The present application relates in general to surgical stapler instruments that are capable of applying lines of staples to tissue while cutting the tissue between those staple lines and, more particularly, to improvements relating to stapler instruments and improvements in processes for forming various components of such stapler instruments. This application also discloses devices that are related, generally and in various embodiments, to a disposable loading unit configured for connection to a reusable surgical instrument, and to surgical instruments that include a disposable loading unit.
Surgical instruments that are utilized to concurrently make longitudinal incisions in tissue and apply lines of staples on opposing sides of the incisions are known in the art. The tissue may include, for example, human tissue, animal tissue, membranes, or other organic substances. Such surgical instruments commonly include a pair of opposing jaw members that cooperate to grasp or clamp the tissue therebetween and a cutting surface that makes the incision. When employed in endoscopic or laparoscopic applications, the opposing jaw members are capable of passing through a cannula passageway. One of the jaw members typically supports a staple cartridge having at least two laterally spaced rows of staples and pushers aligned with the staples. The other jaw member is movable between an open position and a closed position, and defines an anvil having staple-forming pockets correspondingly aligned with the rows of staples in the staple cartridge. Such instruments may also include a wedge that, when driven, sequentially contacts the pushers to effect the firing of the staples toward the anvil and through the tissue.
An example of a surgical stapler suitable for endoscopic applications, described in U.S. Pat. No. 5,465,895, advantageously provides distinct closing and firing actions. Thereby, a clinician is able to close the jaw members upon tissue to position the tissue prior to firing. Once the clinician has determined that the jaw members are properly gripping tissue, the clinician can then fire the surgical stapler, thereby severing and stapling the tissue. The simultaneous severing and stapling avoids complications that may arise when performing such actions sequentially with different surgical tools that respectively only sever or staple.
However, the trauma caused to the tissue with such actions can be significant. In general, the delivery of sufficient amounts of medical agents to the site of the traumatized tissue promotes the proper sealing of the incision, reduces the possibility of infection, and/or significantly improves the healing process. The application of medical agents to the site of the traumatized tissue is often accomplished by means other than the surgical instrument that makes the incision and applies the staples. Such means generally increase the complexity and cost associated with the procedure. However, such means are often necessary because many of the surgical instruments utilized to concurrently make the incision and apply the staples are not configured to store and deliver sufficient amounts of medical agents to the site of the traumatized tissue, and the delivery of some medical agents to the site of the traumatized tissue via the surgical instrument would render the surgical instrument unsuitable for reuse.
The foregoing discussion is intended only to illustrate the present field and should not be taken as a disavowal of claim scope.
In various embodiments, an assembly of a surgical instrument is provided. In at least one embodiment, the assembly can comprise a housing, a cutting member relatively movable with respect to the housing, and an agent cartridge connected to the housing. In these embodiments, the cutting member can comprise a cutting surface, a body including a first surface, and a groove at least partially defined by the first surface. Further, in these embodiments, the agent cartridge can include a cavity configured to house a medical agent therein. Additionally, in these embodiments, the cutting member groove can be in fluid communication with the cavity. Moreover, in these embodiments, the groove can be configured to deliver the medical agent from the cavity proximate to the cutting surface.
In at least one embodiment, an assembly of a surgical instrument is provided that can comprise a housing, a member relatively movable with respect to the housing, and an agent cartridge. In these embodiments, the member can comprise a cutting surface, a body including a first surface, and a passage at least partially defined by the first surface. Further, in these embodiments, the agent cartridge can include a medical agent storage portion configured to house a medical agent therein. Additionally, in these embodiments, the member passage can be in fluid communication with the medical agent storage portion. Moreover, in these embodiments, the passage can be configured to deliver the medical agent from the medical agent storage portion proximate to the cutting surface.
In various embodiments, a surgical instrument is provided. In at least one embodiment, the surgical instrument can comprise a frame, a member relatively movable with respect to the frame, and an agent cartridge. In these embodiments, the member can comprise a cutting surface, a body including a first surface, and a groove at least partially defined by the first surface. Further, in these embodiments, the agent cartridge can include a medical agent storage portion configured to house a medical agent therein. Additionally, in these embodiments, the member groove can be in fluid communication with the medical agent storage portion. Moreover, in these embodiments, the groove can be configured to deliver the medical agent from the medical agent storage portion proximate to the cutting surface.
The novel features of the embodiments described herein are set forth with particularity in the appended claims. The embodiments, however, both as to organization and methods of operation may be better understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
It is to be understood that the figures and descriptions of the disclosed embodiments have been simplified to illustrate elements that are relevant for a clear understanding of the disclosed embodiments, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the disclosed embodiments, a discussion of such elements is not provided herein.
Certain embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting embodiments and that the scope of these embodiments is defined solely by the claims. The features illustrated or described in connection with one embodiment may be combined with the features of other embodiments. Further, where an ordering of steps in a process is indicated, such ordering may be rearranged or the steps may be carried out contemporaneously as desired unless illogical or the listed order is explicitly required. Such modifications and variations are intended to be included within the scope of the appended claims.
Also, in the following description, it is to be understood that terms such as “forward,” “rearward,” “front,” “back,” “right,” “left,” “over,” “under,” “top,” “bottom,” “upwardly,” “downwardly,” “proximally,” “distally,” and the like are words of convenience and are not to be construed as limiting terms. The description below is for the purpose of describing various embodiments and is not intended to limit the appended claims.
