periurethral tissues, promotes collagenous tissue growth, such as scar tissue, in a well-organized manner surrounding the implanted sling. According to one aspect, when first placed in the patient's periurethral tissues, the biodegradable sling provides physical support to the patient's urethra. As the biodegradable sling degrades and gradually disappears over time, the patient's tissues form a sling, which includes collagenous tissue, such as scar tissue, formed as a result of stimulating the patient's local tissues with the agent. This endogenous/natural collagenous tissue sling provides the requisite support to assist in the correction of the patient anatomy of the local tissues and therefore maintaining continence. According to one feature, the invention reduces the need for a permanent sling, of the type provided by the prior art, by facilitating formation of the natural tissue sling.
In one aspect, the invention provides a surgical sling for treating urinary incontinence in a patient. The surgical sling includes a plurality of biocompatible fibers and an agent associated with a subset of the fibers. According to one feature, the agent promotes collagenous tissue growth, such as scar tissue, in a well-organized manner originating from the patient's tissues at the location of implantation.
In one configuration, a subset of the plurality of biocompatible fibers of the sling is biodegradable. According to another configuration, the agent includes a growth factor and a hormone, such as estrogen, for facilitating collagenous tissue growth, such as scar tissue. The agent may be, for example, chemically bonded to a subset of the biocompatible fibers, applied as a coating to a subset of the biocompatible fibers, and/or absorbed within the biocompatible fibers. Alternatively, a subset of the plurality of biocompatible fibers may be a blend of the agent and a polymer. The agent may be impregnated into the biocompatible fibers. In another configuration, a subset of the plurality of the biocompatible fibers define a plurality of openings in the surgical sling and a hydrogel containing the agent is applied to the plurality of openings in the sling. In other configurations, the agent may be associated with a subset of the biocompatible fibers and/or the surgical sling as a whole in any suitable manner.
According to another embodiment, the surgical sling includes a plurality of biocompatible and biodegradable fibers with certain surface properties that promote host tissue/cell attachment and further attract and/or promote host tissue growth. In one configuration, the surgical sling includes a plurality of surface properties such as channels to guide the growth of the collagenous tissue such as scar tissue at an anatomical implantation site in the body of the patient. Alternatively, the surgical sling may include one or more through holes for guiding the growth of the collagenous tissue.
In another aspect, the invention provides methods for treating urinary incontinence with a surgical sling according to the invention.
The foregoing and other objects, aspects, features, and advantages of the invention will be apparent from the following illustrative description.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating principles of the invention.
In general, the invention pertains to surgical slings, and related methods for implanting the surgical slings at an anatomical site in the body of a patient. According to one feature, the surgical slings and related methods of the invention promote beneficial tissue growth in the region of the implanted sling. According to one illustrative embodiment, the tissue is well organized collagenous tissue, such as scar tissue. The phrase “well organized” is intended to mean that the collagenous tissue growth is not completely random, but instead is in some fashion caused to have some observable organization, direction and/or structure. This organization or well-organized tissue may be either microscopic, such as the arrangement of collagen fibers, or macroscopic, such as a collection of smaller tissues formed into an organized bundle, or a combination of both micro- and macroscopic organization, direction, and/or structures.
The surgical slings of the invention, in various illustrative embodiments, enable a medical operator to control or affect collagenous tissue properties, such as the size, shape, mass, and/or density of the tissue. The formation of collagenous tissue is the natural response of the host body toward any foreign material, such as the surgical sling. As described in further detail below, according some features of the invention, by selecting properties, such as, the size, shape, texture and/or surface patterning of the sling, the medical operator can control or affect aspects of collagenous tissue formation. As also described below in further detail, according to other features of the invention, by selecting properties, such as the agent employed, agent concentration, and/or mode of associating the agent with the sling (e.g., chemically bonding the agent to a subset of the sling fibers, applying the agent as a coating to a subset of the sling fibers, absorbing the agent into sling fibers, blending the agent with the polymer used to form the sling fibers, impregnate the fibers with the agent and/or applying the agent to openings defined by the fibers in the sling.), the medical operator can further control or affect aspects of collagenous tissue formation.
It should be noted that although surgical slings for treating urinary incontinence are described in the illustrative embodiments, the invention may be employed, generally, with any suitable medical implant, specifically, with any surgical sling. For example, the sling may be a mesh.
According to various illustrative configurations, the surgical sling may be, for example, in the range of about 5 cm to about 50 cm in length, and about 0.5 cm to about 3 cm wide, though larger or smaller slings may be employed to suit the size of the patient and/or the application. The thickness of the surgical sling may be uniform over the entire sling, or the thickness may vary at one or more different locations. According to various illustrative embodiments, the thickness of the surgical sling ranges from about 0.01 cm to about 0.2 cm, and in one embodiment is about 0.08 cm.
