The present disclosure relates to a surgical stapling device and, more particularly, to an endoscopic surgical stapling device having a tool assembly which is articulatable about first and second perpendicular axes.
Surgical devices wherein tissue is first grasped or clamped between opposing jaw structure and then joined by surgical fasteners are well known in the art. In some instruments a knife is provided to cut the tissue which has been joined be the fasteners. The fasteners are typically in the form of surgical staples but two part, including polymeric, fasteners can also be utilized.
Instruments for this purpose can include two elongated members which are respectively used to capture or clamp tissue. Typically, one of the members carries a staple cartridge which houses a plurality of staples arranged, for example, in at least two lateral rows while the other member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. Generally, the stapling operation is effected by cam bars that travel longitudinally through the staple cartridge, with the cam bars acting upon staple pushers to sequentially eject the staples from the staple cartridge. A knife can travel between the staple rows to longitudinally cut the stapled tissue between the rows of staples. Such staplers are disclosed in U.S. Pat. Nos. 6,250,532 and 6,241,139 which are incorporated herein be reference in their entirety.
In endoscopic or laparoscopic procedures, surgery is performed through small incisions or through small diameter cannulas inserted through small entrance wounds in the skin. Due to the limited degree of motion of an instrument when it is positioned through the skin, it may be quite difficult for a surgeon to manipulate the tool assembly of the instrument to access and/or clamp tissue. To overcome this problem, instruments having rotatable endoscopic body portions and rotatable and/or articulatable tool assemblies have been developed and are commercially available. Although these instruments provide significant improvements in the endoscopic tool art, further improvements that may decrease the time required for surgical procedures by allowing surgeons to more quickly access tissue are desired.
Accordingly, a continuing need exists for an endoscopic or laparoscopic surgical device having a tool assembly which can be quickly and easily manipulated to an infinite number of orientations to access, clamp and/or cut tissue.
In accordance with the present disclosure, a surgical stapling device is provided which includes a handle portion, an elongated central body portion and a Single Use Loading Unit (“SULU”) or Disposable Loading Unit (“DLU”). The elongated body portion is rotatably secured to the handle portion. The SULU includes a proximal body portion, an intermediate pivot member and a tool assembly. The intermediate pivot member is pivotally connected to the proximal body portion about a first axis and pivotally connected to the tool assembly about a second axis substantially orthogonal to the first axis. As such, the intermediate pivot member is able to articulate in relation to the proximal body portion and tool assembly is able to pivot with respect to the intermediate pivot member. Thus, the tool assembly is able to be pivoted about multiple axes in relation to the elongated central body portion of the device. Since the elongated central body portion of the device is also rotatable in relation to the handle portion of the device, the capability of articulation of the tool assembly about multiple axes allows a surgeon to quickly and easily position the tool assembly at an infinite number of orientations to facilitate operation on body tissue.
In another aspect of the disclosure, the surgical stapling device includes an articulation actuator which is supported on a semi-spherical base member for omni-directional or universal movement. A plurality of articulation links have a first end operably connected to the articulation actuator and a second end adapted to be releasably connected to articulation links of the SULU. The articulation links of the SULU are operably connected to the tool assembly by cables or non-rigid links such that the articulation actuator can be manipulated to articulate the tool assembly about either or both of the first and second axes.
In another aspect of the invention, the handle portion includes a drive mechanism for moving a firing link and a retraction link for effecting operation of the tool assembly. The drive mechanism includes a spindle supported within the handle portion and a barrel assembly slidably positioned about the spindle. The spindle includes a first guide track for receiving a firing rack and a second diametrically disposed guide track for slidably receiving a retraction rack. The barrel assembly includes a firing pawl which is movable into engagement with the firing rack and a retraction pawl which is movable into engagement with the retraction rack. A first shift ring assembly is provided to selectively position the firing and retraction pawls in relation to the firing and retraction racks, respectively. A handle portion trigger is provided to move the barrel assembly about and along the spindle to selectively move the firing rack or retraction rack to operate the tool assembly.