Turning to the drawings, wherein like numerals denote like components throughout the several views, in
With particular reference to
Left and right fluid bladders (lift bags) 24, 26 are supported within an aft portion 28 of a staple channel 30. The anvil 12 includes a pair of inwardly directed lateral pivot pins 32, 34 that pivotally engage outwardly open lateral pivot recesses 36, 38 formed in the staple channel 30 distal to the aft portion 28. The anvil 12 includes a proximally directed lever tray 40 that projects into the aft portion 28 of the staple channel 30 overtop and in contact with the fluid bladders (lift bags) 24, 26 such that filling the fluid bladders 24, 26 causes a distal clamping section 41 of the anvil 12 to pivot like a teeter-totter toward a staple cartridge 42 held in a distal portion 44 of the staple channel 30. Evacuation and collapse of the fluid bladders 24, 26, or some other resilient feature of the end effector 14, causes the anvil 12 to open. Left and right fluid conduits 46, 48 communicate respectively with the left and right fluid bladders 24, 26 to bi-directionally transfer fluid for actuation. It should be appreciated that applications consistent with the present embodiment may include a mechanical actuation in the handle 22 (e.g., closure trigger) (not shown) wherein the user depresses a control that causes closure and clamping of the end effector 12.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handle of an instrument. Thus, the staple applying assembly 20 is distal with respect to the more proximal handle 22. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
With particular reference to
Medical substance dispensing is integrated into the elongate shaft 18 by including a laterally offset cylindrical cavity 90 formed in the frame 50 that communicates along its longitudinal length to the outside via a rectangular aperture 92 that is slightly shorter than an electroactive polymer (EAP) syringe 100 that is inserted through the aperture 92 into the cylindrical cavity 90. A proximal portion of the cylindrical cavity 90 contains a longitudinally aligned compression spring 102 that urges a distal dispensing cone 104 of the EAP syringe 100 distally into sealing contact with the frame 50 and allows translation for insertion and removal of the EAP syringe 100. An electrical conductor 106 passes through the frame 50 and is attached to the compression spring 102, which is also formed of an electrically conductive metal. An aft portion of the EAP syringe 100 is conductive and contacts the spring 102 to form a cathode to an EAP actuator 110 held in a proximal portion of the EAP syringe 100. It will be appreciated that another conductor, perhaps traveling with the conductor 106, also electrically communicates to the EAP actuator 110 to serve as the anode.
When activated, the EAP actuator 110 longitudinally expands, serving as a plunger to dispel a medical substance 112 in a distal portion of the EAP syringe 100 through the distal dispensing cone 104. Insofar as the EAP actuator 110 laterally contracts to compensate for its longitudinal expansion, a plunger seal 114 maintains a transverse seal within the EAP syringe 100. An vent (not shown), such as around conductor 106 allows air to refill the EAP syringe 100 behind the plunger seal 114 as the medical substance 112 is dispensed. The vent may rely upon the surface tension of the medical substance 112 to avoid leaking or be a one-way valve. As described below, the medical substance 112 is conducted by the frame 50 to a lateral fluid groove 120 that is formed in the firing bar 62 and the E-beam 64 to direct the medical substance to a cutting surface 122 of the E-beam 64. The frame slot 58 is sized to seal the lateral fluid groove 120. The portion of the lateral fluid groove 120 that is positioned under the spring clip 76 is sealed by a firing bar guide 124. In the illustrative version, an outer sheath 130 encompasses the frame 50 and proximally projecting lever tray 40 of the anvil 12. A top distal opening 131 allows closing of the anvil 12.
An outer rectangular aperture 132 of the outer sheath 130 is sized and longitudinally positioned to correspond to the rectangular aperture 92 formed in frame 50. In some applications, the outer sheath 130 may be rotated to selectively align the rectangular aperture 92 with the outer rectangular aperture 132 for insertion or removal of the EAP syringe 100. It should be appreciated that in some applications that the EAP syringe 100 may be integrally assembled into an elongate shaft that does not allow for selecting a desired medical substance. For instance, a disposable implement portion with an integral staple cartridge and medical dispensing reservoir may be selected by the clinician as a unit. It is believed that allowing insertion at the time of use, though, has certain advantages including clinical flexibility in selecting a medical substance (e.g., anesthetics, adhesives, antibiotics, cauterizing compound, etc.) and extending the shelf life/simplifying storage and packaging of the implement portion 16.
In the illustrative version, an elongate stack of many disk-shaped EAP layers are aligned longitudinally and configured to expand along this longitudinal axis. Electroactive polymers (EAPs) are a set of conductive doped polymers that change shape when electrical voltage is applied. In essence, the conductive polymer is paired to some form of ionic fluid or gel and electrodes. Flow of the ions from the fluid/gel into or out of the conductive polymer is induced by the voltage potential applied and this flow induces the shape change of the polymer. The voltage potential ranges from IV to 4 kV, depending on the polymer and ionic fluid used. Some of the EAPs contract when voltage is applied and some expand. The EAPs may be paired to mechanical means such as springs or flexible plates to change the effect that is caused when the voltage is applied.
There are two basic types of EAPs and multiple configurations of each type. The two basic types are a fiber bundle and a laminate version. The fiber bundle consists of fibers around 30-50 microns. These fibers may be woven into a bundle much like textiles and are often called EAP yarn because of this. This type of EAP contracts when voltage is applied. The electrodes are usually made up of a central wire core and a conductive outer sheath that also serves to contain the ionic fluid that surrounds the fiber bundles. An example of a commercially available fiber EAP material, manufactured by Santa Fe Science and Technology and sold as PANION™ fiber, is described in U.S. Pat. No. 6,667,825, which is hereby incorporated by reference in its entirety.