The surgical sling of the invention may have any suitable size or shape configuration and may include any complimentary features. By way of example, the surgical sling may be rectangular or substantially rectangular, trapezoidal, hexagonal, octagonal or elliptical in shape, as may be suitable for its intended location at a particular anatomical site. The sling may also have a forked configuration at one or both ends. In some illustrative embodiments, the edges of the sling may be linear in nature (i.e., not tanged) or may have V-shaped projections or be frayed (i.e., tanged) at the edge. In certain illustrative embodiments, the surgical sling may have apertures, of any suitable shape and size, for example, round, square, diamond-shaped, or triangular. In other illustrative embodiments, at least one of the sides of the surgical sling is textured. The textured or irregular surface acts to enhance tissue growth into the sling and also aids in stabilization of the sling in the tissue through frictional forces. Without limitation, examples of various sling configurations that may be with illustrative embodiments of the invention are disclosed in U.S. Ser. No. 10/092,872, entitled “Medical slings,” U.S. Ser. No. 10/640,838, entitled “Medical implant,” U.S. Ser. No. 10/641,170, entitled “Medical slings,” and U.S. Ser. No. 10/641,192, entitled “Medical slings,” the entire contents of all of which are incorporated herein by reference.
According to another illustrative embodiment, the surgical sling of the invention includes a tensioning mechanism for limiting the stretchability of the surgical sling, aiding in the application of even tension along the length of the sling, and aiding in preventing the surgical sling from becoming misshapen. Such tensioning mechanism may be embedded in the sling material and/or may be made from resorbable or non-resorbable suture material. The tensioning device may be substantially linear or coiled. Examples of resorbable suture materials include, without limitation, polylactic acid (PLA), polyglycolic acid (PGA), and poly-L-lactic acid (PLLA). Examples of non-resorbable suture materials include, without limitation, polypropylene (PP) and polybutester. Without limitation, examples of tensioning mechanisms that may be employed with illustrative embodiments of the invention are disclosed in U.S. Pat. No. 6,666,817, entitled “Expandable surgical implants and methods of using them,” U.S. Pat. No. 6,669,706, entitled “Thin soft tissue surgical support mesh,” U.S. Pat. No. 6,375,662, entitled “Thin soft tissue surgical support mesh,” U.S. Pat. No. 6,042,592, entitled “Thin soft tissue surgical support mesh,” the entire contents of all of which are incorporated herein by reference.
According to other illustrative embodiments, the surgical sling of the invention may be employed as part of a sling assembly, including, for example, a sleeve for enclosing at least a portion of the surgical sling, and terminating in any suitable configuration or structure such as loops, apertures, male or female connectors, guide tubes, and the like. Additionally, the surgical sling of the invention may be employed with any suitable delivery system. Such delivery systems include, for example, those delivery systems configured for supra-pubic, pre-pubic, transvaginal, and/or transobturator procedures. Without limitation, examples of sling assemblies, delivery devices and implantation approaches that may employ illustrative embodiments of the invention are disclosed in U.S. Ser. No. 10/015,114, entitled “Devices for minimally invasive pelvic surgery,” U.S. Ser. No. 10/774,826, entitled “Devices for minimally invasive pelvic surgery,” U.S. Ser. No. 10/093,398, entitled “System for implanting an implant and method thereof,” U.S. Ser. No. 10/093,498, entitled “System for implanting an implant and method thereof,” U.S. Ser. No. 10/093,371, entitled “System for implanting an implant and method thereof,” U.S. Ser. No. 10/093,424, entitled “System for implanting an implant and method thereof,” U.S. Ser. No. 10/093,450, entitled “System for implanting an implant and method thereof,” U.S. Ser. No. 10/094,352, entitled “System for implanting an implant and method thereof,” U.S. Ser. No. 10/631,364, entitled “Bioabsorbable casing for surgical sling assembly,” U.S. Ser. No. 10/641,376, entitled “Spacer for sling delivery system,” U.S. Ser. No. 10/641,487, entitled “Systems, methods and devices relating to delivery of medical implants,” U.S. Ser. No. 10/642,395, entitled “Systems, methods and devices relating to delivery of medical implants,” U.S. Ser. No. 10/642,397, entitled “Systems, methods and devices relating to delivery of medical implants,” U.S. Ser. No. 10/832,653, entitled “Systems and methods for sling delivery and placement,” U.S. Provisional Application No. 60/569,300, entitled “Systems and methods for delivering a medical implant to an anatomical location in a patient,” and U.S. Provisional Application No. 60/508,600 entitled “Systems and methods for delivering a medical implant to an anatomical location in a patient,” the entire contents of all of which are incorporated herein by reference.
