Surgical stapler having a powered handle

Information

  • Patent Grant
  • 11826046
  • Patent Number
    11,826,046
  • Date Filed
    Wednesday, February 2, 2022
    2 years ago
  • Date Issued
    Tuesday, November 28, 2023
    5 months ago
Abstract
A powered handle for a surgical stapler can have a drive system including an electric motor. The powered handle can include a manual articulation mechanism to articulate a jaw assembly coupled to a reload shaft connected to the handle. The manual articulation mechanism can include a ball screw mechanism that translates an articulation member responsive to rotation of an articulation knob. The articulation mechanism includes a release function that allows the jaw assembly to return to a longitudinally centered orientation. The powered handle includes a battery pack serving as a power supply for the drive system. A control system can control actuation of the motor based on user inputs and operating parameters of the stapler. The powered handle can include a manual return mechanism.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present application relates generally to surgical occlusion instruments and, more particularly, to powered surgical staplers.


Description of the Related Art

Surgical staplers are used to approximate or clamp tissue and to staple the clamped tissue together. As such, surgical staplers have mechanisms to ensure that tissue is properly positioned and captured and to drive staples through the tissue. As a result, this has produced, for example, multiple triggers and handles in conjunction with complex mechanisms to provide proper stapling of the clamped tissue. With these complex mechanisms, surgical staplers can have increased manufacturing burdens, as well as potential sources for device failure and confusion for the user. Thus, reliable stapling of clamped tissue without complex mechanisms is desired.


SUMMARY OF THE INVENTION

In certain embodiments, a powered handle for a surgical stapling system is provided herein. The powered handle can comprise a drive system powered by a power supply to selectively actuate an actuation adapter. The powered handle can comprise a manual articulation mechanism to selectively actuate an articulation adapter. The powered handle can further comprise a coupler having a bayonet coupling to simultaneously couple the articulation adapter and the actuation adapter to an articulation member and a drive member in a reload shaft.


In certain embodiments, the powered handle of the surgical stapling system comprises a control system to actuate the drive system responsive to user input from a movable trigger and a fire/return button on the powered handle. The control system can further vary an actuation profile of the drive system responsive to various operating parameters including the drive system operating torque, a longitudinal position of the actuation adapter, and identification of a jaw assembly length or configuration.


In certain embodiments, the powered handle of the surgical stapling system comprises a manual articulation system including a ball screw mechanism. The ball screw mechanism can allow continuous articulation of a jaw assembly of the stapling system within a predetermined articulation range. The ball screw mechanism can be biased to a longitudinally centered position and be rapidly centered through the use of a release mechanism.


In certain embodiments, a handle assembly for a surgical stapler is provided. The handle assembly comprises a handle body, an electric motor, an actuation shaft and a mechanical return mechanism. The handle body comprises a stationary handle and a trigger pivotably coupled to the handle body. The electric motor is disposed within the handle body. The actuation shaft is slidable within the handle body along a longitudinal axis and rotatable within the handle body about the longitudinal axis. The actuation shaft comprises a rack formed thereon. The actuation shaft is rotatable from a first position wherein the rack is operationally engaged with the electric motor to longitudinally slide the actuation shaft to a second position wherein the rack is disengaged from the electric motor and engaged with the manual return mechanism.


In certain embodiments, a handle assembly for a surgical stapler is provided. The handle assembly comprises a handle body, an electric motor, an actuation shaft, a motor gear, an auxiliary gear, a crown gear, a potentiometer, and a control system. The handle body comprising a stationary handle and a trigger pivotably coupled to the handle body. The electric motor is disposed within the handle body. The motor comprises an output shaft. The actuation shaft is slidable within the handle body along a longitudinal axis. The motor gear is coupled to the output shaft of the motor. The auxiliary gear is in driven engagement with the motor gear. The auxiliary gear is operatively engaged with the rack. The crown gear is mounted in the handle in meshed engagement with the motor gear. The potentiometer is coupled to the crown gear. The control system is electrically coupled to the trigger, the electric motor, and the potentiometer.


In certain embodiments, a handle assembly for a surgical stapler is provided. The handle assembly comprises a handle body, a power system, an actuation shaft, and an articulation mechanism. The handle body comprises a stationary handle and a trigger pivotably coupled to the handle body. The power system is within the handle body. The actuation shaft is operatively coupled to the power system. The actuation shaft is slidable within the handle body along a longitudinal axis. The articulation mechanism comprises a manually actuated articulation knob and an articulation adapter. The manually actuated articulation knob is positioned at a proximal end of the handle body and rotatable about the longitudinal axis. The articulation adapter is positioned at the distal end of the handle body. The articulation adapter is operatively coupled to the articulation knob such that rotation of the articulation knob about the longitudinal axis longitudinally slides the articulation adapter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of surgical stapling system having an embodiment of powered handle;



FIG. 2 is a side view of another embodiment of powered handle for the surgical stapling system of FIG. 1;



FIG. 2A is an exploded perspective view of the powered handle for the surgical stapling system of FIG. 2;



FIG. 3 is a partial cutaway perspective view of the powered handle of FIG. 2 with components removed to illustrate a drive system thereof;



FIG. 4 is a perspective view of an embodiment of drive system for the powered handle of FIG. 2;



FIG. 5 is a side view of an embodiment of drive system for the powered handle of FIG. 2;



FIG. 6 is a perspective view of an embodiment of power supply for the powered handle of FIG. 2;



FIG. 7 is a side view of the powered handle of FIG. 2 with the power supply in position for installation;



FIG. 8 is a perspective view of an embodiment of position indexing system for the powered handle of FIG. 2;



FIG. 9A is a perspective view of an embodiment of shaft coupler for the powered handle of FIG. 2 with an embodiment of shaft in a removed position;



FIG. 9B is a perspective view of an embodiment of shaft coupler for the powered handle of FIG. 2 with an embodiment of shaft in a partially inserted position;



FIG. 9C is a perspective view of an embodiment of shaft coupler for the powered handle of FIG. 2 with an embodiment of shaft in a fully inserted position;



FIG. 9D is a perspective view of an embodiment of shaft coupler for the powered handle of FIG. 2 with an embodiment of shaft in a retained position;



FIG. 10A is a cut-away side view of an embodiment of shaft coupler of FIG. 2 with an embodiment of shaft in a retained position;



FIG. 10B is a cut-away side view of an embodiment of shaft coupler of FIG. 2 with an embodiment of shaft in a latched position;



FIG. 11 is a cut-away side view of an embodiment of articulation mechanism of the powered handle of FIG. 2;



FIG. 12 is a perspective view of the articulation mechanism of FIG. 11 in an articulated position;



FIG. 13A is a cut-away side view of the articulation mechanism of FIG. 11;



FIG. 13B is a cut-away side view of the articulation mechanism of FIG. 11 with a release button depressed;



FIG. 13C is a cut-away side view of the articulation mechanism of FIG. 11 with the release button depressed and partially returned to a centered position;



FIG. 13D is a cut-away side view of the articulation mechanism of FIG. 11 with the release button depressed and returned to a centered position;



FIG. 13E is a cut-away side view of the articulation mechanism of FIG. 11 in the centered position with the release button partially released;



FIG. 13F is a cut-away side view of the articulation mechanism of FIG. 11 in the centered position;



FIG. 14 is a perspective view of an embodiment of manual return assembly for the powered handle of FIG. 2;



FIG. 15 is a perspective view of the manual return assembly of FIG. 14 with a decoupling mechanism actuated;



FIG. 16A is a side view of the manual return assembly of FIG. 14 with a return mechanism partially actuated;



FIG. 16B is a side view of the manual return assembly of FIG. 14 with the return mechanism actuated through a full return stroke;



FIG. 17 is a perspective view of an embodiment of manual return assembly for the powered handle of FIG. 2;



FIG. 18 is a perspective view of the manual return assembly of FIG. 17 with a decoupling mechanism actuated;



FIG. 19A is a side view of the manual return assembly of FIG. 17 with a return mechanism partially actuated;



FIG. 19B is a side view of the manual return assembly of FIG. 17 with the return mechanism actuated through a full return stroke;



FIG. 20 is a schematic diagram of information and power flow for an embodiment of control system for the powered handle of FIG. 2; and



FIG. 21 is an operational sequence flow chart for an exemplary operational sequence of the powered handle of FIG. 2.