In yet another aspect of the disclosure, the tool assembly is a stapling device and the barrel assembly includes a grasper pawl which is movable into engagement with the firing rack to allow the tool assembly to be operated in a grasper mode. More specifically, the grasper pawl is controlled by a second shift ring assembly and is selectively movable into engagement with the firing rack to allow the firing rack to move a distance which will, upon operation of the movable trigger, effect approximation of cartridge and anvil assemblies of the tool assembly but will not affect firing of staples.
In yet another embodiment of the disclosure, the tool assembly includes a cartridge assembly and an anvil assembly. A drive assembly including a knife bar and an actuation sled are translatable through the tool assembly to simultaneously staple and cut tissue positioned between the cartridge and anvil assemblies. A firing cable and a retract cable each have a first portion secured to the drive assembly. The firing cable has a proximal end secured to a firing link of the SULU which is adapted to be releasably connected to a firing link of the central body portion. The firing link of the central body portion is operably connected to the firing rack such that proximal movement of the firing rack effects distal translation of the drive assembly through the cartridge assembly. The retract cable has a proximal end connected to a retraction link of the SULU. The retraction link of the SULU is adapted to be connected to the retraction link of the central body portion of the device which is operably connected to the retraction rack such that proximal movement of the retraction rack effects proximal movement of the drive assembly.
In another aspect of the disclosure, a novel connection mechanism is provided for securing the SULU to the elongated central body portion of the stapling device. The connection mechanism facilitates releasable attachment of a SULU having a non-rigid cable driven drive assembly to a stapling device.
It is an object of this disclosure to provide a surgical device having a removable SULU which includes an articulation and/or drive mechanism having non-rigid links.
It is another object of this disclosure to provide a surgical stapling device having a rotatable central body portion and a tool assembly including a cartridge assembly and an anvil assembly which is pivotal about first and second axes which are substantially orthogonal to each other.
It is yet another object of this disclosure to provide a handle portion having a spindle and barrel assembly which facilitates selective operation of an operating member or drive member in a firing or operating mode, a retraction mode and a grasping mode.
Embodiments of the presently disclosed surgical stapling device are disclosed herein with reference to the drawings wherein:
Preferred embodiments of the presently disclosed stapling device will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding element in each of the several views.
U.S. provisional application Ser. No. 60/416,088 filed Oct. 4, 2002 and U.S. provisional application Ser. No. 60/416,372 filed Oct. 4, 2002 are incorporated herein by reference in their entirety.
Throughout this description, the term “proximal” will refer to the portion of the device closest to the operator and the term “distal” will refer to the portion of the device furthest from the operator.
Referring to
Referring to
Retraction rack 42 also includes gear teeth 54 and 56 formed on opposite sides of the rack. Gear teeth 54 are positioned to engage the teeth of a retraction pawl 58 and gear teeth 56 are positioned to engage the teeth of pinion 36. The proximal end of retraction rack 42 includes a bore 42a for receiving a pin 60a of an indicator ring 60. Indicator ring 60 is positioned about spindle 26 and is secured to and movable with retraction rack 42. Preferably, indicator ring 60 is colored to facilitate viewing, e.g., red. A window or transparent portion (not shown) of body 13 of handle portion 12 permits viewing of the position of indicator ring 60. Indicia may be provided on body 13 adjacent the viewing portion to identify the stage of operation of the device in relation to the position of indicator ring 60.
Referring also to
First shift ring assembly 66 includes an outer ring 82 and an inner ring 84. Outer ring 82 is slidably positioned about barrel assembly body portion 64. Outer ring 82 includes a pair of cantilevered spring arms 85. Each spring arm includes an outer abutment member 86 and an inner protrusion 88. Inner ring 84 is slidably positioned about barrel assembly body portion 64 within outer ring 82 and includes an outer annular recess 90 dimensioned to receive protrusion 88 of spring arm 85 in a manner to be described in detail below. Frictional contact between the inner surface of inner ring 84 and the outer surface of barrel assembly body portion 64 retains the inner ring 84 at a fixed position on the barrel assembly body portion 64 until inner ring 84 is manually moved.