Turning to the illustrative drawings,
The fibers 104 of the sling 100 are made of a biocompatible material and may be, for example, knitted or weaved to form the sling 100. As used herein, the term “biocompatible” refers to a material that is substantially non-toxic and that does not induce a significantly adverse effect on the patient's health. According to the illustrative embodiment, at least a portion of the sling 100 is biodegradable. For example, in one illustrative embodiment, the fibers 104 are biodegradable. However, this need not be the case. By way of example, in other illustrative embodiments, only a section of the surgical sling 100, such as, for example, a mid-length section, is biodegradable. For example, in one embodiment, only a corresponding mid-length section of the fibers 104 are biodegradable. In some illustrative embodiments, the fibers 104 in the other sections of the surgical sling 100 are made of a non-bioabsorbable material. In some such embodiments, the biodegradable mid-length section has a length of about 1 mm to about 25 mm, about 5 mm to about 15 mm, or, most preferably, about 5 mm to about 10 mm. Exemplary biodegradable materials, in addition the listed above, that may be used in accordance with the invention include, but are not limited to, human dermis and decellularized animal tissue. Human tissues may be derived, for example, from human cadaveric or engineered human tissue. Animal tissues may be derived, for example, from porcine, ovine, bovine, and equine tissue sources. Additionally, exemplary biodegradable polymers that may be used in accordance with the invention include, but are not limited to, polylactic acid, polyglycolic acid and copolymers and mixtures thereof, such as poly(L-lactide) (PLLA), poly(D,L-lactide) (PLA), polyglycolic acid [polyglycolide (PGA)], poly(L-lactide-co-D,L-lactide) (PLLA/PLA), poly(L-lactide-co-glycolide) (PLLA/PGA), poly(D,L-lactide-co-glycolide) (PLA/PGA), poly(glycolide-co-trimethylene carbonate) (PGA/PTMC), poly(D,L-lactide-co-caprolactone) (PLA/PCL), and poly(glycolide-co-caprolactone) (PGA/PCL); polyethylene oxide (PEO); polydioxanone (PDS); polypropylene fumarate; polydepsipeptides, poly(ethyl glutamate-co-glutamic acid), poly(cert-butyloxy-carbonylmethyl glutamate); polycaprolactone (PCL), poly(hydroxy butyrate), polycaprolactone co-butylacrylate, polyhydroxybutyrate (PHBT) and copolymers of polyhydroxybutyrate; polyphosphazenes, poly(phosphate ester); maleic anhydride copolymers, polyiminocarbonates, poly[(97.5% dimethyl-trimethylene carbonate)-co-(2.5% trimethylene carbonate)], cyanoacrylate, hydroxypropylmethylcellulose; polysaccharides, such as hyaluronic acid, chitosan and regenerate cellulose; poly(amino acid) and proteins, such as gelatin and collagen; and mixtures and copolymers thereof. The sling material may also be made of a combination of mammalian tissue and synthetic material(s).
One illustrative agent 108 used in accordance with the invention promotes, when applied to the patient's tissues in a pharmaceutically acceptable amount, well-organized collagenous tissue growth, such as scar tissue growth, preferably, in large quantities. According to one feature, the agent 108 may or may not block or delay the biodegradability of the sling 100. This may be controlled by selecting different methods to load the agent onto the sling fibers. As mentioned above, the agent 108 may include a growth factor. The growth factor may include natural and/or recombinant proteins to stimulate a tissue response so that collagenous tissue such as scar tissue growth is enhanced. Exemplary growth factors that may be used in accordance with the invention to promote such tissue growth include, but are not limited to, platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor-beta (TGF-beta), vascular endothelium growth factor (VEGF), Activin/TGF and sex steroid, bone marrow growth factor, growth hormone, Insulin-like growth factor 1, and combinations thereof. The agent may also be a hormone, including but not limited to estrogen, steroid hormones, and other hormones to promote growth of appropriate collagenous tissue such as scar tissue. The agent may also include stem cells or other suitable cells derived from the host patient. These cells may be fibroblast, myoblast, or other progenitor cells to mature into appropriate tissues.
In various illustrative embodiment, the agent 108 may include one or more therapeutic agents. The therapeutic agents may be, for example, anti-inflammatory agents, including steroidal and non-steroidal anti-inflammatory agents, analgesic agents, including narcotic and non-narcotic analgesics, local anesthetic agents, antispasmodic agents, growth factors, gene-based therapeutic agents, and combinations thereof.
Exemplary steroidal anti-inflammatory therapeutic agents (glucocorticoids) include, but are not limited to, 21-acetoxyprefnenolone, aalclometasone, algestone, amicinonide, beclomethasone, betamethasone, budesonide, chloroprednisone, clobetasol, clobetasone, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, difluprednate, enoxolone, fluazacort, flucloronide, flumehtasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl, fluocortolone, fluorometholone, fluperolone acetate, fluprednidene acetate, fluprednisolone, flurandrenolide, fluticasone propionate, formocortal, halcinonide, halobetasol priopionate, halometasone, halopredone acetate, hydrocortamate, hydrocortisone, loteprednol etabonate, mazipredone, medrysone, meprednisone, methyolprednisolone, mometasone furoate, paramethasone, prednicarbate, prednisolone, prednisolone 25-diethylaminoacetate, prednisone sodium phosphate, prednisone, prednival, prednylidene, rimexolone, tixocortal, triamcinolone, triamcinolone acetonide, triamcinolone benetonide, triamcinolone hexacetonide, and pharmaceutically acceptable salts thereof.