The other type is a laminate structure, which consists of a layer of EAP polymer, a layer of ionic gel and two flexible plates that are attached to either side of the laminate. When a voltage is applied, the square laminate plate expands in one direction and contracts in the perpendicular direction. An example of a commercially available laminate (plate) EAP material is from Artificial Muscle Inc, a division of SRI Laboratories. Plate EAP material is manufactured by EAMEX of Japan and is referred to as thin film EAP.
It should be noted that EAPs do not change volume when energized; they merely expand or contract in one direction while doing the opposite in the transverse direction. The laminate version may be used in its basic form by containing one side against a rigid structure and using the other much like a piston. The laminate version may also be adhered to either side of a flexible plate. When one side of the flexible plate EAP is energized, it expands flexing the plate in the opposite direction. This allows the plate to be flexed in either direction, depending on which side is energized.
An EAP actuator usually consists of numerous layers or fibers bundled together to work in cooperation. The mechanical configuration of the EAP determines the EAP actuator and its capabilities for motion. The EAP may be formed into long stands and wrapped around a single central electrode. A flexible exterior outer sleeve will form the other electrode for the actuator as well as contain the ionic fluid necessary for the function of the device. In this configuration when the electrical field is applied to the electrodes, the strands of EAP shorten. This configuration of EAP actuator is called a fiber EAP actuator. Likewise, the laminate configuration may be placed in numerous layers on either side of a flexible plate or merely in layers on itself to increase its capabilities. Typical fiber structures have an effective strain of 2-4% where the typical laminate version achieves 20-30%, utilizing much higher voltages.
For instance, a laminate EAP composite may be formed from a positive plate electrode layer attached to an EAP layer, which in turn is attached to an ionic cell layer, which in turn is attached to a negative plate electrode layer. A plurality of laminate EAP composites may be affixed in a stack by adhesive layers there between to form an EAP plate actuator. It should be appreciated that opposing EAP actuators may be formed that can selectively bend in either direction.
A contracting EAP fiber actuator may include a longitudinal platinum cathode wire that passes through an insulative polymer proximal end cap through an elongate cylindrical cavity formed within a plastic cylinder wall that is conductively doped to serve as a positive anode. A distal end of the platinum cathode wire is embedded into an insulative polymer distal end cap. A plurality of contracting polymer fibers are arranged parallel with and surrounding the cathode wire and have their ends embedded into respective end caps. The plastic cylinder wall is peripherally attached around respective end caps to enclose the cylindrical cavity to seal in ionic fluid or gel that fills the space between contracting polymer fibers and cathode wire. When a voltage is applied across the plastic cylinder wall (anode) and cathode wire, ionic fluid enters the contracting polymer fibers, causing their outer diameter to swell with a corresponding contraction in length, thereby drawing the end caps toward one another.
Returning to
As an alternative, a closure trigger (not shown) or other actuator may be included that bi-directionally transfers fluid to the fluid bladders 24, 26 as described in commonly owned U.S. patent application Ser. No. 11/061,908 entitled “SURGICAL INSTRUMENT INCORPORATING A FLUID TRANSFER CONTROLLED ARTICULATION MECHANISM” to Kenneth Wales and Chad Boudreaux, filed on 18 Feb. 2005, the disclosure of which is hereby incorporated by reference in its entirety. A number of such fluid actuators for articulation of a pivoting shaft are described that may be adapted for closing the anvil 12. To take full advantage of the differential fluid transfer described for several of these versions, it should be appreciated that an opposing lift bag (not shown) may be placed above the lever tray 40 of the anvil 12 to assert an opening force as the left and right fluid bladders (lift bags) 24, 26 collapse.
With particular reference to
An anti-backup mechanism 170 of the firing rod 152 may be advantageously included for a handle 22 that includes a multiple stroke firing trigger 150 and a retraction biased firing mechanism coupled to the firing rod 152 (not shown). In particular, an anti-backup locking plate 172 has the firing rod 152 pass through a closely fitting through hole (not shown) that binds when a retracting firing rod 152 tips the lock plate 172 backward as shown with the bottom of the locking plate 172 held in position within the frame 50. An anti-backup cam sleeve 174 is positioned distal to the anti-backup locking plate 172 and urged into contact by a more distal compression spring 176 through which the firing rod 152 passes and that is compressed within the frame 50. It should be appreciated that mechanisms in the handle 22 may manually release the anti-backup mechanism 170 for retraction of the firing rod 152.
In
In
In
It should be appreciated that one or more sensor in the surgical stapling and severing instrument 10 may sense a firing condition (e.g., movement of firing bar or mechanism coupled to the firing bar, position of the firing trigger, a separate user control to dispense, etc.) and activate dispensing control circuitry to effect dispensing.
In
While the present embodiment has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.
For example, while a non-articulating shaft is described herein for clarity, it should be appreciated that medical substance dispensing may be incorporated into an articulating shaft. In addition, fluid conduits may be incorporated that pass through an articulation joint of a shaft to fluid bladder actuators that close an end effector.
As another example, while both medical substance dispensing and fluid actuated anvil closing are illustrated herein, applications consistent with aspects of various embodiments may include either of these features. Further, for applications in which an adhesive and/or cauterizing medical substance is dispensed, it should be appreciated that features such as staples may be omitted.
As another example, while a staple applying assembly 20 is illustrated herein, it should be appreciated that other end effectors (graspers, cutting devices, etc.) may benefit from either or both of fluid controlled closing and medical substance dispensing.
As yet another example, a receptacle for the EAP syringe may be formed in the handle rather than in the elongate shaft.
As yet an additional example, a symmetric arrangement for a second EAP syringe may be formed in the elongate channel so that two medical substances may be simultaneously dispensed during firing.