DETAILED DESCRIPTION OF THE INVENTION

With reference to FIGS. 1-2, an embodiment of surgical stapling system is illustrated. The illustrated embodiment of surgical stapler 10 comprises an elongate shaft 20, a jaw assembly 30, and a handle assembly 40. FIG. 1 illustrates the surgical stapler 10 with the jaw assembly 30 in an open configuration with an embodiment of powered handle having powered staple firing and powered jaw assembly articulation. FIG. 2 illustrates another embodiment of a powered handle 40 of the surgical stapler system 10 with the elongate shaft removed. The powered handle 40 of FIG. 2 has powered staple firing and manual jaw assembly articulation. In the illustrated embodiments, the shaft 20 and jaw assembly 30 can be freely rotated about a longitudinal axis defined by the shaft 20 by rotation of a rotation knob on the handle 40. In other embodiments, the stapling system can be configured to allow rotation of the jaw assembly about the longitudinal axis within a predefined range or a rotationally fixed jaw assembly.


With continued reference to FIG. 1, the illustrated embodiment of surgical stapler 10 can be sized and configured for use in laparoscopic surgical procedures. For example, the elongate shaft 20 and jaw assembly 30 can be sized and configured to be introduced into a surgical field through an access port or trocar cannula. In some embodiments, the elongate shaft 20 and jaw assembly 30 can be sized and configured to be inserted through a trocar cannula having a relatively small working channel diameter, such as, for example, less than 8 mm. In other embodiments, elongate shaft 20 and jaw assembly 30 can be sized and configured to be inserted through a trocar cannula having a larger working channel diameter, such as, for example, 10 mm, 11 mm, 12 mm, or 15 mm. In other embodiments, it is contemplated that certain aspects of the surgical staplers described herein can be incorporated into a surgical stapling device for use in open surgical procedures.


With continued reference to FIG. 1, as illustrated, the elongate shaft 20 comprises a generally tubular member. The elongate shaft 20 extends from a proximal end to a distal end. The elongate shaft 20 defines a central longitudinal axis, L. of the surgical stapler 10 extending between the proximal end 22 and the distal end 24.


With continued reference to FIG. 1, in the illustrated embodiment, the jaw assembly 30 is coupled to the elongate shaft 20 at the distal end of the elongate shaft 20. The jaw assembly 30 comprises a first jaw 32 and a second jaw 34 pivotally coupled to the first jaw 32. In the illustrated embodiment, the first jaw 32 is fixed to the distal end 24 of elongate shaft 20 such that it extends distally along the central longitudinal axis, L and is articulable with respect to the elongate shaft 20 responsive to an articulation mechanism in the handle 40. In an initial configuration, the first jaw 32 includes a plurality of staples 36 disposed therein within a reload 50. In other embodiments, the reload 50 can be integrated with the jaw assembly 30 such that the entire shaft assembly 20 and jaw assembly 30 with loaded staples define a single reload assembly. In some embodiments, staples can be initially positioned in the second jaw 34.


With continued reference to FIG. 1, in the illustrated embodiment, the jaw assembly 30 can be actuated from an open configuration (FIG. 1) to a closed configuration to a stapling configuration by an drive member or beam that is longitudinally slideable within the elongate shaft. In an initial position, the beam can be positioned at the distal end 24 of the elongate shaft 20. With the beam in the initial position, the second jaw 34 is pivoted away from the first jaw 32 such that the jaw assembly 30 is in the open configuration. The actuation beam engages the second jaw 34 upon translation of the actuation member or beam distally along the longitudinal axis L. Translation of the actuation beam distally from the initial position a first distance can actuate the jaw assembly from the open configuration to the closed configuration. With the jaw assembly 30 in the closed configuration, the actuation beam can be returned proximally the first distance to return the jaw assembly 30 to the open configuration. A distal end of the actuation beam can advance a staple slider configured to deploy staples from the first jaw 32 such that further translation of the actuation beam distally past the first distance deploys the plurality of staples 36 from the reload 50 in the first jaw 32.


With continued reference to FIG. 1, in the illustrated embodiment, the handle assembly is coupled to the elongate shaft 20 at the proximal end of the elongate shaft 20. As illustrated, the handle assembly 40 has a pistol grip configuration with a housing defining a stationary handle 42 and a movable handle 44 or trigger pivotably coupled to the stationary handle 42. It is contemplated that in other embodiments, surgical stapler devices including aspects described herein can have handle assemblies with other configurations such as, for example, scissors-grip configurations, or in-line configurations. As further described in greater detail below, the handle assembly 40 houses a powered actuation mechanism configured to selectively advance an actuation shaft responsive to movement of the movable handle 44.


In the illustrated embodiment, the surgical stapler 10 can include the plurality of staples 36 positioned in a disposable cartridge reload 50 while the jaw assembly 30 is configured to be reused with multiple staple cartridge reloads 50 in a single procedure. In the some embodiments, the elongate shaft 20 and jaw assembly 30 define a disposable reload shaft that is removably couplable to the handle assembly 40. Accordingly, in the illustrated embodiment the handle assembly 40 includes a coupler 46 at the distal end thereof. The coupler 46 is adapted to engage the elongate shaft 20 of the surgical stapler 10 The coupler 46 can have a bayonet connection having an outer connector that can removably couple to handle assembly 42 the elongate shaft 20, and an inner connector that can removably couple the actuation shaft of the handle assembly 42 to the drive member of the elongate shaft 20. Accordingly, the surgical stapler 10 can be configured such that the handle assembly 40 can be reused with multiple reload shafts 20 during a surgical procedure. It is contemplated that in other embodiments, the handle assembly and some portion of the elongate shaft can be reusable while a remainder of the elongate shaft in the jaw assembly define a disposable cartridge. In certain other embodiments, the handle assembly and the elongate shaft can be reusable while the jaw assembly defines a disposable cartridge. In still other embodiments, a jaw insert housing a plurality of staples can define a disposable cartridge while the remainder of the surgical stapler is reusable.


With reference to FIG. 2, an embodiment of powered handle for a surgical stapling system is illustrated. The powered handle can be used with various shaft reloads and cartridges such that the shaft configuration, jaw assembly configuration, and staple configuration can be selected for a particular procedure. The illustrated embodiment of handle provides powered (motor-driven) clamping and opening of the jaws and firing of the staple line. Articulation of the jaw assembly can be manually controlled by an articulation knob that the operator rotates. The motor is controlled by an embedded control system that dictates functionality of the handle during different stages of use.


With continued reference to FIG. 2, the powered handle 40 comprises a pistol-grip configuration with a stationary handle 42 and a movable handle 44 or trigger pivotably coupled thereto. A power supply 130 or battery can be positioned on a lower surface of the stationary handle. The powered handle 40 can further comprise a user control such as a fire or fire/reverse button 150 to allow a user to selectively control a stapling sequence. The powered handle 40 can further comprise a redundant, manual return system 170 to allow a user to manually return the stapling system to an open configuration in the event of a powered system failure, control system failure, power supply failure, or “lockjaw” or other mechanical binding. The powered handle can further comprise a manual articulation mechanism including a rotatable articulation knob 190. In the illustrated embodiment, the articulation knob 190 is positioned on the proximal end of the powered handle and is rotatable about an axis generally corresponding to the longitudinal axis of the stapling system.


With reference to FIG. 2A, the powered handle of FIG. 2 is illustrated in an exploded assembly view. Various elements of the illustrated embodiment of powered handle further discussed herein are identified in the exploded assembly view.