Exemplary non-steroidal anti-inflammatory therapeutic agents include, but are not limited to, aminoarylcarboxylic acid derivatives such as enfenamic acid, etofenamate, flufenamic acid, isonixin, meclofenamic acid, mefanamic acid, niflumic acid, talniflumate, terofenamate and tolfenamic acid; arylacetic acid derivatives such as acemetacin, alclofenac, amfenac, bufexamac, cinmetacin, clopirac, diclofenac sodium, etodolac, felbinac, fenclofenac, fenclorac, fenclozic acid, fentiazac, glucametacin, ibufenac, indomethacin, isofezolac, isoxepac, lonazolac, metiazinic acid, oxametacine, proglumetacin, sulindac, tiaramide, tolmetin and zomepirac; arylbutyric acid derivatives such as bumadizon, butibufen, fenbufen and xenbucin; arylcarboxylic acids such as clidanac, ketorolac and tinoridine; arylpropionic acid derivatives such as alminoprofen, benoxaprofen, bucloxic acid; carprofen, fenoprofen, flunoxaprofen, flurbiprofen, ibuprofen, ibuproxam, indoprofen, ketoprofen, loxoprofen, miroprofen, naproxen, oxaprozin, piketoprofen, pirprofen, pranoprofen, protizinic acid, suprofen and tiaprofenic acid; pyrazoles such as difenamizole and epirizole; pyrazolones such as apazone, benzpiperylon, feprazone, mofebutazone, morazone, oxyphenbutazone, phenybutazone, pipebuzone, propyphenazone, ramifenazone, suxibuzone and thiazolinobutazone; salicylic acid derivatives such as acetaminosalol, aspirin, benorylate, bromosaligenin, calcium acetylsalicylate, diflunisal, etersalate, fendosal, gentisic acid, glycol salicylate, imidazole salicylate, lysine acetylsalicylate, mesalamine, morpholine salicylate, 1-naphthyl salicylate, olsalazine, parsalmide, phenyl acetylsalicylate, phenyl salicylate, salacetamide, salicylamine o-acetic acid, salicylsulfuric acid, salsalate and sulfasalazine; thiazinecarboxamides such as droxicam, isoxicam, piroxicam and tenoxicam; others such as ε-acetamidocaproic acid, s-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole and tenidap; and pharmaceutically acceptable salts thereof.
Exemplary narcotic analgesic therapeutic agents include, but are not limited to, alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, codeine methyl bromide, codeine phosphate, codeine sulfate, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydrocodeinone enol acetate, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, fentanyl, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levorphanol, lofentanil, meperidine, meptazinol, metazocine, methadone hydrochloride, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevorphanol, normethadone, normorphine, norpipanone, opium, oxycodone, oxymorphone, papaveretum, pentazocine, phenadoxone, phenazocine, pheoperidine, piminodine, piritramide, proheptazine, promedol, properidine, propiram, propoxyphene, rumifentanil, sufentanil, tilidine, and pharmaceutically acceptable salts thereof.
Exemplary non-narcotic analgesic agents that maybe combined with the sling 100 include, but are not limited to, aceclofenac, acetaminophen, acetaminosalol, acetanilide, acetylsalicylsalicylic acid, alclofenac, alminoprofen, aloxiprin, aluminum bis(acetylsalicylate), aminochlorthenoxazin, 2-amino-4-picoline, aminopropylon, aminopyrine, ammonium salicylate, amtolmetin guacil, antipyrine, antipyrine salicylate, antrafenine, apazone, aspirin, benorylate, benoxaprofen, benzpiperylon, benzydamine, bermoprofen, brofenac, p-bromoacetanilide, 5-bromosalicylic acid acetate, bucetin, bufexamac, bumadizon, butacetin, calcium acetylsalicylate, carbamazepine, carbiphene, carsalam, chloralantipyrine, chlorthenoxazin(e), choline salicylate, cinchophen, ciramadol, clometacin, cropropamide, crotethamide, dexoxadrol, difenamizole, diflunisal, dihydroxyaluminum acetylsalicylate, dipyrocetyl, dipyrone, emorfazone, enfenamic acid, epirizole, etersalate, ethenzamide, ethoxazene, etodolac, felbinac, fenoprofen, floctafenine, flufenamic acid, fluoresone, flupirtine, fluproquazone, flurbiprofen, fosfosal, gentisic acid, glafenine, ibufenac, imidazole salicylate, indomethacin, indoprofen, isofezolac, isoladol, isonixin, ketoprofen, ketorolac, p-lactophenetide, lefetamine, loxoprofen, lysine acetylsalicylate, magnesium acetylsalicylate, methotrimeprazine, metofoline, miroprofen, morazone, morpholine salicylate, naproxen, nefopam, nifenazone, 5′ nitro-2′ propoxyacetanilide, parsalmide, perisoxal, phenacetin, phenazopyridine hydrochloride, phenocoll, phenopyrazone, phenyl acetylsalicylate, phenyl salicylate, phenyramidol, pipebuzone, piperylone, prodilidine, propacetamol, propyphenazone, proxazole, quinine salicylate, ramifenazone, rimazolium metilsulfate, salacetamide, salicin, salicylamide, salicylamide o-acetic acid, salicylsulfuric acid, salsalte, salverine, simetride, sodium salicylate, sulfamipyrine, suprofen, talniflumate, tenoxicam, terofenamate, tetradrine, tinoridine, tolfenamic acid, tolpronine, tramadol, viminol, xenbucin, zomepirac, and pharmaceutically acceptable salts thereof.