Outer ring 82 is slidably positioned within handle body 13 and includes a pair of elongated ribs 92 on each side thereof. Ribs 92 define an elongated slot 94 which is dimensioned to slidably receive an elongated rib 96 (
Referring also to
A pin or rod 104 (
When inner ring 84 is moved from the retracted position to the advanced position, pins 104 and 106 move within cam slots 48a and 58a, respectively, to pivot firing pawl 48 into engagement with firing rack 40 and to allow spring member 80 to pivot retraction pawl 58 out of engagement with retraction rack 42. (See
Referring again to
Outer ring 108 is slidably positioned within handle body 13 and includes a pair of elongated ribs 120 on each side thereof. Ribs 120 define an elongated slot 122 which is dimensioned to slidably receive an elongated rib 124 (
Referring also to
A pin or rod 132 (
Referring again to
Trigger 20 includes a grip portion 144, an engagement portion 146, and a pivot portion 148. Pivot portion 148 is formed at a top end of trigger 20 and is configured to be pivotally secured between body half-sections 13a and 13b about a pivot member 150 (
In use, when trigger 20 is manually pivoted towards stationary handle 18 in the direction indicated by arrow “A” in
Referring to
Referring to
Referring to
Referring to
The term “rigid” in reference, e.g., to an articulation link, herein generally means that the overall link is sufficiently rigid or strong to be operable for the purposes intended (here to effectively articulate the tool assembly by use of the articulation actuator). Accordingly, for example, the end portions of the link should be rigid enough to effectively operably attach the end of the articulation link at the proximal end of the disposable loading unit to an adjacent distal end of another articulation link at the distal end of the central body portion of the surgical device. Likewise, and also to effectively and operably attach the opposite end of the articulation link to a cable. In this context here, attach means by any suitable structure or manner, e.g., so that the forces imparted at the area of attachment do not sever the cable or tear the material of the link.
As shown in
Referring to
Referring again to
Referring also to
Outer tube 172 also functions to deform leaf spring 196 on each of links 176a-180 when outer tube 172 is moved from its retracted position to its advanced position. This occurs when the distal end of outer tube 172 advances over leaf springs 196 to force leaf springs 196 towards the top surface of each of links 176a-180 (See
Referring to
Referring to
Cartridge assembly 236 includes a carrier portion 250 which defines an elongated support channel 252 dimensioned to receive a staple cartridge 254. Corresponding slots and grooves in the cartridge 254 and carrier portion 250 function to retain cartridge 254 within support channel 252. Staple cartridge 254 includes a plurality of staple slots or pockets 256 for receiving a plurality of fasteners, e.g., staples, and pushers (not shown) as is known in the art. A plurality of spaced apart internal longitudinal slots (not shown) extend through staple cartridge 254 to accommodate upstanding cam wedges 258 of an actuation sled 260. A central longitudinal slot 262 extends along the length of staple cartridge 254 to facilitate linear movement of a knife bar 264 through cartridge 254. Knife bar 264 includes a knife blade 266 and a transverse camming member 268 which is positioned to travel through cavity 241 of anvil assembly 234. Knife bar 264 is positioned proximal to and in contact with actuation sled 260. A pair of holes 270 and 272 are provided in knife bar 264. Hole 270 facilitates engagement or attachment of a firing cable 274 (
Carrier portion 250 has a pair of hinge members 278a and 278b formed on a proximal end thereof. The proximal surface of each hinge member 278a and 278b can be semi-circular and cam include a series of serrations or teeth 280. The function of teeth 280 will be discussed in further detail below. A pivot pin 282 (
A guide cap 284 (
A retraction cable 276 includes a central portion which operably engages, here, extends through hole 272 in knife bar 264. Respective first and second portions of retraction cable 276 extend proximally from knife bar 264 and towards SULU retraction link 308 as will be describe in detail below (
Referring to
Each of the articulation links 306a-d, retraction link 308 and firing link 310 includes a first end having a finger 320 (