With reference to FIG. 3, a partial cut-away view of the powered handle is illustrated with a shaft 20 positioned in the coupler 46 of the handle. In the illustrated cut-away view, several components of the powered handle have been removed to clearly depict a drive system of the powered handle. In the illustrated embodiment, the drive system comprises a motor 112 positioned within the stationary handle 42, a motor gear 114 positioned on an output shaft of the motor 112, and an auxiliary gear 116 in driven engagement with the motor gear 114. In some embodiments, the motor 112 is a brushed DC gearmotor. Advantageously, transmitting power through the auxiliary gear 116 can allow the motor 112 to be laterally centered within the stationary handle to enhance handle balance and user ergonomics. Furthermore, in some embodiments, the motor gear 114 and auxiliary gear 116 can be configured to provide a desired operational torque at the rack 122. In some embodiments, the motor 112 can include a multigear transmission operationally coupled between the motor 112 and the motor gear 114 coupled to the auxiliary gear 116 to provide the desired operational torque. The motor 112 can be electrically coupled to the power supply 130 via a control system. The control system within the handle interfaces with the drive system to measure the position of the actuation shaft 120 and therefore the actuation of the jaw assembly.


The drive system is mounted to hardware that provides information to a control system including a microprocessor within the handle. This embedded system can control the speed and torque of the motor. It can also control functionality of the device based on user inputs (movement of the trigger and pressing of the FIRE/REVERSE button) and position of the drive system. The control system also can measure feedback from the motor to determine whether loads are too high to continue firing staples, or whether a reload cartridge lockout has been activated. It will also measure battery life and can limit the number of firings of the device.


With respect to FIG. 20, a schematic flow diagram indicating data and power flow for an exemplary control system for a powered handle is illustrated. In the illustrated flow diagram, the control system comprises the illustrated microcontroller. In various embodiments, the microcontroller can comprise an application specific integrated circuit or a general purpose microprocessor running application specific firmware and/or software. As illustrated, the microcontroller receives power and data regarding battery status from the batteries in the power supply. The microcontroller further receives data from various mechanical hardware of the stapler such as a motor driver and current monitor, an actuation rack position sensing mechanism, and a shaft connection and type monitor. The microcontroller further receives data from a user via a trigger position sensor, pushbutton switches, and a bluetooth communications transceiver. The control system can output a control signal to actuate the drive system of the powered handle through a motor driver. The control system can also output certain operational parameter information to a memory module on the power supply, and can output certain data for user viewing through LED lights on the handle and the bluetooth communications transceiver.


In certain embodiments, the control system is also configured to further define operational parameters of the powered handle. For example, by querying a memory module on the power supply or on the control system itself, the control system can detect whether the powered handle has been used for more than a single procedure. In some embodiments, the stapling system is designed for use in a single procedure and is not designed for resterilization. Additionally, the control system can also query the memory modules on the power supply or the control system to detect a number of staple firings to assess whether sufficient battery power remains to complete an additional firing.


In certain embodiments, the control system is configured to detect tissue characteristics that can prevent staple firing. In some embodiments, the control system can monitor position, velocity, and supplied torque of the motor in the drive system. The control system can detect whether excessive torque is required to close the jaw assembly, if excess time is needed to close the jaw assembly, or if the jaws are closing at a low speed. These conditions may indicate that the tissue in the jaw assembly is too thick or too dense for the stapler to be effective. In certain embodiments, the control system can monitor the position of the actuation shaft with respect to time and evaluate this monitored position and time with respect to a baseline ‘zero load’ time reference position and time to assess the tissue characteristics such as thickness and density. In instances where the drive system exceeds predetermined operational parameters, the control system can indicate an error condition and stop a firing operation.


In some embodiments, the control system can provide user information over a bluetooth connection. The powered handle can include a low-power bluetooth transceiver to allow data regarding operational parameters such as battery status, number of remaining filings, and estimated tissue thickness to be displayed unobtrusively on a bluetooth-connected display.


With reference to FIG. 21, a schematic of an operational flow chart for an exemplary firing sequence of the control system is illustrated. As illustrated, the control system integrates user inputs from the trigger and firing button as well as hardware inputs from various sensors and monitors to advance the jaw assembly from a fully open condition to a fully closed condition to a firing sequence, then back to the fully open condition.


With reference to FIGS. 3-5, during powered operation, the auxiliary gear 116 is in meshed engagement with a rack 122 on an actuation shaft 120 extending longitudinally within the handle body. In the illustrated embodiment, the auxiliary gear is supported in a guide member through which the actuation shaft 120 slides. The guide member assists in maintaining meshed contact between the auxiliary gear and the rack 122. A distal end of the actuation shaft 120 is freely rotatably coupled to an actuation adapter 124 that extends longitudinally into the coupler 46 at the distal end of the powered handle.


With the shaft 20 coupled to the coupler 46 of the powered handle 40, the actuation adapter 124 connects to a drive member in the shaft 20 via a bayonet connection. Therefore, when the shaft 20 is attached to the handle 40, the motor 112 and rack 122 will drive a drive member 22 coupled to the jaw assembly. Thus, the drive system within the handle comprises a “rack and pinion” design. Operation of the motor 112 responsive to a user's input will drive the actuation shaft 120 longitudinally forward and reverse to selectively actuate the stapler in closing, firing, or opening operations.


With reference to FIGS. 6 and 7, an embodiment of power supply 130 for the powered handle 40 is illustrated. The power supply 130 can be configured to deliver direct current to the powered handle motor and control system. In the illustrated embodiment, the stapler can operate at 12 V. The illustrated power supply can comprise four 3V lithium-ion batteries 132 connected in series to produce a 12V power supply. As illustrated, the batteries 132 are stacked in a 4 by 1 configuration in a plastic housing 134 to form the battery pack. In other embodiments, other numbers and configurations of individual battery cells can be used to form the battery pack. For example, in certain embodiments, the battery pack can be comprised of AA, AAA, or another standard or purpose-built single use or rechargeable chemistry battery. In the illustrated embodiment of powered handle 40, the battery pack is located at the bottom of the stationary handle. Desirably, this positioning provides a stable surface to set the handle 40 on a flat surface. It is contemplated that in other embodiments, the power supply can be positioned elsewhere in the handle, such as at a proximal end thereof (see, for example, the embodiment of FIG. 1).


With continued reference to FIGS. 6 and 7, in some embodiments, the power supply 130 can be packaged with the handle 40 but will not be installed before use. At the time of use, the user can install the battery pack by inserting it into a battery cavity 136 located at the bottom of the handle 40. Advantageously, shipping the battery pack uninstalled can reduce an incidence of accidental battery discharge before use. Moreover, a removable battery pack can allow the stapler system be easily upgraded with a new battery as new battery technology becomes available. In other embodiments, the power supply can be packaged installed in the handle with a removable strip blocking electrical connection of the battery pack. In still other embodiments, the handle can be supplied with a power cable configured to be plugged into an AC or DC power source such as a wall socket, a USB connector, or another standard electrical connection.


In some embodiments, the power source further comprises a memory module such as a non-volatile memory that can store a digital record of the usage of the stapler. For example, the memory module can be configured to record details of each firing of the stapler including a periodic sampling of the battery voltage and motor current during firing, the sequence of states of the software state machine, any unexpected events that may have occurred, the shaft types that were used, the number of firings, the intervals between firings, and the model and serial number of the stapler handle. It can also record if the battery pack itself has been used so that users cannot reuse the battery pack.


In some embodiments, the powered handle 40 and associated power supply 130 can be configured for use in a single procedure and disposal following the procedure. The power supply 130 can include a power drain to reduce an opportunity for reuse. Following use in a surgical procedure, a user can remove the battery pack from the handle 40. Removing the battery pack from the handle 40 can initiate draining the batteries. For example, after the battery pack has been used once a mechanical feature that can short circuit the battery by connecting the terminals to a low value resistor or an electrical feature can accomplish the same task with a circuit. Additionally, if the battery pack is left in the handle 40 after the surgical procedure is complete, in some embodiments, the control system of the handle is programmed to disable functionality and drain the battery pack after a maximum time limit.