Exemplary local anesthetic therapeutic agents include, but are not limited to, ambucaine, amolanone, amylocaine hydrochloride, benoxinate, benzocaine, betoxycaine, biphenamine, bupivacaine, butacaine, butaben, butanilicaine, butethamine, butoxycaine, carticaine, chloroprocaine hydrochloride, cocaethylene, cocaine, cyclomethycaine, dibucaine hydrochloride, dimethisoquin, dimethocaine, diperadon hydrochloride, dyclonine, ecgonidine, ecgonine, ethyl chloride, beta-eucaine, euprocin, fenalcomine, fomocaine, hexylcaine hydrochloride, hydroxytetracaine, isobutyl p-aminobenzoate, leucinocaine mesylate, levoxadrol, lidocaine, mepivacaine, meprylcaine, metabutoxycaine, methyl chloride, myrtecaine, naepaine, octacaine, orthocaine, oxethazaine, parethoxycaine, phenacaine hydrochloride, phenol, piperocaine, piridocaine, polidocanol, pramoxine, prilocaine, procaine, propanocaine, proparacaine, propipocaine, propoxycaine hydrochloride, pseudococaine, pyrrocaine, ropavacaine, salicyl alcohol, tetracaine hydrochloride, tolycaine, trimecaine, zolamine, and pharmaceutically acceptable salts thereof.
Exemplary antispasmodic therapeutic agents include, but are not limited to, alibendol, ambucetamide, aminopromazine, apoatropine, bevonium methyl sulfate, bietamiverine, butaverine, butropium bromide, n-butylscopolammonium bromide, caroverine, cimetropium bromide, cinnamedrine, clebopride, coniine hydrobromide, coniine hydrochloride, cyclonium iodide, difemerine, diisopromine, dioxaphetyl butyrate, diponium bromide, drofenine, emepronium bromide, ethaverine, feclemine, fenalamide, fenoverine, fenpiprane, fenpiverinium bromide, fentonium bromide, flavoxate, flopropione, gluconic acid, guaiactamine, hydramitrazine, hymecromone, leiopyrrole, mebeverine, moxaverine, nafiverine, octamylamine, octaverine, oxybutynin chloride, pentapiperide, phenamacide hydrochloride, phloroglucinol, pinaverium bromide, piperilate, pipoxolan hydrochloride, pramiverin, prifinium bromide, properidine, pmpivane, propyromazine, prozapine, racefemine, rociverine, spasmolytol, stilonium iodide, sultroponium, tiemonium iodide, tiquizium bromide, tiropramide, trepibutone, tricromyl, trifolium, trimebutine, n,n-ltrimethyl-3,3-diphenyl-propylamine, tropenzile, trospium chloride, xenytropium bromide, and pharmaceutically acceptable salts thereof.
Two particular therapeutic agents employed in various illustrative embodiments of the invention are: (a) ketorolac and pharmaceutically acceptable salts thereof (e.g., the tromethamine salt thereof, sold under the commercial trade name Toradol®) and (b) 4-diethylamino-2-butynylphenylcyclohexylglycolate and pharmaceutically acceptable salts thereof (e.g., 4-diethylamino-2-butynylphenylcyclohexylglycolate hydrochloride, also known as oxybutynin chloride, sold under the commercial trade name Ditropan®).
The agent 108, as described below, maybe associated with the sling 100 in a variety of manners. For example, referring again to
In another illustrative embodiment of the surgical sling 100, as depicted in
Referring again to
According to another illustrative embodiment, the invention employs surface patterning on the surgical sling 100, alone or in combination with the agent 108, to promote well-organized collagenous tissue growth. Referring to
As shown in
Referring now to
The sides 124 and/or 126 of the surgical sling 100 may, in other illustrative embodiments, include other patterns or designs to promote fibroblast proliferation, and the well-organized collagenous tissue growth. For example, the sides 124 and/or 126 may include texturing/roughening, such as, without limitation, one or more projections, depressions, rises, ridges, valleys, embossing, or combinations of any thereof. The texture may be formed by employing fibers 104 having various cross-sectional shapes, such as, circular, ovoid, square, rectangular, star, or irregular shapes. The surgical sling 100 may also includes portions having a varying thickness and/or width, which may be achieved, for example, by employing fibers 104 having varying diameters and/or by changing knit and/or weave density. Other patterns and designs may be formed on the sides 124 and 126 of the surgical sling 100 by any suitable approach.
In other illustrative embodiments, the invention provides methods for treating urinary incontinence. Generally, referring to
A natural tissue based sling 156, formed from the collagenous tissue 152, is left behind in the patient's periurethral tissues 144, adjacent the urethra 148. The natural tissue based sling 156 provides the requisite support to assist in maintaining continence. The natural tissue based sling 156 may be capable of adjusting itself to the anatomy of the patient's body changes without causing injury to the patient, such as increase in necessary length as the body gains additional weight.
Variations, modifications, and other implementations of what is described may be employed without departing from the spirit and the scope of the invention.