As yet a further example, while a staple applying apparatus provides an illustrative embodiment, it should be appreciated that other endoscopic instruments may benefit from the ability to dispense a liquid at or near a distal end thereof. Examples of instruments that may benefit include, but are not limited to, an ablation device, a grasper, a cauterizing tool, an anastomotic ring introduction device, a surgical stapler, a linear stapler, etc. As such, those instruments that do not employ a firing bar that serves herein as a convenient fluid passage to a cutting surface may instead incorporate ducting or fluid conduits to an appropriate location.
While an electroactive polymer plunger has various advantages, it should be appreciated that other types of actuated devices may be employed to dispense a medical substance to the end effector.
For example,
The housing assembly 1016 comprises a channel 1026 and a channel cover 1028 connected to the channel 1026. The channel 1026 and the channel cover 1028 may be fabricated from any suitable material such as, for example, a plastic. The channel 1026 includes a first end 1030 proximate the first end 1012 of the disposable loading unit 1010 and a second end 1032 proximate the second end 1014 of the disposable loading unit 1010. The channel 1026 comprises a base 1034, a first wall 1036, and a second wall 1038. According to various embodiments, the base 1034 defines an opening 1040 proximate the first end 1030 of the channel 1026, a first slot 1042 proximate the first end 1030 of the channel 1026, a second slot 1044 proximate the first end 1030 of the channel 1026, and a third slot 1046 proximate the second end 1032 of the channel. The first wall 1036 is connected to the base 1034 and extends generally perpendicular therefrom. The second wall 1038 is connected to the base 1034, extends generally perpendicular therefrom, and is opposite the first wall 1036. The second wall 1038 may be a mirror-image of the first wall 1036, and the first and second walls 1036, 1038 may be fabricated integral with the base 1034. According to various embodiments, each of the first and second walls 1036, 1038 define a fourth slot 1048, a first tab 1050, a first indent 1052, a fifth slot 1054, a second indent 1056, a sixth slot 1058, a third indent 1060, a fourth indent 1062, a seventh slot 1064, an eighth slot 1066, and a first flange 1068.
The channel cover 1028 includes a first end 1070 proximate the first end 1012 of the disposable loading unit 1010 and a second end 1072 opposite the first end 1070, and may be symmetric along an axis that extends from the first end 1070 of the channel cover 1028 to the second end 1072 of the channel cover 1028. The channel cover 1028 is configured to engage with the channel 1026 at a plurality of locations. According to various embodiments, the channel cover 1028 defines a pair of coupling pegs 1074 proximate the first end 1070 of the channel cover 1028 that extends from the channel cover 1028. One of the coupling pegs 1074 passes through the opening 1040 defined by the channel 1026. The channel cover 1028 also defines a slit 1076 proximate the second end 1072 of the channel cover 1028. According to various embodiments, the channel cover 1028 defines a first pair of tabs 1078 that pass through and engage with the fourth slots 1048, a first pair of interior projections that mate with the first indents 1052, a second pair of tabs 1080 that pass through and engage with the fifth slots 1054, a second pair of interior projections that mate with the second indents 1056, and a third pair of interior projections that engage with the sixth slots 1058. According to other embodiments, the channel 1026 and the channel cover 1028 may be fabricated to include other arrangements of tabs, slots, projections, indents, etc. that may be utilized to connect the channel cover 1028 to the channel 1026.
The agent cartridge 1018 is connected to the housing assembly 1016 and houses at least one medical agent. The medical agent may be any type of medical agent. For example, the medical agent may comprise an anesthetic, an adhesive, an antibiotic, a cauterizing substance, a coagulant, a growth hormone, a hemostatic agent, a sealant, etc., or any combination thereof.
The agent cartridge 1018 includes a first end 1082 proximate the first end 1012 of the disposable loading unit 1010 and a second end 1084 opposite the first end 1082. The agent cartridge 1018 comprises a body 1086 (see
According to various embodiments, the agent cartridge 1018 also comprises a first sealing member 1104 (see
The knife assembly 1020 is connected to the housing assembly 1016, and includes a first end 1108 proximate the first end 1012 of the disposable loading unit 1010 and a second end 1110 opposite the first end 1108. The knife assembly 1020 comprises a body 1112 and a cutting surface 1114. According to various embodiments, the cutting surface 1114 comprises a portion of a knife blade that is connected to the body 1112 proximate the second end 1110 of the knife assembly 1020. The body 1112 may be fabricated from any suitable material such as, for example, a plastic. According to various embodiments, the body 1112 comprises a first clamping member 1116 proximate the first end 1108 of the knife assembly 1020, a second clamping member 1118 proximate the first end 1108 of the knife assembly 1020, and a foot member 1120 proximate the second end 1110 of the knife assembly 1020. The foot member 1120 passes through the third slot 1046 of the base 1034 of the channel 1026 and is mated with a retainer 1122 that is external to the housing assembly 1016 and serves to slidably connect the body 1112 to the housing assembly 1016 such that the knife assembly 1020 can be selectively advanced along the third slot 1046 toward the second end 1032 of the channel 1026.