With reference to FIGS. 2 and 8, an embodiment of position sensor mechanism for use in the powered handle is illustrated. In operation, rotation of the motor gear 114 correspondingly rotates a crown gear 142 mounted in the handle 40. The crown gear 142 is coupled to a potentiometer such the position of the motor gear 114 and thus the actual position of the actuation rack can be determined based on the measuring changes in resistance at the potentiometer. In some embodiments, the potentiometer can be mounted on a circuit board 144 on which the control system can be positioned. While the illustrated embodiment includes a potentiometer-based position sensor mechanism, it is contemplated that in other embodiments, other position sensing mechanisms can be used, including, for example, use of a magnetic encoder with hall effect sensors, use of limit switches that activate when the actuation shaft has traveled a predetermined distance, use of optical systems such as photodiodes to measure travel of a pattern along the actuation shaft, or other position sensing systems.


With reference to FIG. 9A-9D, an operation sequence of engagement of a stapler shaft 20 with the coupler 46 of the handle is illustrated. In the illustrated embodiment, the reload shaft 20 to handle 40 connection comprises a bayonet style connection, in which a user axially aligns and inserts the reload shaft 20 into the handle 40 and rotates the reload shaft 20 approximately 90 degrees to connect. This bayonet connection operatively couples two mechanical functions of the reload shaft 20 to corresponding actuators of the handle 40. When the bayonet connection is fully coupled, an articulation member within the shaft 20 is coupled to an articulation adapter of the handle and a drive member within the shaft 20 is coupled to the actuation adapter. Furthermore, the handle 40 and shaft 20 can be configured with a latch mechanism at the coupler 46 to prevent a user from removing the shaft 20 once the actuation adapter and drive member has been activated. Moreover, the connection at the coupler 46 can include a reload identifying mechanism such that the control system of the handle can detect if a reload shaft is connected, and if so what the attached jaw length of the reload is. It is contemplated that the powered handle can be used with reload shafts 20 including different length jaw assemblies. For example, in some embodiments the same handle 40 can be used with either 45 mm or 60 mm length jaw assemblies. Thus, if the jaw assembly length is identified by the control system of the powered handle, the control system can direct a motor actuation profile for a firing stroke of the stapler corresponding to the identified length of the jaw assembly.


In FIG. 9A, the shaft 20 is positioned in alignment with the coupler 46 on the handle, and a release knob of the coupler 46 is withdrawn to expose a bayonet channel 152 of the coupler 46 on a rotation insert of the coupler 46. The shaft 20 can include a retention post 22 or boss positionable within the bayonet channel 152. In the illustrated embodiment, the shaft includes two bosses positioned 180 degrees apart on the outer surface thereof and the coupler 46 includes a corresponding two bayonet channels 152. It is contemplated that in other embodiments, other numbers and configurations of bosses and bayonet channels can be used to provide a desired connection strength and ease of alignment.


With reference to FIG. 9B, the retention post 22 of the shaft is positioned within the bayonet channel 152. With reference to FIG. 9C, the reload shaft 20 has been rotated 90 degrees relative to the handle such that the retention post 22 of the shaft has reached a connected end of the bayonet channel 152. With reference to FIG. 9D, the release knob of the coupler is released to allow a retention recess 154 on the release knob to retain the retention post 22 of the reload shaft 20.


With reference to FIGS. 10A-10B, a cut-away side view of the coupler 46 with a reload shaft 20 is illustrated. The retention post 22 of the shaft is positioned within the retention recess of the bayonet channel. The actuation adapter 124 is coupled with a drive member 26 extending longitudinally within the shaft 20. FIG. 10B illustrates a lock-in or retention mechanism that operates upon initial distal advancement of the actuation adapter 124. As illustrated, a locking member 24 is pivotably coupled to a proximal end of the shaft 20.


With continued reference to FIG. 10B, the locking member 24 can include a ramped or tapered lock surface at a proximal edge thereof. As illustrated in FIG. 10A, the shaft 20 is in a coupled, but unlocked configuration with respect to the coupler 46. In the coupled, unlocked configuration, the shaft 20 can be removed from the coupler 46 through the bayonet connection by a reverse of the sequence of operations of FIGS. 9A-9D. Once the actuation adapter 124 is advancing to operate the stapler, the actuation adapter 124 interacts with the ramped surface of the locking member 24 to advance the locking member radially outward into a locked position. In the locked position (FIG. 10B), the locking member 24 engages a locking ledge on the coupler 46 to lock in the shaft. With the shaft 20 locked in with respect to the handle 40, the shaft 20 cannot be removed from the handle 40 until the actuation adapter 124 has been returned to a fully proximally retracted position (typically corresponding to a return to a jaws open configuration following a full closure and stapling cycle of the jaw assembly).


Thus, the “lock In” feature prevents a user from removing the shaft from the handle once the drive member 26 has been driven forward. Once the locking member 24 is situated in the slot or ledge of a rotation insert of the coupler 46, a release knob of the coupler 46 is unable to be pulled back. This locking action on the coupler prevents the user from rotating the shaft 20 out of the bayonet connection of the coupler 46 once actuation of the stapler has begun.


With reference to FIGS. 11, 12, and 13A-13F, an embodiment of articulation mechanism for the powered handle 40 is illustrated. In the illustrated embodiment, the handle can articulate the jaw assembly at the distal end of the shaft up to 45° in a fully articulated position in either direction relative to a longitudinally centered position. In some embodiments, the powered handle uses a manual articulation mechanism including a series of components coupled to the manually actuated articulation knob 190 at the proximal end of the handle. In other embodiments, the manually actuated articulation knob and certain associated elements of the articulation mechanism can be positioned in other locations on the handle such as adjacent a distal end of the handle.


With reference to FIGS. 11 and 12, the articulation mechanism is coupled to an articulation member 206 extending longitudinally within the reload shaft when the reload shaft is coupled to the handle. Actuation of the articulation mechanism longitudinally translates the articulation member 206 proximally or distally relative to the shaft to articulate the jaw assembly at the distal end of the shaft.


With reference to FIG. 11, the articulation mechanism comprises a ball screw 192 having at least one helical groove or thread 195 in which one or more ball bearing 194 can ride. In the illustrated embodiment, the articulation mechanism comprises two ball bearings 194 that are engageable in two threads 195. The ball bearings 194 are positioned in ball bearing apertures 189 in a ball sleeve 191 positioned radially outwardly of the ball screw 192. The ball bearings 194 are maintained in the threads 195 by a release sleeve 196 positioned radially outward of the ball bearings 194. Rotation of the articulation knob 190, which is coupled to the ball sleeve 191 such as by connecting pins 193, rotates the ball sleeve 191 about an axis of rotation, causing the ball bearings 194 to travel within the threads 195 and correspondingly longitudinally translate the ball screw 192. Articulation of the jaw assembly is accomplished by rotating the articulation knob 190 to correspondingly rotate the ball sleeve 191 and the ball bearings 194 about the axis of rotation while their longitudinal position is fixed along the axis of rotation. The ball bearings 194, which are engaged in the threads 195 of the ball screw 192 will then translate the ball screw 192 forward and reverse along the axis of rotation. In the illustrated embodiment, the ball sleeve 191 is generally tubular, having a cavity formed therein, and a portion of the ball screw 192 is positioned within the cavity and translates longitudinally within the cavity. While the illustrated embodiment of articulation mechanism includes two ball bearings engageable threads in a ball screw, it is contemplated that in other embodiments, the articulation mechanism can have fewer or more than two ball bearings such as, for example, a single ball bearing positioned in a single helical screw or three or more ball bearings in a corresponding number of helical threads.


With reference to FIGS. 11 and 12, the ball screw 192 extends to a distal end 200 coupled to a pair of articulation links 202. The articulation links 202 are spaced apart from one another, which desirably allows them to be positioned radially outwardly of the drive system and actuation shaft within the handle. As illustrated in FIG. 12, the articulation links 202 can comprise a mating feature such as a slot formed therein to allow them to be keyed into a corresponding mating feature such as a post extending radially inwardly from the handle body. The slots can stabilize the articulation links relative to the handle and interaction of the handle posts with ends of the slots can define a range of articulation for the articulation mechanism. The distal ends of the articulation links 202 can be rotatably coupled to the articulation adapter 204, which can be positioned coaxially radially outwardly of the actuation adapter at the distal end of the handle. This rotational coupling can include an articulation bearing 205 having relatively low friction properties. This articulation bearing 205 can facilitate rotation of a coupled reload shaft relative to the handle assembly and longitudinal movement of the articulation adapter 204 during operation of the articulation mechanism. While the illustrated embodiment of articulation mechanism includes two articulation links laterally offset from the actuation mechanism within the handle, it is contemplated that in other embodiments, the articulation mechanism can have fewer or more than two articulation links such as, for example, an articulation link or three or more articulation links.