This application is a continuation of U.S. application Ser. No. 10/918,123, filed on Aug. 13, 2004, now U.S. Pat. No. 8,337,386, which claims the benefit of U.S. Provisional Application No. 60/495,439, filed on Aug. 14, 2003, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3565073 | Giesy | Feb 1971 | A |
3704712 | Giesy et al. | Dec 1972 | A |
3789828 | Schulte | Feb 1974 | A |
4798193 | Giesy et al. | Jan 1989 | A |
4824435 | Giesy et al. | Apr 1989 | A |
4872451 | Moore et al. | Oct 1989 | A |
4946467 | Ohi et al. | Aug 1990 | A |
4946468 | Li | Aug 1990 | A |
5002550 | Li | Mar 1991 | A |
5037429 | Hermes et al. | Aug 1991 | A |
5064435 | Porter | Nov 1991 | A |
5078730 | Li et al. | Jan 1992 | A |
5084058 | Li | Jan 1992 | A |
5087263 | Li | Feb 1992 | A |
5112344 | Petros | May 1992 | A |
5152749 | Giesy et al. | Oct 1992 | A |
5207679 | Li | May 1993 | A |
5250033 | Evans et al. | Oct 1993 | A |
5256150 | Quiachon et al. | Oct 1993 | A |
5334185 | Giesy et al. | Aug 1994 | A |
5342557 | Kennedy | Aug 1994 | A |
5368595 | Lewis | Nov 1994 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5395349 | Quiachon et al. | Mar 1995 | A |
5439467 | Benderev et al. | Aug 1995 | A |
5456722 | McLeod et al. | Oct 1995 | A |
5505735 | Li | Apr 1996 | A |
5540703 | Barker, Jr. et al. | Jul 1996 | A |
5611515 | Benderev et al. | Mar 1997 | A |
5645589 | Li | Jul 1997 | A |
5674285 | Quaid | Oct 1997 | A |
5683418 | Luscombe et al. | Nov 1997 | A |
5690649 | Li | Nov 1997 | A |
5702215 | Li | Dec 1997 | A |
5742943 | Chen | Apr 1998 | A |
5749884 | Benderev et al. | May 1998 | A |
5840011 | Landgrebe et al. | Nov 1998 | A |
5853745 | Darouiche | Dec 1998 | A |
5860993 | Thompson et al. | Jan 1999 | A |
5899906 | Schenk | May 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5934283 | Willem et al. | Aug 1999 | A |
5935122 | Fourkas et al. | Aug 1999 | A |
5954057 | Li | Sep 1999 | A |
6039686 | Kovac | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6042536 | Tihon et al. | Mar 2000 | A |
6042592 | Schmitt | Mar 2000 | A |
6050937 | Benderev | Apr 2000 | A |
6053935 | Brenneman et al. | Apr 2000 | A |
6096041 | Gellman et al. | Aug 2000 | A |
6099547 | Gellman et al. | Aug 2000 | A |
6110101 | Tihon et al. | Aug 2000 | A |
6147135 | Yuan et al. | Nov 2000 | A |
6197036 | Tripp et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6264676 | Gellman et al. | Jul 2001 | B1 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6306079 | Trabucco | Oct 2001 | B1 |
6319264 | Tormala et al. | Nov 2001 | B1 |
6375662 | Schmitt | Apr 2002 | B1 |
6382214 | Raz et al. | May 2002 | B1 |
6387041 | Harari et al. | May 2002 | B1 |
6406423 | Scetbon | Jun 2002 | B1 |
6423080 | Gellman et al. | Jul 2002 | B1 |
D466213 | Snitkin et al. | Nov 2002 | S |
6478727 | Scetbon | Nov 2002 | B2 |
6482645 | Atala | Nov 2002 | B2 |
6491703 | Ulmsten | Dec 2002 | B1 |
6494887 | Kaladelfos | Dec 2002 | B1 |
6530943 | Hoepffner et al. | Mar 2003 | B1 |
6548569 | Williams et al. | Apr 2003 | B1 |
6582443 | Cabak et al. | Jun 2003 | B2 |
6596001 | Stormby et al. | Jul 2003 | B2 |
6596002 | Therin et al. | Jul 2003 | B2 |
6599235 | Kovac | Jul 2003 | B2 |
6599524 | Li et al. | Jul 2003 | B2 |
6605097 | Lehe et al. | Aug 2003 | B1 |
6612977 | Staskin et al. | Sep 2003 | B2 |
6638209 | Landgrebe | Oct 2003 | B2 |
6638210 | Berger | Oct 2003 | B2 |
6638211 | Suslian et al. | Oct 2003 | B2 |
6641524 | Kovac | Nov 2003 | B2 |
6641525 | Rocheleau et al. | Nov 2003 | B2 |
6648921 | Anderson et al. | Nov 2003 | B2 |
6652450 | Neisz et al. | Nov 2003 | B2 |
6660301 | Vogel et al. | Dec 2003 | B1 |
6666817 | Li | Dec 2003 | B2 |
6669706 | Schmitt et al. | Dec 2003 | B2 |
6685629 | Therin | Feb 2004 | B2 |
6755781 | Gellman | Jun 2004 | B2 |
6802807 | Anderson et al. | Oct 2004 | B2 |
6830052 | Carter et al. | Dec 2004 | B2 |
7083568 | Neisz et al. | Aug 2006 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7198597 | Siegel et al. | Apr 2007 | B2 |
7267645 | Anderson et al. | Sep 2007 | B2 |
8337386 | Li et al. | Dec 2012 | B2 |
20020072694 | Snitkin et al. | Jun 2002 | A1 |
20020077526 | Kammerer et al. | Jun 2002 | A1 |
20020083820 | Greenhalgh | Jul 2002 | A1 |