The body 1112 of the knife assembly 1020 also comprises a first surface 1124 and a second surface 1126 (see
The staple cartridge 1022 is connected to the housing assembly 1016. The staple cartridge 1022 includes a first end 1134 and a second end 1136 opposite the first end 1134. The second end 1136 of the staple cartridge 1022 is proximate the second end 1014 of the disposable loading unit 1010. The staple cartridge 1022 may be similar to other staple cartridges known in the art. For example, the staple cartridge 1022 may comprise a plurality of surgical fasteners and a plurality of corresponding pushers. According to various embodiments, the staple cartridge 1022 defines a slot 1142 that is aligned with the third slot 1046 of the base 1034 of the channel 1026 and extends from the first end 1134 of the staple cartridge 1022 toward the second end 1136 of the staple cartridge 1022. The staple cartridge 1022 may also define tabs that extend from the staple cartridge 1022 and pass through and engage with the seventh slots 1064 and the eighth slots 1066 of the channel 1026, and may further comprise flanges 1146 which frictionally engage the first and second walls 1036, 1038 of the channel 1026 proximate the second end 1032 of the channel 1026. According to other embodiments, the staple cartridge 1022 may be fabricated to include other arrangements of tabs, flanges, fasteners, etc. that may be utilized to connect the staple cartridge 1022 to the housing assembly 1016.
The anvil assembly 1024 is connected to the housing assembly 1016. The anvil assembly 1024 includes a first end 1148 and a second end 1150 opposite the first end 1148. The second end 1150 of the anvil assembly 1024 is proximate the second end 1014 of the disposable loading unit 1010. The anvil assembly 1024 may be similar to other anvil assemblies known in the art. For example, the anvil assembly 1024 is moveable between an open position and a closed position, and may comprise an anvil plate 1152 and an anvil body 1154 connected to the anvil plate 1152. According to various embodiments, the anvil plate 1152 defines a slot 1156 that is aligned with the slot 1142 of the staple cartridge 1022, and the anvil body 1154 defines a slot 1158 that is aligned with the slot 1156 of the anvil plate 1152. The anvil plate 1152 may also define a first pair of ears 1160 proximate the first end 1148 of the anvil assembly 1024 and a second pair of ears 1162 positioned between the first pair of ears 1160 and the second end 1150 of the anvil assembly 1024. One of the ears of the second pair of ears 1162 is engaged with the third indent 1060 defined by the first wall 1036 of the channel 1026, and the other ear of the second pair of ears 1162 is engaged with the third indent 1060 defined by the second wall 1038 of the channel 1026. A spring member 1164 or other biasing arrangement may be utilized to urge the anvil assembly 1024 to the open position, and an anvil pin 1166 that passes through the opening 1132 of the knife assembly 1020 may be utilized to urge the anvil assembly 1024 toward the closed position. According to other embodiments, the anvil assembly 1024 may be fabricated to include other fastener arrangements that may be utilized to connect the anvil assembly 1024 to the housing assembly 1016.
The disposable loading unit 1010 may further comprise a first medical agent driver 1168 proximate the first end 1082 of the agent cartridge 1018 and a second medical agent driver 1170 (see
As shown in
In operation, when the firing member is advanced, the advancement of the firing member causes the drive block 1172 to advance toward the second end 1014 of the disposable loading unit 1010. As the drive block 1172 advances, the knife assembly 1020 advances toward the second end 1014 of the disposable loading unit 1010. The advancement of the knife assembly 1020 causes the anvil pin 1166 to cooperate with the anvil body 1154 to urge the anvil assembly 1024 toward the closed position. The advancement of the knife assembly 1020 also causes the sled 1180 to advance toward the second end 1014 of the disposable loading unit 1010. As the sled 1180 advances, the angled leading edges of the sled 1180 sequentially contact pushers supported within the staple cartridge 1022, causing the pushers to urge surgical fasteners from the staple cartridge 1022 in a known manner.
For embodiments where the first and second medical agent drivers 1168, 1170 are coupled to the knife assembly 1020, the advancement of the drive block 1172 advances the first and second medical agent drivers 1168, 1170 within the first and second sections 1088, 1090 of the body 1086 toward the second end 1084 of the agent cartridge 1018. As the first and second medical agent drivers 1168, 1170 advance, they make contact with the first and second sealing members 1104, 1106 and urge the first and second medical agents out of the first and second dispensing ports 1096, 1102. Because the post-fire positions of the first and second medical agent drivers 1168, 1170 may be some distance from the first and second dispensing ports 1096, 1102, some medical agent may still remain housed by the agent cartridge 1018 after the first and second medical agent drivers 1168, 1170 advance from their pre-fire positions to their post-fire positions.
For embodiments where the first and second medical agent drivers 1168, 1170 are electrically activated polymers, the advancement of the firing member causes an electrical connection to be made with the contact 1174, causing a voltage to be applied to the first and second medical agent drivers 1168, 1170. In response to the applied voltage, the first and second medical agent drivers 1168, 1170 expand within the first and second sections 1088, 1090 of the body 1086 of the agent cartridge 1018 and urge the first and second medical agents out of the first and second dispensing ports 1096, 1102.
With the first projection 1094 and the second projection 1100 serving as stops which restrict the flow of the first and second medical agents along the grooves 1128, 1130 in the direction toward the first end 1012 of the disposable loading unit 1010, the medical agents urged out of the first and second dispensing ports 1096, 1102 advance along the respective grooves 1128, 1130 toward the cutting surface 1114 of the disposable loading unit 1010. As the knife assembly 1020 advances along the slot 1142 defined by the staple cartridge 1022, the staple cartridge 1022 also serves to keep the medical agents in the grooves 1128, 1130 until the medical agents exit the grooves 1128, 1130 proximate the cutting surface 1114. The medical agents are thus effectively delivered to the site of the cutting and stapling.
After a single use, the disposable loading unit 1010 is removed from the elongated body 1204 and may be replaced with another disposable loading unit 1010 for another use. This process may be repeated any number of times. Therefore, the handle assembly 1202 and the elongated body 1204 connected thereto may be reused any number of times.