Fixed outer tube 300 can be secured to a distal end portion of inner shaft 304 by a pin 324. Pin 324 extends through outer tube 300 and inner shaft 304 to axially fix outer tube 300 to inner shaft 304. Outer tube 302 can be slidably positioned about a proximal end of inner shaft 304. Inner shaft 304 includes an elongated longitudinal slot 326 extending therethrough. A pin 328 attached to outer tube 302 can be slidably positioned in slot 326, such that outer tube 326 is movable in relation to inner shaft 304 between advanced and retracted positions. A biasing member or spring 330 is positioned in compression between pins 324 and 328 to urge outer tube 302 to its retracted position (
Referring to
Referring to
As shown in
Intermediate pivot member 233 includes a pair of first engagement members 380 positioned on top and bottom surfaces thereof. First engagement members 380 are positioned and configured to engage teeth 360 of hinge members 354a and 354b when pivot pin 358 is pulled to its forwardmost position within pivot slot 363. Engagement between engagement member 380 and teeth 360 locks the angular position of intermediate pivot member 233 in relation to proximal body portion 230 of SULU 16. A pair of second engagement members 382 are positioned on sidewalls of intermediate pivot member 233. Second engagement members 382 are positioned and configured to engage teeth 280 formed on hinge members 278a and 278b of carrier portion 250 when pivot pin 282 is pulled to proximalmost position within pivot slot 363. When second engagement members 382 engage teeth 280, pivotal movement of tool assembly 232 along the y axis in relation to intermediate pivot member 233 is prevented, i.e., the angular position of tool assembly 232 in relation to intermediate pivot member 233 is locked.
Referring to
Referring to
Referring to
Articulation cable 401b has a first end 424a attached to articulation link 306c. Articulation cable 401b extends from articulation link 306c along and through a channel 426 (
In use, when ends 410a and 410b of articulation cable 401a are pulled rearwardly together, tool assembly 232 is pivoted upwardly about the first horizontal pivot axis, i.e., about pivot pin 282. When ends 424a and 424b of articulation cable 401b are pulled rearwardly together, tool assembly 232 is pivoted downwardly about pivot pin 282. When end 410a of articulation cable 401a and end 424a of articulation cable 401b are pulled rearwardly together, tool assembly 232 and intermediate pivot member 233 will pivot in a counter-clockwise direction as viewed in
Each of the articulation cables 401a and 401b are connected to the articulation actuator 24 via articulation links 306a-d of SULU 16, articulation links 176a-d of central portion 14, and non-rigid links 202. By manipulating articulation actuator 24, any combination of movements as described above can be performed such that tool assembly 232 can be articulated in all directions, including those between horizontal and vertical, to at least about ninety degrees. See for example
Prior to using surgical stapling device 10, a SULU 16 is secured to the distal end of elongated body portion 14. Referring to
As discussed briefly above, surgical stapling device 10 can be operated as a grasper. Referring to
When it is desired to eject staples from device 10, grasper pawl 52 is disengaged from firing rack cutout 50 by moving outer ring 108 of shift ring assembly 68 to its retracted position, and moving outer ring 82 of shift ring assembly 66 to the advanced position to engage firing pawl 48 with firing rack 40. Thereafter, movable trigger 20 can be compressed towards stationary handle 18 through an actuation stroke to move firing rack 40 proximally within guide channel 28. As discussed above, movement of firing rack 40 proximally moves firing link 180, firing link 310 and firing cable 274 proximally to move drive member 264 distally within tool assembly 32. It is noted that each actuation stroke of movable trigger 20 effects a predetermined linear movement of drive member 264, e.g., 15 mm. As such, surgical device 10 may be used to fire multiple size SULU's, e.g., 15 mm, 30 mm, 45 mm, 60 mm, etc. The first actuation stroke of movable trigger effects approximation of the anvil and cartridge assemblies 234 and 236. Each actuation stroke thereafter advances drive member 264 approximately 15 mm through tool assembly 32. Thus, to fire a stapler having a 45 mm SULU, movable trigger would have to be moved through four actuating strokes or (N/15+1) actuating strokes, where N is the length of the SULU.
In order to retract drive member 264 within tool assembly 32 to move the cartridge and anvil assemblies to their spaced positions, first shift ring assembly is moved to the retracted position to move retraction pawl 58 into engagement with retraction rack 42. Thereafter, movable handle 20 is moved through a sufficient number of actuation strokes to return drive member 264 through tool assembly 32.