With continued reference to FIG. 12, the articulation adapter 204 can be connected to the articulation member 206 in the shaft by a bayonet connection when the shaft is coupled to the handle. The threads 195 can be configured such that moving the ball screw proximally will articulate the jaw assembly to the left when viewed from the handle relative to a longitudinally centered position and moving the ball screw 192 distally will articulate the jaw assembly to the right when viewed from the handle relative to the centered position.


Advantageously, since the helical threads 195 of the ball screw 192 are continuous, the articulation mechanism can allow the jaw assembly to be articulated to virtually infinite angular positions between a desired operational range. In some embodiments, the articulation mechanism can be configured to provide an articulation operational range from −45° to +45° of the jaw assembly relative to a longitudinally centered position defined by the longitudinal axis of the shaft. In other embodiments, the articulation mechanism can be configured to provide other operative articulation ranges including ranges providing more than +/−45° of articulation or those providing less than +/−45° of articulation. In some embodiments, the articulation mechanism can be configured to provide articulation in a single direction relative to a longitudinally centered position.


In some embodiments, the pitch of the threads 195 on the ball screw 192 is variable. For example, the threads 195 can include a relatively low pitch towards an end of the threads to advantageously provide a larger mechanical advantage when the jaw assembly can require more force to articulate. The threads 195 can include a relatively higher pitch towards a center of the threads to allow rapid movement with a relatively lower mechanical advantage where the jaw assembly can require a lower force to articulate. In other embodiments, the threads 195 include a constant pitch such that rotation of the articulation knob results in a proportional amount of articulation of a jaw assembly of the stapler that does not vary over the articulation range of the articulation mechanism. Desirably, such a constant pitch thread ball screw can result in an easily predictable response during operation of the actuation mechanism.


With reference to FIGS. 13A-13F, the articulation mechanism can comprise a release mechanism that allows the articulation mechanism to advantageously be reset to the longitudinally centered position from any articulated position. The release mechanism is operated by user pressing a release button 198. In the illustrated embodiment, the release button 198 is positioned radially nested within the articulation knob 190.


With reference to FIG. 13B, operation of the release button 198 will distally advance the release sleeve 196. A radially inner surface of the release sleeve 196 is stepped to include an engagement surface 186 having a relatively small inner diameter and a release surface 188 having a relatively larger inner diameter with a smooth ramp between the engagement surface and the release surface. In operation, the engagement surface of the release sleeve maintains the ball bearings 194 in the threads 195 of the ball screw 192. Once the release button 198 is pushed, the engagement surface is distally advanced, allowing the ball bearings 194 to disengage from the threads 195 and advance radially outward through the ball bearing apertures 189 in the ball sleeve against the release surface.


With reference to FIGS. 13C and 13D, with the ball bearings 194 disengaged from the threads 195, the articulation mechanism can be biased to a centered position. In some embodiments, the ball screw 192 is biased to a centered position by a biasing member such as two springs 197 and spring force from the shaft. The ball bearings 194 positioned in the centered position (FIG. 13D) along the threads 195 corresponds to a longitudinally centered position of the jaw assembly.


With reference to FIGS. 13E-13F, once the release button 198 is allowed to return to an undisturbed configuration, release sleeve 196 is retracted proximally (indicated by arrows 199) by a spring. Proximal movement of the release spring 196 forces the ball bearings 194 into engagement with the threads 195 of the ball screw. Thus, the articulation mechanism can then be used to articulate the jaw assembly from the longitudinally centered position, or the stapler can be used with the jaw assembly in the longitudinally centered position.


With reference to FIGS. 14, 15, and 16A-16B, an embodiment of manual return mechanism for the powered handle is illustrated. A manual return mechanism can advantageously provide a redundant return mechanism in the event of a power supply failure, other powered component failure, or mechanical failure or binding.


With reference to FIGS. 14 and 15, the manual return mechanism includes two separate, independently operable subassemblies that are operated in sequence to return the actuation shaft 120 to a proximal-most position within the handle, which corresponds to the open configuration of the jaw assembly. As illustrated, the manual return mechanism 170 comprises a shaft rotation mechanism and a shaft retraction mechanism. In operation, when it is desirable to manually return the stapler to the open configuration, the shaft rotation mechanism is initially operated.


With reference to FIGS. 14 and 15, to operate the shaft rotation mechanism of the manual return mechanism 170, a user pulls a disengagement tab 172 positioned on an outer surface of the handle. The disengagement tab 172 has a disengagement rack 174 formed thereon. The disengagement rack 174 is in meshed engagement with a shaft rotation rack 176 formed on a shaft rotation collar 176. The actuation shaft 120 extends through the shaft rotation collar 176 and is slideable therethrough. Thus pulling the disengagement tab 172 rotates the actuation shaft 120 approximately 90 degrees about the longitudinal axis thereof. This rotation positions the rack 122 of the actuation shaft out of engagement with the auxiliary gear 116 of the drive system. Moreover, in some embodiments, removal of the disengagement tab 172 from the handle can also disengage the power supply from the drive system or otherwise disengage the control system to prevent further powered operation of the powered handle. Additionally, the shaft rotation mechanism can be configured to be operated a single time only. For example, in the illustrated embodiment a return pawl 182 on the shaft retraction mechanism can comprise an interference lobe 183 sized and configured to interfere with the drive system to prevent closure of the return lever and rotation of the actuation shaft 120 back into engagement with the auxiliary gear once the shaft rotation disengagement tab 172 has been pulled. Thus, once the shaft rotation mechanism has been operated, the handle can be disabled from further use.


With reference to FIGS. 15 and 16A-16B, once the shaft rotation mechanism has been operated, the shaft retraction mechanism can be operated to return the actuation shaft proximally within the handle. Removal of the disengagement tab 172 from the handle exposes a return lever 180 on the powered handle. The return lever 180 is pivotably coupled to a return pawl 182 at a pivot joint 184. When the rack 122 of the actuation shaft 120 was rotated out of engagement with the drive system, it was rotated into engagement with the shaft retraction mechanism. The return lever 180 can be rotated through one or a series of return cycles (FIGS. 16A, 16B) to engage the return pawl 182 with the rack 122 on the actuation shaft 120 and retract the actuation shaft 120 proximally within the handle in a ratchet-type operation.


With reference to FIGS. 17, 18, and 19A-19B, another embodiment of manual return mechanism for the powered handle is illustrated. The components and operation of the manual return mechanism 170′ are similar to that described above with respect to the manual return mechanism 170 of FIGS. 14, 15, and 16A-16B. However, in use of the manual return mechanism 170′, removal of a disengagement tab 172′ from the handle assembly exposes a shaft rotation collar 176′ having a rotation lever 178′ protruding therefrom. With the handle assembly in powered operation, the disengagement tab 172′ covers the shaft rotation collar 176′ on an outer surface of the handle. Once the disengagement tab has been removed, a user can then manipulate the rotation lever 178′ to rotate the actuation shaft 120 such that the shaft retraction mechanism can be operated to return the actuation shaft proximally within the handle. The shaft retraction mechanism of the manual return mechanism 170′ includes the same ratchet-type operation as that discussed above with respect to the manual return mechanism 170. Desirably, in some handle configurations, the rotation lever 178′ can provide enhanced mechanical advantage to facilitate rotation of the actuation shaft as compared to the shaft rotation mechanism including a disengagement rack 174 of FIGS. 15, 15, and 16A-16B.


Although this application discloses certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Further, the various features of these inventions can be used alone, or in combination with other features of these inventions other than as expressly described above. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.