While several embodiments have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the various embodiments. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosed embodiments as defined by the appended claims.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
This application is a continuation application claiming priority under 35 U.S.C. §120 from U.S. patent application Ser. No. 12/696,397, entitled SURGICAL STAPLING INSTRUMENT HAVING A MEDICAL SUBSTANCE DISPENSER, filed on Jan. 29, 2010, now U.S. Pat. No. 8,215,531, which is a continuation-in-part application claiming priority under 35 U.S.C. §120 from U.S. patent application Ser. No. 11/141,753, entitled SURGICAL STAPLING INSTRUMENT HAVING AN ELECTROACTIVE POLYMER ACTUATED MEDICAL SUBSTANCE DISPENSER, filed on Jun. 1, 2005, U.S. Patent Publication No. 2006/0025813, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/591,694, entitled SURGICAL INSTRUMENT INCORPORATING AN ELECTRICALLY ACTUATED ARTICULATION MECHANISM, filed Jul. 28, 2004, the entire disclosures of which are incorporated by reference herein. This application is also a continuation application claiming priority under 35 U.S.C. §120 from U.S. patent application Ser. No. 12/696,397, entitled SURGICAL STAPLING INSTRUMENT HAVING A MEDICAL SUBSTANCE DISPENSER, filed on Jan. 29, 2010, now U.S. Pat. No. 8,215,531, which is a continuation-in-part application claiming priority under 35 U.S.C. §120 from U.S. patent application Ser. No. 11/731,521, entitled DISPOSABLE LOADING UNIT AND SURGICAL INSTRUMENTS INCLUDING SAME, filed on Mar. 30, 2007 now abandoned, now U.S. Patent Publication No. 2007/0170225, which is a continuation application of U.S. patent application Ser. No. 11/271,234, entitled DISPOSABLE LOADING UNIT AND SURGICAL INSTRUMENTS INCLUDING SAME, filed on Nov. 10, 2005, which issued as U.S. Pat. No. 7,354,447 on Apr. 8, 2008, the entire disclosures of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3490675 | Green et al. | Jan 1970 | A |
3643851 | Green et al. | Feb 1972 | A |
3662939 | Bryan | May 1972 | A |
3717294 | Green | Feb 1973 | A |
3819100 | Noiles et al. | Jun 1974 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
4060089 | Noiles | Nov 1977 | A |
4331277 | Green | May 1982 | A |
4383634 | Green | May 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4415112 | Green | Nov 1983 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4530453 | Green | Jul 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4655222 | Florez et al. | Apr 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4728020 | Green et al. | Mar 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4767044 | Green | Aug 1988 | A |
4805823 | Rothfuss | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4844068 | Arata et al. | Jul 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4890613 | Golden et al. | Jan 1990 | A |
4932960 | Green et al. | Jun 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4986808 | Broadwin et al. | Jan 1991 | A |
4988334 | Hornlein et al. | Jan 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5024652 | Dumenek et al. | Jun 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5156614 | Green et al. | Oct 1992 | A |
5158567 | Green | Oct 1992 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5221036 | Takase | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5258009 | Conners | Nov 1993 | A |
5258012 | Luscombe et al. | Nov 1993 | A |
5282829 | Hermes | Feb 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5312329 | Beaty et al. | May 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5352238 | Green et al. | Oct 1994 | A |
5358510 | Luscombe et al. | Oct 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5391180 | Tovey et al. | Feb 1995 | A |
5395312 | Desai | Mar 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5413272 | Green et al. | May 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5556416 | Clark et al. | Sep 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
6033427 | Lee | Mar 2000 | A |
6083242 | Cook | Jul 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6171330 | Benchetrit | Jan 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6228084 | Kirwan, Jr. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6309403 | Minor et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6358224 | Tims et al. | Mar 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
6387114 | Adams | May 2002 | B2 |
6398797 | Bombard et al. | Jun 2002 | B2 |
RE37814 | Allgeyer | Aug 2002 | E |
6443973 | Whitman | Sep 2002 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6494896 | D'Alessio et al. | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6667825 | Lu et al. | Dec 2003 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
6866178 | Adams et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
7018390 | Turovskiy et al. | Mar 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7112214 | Peterson et al. | Sep 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147648 | Lin | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7156863 | Sonnenschein et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7188758 | Viola et al. | Mar 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
7237708 | Guy et al. | Jul 2007 | B1 |
7238195 | Viola | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7442201 | Pugsley et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7494499 | Nagase et al. | Feb 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7597229 | Boudreaux et al. | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7651498 | Shifrin et al. | Jan 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7669746 | Shelton, IV | Mar 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7673781 | Swayze et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7673783 | Morgan et al. | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shelton, IV et al. | May 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7731072 | Timm et al. | Jun 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7766209 | Baxter, III et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7819296 | Hueil et al. | Oct 2010 | B2 |