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, it is envisioned that the surgical stapling device disclosed may be used in association with SULU's which are not surgical stapling devices, e.g., graspers, clip appliers, dissectors, electrosurgical sealing devices, etc. As such, the term “firing link” may include any link for effecting actuation of a tool assembly. Further, the SULU may also include tool assemblies other than staplers or those devices which eject a fastener, e.g., grasper, sealing devices (electrosurgical and non-electrosurgical), etc. Moreover, although the stapling device is disclosed as having a removable SULU, the tool assembly and intermediate pivot member may be non-removably fastened to the central body portion of the surgical stapling device. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation of U.S. patent application Ser. No. 15/851,838, filed Dec. 22, 2017, which is a continuation of U.S. patent application Ser. No. 14/575,604, filed Dec. 18, 2014, now U.S. Pat. No. 9,855,039, which is a continuation of U.S. patent application Ser. No. 12/500,072, filed Jul. 9, 2009, now U.S. Pat. No. 8,931,683, which is a continuation U.S. patent application Ser. No. 11/981,058, filed Oct. 31, 2007, now U.S. Pat. No. 7,584,880, which is a continuation of U.S. patent application Ser. No. 11/894,196, filed Aug. 20, 2007, now U.S. Pat. No. 7,494,039, which is a continuation application U.S. patent application Ser. No. 11/894,195, filed Aug. 20, 2007, now U.S. Pat. No. 7,597,230, which is a continuation application of U.S. patent application Ser. No. 11/652,756, filed Jan. 12, 2007, now U.S. Pat. No. 7,424,965, which is a continuation of U.S. patent application Ser. No. 11/543,640, filed Oct. 3, 2006, now U.S. Pat. No. 7,721,935, which is a divisional application of U.S. application Ser. No. 10/871,342, filed Jun. 17, 2004, now U.S. Pat. No. 7,159,750, which claims priority to U.S. Provisional Patent Application Ser. No. 60/479,379, filed Jun. 17, 2003, now expired, the entire disclosure of each are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3079606 | Bobrov et al. | Mar 1963 | A |
3490675 | Green et al. | Jan 1970 | A |
3777538 | Weatherly et al. | Dec 1973 | A |
4027510 | Hiltebrandt | Jun 1977 | A |
4086926 | Green et al. | May 1978 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4296881 | Lee | Oct 1981 | A |
4429695 | Green | Feb 1984 | A |
4505414 | Filipi | Mar 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4589413 | Malyshev et al. | May 1986 | A |
4602634 | Barkley | Jul 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4610383 | Rothfuss | Sep 1986 | A |
4633861 | Chow et al. | Jan 1987 | A |
4633874 | Chow et al. | Jan 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4703887 | Clanton et al. | Nov 1987 | A |
4728020 | Green et al. | Mar 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4784137 | Kulik et al. | Nov 1988 | A |
4863088 | Redmond et al. | Sep 1989 | A |
4892244 | Fox et al. | Jan 1990 | A |
4976686 | Ball et al. | Dec 1990 | A |
4978049 | Green | Dec 1990 | A |
4991764 | Mericle | Feb 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5074454 | Peters | Dec 1991 | A |
5083695 | Foslien et al. | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5111987 | Moeinzadeh et al. | May 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5141144 | Foslien et al. | Aug 1992 | A |
5170925 | Madden et al. | Dec 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5246156 | Rothfuss et al. | Sep 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5282807 | Knoepfler | Feb 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5328077 | Lou | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5336232 | Green et al. | Aug 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5364002 | Green et al. | Nov 1994 | A |
5364003 | Williamson, IV | Nov 1994 | A |