Claims
  • 1. A handle assembly for a surgical stapler, the handle assembly comprising: a handle body comprising a stationary handle and a trigger pivotably coupled to the handle body;an electric motor disposed within the handle body, the motor comprising an output shaft;an actuation shaft slidable within the handle body along a longitudinal axis;a motor gear coupled to the output shaft of the motor;an auxiliary gear in driven engagement with the motor gear and operatively engaged with the actuation shaft;a crown gear mounted in the handle in meshed engagement with the motor gear;a potentiometer coupled to the crown gear; anda control system electrically coupled to the trigger, the electric motor, and the potentiometer, the control system configured to control the speed and torque of the electric motor.
  • 2. The handle assembly of claim 1, wherein the control system is configured to measure a longitudinal position of the actuation shaft.
  • 3. The handle assembly of claim 2, wherein the control system measures changes of resistance at the potentiometer to determine a position of the actuation shaft.
  • 4. The handle assembly of claim 1, further comprising a circuit board, and wherein the potentiometer and the control system are mounted on the circuit board.
  • 5. The handle assembly of claim 1, wherein the actuation shaft comprises a rack extending longitudinally thereon and wherein the auxiliary gear is in meshed engagement with the rack.
  • 6. The handle assembly of claim 5, further comprising a guide member through which the actuation shaft slides, and wherein the auxiliary gear is supported in the guide member.
  • 7. The handle assembly of claim 1, further comprising a manual return system selectively operable to disengage the auxiliary gear from the actuation shaft and return the actuation shaft proximally within the handle body.
  • 8. The handle assembly of claim 1, further comprising a manual articulation mechanism.
  • 9. The handle assembly of claim 8, wherein the manual articulation mechanism comprises a manually actuated articulation knob positioned at a proximal end of the handle body and rotatable about the longitudinal axis; and a ball screw operatively coupled to the articulation knob and longitudinally movable by rotation of the articulation knob.
  • 10. A handle assembly for a surgical stapler, the handle assembly comprising: a handle body comprising a stationary handle and a trigger pivotably coupled to the handle body;an electric motor disposed within the handle body, the motor comprising an output shaft;an actuation shaft slidable within the handle body along a longitudinal axis;a motor gear coupled to the output shaft of the motor;an auxiliary gear in driven engagement with the motor gear and operatively engaged with the actuation shaft;a position sensor operably coupled to the motor gear to determine a longitudinal position of the actuation shaft;a control system electrically coupled to the trigger, the electric motor, and the position sensor, the control system configured to control the speed and torque of the electric motor; anda manual return mechanism selectively operable to disengage the auxiliary gear from the actuation shaft and retract the actuation shaft proximally.
  • 11. The handle assembly of claim 10, wherein the actuation shaft is rotatable about the longitudinal axis by the manual return mechanism from a first orientation in which the auxiliary gear is operatively engaged with the actuation shaft to a second orientation in which the auxiliary gear is disengaged from the actuation shaft.
  • 12. The handle assembly of claim 10, wherein the position sensor comprises a potentiometer.
  • 13. A handle assembly for a surgical stapler, the handle assembly comprising: a handle body comprising a stationary handle and a trigger pivotably coupled to the handle body;a powered drive system disposed within the handle body;an actuation shaft slidable within the handle body along a longitudinal axis by actuation of the drive system;a position sensor operably coupled to the motor gear to determine a longitudinal position of the actuation shaft;a control system electrically coupled to the trigger, the drive system, and the position sensor;a manual return mechanism selectively operable to disengage the drive system from the actuation shaft and retract the actuation shaft proximally; anda manual articulation mechanism.
  • 14. The handle assembly of claim 13, wherein the manual articulation mechanism comprises a manually actuated articulation knob positioned at a proximal end of the handle body and rotatable about the longitudinal axis; and a ball screw operatively coupled to the articulation knob and longitudinally movable by rotation of the articulation knob.
  • 15. The handle assembly of claim 13, wherein the manual return mechanism comprises a shaft rotation mechanism configured to rotate the actuation shaft about the longitudinal axis from a first orientation in which the drive system is operatively engaged with the actuation shaft to a second orientation in which the drive system is disengaged from the actuation shaft.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/821,830, entitled “SURGICAL STAPLER HAVING A POWERED HANDLE,” filed Mar. 17, 2020 which issued as U.S. Pat. No. 11,272,934, and which is a division of U.S. patent application Ser. No. 15/486,008, entitled “SURGICAL STAPLER HAVING A POWERED HANDLE,” filed Apr. 12, 2017 which issued as U.S. Pat. No. 10,610,225, and which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/321,629, entitled “SURGICAL STAPLER HAVING A POWERED HANDLE,” filed Apr. 12, 2016. The above-referenced applications are incorporated by reference herein in their entireties.