7819297 | Doll et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7857186 | Baxter, III et al. | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7866527 | Hall et al. | Jan 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7905380 | Shelton, IV et al. | Mar 2011 | B2 |
7905381 | Baxter, III et al. | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7954684 | Boudreaux | Jun 2011 | B2 |
7954686 | Baxter, III et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7966799 | Morgan et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
D650074 | Hunt et al. | Dec 2011 | S |
8083120 | Shelton, IV et al. | Dec 2011 | B2 |
8097017 | Viola | Jan 2012 | B2 |
8113410 | Hall et al. | Feb 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157153 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8167185 | Shelton, IV et al. | May 2012 | B2 |
8172124 | Shelton, IV et al. | May 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8196795 | Moore et al. | Jun 2012 | B2 |
8196796 | Shelton, IV et al. | Jun 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8215531 | Shelton, IV et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8220690 | Hess et al. | Jul 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8292155 | Shelton, IV et al. | Oct 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8317070 | Hueil et al. | Nov 2012 | B2 |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8322589 | Boudreaux | Dec 2012 | B2 |
20030105478 | Whitman et al. | Jun 2003 | A1 |
20030130677 | Whitman et al. | Jul 2003 | A1 |
20040006372 | Racenet et al. | Jan 2004 | A1 |
20040068224 | Couvillon, Jr. et al. | Apr 2004 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040222268 | Bilotti et al. | Nov 2004 | A1 |
20040243176 | Hahnen et al. | Dec 2004 | A1 |
20040254608 | Huitema et al. | Dec 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050107824 | Hillstead et al. | May 2005 | A1 |
20050131436 | Johnston et al. | Jun 2005 | A1 |
20050131437 | Johnston et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050145675 | Hartwick et al. | Jul 2005 | A1 |
20050165435 | Johnston et al. | Jul 2005 | A1 |
20050184121 | Heinrich | Aug 2005 | A1 |
20050187572 | Johnston et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050192609 | Whitman et al. | Sep 2005 | A1 |
20050192628 | Viola | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050240222 | Shipp | Oct 2005 | A1 |
20050274768 | Cummins et al. | Dec 2005 | A1 |
20060011699 | Olson et al. | Jan 2006 | A1 |
20060025811 | Shelton, IV | Feb 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060025813 | Shelton et al. | Feb 2006 | A1 |
20060047303 | Ortiz et al. | Mar 2006 | A1 |
20060047307 | Ortiz et al. | Mar 2006 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060085033 | Criscuolo et al. | Apr 2006 | A1 |
20060212069 | Shelton, IV | Sep 2006 | A1 |
20060226196 | Hueil et al. | Oct 2006 | A1 |
20060235469 | Viola | Oct 2006 | A1 |
20060241692 | McGuckin, Jr. et al. | Oct 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070027469 | Smith et al. | Feb 2007 | A1 |
20070073341 | Smith | Mar 2007 | A1 |
20070078484 | Talarico et al. | Apr 2007 | A1 |
20070102472 | Shelton, IV | May 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070114261 | Ortiz et al. | May 2007 | A1 |
20070170225 | Shelton, IV et al. | Jul 2007 | A1 |
20070175949 | Shelton, IV et al. | Aug 2007 | A1 |
20070175950 | Shelton, IV et al. | Aug 2007 | A1 |
20070175951 | Shelton, IV et al. | Aug 2007 | A1 |
20070175955 | Shelton, IV et al. | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070197954 | Keenan | Aug 2007 | A1 |
20070221700 | Ortiz et al. | Sep 2007 | A1 |
20070221701 | Ortiz et al. | Sep 2007 | A1 |
20070225562 | Spivey et al. | Sep 2007 | A1 |
20070239028 | Houser et al. | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20080015598 | Prommersberger | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080078800 | Hess et al. | Apr 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080078803 | Shelton et al. | Apr 2008 | A1 |
20080078804 | Shelton et al. | Apr 2008 | A1 |
20080078806 | Omaits et al. | Apr 2008 | A1 |
20080078808 | Hess et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080167522 | Giordano et al. | Jul 2008 | A1 |
20080167672 | Giordano et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080172088 | Smith et al. | Jul 2008 | A1 |
20080251568 | Zemlok et al. | Oct 2008 | A1 |
20080251569 | Smith et al. | Oct 2008 | A1 |
20080283570 | Boyden et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton, IV et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005807 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090012556 | Boudreaux et al. | Jan 2009 | A1 |
20090057369 | Smith et al. | Mar 2009 | A1 |
20090108048 | Zemlok et al. | Apr 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206132 | Hueil et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090209946 | Swayze et al. | Aug 2009 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090255978 | Viola et al. | Oct 2009 | A1 |
20100012704 | Tarinelli Racenet et al. | Jan 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100076475 | Yates et al. | Mar 2010 | A1 |
20100089970 | Smith et al. | Apr 2010 | A1 |
20100127042 | Shelton, IV | May 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100133318 | Boudreaux | Jun 2010 | A1 |