5376095 | Ortiz | Dec 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5382255 | Castro et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395034 | Allen et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5407293 | Crainich | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413268 | Green et al. | May 1995 | A |
5415334 | Williamson et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5423471 | Mastri et al. | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5431322 | Green et al. | Jul 1995 | A |
5431323 | Smith et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5456401 | Green et al. | Oct 1995 | A |
5456684 | Schmidt | Oct 1995 | A |
5464300 | Crainich | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5470007 | Plyley et al. | Nov 1995 | A |
5470010 | Rothfuss et al. | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5482197 | Green | Jan 1996 | A |
5484095 | Green et al. | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5486185 | Freitas et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5551622 | Yoon | Sep 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554164 | Wilson et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5562682 | Oberlin et al. | Oct 1996 | A |
5562701 | Huitema | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5573541 | Green et al. | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5579107 | Wright et al. | Nov 1996 | A |
5580067 | Hamblin | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5607094 | Clark | Mar 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5618291 | Thompson et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626607 | Malecki | May 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5630541 | Williamson, IV et al. | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5653721 | Knodel et al. | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662259 | Yoon | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662666 | Onuki et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5697542 | Knodel et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5732806 | Foshee et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5769303 | Knodel et al. | Jun 1998 | A |
5772673 | Cuny et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5810240 | Robertson | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5816471 | Plyley et al. | Oct 1998 | A |
5817109 | McGarry et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5836147 | Schnipke | Nov 1998 | A |
5860995 | Berkelaar | Jan 1999 | A |
5862972 | Green et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5891140 | Ginn et al. | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5913866 | Ginn et al. | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5919198 | Graves, Jr. et al. | Jul 1999 | A |
5922001 | Yoon | Jul 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5980510 | Tsonton et al. | Nov 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6197017 | Brock et al. | Mar 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6269977 | Moore | Aug 2001 | B1 |
6279809 | Nicolo | Aug 2001 | B1 |
6315183 | Piraka | Nov 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6463623 | Ahn et al. | Oct 2002 | B2 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6503257 | Grant et al. | Jan 2003 | B2 |
6505768 | Whitman | Jan 2003 | B2 |
6544274 | Danitz et al. | Apr 2003 | B2 |
6554844 | Lee et al. | Apr 2003 | B2 |
6565554 | Niemeyer | May 2003 | B1 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6612053 | Liao | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6674232 | Opresko et al. | Jan 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6731473 | Li et al. | May 2004 | B2 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6755854 | Gillick et al. | Jun 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6808262 | Chapoy et al. | Oct 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