US Referenced Citations (844)
Number Name Date Kind
2073960 Crosby Mar 1937 A
2140593 Pankonin Dec 1938 A
2351608 Greenwood Jun 1944 A
2487565 Leber et al. Nov 1949 A
2641154 Heller Jun 1953 A
3076373 Matthews Feb 1963 A
3077812 Dietrich Feb 1963 A
3080564 Strekopitov et al. Mar 1963 A
3203220 Kaepernik Aug 1965 A
3252643 Strekopitov et al. May 1966 A
3273562 Brown Sep 1966 A
3373646 Ehlert Mar 1968 A
3459187 Pallotta Aug 1969 A
3494533 Green et al. Feb 1970 A
3662939 Bryan May 1972 A
3675688 Bryan et al. Jul 1972 A
3692224 Astafiev et al. Sep 1972 A
4261244 Becht et al. Apr 1981 A
4281785 Brooks Aug 1981 A
4304236 Conta et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4407286 Noiles et al. Oct 1983 A
4434796 Karapetian et al. Mar 1984 A
4442964 Becht Apr 1984 A
4454875 Pratt et al. Jun 1984 A
4522327 Korthoff et al. Jun 1985 A
4527724 Chow et al. Jul 1985 A
4589582 Bilotti May 1986 A
4591085 Di Giovanni May 1986 A
4606344 Di Giovanni Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4728020 Green et al. Mar 1988 A
4805823 Rothfuss Feb 1989 A
4892244 Fox et al. Jan 1990 A
4923350 Hinksman et al. May 1990 A
4941623 Pruitt Jul 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
5031814 Tompkins et al. Jul 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5106008 Tompkins et al. Apr 1992 A
5116349 Aranyi May 1992 A
5129570 Schulze et al. Jul 1992 A
5201746 Shichman Apr 1993 A
5221036 Takase Jun 1993 A
5236440 Hlavacek Aug 1993 A
5240163 Stein et al. Aug 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5289963 McGarry et al. Mar 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350400 Esposito et al. Sep 1994 A
5360305 Kerrigan Nov 1994 A
5364002 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5413267 Solyntjes et al. May 1995 A
5415334 Williamson, IV et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5439155 Viola Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464144 Guy et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5472132 Savage et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5485952 Fontayne Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5507426 Young et al. Apr 1996 A
5507773 Huitema et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509920 Phillips et al. Apr 1996 A
5529235 Boiarski et al. Jun 1996 A
5547117 Hamblin et al. Aug 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5558266 Green et al. Sep 1996 A
5562241 Knodel et al. Oct 1996 A
5562700 Huitema et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571285 Chow et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5626587 Bishop et al. May 1997 A
5630539 Plyley et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5657921 Young et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5678748 Plyley Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704898 Kokish Jan 1998 A
5706998 Blyley et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5732871 Clark et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5794834 Hamblin et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810240 Robertson Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5860995 Berkelaar Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5901895 Heaton et al. May 1999 A
5918791 Sorrentino et al. Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
D416089 Barton et al. Nov 1999 S
5988479 Palmer Nov 1999 A
6032849 Mastri et al. Mar 2000 A
6053390 Green et al. Apr 2000 A
6079606 Milliman et al. Jun 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
D441865 Racenet et al. May 2001 S
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264087 Whitman Jul 2001 B1
6270453 Sakai Aug 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6488196 Fenton, Jr. Dec 2002 B1
6550757 Sesek Apr 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6595509 Sesek Jul 2003 B2
6619529 Green et al. Sep 2003 B2
6644532 Green et al. Nov 2003 B2
6669073 Milliman et al. Dec 2003 B2
6716233 Whitman Apr 2004 B1
6786382 Hoffman Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6821282 Perry et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6913181 Mochizuki et al. Jul 2005 B2
6923360 Sesek et al. Aug 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7044947 de la Torre et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7097089 Marczyk Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7108472 Norris et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7213736 Wales et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7258262 Mastri et al. Aug 2007 B2
7275674 Racenet et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7290692 Marks Nov 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7303107 Milliman et al. Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7434715 Shelton, IV et al. Oct 2008 B2
7434716 Viola Oct 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7530484 Durrani May 2009 B1
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7690547 Racenet et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7717312 Beetel May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7721936 Shelton, IV et al. May 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819896 Racenet Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857187 Milliman Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934629 Wixey et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8008598 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8061576 Cappola Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8070036 Knodel Dec 2011 B1
8074861 Ehrenfels et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8123100 Holsten et al. Feb 2012 B2
8127976 Scirica et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8181839 Beetel May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8256656 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8281972 Wixey et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292148 Viola Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8393513 Jankowski Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8397973 Hausen Mar 2013 B1
8403198 Sorrentino et al. Mar 2013 B2
8413868 Cappola Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8479967 Marczyk Jul 2013 B2
8496152 Viola Jul 2013 B2
8496155 Knodel Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517240 Mata et al. Aug 2013 B1
8523043 Ullrich et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540625 Miyoshi Sep 2013 B2
8544712 Jankowski Oct 2013 B2
8556151 Viola Oct 2013 B2
8556152 Marczyk et al. Oct 2013 B2
8556153 Knodel Oct 2013 B1
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8573459 Smith et al. Nov 2013 B2
8573460 Cappola Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573464 Nalagatla et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584921 Scirica Nov 2013 B2
8596513 Olson Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8627992 Edoga et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8631990 Park et al. Jan 2014 B1
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636189 Knodel et al. Jan 2014 B1
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8657174 Yates et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8672209 Crainich Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740035 Mastri et al. Jun 2014 B2
8740036 Williams Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8763876 Kostrzewski Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8833631 Munro, III et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8905288 Wenchell Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8925783 Zemlok et al. Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931683 Racenet et al. Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967447 Hartoumbekis Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8979827 Cappola Mar 2015 B2
9004340 Scirica Apr 2015 B2
9010611 Ross et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9022271 Scirica May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9027818 Scirica et al. May 2015 B2
9033202 Scirica May 2015 B2
9038880 Donohoe May 2015 B1
9055943 Zemlok et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9101358 Kerr et al. Aug 2015 B2
9204876 Cappola et al. Dec 2015 B2
9237890 Kostrzewski Jan 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9532782 Kostrzewski Jan 2017 B2
9662108 Williams May 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
20020025243 Heck Feb 2002 A1
20020029044 Monassevitch et al. Mar 2002 A1
20020062136 Hillstead May 2002 A1
20020120279 Deguillebon et al. Aug 2002 A1
20030130677 Whitman et al. Jul 2003 A1
20040006372 Racenet et al. Jan 2004 A1
20040138705 Heino et al. Jul 2004 A1
20050234478 Wixey Oct 2005 A1
20060097026 Shelton, IV May 2006 A1
20060100644 Viola May 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060235442 Huitema Oct 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070034664 Jiang Feb 2007 A1
20070039997 Mather et al. Feb 2007 A1
20070057014 Whitman et al. Mar 2007 A1
20070068990 Shelton, IV et al. Mar 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070131732 Holsten et al. Jun 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080041918 Holsten et al. Feb 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080179375 Scirica Jul 2008 A1
20080255607 Zemlok Oct 2008 A1
20090001129 Marczyk Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090026245 Holsten et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090057369 Smith et al. Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090277948 Beardsley et al. Nov 2009 A1
20090277949 Viola et al. Nov 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100072258 Farascioni et al. Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100331820 Prisco et al. Dec 2010 A1
20110036892 Marczyk et al. Feb 2011 A1
20110042440 Holsten et al. Feb 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110108601 Clark et al. May 2011 A1
20110108603 Racenet et al. May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110127185 Ward Jun 2011 A1
20110139852 Zingman Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20120061446 Knodel et al. Mar 2012 A1
20120074198 Huitema et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078243 Worrell et al. Mar 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120091182 Marczyk Apr 2012 A1
20120168487 Holsten et al. Jul 2012 A1
20120193396 Zemlok et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120318844 Shelton, IV et al. Dec 2012 A1
20120325893 Pastorelli et al. Dec 2012 A1
20130001270 Kostrzewski Jan 2013 A1
20130015229 Viola Jan 2013 A1
20130015230 Wixey et al. Jan 2013 A1
20130015232 Smith et al. Jan 2013 A1
20130015233 Viola Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130048697 Shelton, IV et al. Feb 2013 A1
20130056521 Swensgard Mar 2013 A1
20130079814 Hess et al. Mar 2013 A1
20130087603 Viola Apr 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098965 Kostrzewski et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105547 Beardsley May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105549 Holsten et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130112731 Hodgkinson May 2013 A1