20020103542 | Bilbo | Aug 2002 | A1 |
20020116025 | Haab | Aug 2002 | A1 |
20020128670 | Ulmsten et al. | Sep 2002 | A1 |
20020138025 | Gellman et al. | Sep 2002 | A1 |
20020147382 | Neisz et al. | Oct 2002 | A1 |
20020151910 | Gellman et al. | Oct 2002 | A1 |
20020151968 | Zilla et al. | Oct 2002 | A1 |
20020161382 | Neisz et al. | Oct 2002 | A1 |
20030004580 | Sump et al. | Jan 2003 | A1 |
20030010929 | Priewe et al. | Jan 2003 | A1 |
20030023135 | Ulmsten et al. | Jan 2003 | A1 |
20030028075 | Ulmsten et al. | Feb 2003 | A1 |
20030065246 | Inman et al. | Apr 2003 | A1 |
20030100954 | Schuldt-Hempe et al. | May 2003 | A1 |
20030130670 | Anderson et al. | Jul 2003 | A1 |
20030171644 | Anderson et al. | Sep 2003 | A1 |
20030176762 | Kammerer | Sep 2003 | A1 |
20030195386 | Thierfelder et al. | Oct 2003 | A1 |
20040006353 | Bosley et al. | Jan 2004 | A1 |
20040249240 | Goldmann et al. | Dec 2004 | A1 |
20050010748 | Osborn | Jan 2005 | A1 |
20050043820 | Browning | Feb 2005 | A1 |
20060205998 | Li et al. | Sep 2006 | A1 |
20140031610 | Li et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
0677297 | Dec 2000 | EP |
1225547 | Apr 1986 | SU |
1443873 | Dec 1988 | SU |
9606567 | Mar 1996 | WO |
9713465 | Apr 1997 | WO |
9834545 | Aug 1998 | WO |
9835632 | Aug 1998 | WO |
0074594 | Dec 2000 | WO |
022184 | Mar 2002 | WO |
0219945 | Mar 2002 | WO |
0230293 | Apr 2002 | WO |
0240242 | May 2002 | WO |
02058563 | Aug 2002 | WO |
03007847 | Jan 2003 | WO |
2005007019 | Jan 2005 | WO |
Entry |
---|
Bayer, et al, “A new approach to primary strengthening of colostomy with Marlex mesh to prevent paracolostomy hernia”, Surg Gynecol Obstet, vol. 163, No. 6, pp. 579-580, Dec. 1986. |
Delorme, “The transobdurator band: a minimmaly invasive procedure for treatment of urinary stress incontinence in women”, Progress in Urology, vol. 11, pp. 1306-1313, 2001. |
Fianu, et al, “Absorbable Polyglactin Mesh for Retropubic Sling Operation in Female Urinary Stress Incontinence”, Gynecol. Obstet. Invest., vol. 16, 1983, pp. 45-50. |
Giesy, et al, “Ureteral Instrumentation: A New System for Continued Access Via A Safety Guidewire”, Journal of Urology, No. 4, Part 2, p. 282A, 1988. |
Gittes, et al, “No-Incision Pubovaginal Suspension for Stress Incontinence”, Journal of Urology, vol. 138, No. 3, pp. 568-570, Sep. 1987. |
Haab, et al, “Feasibility of Outpatient Percutaneous Bladder Neck Suspension Under Local Anesthesia”, Urology vol. 50 No. 4, pp. 585-587, Oct. 1997. |
Hakim, et al, “Use of Biodegradable Mesh as a Transport for a Cultured Uroepithelial Graft: An Improved Method Using Collagen Gel”, Urology, vol. 44, No. 1, pp. 139-142, 1994. |
Jacquetin, “Utilisation du TVT dans la chirurgie de l'incontinence urinaire feminine”, J. Gynecol. Obstet Biol Reprod. 29, 242-47, 2000. |
Katz, “Developments in Medical Polymers for Biomaterials Applications”, Medical Device & Diagnostic Industry Magazine MDDI Article Index, Jan. 2001, http://www.devicelink.com/mddi/archive/01/01/003.html. |
Kersey, “The Gauze Hammock Sling Operation in the Treatment of Stress Incontinence”, British Journal of Obstetrics and Gynaecology, vol. 90, pp. 945-949, Oct. 1983. |
Kovac, et al, “Pubic Bone Suburethral Stabilization Sling for Recurrent Urinary Incontinence”, Obstetrics & Gynecology, vol. 89, No. 4, Apr. 1997, pp. 624-627, retrieved from http://journals.lww.com/greenjournal/Abstract/1997/04000/Pubic—Bone. |
Matapurkar, et al, “A New Technique of “Marlex-Peritoneal Sandwich” in the Repair of Large Incisional Herias”, World Journal of Surgery, vol. 15, No. 6, 768-770, 1991. |
Middleton, et al, “Synthetic Biodegradable Polymers as Medical Devices, Medical Plastics and Biomaterials Magazine”, MPB Article Index, Mar. 1998, http://www.devicelink.com/mpb/archive/98/03/002.html. |
Norris, et al, “Use of Synthetic Material in Sling Surgery: A Minimally Invasive Approach”, Journal of Endourology, vol. 10, Issue 3, pp. 227-230, Jun. 1996. |
Olsen, et al, “Urethral Reconstruction with a New Synthetic Absorbable Device: An Experimental Study”, Scand J. Urol Nephrol 26, pp. 323-326, 1992. |
Petros, “Ambulatory Surgery for Urinary Incontinence and Vaginal Prolapse”, Medical Journal of Australia, vol. 161, pp. 171-172, 1994. |