6877647 | Green et al. | Apr 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6889116 | Jinno | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6953135 | Litton et al. | Oct 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7726537 | Olson | Jun 2010 | B2 |
7857184 | Viola | Dec 2010 | B2 |
7914543 | Roth | Mar 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8596513 | Olson | Dec 2013 | B2 |
8684247 | Scirica et al. | Apr 2014 | B2 |
8931683 | Racenet et al. | Jan 2015 | B2 |
9265486 | Hughett, Sr. | Feb 2016 | B2 |
9855039 | Racenet et al. | Jan 2018 | B2 |
10004498 | Morgan | Jun 2018 | B2 |
10231732 | Racenet et al. | Mar 2019 | B1 |
10292701 | Scheib | May 2019 | B2 |
20010030219 | Green | Oct 2001 | A1 |
20020004498 | Doherty et al. | Jan 2002 | A1 |
20020009193 | Deguchi | Jan 2002 | A1 |
20020018323 | Li et al. | Feb 2002 | A1 |
20020032948 | Ahn et al. | Mar 2002 | A1 |
20020036748 | Chapoy et al. | Mar 2002 | A1 |
20020045442 | Silen et al. | Apr 2002 | A1 |
20020062136 | Hillstead | May 2002 | A1 |
20020068946 | Kortenbach | Jun 2002 | A1 |
20020069595 | Knudson et al. | Jun 2002 | A1 |
20020084304 | Whitman | Jul 2002 | A1 |
20020111621 | Wallace et al. | Aug 2002 | A1 |
20020143346 | McGuckin et al. | Oct 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20020177843 | Anderson et al. | Nov 2002 | A1 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20020190093 | Fenton | Dec 2002 | A1 |
20030009193 | Corsaro | Jan 2003 | A1 |
20030028236 | Gillick et al. | Feb 2003 | A1 |
20030105476 | Sancoff et al. | Jun 2003 | A1 |
20030105478 | Whitman | Jun 2003 | A1 |
20030130677 | Whitman | Jul 2003 | A1 |
20030132268 | Whitman | Jul 2003 | A1 |
20030135204 | Lee | Jul 2003 | A1 |
20040004105 | Jankowski | Jan 2004 | A1 |
20040007608 | Ehrenfels et al. | Jan 2004 | A1 |
20040050902 | Green et al. | Mar 2004 | A1 |
20040068274 | Hooven | Apr 2004 | A1 |
20040093029 | Zubik et al. | May 2004 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040149802 | Whitman | Aug 2004 | A1 |
20040173659 | Green et al. | Sep 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040232199 | Shelton et al. | Nov 2004 | A1 |
20040232200 | Shelton et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040243151 | Demmy et al. | Dec 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050006429 | Wales et al. | Jan 2005 | A1 |
20050006430 | Wales | Jan 2005 | A1 |
20050006431 | Shelton et al. | Jan 2005 | A1 |
20050006432 | Racenet et al. | Jan 2005 | A1 |
20050006433 | Milliman et al. | Jan 2005 | A1 |
20050006434 | Wales et al. | Jan 2005 | A1 |
20050023324 | Doll et al. | Feb 2005 | A1 |
20050023325 | Gresham et al. | Feb 2005 | A1 |
20050067457 | Shelton et al. | Mar 2005 | A1 |
20050067458 | Swayze et al. | Mar 2005 | A1 |
20050067459 | Swayze et al. | Mar 2005 | A1 |
20050067460 | Milliman et al. | Mar 2005 | A1 |
20050072827 | Mollenauer | Apr 2005 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050119669 | Demmy | Jun 2005 | A1 |
20050127131 | Mastri et al. | Jun 2005 | A1 |
20050165415 | Wales | Jul 2005 | A1 |
20050173490 | Shelton | Aug 2005 | A1 |
20050178813 | Swayze et al. | Aug 2005 | A1 |
20050182431 | Hausen et al. | Aug 2005 | A1 |
20050184123 | Scirica | Aug 2005 | A1 |
20050184124 | Scirica et al. | Aug 2005 | A1 |
20050184125 | Marczyk | Aug 2005 | A1 |
20050184126 | Green et al. | Aug 2005 | A1 |
20050189397 | Jankowski | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050263562 | Shelton et al. | Dec 2005 | A1 |
20050279804 | Scirica et al. | Dec 2005 | A1 |
20060000867 | Shelton et al. | Jan 2006 | A1 |
20060000868 | Shelton et al. | Jan 2006 | A1 |
20060011699 | Olson et al. | Jan 2006 | A1 |
20060016853 | Racenet | Jan 2006 | A1 |
20060022014 | Shelton et al. | Feb 2006 | A1 |
20060022015 | Shelton et al. | Feb 2006 | A1 |