20130126583 Hueil et al. May 2013 A1
20130126586 Zhang et al. May 2013 A1
20130146640 Jankowski Jun 2013 A1
20130172928 Kostrzewski Jul 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130175322 Yates et al. Jul 2013 A1
20130184718 Smith et al. Jul 2013 A1
20130186931 Beardsley Jul 2013 A1
20130186932 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130200132 Moore et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130221065 Aronhalt et al. Aug 2013 A1
20130240604 Knodel Sep 2013 A1
20130248582 Scirica Sep 2013 A1
20130256370 Smith et al. Oct 2013 A1
20130256371 Shelton, IV Oct 2013 A1
20130270321 Marczyk Oct 2013 A1
20130270323 Marczyk Oct 2013 A1
20130284789 Smith et al. Oct 2013 A1
20130284791 Olson et al. Oct 2013 A1
20130299552 Viola Nov 2013 A1
20130306702 Viola et al. Nov 2013 A1
20130306703 Ehrenfels et al. Nov 2013 A1
20130306706 Knodel Nov 2013 A1
20130313303 Shelton, IV et al. Nov 2013 A1
20130327809 Shelton, IV et al. Dec 2013 A1
20130327810 Swayze et al. Dec 2013 A1
20130334278 Kerr et al. Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334284 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130334286 Swayze et al. Dec 2013 A1
20130334287 Shelton, IV Dec 2013 A1
20130334288 Shelton, IV Dec 2013 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140021239 Kostrzewski Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140027491 Beardsley et al. Jan 2014 A1
20140027493 Jankowski Jan 2014 A1
20140042204 Beetel Feb 2014 A1
20140103092 Kostrzewski et al. Apr 2014 A1
20140103093 Koch, Jr. et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110453 Wingardner et al. Apr 2014 A1
20140131416 Whitman et al. May 2014 A1
20140135832 Park et al. May 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140151434 Shelton, IV et al. Jun 2014 A1
20140158746 Mastri et al. Jun 2014 A1
20140166727 Swayze et al. Jun 2014 A1
20140175146 Knodel Jun 2014 A1
20140175149 Smith et al. Jun 2014 A1
20140203063 Hessler et al. Jul 2014 A1
20140205637 Widenhouse et al. Jul 2014 A1
20140224856 Smith et al. Aug 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236184 Leimbach Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140239041 Zerkle et al. Aug 2014 A1
20140239044 Hoffman Aug 2014 A1
20140246474 Hall et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140260746 Sakaguchi et al. Sep 2014 A1
20140263537 Leimbach et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263543 Leimbach et al. Sep 2014 A1
20140263545 Williams et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi et al. Sep 2014 A1
20140263553 Leimbach Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263555 Hufnagel et al. Sep 2014 A1
20140263559 Williams et al. Sep 2014 A1
20140263562 Patel Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263566 Williams et al. Sep 2014 A1
20140263567 Williams et al. Sep 2014 A1
20140263568 Williams et al. Sep 2014 A1
20140263569 Williams et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140263571 Morgan et al. Sep 2014 A1
20140263572 Shelton, IV et al. Sep 2014 A1
20140284372 Kostrzewski Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140299649 Shelton, IV et al. Oct 2014 A1
20140305986 Hall et al. Oct 2014 A1
20140305988 Boudreaux et al. Oct 2014 A1
20140305992 Kimsey et al. Oct 2014 A1
20140305994 Parihar et al. Oct 2014 A1
20140353359 Hall et al. Dec 2014 A1
20150008248 Giordano et al. Jan 2015 A1
20150034697 Mastri et al. Feb 2015 A1
20150041518 Shelton, IV et al. Feb 2015 A1
20150053738 Morgan et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053741 Shelton, IV et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053745 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150053749 Shelton, IV et al. Feb 2015 A1
20150054753 Morgan et al. Feb 2015 A1
20150060516 Collings et al. Mar 2015 A1
20150060517 Williams Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150076206 Sapre Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083783 Shelton, IV et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150090764 Zemlok et al. Apr 2015 A1
20150108201 Williams Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150127046 Peterson May 2015 A1
20150129631 Beetel May 2015 A1
20150129634 Shelton, IV et al. May 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150133996 Shelton, IV et al. May 2015 A1
20150134076 Shelton, IV et al. May 2015 A1
20150144678 Hall et al. May 2015 A1
20150201935 Weisenburgh, II et al. Jul 2015 A1
20150208902 Okamoto Jul 2015 A1
20150245834 Scirica et al. Sep 2015 A1
20150272576 Cappola Oct 2015 A1
20150289873 Shelton, IV et al. Oct 2015 A1
20150297221 Kerr et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20160000439 Weisenburgh, II et al. Jan 2016 A1
20160000440 Weisenburgh, II et al. Jan 2016 A1
20160058447 Posada et al. Mar 2016 A1
20160183948 Shelton, IV et al. Jun 2016 A1
20160338702 Ehrenfels et al. Nov 2016 A1
20160374672 Bear et al. Dec 2016 A1
20160374675 Shelton, IV et al. Dec 2016 A1
20170007241 Shelton, IV et al. Jan 2017 A1
20170007242 Shelton, IV et al. Jan 2017 A1
20170007243 Shelton, IV et al. Jan 2017 A1
20170007249 Shelton, IV et al. Jan 2017 A1
20170231633 Marczyk et al. Aug 2017 A1
20170245856 Baxter, III et al. Aug 2017 A1
20170245858 Williams Aug 2017 A1
20170281161 Shelton, IV et al. Oct 2017 A1
20170281165 Harris et al. Oct 2017 A1
20170281168 Shelton, IV et al. Oct 2017 A1
20170290583 Reed et al. Oct 2017 A1
20170290584 Jasemian et al. Oct 2017 A1
Foreign Referenced Citations (37)
Number Date Country
0 251 444 Jan 1988 EP
0 492 283 Jul 1992 EP
0 514 139 Nov 1992 EP
0 536 903 Apr 1993 EP
0 596 543 May 1994 EP
1 523 944 Apr 2005 EP
1 759 812 Mar 2007 EP
1 915 953 Apr 2008 EP
1 479 348 Jul 2008 EP
2 005 902 Dec 2008 EP
2 090 241 Aug 2009 EP
2 263 568 Dec 2010 EP
2 361 562 Aug 2011 EP
2 462 875 Jun 2012 EP
2 486 859 Aug 2012 EP
2 764 833 Aug 2014 EP
2 772 192 Sep 2014 EP
2 777 530 Sep 2014 EP
2 923 661 Mar 2015 EP
2 891 462 Jul 2015 EP
2 926 742 Oct 2015 EP
2 942 020 Nov 2015 EP
3 135 225 Mar 2017 EP
3 238 639 Mar 2017 EP
3 338 653 Jun 2018 EP
3 338 698 Jun 2018 EP
3 338 702 Jun 2018 EP
2001-087272 Apr 2001 JP
2063710 Jul 1996 RU
WO 8302247 Jul 1983 WO
WO 9424947 Nov 1994 WO
WO 0230296 Apr 2002 WO
WO 02096327 Dec 2002 WO
WO 2003094747 Nov 2003 WO
WO 2004032762 Apr 2004 WO
WO 2012052729 Apr 2012 WO
WO 2014139440 Sep 2014 WO
Non-Patent Literature Citations (38)
Entry
Ethicon Endo Surgery, Inc., Contour Curved Cutter Stapler, 2014, 2 pgs.
Justright Surgical, JustRight Surgery, Dec. 31, 2014, 2 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Aug. 5, 2014, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Sep. 15, 2015, 11 pgs.
European Patent Office, European Search Report for European Application No. EP 14764812.5, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Apr. 6, 2017, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Jun. 28, 2017, 15 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” dated Jul. 5, 2017, 11 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Jul. 10, 2017, 15 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Sep. 12, 2017, 22 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” dated Sep. 13, 2017, 17 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Sep. 14, 2017, 21 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/045993 titled “Surgical Stapler Having Locking Articulation Joint”, dated Jan. 24, 2017, 20 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2016/045993, entitled “Surgical Stapler Having Locking Articulation Joint,” dated Feb. 15, 2018, 13 pgs.
European Patent Office, European Search Report for European Application No. 07784007.2, entitled “Surgical Stapler,” dated Jun. 15, 2012, 6 pgs.
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2014/027768, titled “Surgical Stapler with Expandable Jaw”, dated Jul. 25, 2014, 17 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2014/028211, entitled “Surgical Stapler with Partial Pockets,” dated Sep. 8, 2014, 17 pgs.
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2015/0035379, titled “Surgical Stapler with Circumferential Firing”, dated Sep. 15, 2015, 22 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/027768, entitled “Surgical Stapler with Expandable Jaw,” dated Sep. 24, 2015, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/035379, entitled “Surgical Stapler with Circumferential Firing,” dated Dec. 22, 2016, 14 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/050103 titled “Surgical Stapler with Self-Adjusting Staple Height” dated Feb. 17, 2016, 18 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/050103, titled “Surgical Stapler With Self-Adjusting Staple Height,” dated Mar. 30, 2017, 12 pgs.
European Patent Office, Partial European Search Report for European Application No. EP 14762896.0, entitled “Surgical Stapler with Expandable Jaw,” dated Apr. 10, 2017, 6 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 18186558.5, entitled “Surgical Stapler with Partial Pockets,” dated Oct. 10, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Oct. 25, 2018, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having Powered Handle,” dated Oct. 25, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Oct. 25, 2018, 12 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 18189960.0, entitled “Surgical Stapler with Expandable Jaw,” dated Dec. 13, 2018, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated May 24, 2019, 19 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated Jul. 19, 2019, 24 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 19150575.9, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Aug. 21, 2019, 5 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 19180055.6, entitled “Surgical Stapler with Circumferential Firing,” dated Sep. 20, 2019, 8 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2020/019938, entitled “Surgical Stapling Instrument Having a Two-Position Mechanism,” dated Jun. 18, 2020, 16 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 20157713.7, entitled “Surgical Stapler with Expandable Jaw,” dated May 11, 2020, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees for PCTUS2020/025496, entitled “Reload Cover for Surgical Stapling System,” dated Jun. 18, 2019, 15 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 20161294.2, entitled “Surgical Stapler with Self-Adjusting Staple Height,” dated Jun. 22, 2020, 6 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 20197859.0, entitled “Surgical Stapler with Circumferential Firing,” dated Jan. 28, 2021, 13 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2020/025496, entitled “Reload Cover for Surgical Stapling System,” dated Aug. 13, 2020, 20 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated Sep. 3, 2020, 16 pgs.
Related Publications (1)
Number Date Country
20220151612 A1 May 2022 US
Provisional Applications (1)
Number Date Country
62321629 Apr 2016 US
Divisions (1)
Number Date Country
Parent 15486008 Apr 2017 US
Child 16821830 US
Continuations (1)
Number Date Country
Parent 16821830 Mar 2020 US
Child 17591356 US