Petros, et al, “An Integral Theory and Its Method for the Diagnosis and Management of Female Urinary Incontinence”, Scandinavian Journal of Urology and Nephrology. Supplement vol. 153, pp. 1-93, 1993. |
Petros, et al, “Urethral Pressure Increase on Effort Originates from Within the Urethra, and Continence From Musculovaginal Closure”, Neurourology and Urodynamics, vol. 14, No. 4, pp. 337-346, 1995. |
Petros, “An Integral Theory of Bladder Neck Opening, Closure and Urinary incontinence in the Female”, International Journal of Gynecology & Obstetrics. XXIII World Congress of Gynaecology and Obstetrics (FIGO), 1991. |
Petros, “The Intravaginal Slingpasty Operation, a Minimally Invasive Technique for Cure of Urinary Incontinence in the Female”, Aust. NZ J Obstet Gynaecol, vol. 36, No. 4, pp. 453-461, 1996. |
Petros, “Medium-term Follow-up of the Intravaginal Slingplasty Operation Indicates Minimal Deterioration of Urinary Continence with Time”, Aust NZ J Obstet Gynaecol, vol. 39, No. 3, pp. 354-356, Aug. 1999. |
Raz, et al, “Vaginal Wall Sling”, The Journal of Urology, vol. 141, pp. 43-46, 1989. |
Raz, “Modified Bladder Neck Suspension for Female Stress Incontinence”, Urology, vol. 17, No. 1, pp. 82-85, Jan. 1981. |
Raz, et al, “Fascial Sling to Correct Male Neurogenic Sphincter Incompetence: The McGuire/Raz Approach”, Journal of Urology, vol. 139, No. 3, pp. 528-531, Mar. 1988. |
Starney, “Endoscopic Suspension of the Vesical Neck”, Stanton, Tanagho (eds.), Surgery of Female Incontinence, Springer-Verlag, Berlin, pp. 115-132, 1986. |
Starney, “Endoscopic Suspension of the Vesical Neck for Urinary Incontinence in Females”, Annals of Surgery, vol. 192, pp. 465-471, 1980. |
Starney, “Endoscopic Suspension of the Vesical Neck for Urinary Incontinence. Surgery”, Gynecology & Obstetrics, vol. 136, No. 4, pp. 547-554, 1973. |
Staskin, “Sling Surgery for the Treatment of Female”, Stress Incontinence, vol. 5 No. 1, pp. 106-122, 1991. |
Staskin, et al, “The Gore-tex sling procedure for female sphincteric incontinence: indications, technique, and results”, World J of Urol., vol. 15, No. 5, pp. 295-299, 1997. |
Sussman, et al, “The Raz Bladder Neck Suspension: Five-Year Experience”, The Journal of Urology, vol. 145, p. 223A, 1993. |
Ulmsten, et al, “A Multicenter Study of Tension-Free Vaginal Tape (TVT) for Surgical Treatment of Stress Urinary Incontinence”, Int Urogynecol J., vol. 9, No. 4, pp. 210-213, 1998. |
Ulmsten, et al, “A Three-Year Follow Up of Tension Free Vaginal Tape for Surgical Treatment of Female Stress Urinary Incontinence”, British Journal of Obstetrics and Gynaecology, vol. 106, pp. 345-350, 1999. |
Ulmsten, et al, “Intravaginal slingplasty”, Zentralbl Gynakol, vol. 116, pp. 398-404, 1994. |
Ulmsten, et al, “Surgery for female urinary incontinence”, Current Opinion in Obstetrics & Gynecology, vol. 4 No. 3, pp. 456-462, 1992. |
Ulmsten, “An Introduction to Tension-Free Vaginal Tape (TVT)—A New Surgical Procedure for Treatment of Female Urinary Incontinence”, Int Urogynecol J. Pelvic Floor Dysfunct. (Suppl 2), pp. S3-4, 2001. |
Ulmsten, “Connective Tissue Factors in the Aetiology of Female Pelvic Disorders”, Ann. Med, vol. 22, No. 6, pp. 403, Dec. 1990. |
Ulmsten, “The basic understanding and clinical results of tension-free vaginal tape for stress urinary incontinence”, Urology A, pp. 269-273, Jul. 2001. |
Ulmsten, et al, “An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence”, International Urogynecology Journal, vol. 7, No. 2, pp. 81-86, 1996. |
Ulmsten, et al, “Intravaginal Slingplasty (IVS): An Ambulatory Surgical Procedure for Treatment of Female Urinary Incontinence”, Scand J Urol Nephrol, vol. 29, No. 1, pp. 75-82, Mar. 1995. |
Zimmerman, et al, “Structural and Mechanical Factors Influencing Infarct Scar Collagen Organization”, Am. J. Physiol. Heart Circ. Physiol., 278: H194-H200, 2000. |
Non-Final Office Action for U.S. Appl. No. 14/036,856, mailed Nov. 14, 2013, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20130116498 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
60495439 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10918123 | Aug 2004 | US |
Child | 13724579 | US |