20060049230 | Shelton et al. | Mar 2006 | A1 |
20060097026 | Shelton | May 2006 | A1 |
20060124688 | Racenet et al. | Jun 2006 | A1 |
20060151567 | Roy | Jul 2006 | A1 |
20060151568 | Weller et al. | Jul 2006 | A1 |
20060175375 | Shelton et al. | Aug 2006 | A1 |
20060180634 | Shelton et al. | Aug 2006 | A1 |
20060201990 | Mastri et al. | Sep 2006 | A1 |
20060201991 | Mastri et al. | Sep 2006 | A1 |
20060226195 | Scirica et al. | Oct 2006 | A1 |
20060226196 | Hueil et al. | Oct 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20060278681 | Viola et al. | Dec 2006 | A1 |
20060289600 | Wales et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20070114261 | Ortiz | May 2007 | A1 |
20080149684 | Viola | Jun 2008 | A1 |
20090039137 | Viola | Feb 2009 | A1 |
20090283568 | Racenet et al. | Nov 2009 | A1 |
20110290851 | Shelton, IV | Dec 2011 | A1 |
20120199632 | Spivey | Aug 2012 | A1 |
20140014707 | Onukuri et al. | Jan 2014 | A1 |
20150083784 | Kostrzewski | Mar 2015 | A1 |
20150105823 | Racenet et al. | Apr 2015 | A1 |
20150374362 | Gettinger | Dec 2015 | A1 |
20160270786 | Scirica | Sep 2016 | A1 |
20160367256 | Hensel et al. | Dec 2016 | A1 |
20170290585 | Shelton, IV | Oct 2017 | A1 |
20200405307 | Shelton, IV | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
5476586 | Sep 1986 | AU |
2744824 | Apr 1978 | DE |
2903159 | Jul 1980 | DE |
3114135 | Oct 1982 | DE |
4213426 | Oct 1992 | DE |
4300307 | Jul 1994 | DE |
0041022 | Dec 1981 | EP |
0136950 | Apr 1985 | EP |
0140552 | May 1985 | EP |
0156774 | Oct 1985 | EP |
0213817 | Mar 1987 | EP |
0216532 | Apr 1987 | EP |
0220029 | Apr 1987 | EP |
0273468 | Jul 1988 | EP |
0324166 | Jul 1989 | EP |
0324635 | Jul 1989 | EP |
0324637 | Jul 1989 | EP |
0324638 | Jul 1989 | EP |
0365153 | Apr 1990 | EP |
0369324 | May 1990 | EP |
0373762 | Jun 1990 | EP |
0380025 | Aug 1990 | EP |
0399701 | Nov 1990 | EP |
0449394 | Oct 1991 | EP |
0484677 | May 1992 | EP |
0489436 | Jun 1992 | EP |
0503662 | Sep 1992 | EP |
0514139 | Nov 1992 | EP |
0536903 | Apr 1993 | EP |
0537572 | Apr 1993 | EP |
0539762 | May 1993 | EP |
0545029 | Jun 1993 | EP |
0552050 | Jul 1993 | EP |
0552423 | Jul 1993 | EP |
0579038 | Jan 1994 | EP |
0589306 | Mar 1994 | EP |
0591946 | Apr 1994 | EP |
0592243 | Apr 1994 | EP |
0593920 | Apr 1994 | EP |
0598202 | May 1994 | EP |
0598579 | May 1994 | EP |
0621006 | Oct 1994 | EP |
0621009 | Oct 1994 | EP |
0656188 | Jun 1995 | EP |
0666057 | Aug 1995 | EP |
0705571 | Apr 1996 | EP |
2542188 | Sep 1984 | FR |
2660851 | Oct 1991 | FR |
2681775 | Apr 1993 | FR |
1352554 | May 1974 | GB |
1452185 | Oct 1976 | GB |
1555455 | Nov 1979 | GB |
2048685 | Dec 1980 | GB |
2070499 | Sep 1981 | GB |
2141066 | Dec 1984 | GB |
2165559 | Apr 1986 | GB |
S51149985 | Dec 1976 | JP |
659146 | Apr 1979 | SU |
728848 | Apr 1980 | SU |
980703 | Dec 1982 | SU |
990220 | Jan 1983 | SU |
8302247 | Jul 1983 | WO |
8910094 | Nov 1989 | WO |
9210976 | Jul 1992 | WO |
9308754 | May 1993 | WO |
9314706 | Aug 1993 | WO |
Entry |
---|
European Office Action dated Sep. 27, 2016, issued in European Application No. 12 163 121. |
Number | Date | Country | |
---|---|---|---|
20200113559 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
60479379 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10871342 | Jun 2004 | US |
Child | 11543640 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15851838 | Dec 2017 | US |
Child | 16715166 | US | |
Parent | 14575604 | Dec 2014 | US |
Child | 15851838 | US | |
Parent | 12500072 | Jul 2009 | US |
Child | 14575604 | US | |
Parent | 11981058 | Oct 2007 | US |
Child | 12500072 | US | |
Parent | 11894196 | Aug 2007 | US |
Child | 11981058 | US | |
Parent | 11894195 | Aug 2007 | US |
Child | 11894196 | US | |
Parent | 11652756 | Jan 2007 | US |
Child | 11894195 | US | |
Parent | 11543640 | Oct 2006 | US |
Child | 11652756 | US |