20100179382 | Shelton, IV et al. | Jul 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100193567 | Scheib et al. | Aug 2010 | A1 |
20100193568 | Scheib et al. | Aug 2010 | A1 |
20100193569 | Yates et al. | Aug 2010 | A1 |
20100198220 | Boudreaux et al. | Aug 2010 | A1 |
20100200637 | Beetel | Aug 2010 | A1 |
20100213241 | Bedi et al. | Aug 2010 | A1 |
20100222901 | Swayze et al. | Sep 2010 | A1 |
20100224669 | Shelton, IV et al. | Sep 2010 | A1 |
20100243709 | Hess et al. | Sep 2010 | A1 |
20100258611 | Smith et al. | Oct 2010 | A1 |
20100264193 | Huang et al. | Oct 2010 | A1 |
20100276471 | Whitman | Nov 2010 | A1 |
20100294827 | Boyden et al. | Nov 2010 | A1 |
20100294829 | Giordano et al. | Nov 2010 | A1 |
20100301095 | Shelton, IV et al. | Dec 2010 | A1 |
20100305552 | Shelton, IV et al. | Dec 2010 | A1 |
20110006099 | Hall et al. | Jan 2011 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110006103 | Laurent et al. | Jan 2011 | A1 |
20110011914 | Baxter, III et al. | Jan 2011 | A1 |
20110011915 | Shelton, IV | Jan 2011 | A1 |
20110017801 | Zemlok et al. | Jan 2011 | A1 |
20110024477 | Hall et al. | Feb 2011 | A1 |
20110024478 | Shelton, IV | Feb 2011 | A1 |
20110024479 | Swensgard et al. | Feb 2011 | A1 |
20110036887 | Zemlok et al. | Feb 2011 | A1 |
20110042441 | Shelton, IV et al. | Feb 2011 | A1 |
20110060363 | Hess et al. | Mar 2011 | A1 |
20110068145 | Bedi et al. | Mar 2011 | A1 |
20110068148 | Hall et al. | Mar 2011 | A1 |
20110084115 | Bedi et al. | Apr 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110095068 | Patel | Apr 2011 | A1 |
20110101065 | Milliman | May 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110114698 | Baxter, III et al. | May 2011 | A1 |
20110114699 | Baxter, III et al. | May 2011 | A1 |
20110114700 | Baxter, III et al. | May 2011 | A1 |
20110118761 | Baxter, III et al. | May 2011 | A1 |
20110125176 | Yates et al. | May 2011 | A1 |
20110125177 | Yates et al. | May 2011 | A1 |
20110132963 | Giordano et al. | Jun 2011 | A1 |
20110132964 | Weisenburgh, II et al. | Jun 2011 | A1 |
20110132965 | Moore et al. | Jun 2011 | A1 |
20110144430 | Spivey et al. | Jun 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110147434 | Hueil et al. | Jun 2011 | A1 |
20110155781 | Swensgard et al. | Jun 2011 | A1 |
20110155787 | Baxter, III et al. | Jun 2011 | A1 |
20110163147 | Laurent et al. | Jul 2011 | A1 |
20110174861 | Shelton, IV et al. | Jul 2011 | A1 |
20110174863 | Shelton, IV et al. | Jul 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110210156 | Smith et al. | Sep 2011 | A1 |
20110226837 | Baxter, III et al. | Sep 2011 | A1 |
20110233258 | Boudreaux | Sep 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110288573 | Yates et al. | Nov 2011 | A1 |
20110290851 | Shelton, IV | Dec 2011 | A1 |
20110290853 | Shelton, IV et al. | Dec 2011 | A1 |
20110290854 | Timm et al. | Dec 2011 | A1 |
20110290855 | Moore et al. | Dec 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110295242 | Spivey et al. | Dec 2011 | A1 |
20110295269 | Swensgard et al. | Dec 2011 | A1 |
20110295270 | Giordano et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20120024934 | Shelton, IV et al. | Feb 2012 | A1 |
20120024935 | Shelton, IV et al. | Feb 2012 | A1 |
20120024936 | Baxter, III et al. | Feb 2012 | A1 |
20120029272 | Shelton, IV et al. | Feb 2012 | A1 |
20120029544 | Shelton, IV et al. | Feb 2012 | A1 |
20120029547 | Shelton, IV et al. | Feb 2012 | A1 |
20120046692 | Smith et al. | Feb 2012 | A1 |
20120061448 | Zingman | Mar 2012 | A1 |
20120071711 | Shelton, IV et al. | Mar 2012 | A1 |
20120071866 | Kerr et al. | Mar 2012 | A1 |
20120074196 | Shelton, IV et al. | Mar 2012 | A1 |
20120074198 | Huitema et al. | Mar 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120074201 | Baxter, III et al. | Mar 2012 | A1 |
20120080332 | Shelton, IV et al. | Apr 2012 | A1 |
20120080333 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080334 | Shelton, IV et al. | Apr 2012 | A1 |
20120080335 | Shelton, IV et al. | Apr 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120080337 | Shelton, IV et al. | Apr 2012 | A1 |
20120080338 | Shelton, IV et al. | Apr 2012 | A1 |
20120080339 | Shelton, IV et al. | Apr 2012 | A1 |
20120080340 | Shelton, IV et al. | Apr 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120080345 | Morgan et al. | Apr 2012 | A1 |
20120080475 | Smith et al. | Apr 2012 | A1 |
20120080477 | Leimbach et al. | Apr 2012 | A1 |
20120080478 | Morgan et al. | Apr 2012 | A1 |
20120080479 | Shelton, IV | Apr 2012 | A1 |
20120080480 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080481 | Widenhouse et al. | Apr 2012 | A1 |
20120080482 | Schall et al. | Apr 2012 | A1 |
20120080483 | Riestenberg et al. | Apr 2012 | A1 |
20120080484 | Morgan et al. | Apr 2012 | A1 |
20120080485 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080486 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080487 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080488 | Shelton, IV et al. | Apr 2012 | A1 |
20120080489 | Shelton, IV et al. | Apr 2012 | A1 |
20120080490 | Shelton, IV et al. | Apr 2012 | A1 |
20120080491 | Shelton, IV et al. | Apr 2012 | A1 |
20120080493 | Shelton, IV et al. | Apr 2012 | A1 |
20120080496 | Schall et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120080499 | Schall et al. | Apr 2012 | A1 |
20120080500 | Morgan et al. | Apr 2012 | A1 |
20120080501 | Morgan et al. | Apr 2012 | A1 |
20120080502 | Morgan et al. | Apr 2012 | A1 |
20120080503 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120083833 | Shelton, IV et al. | Apr 2012 | A1 |
20120083834 | Shelton, IV et al. | Apr 2012 | A1 |
20120083835 | Shelton, IV et al. | Apr 2012 | A1 |
20120083836 | Shelton, IV et al. | Apr 2012 | A1 |
20120132450 | Timm et al. | May 2012 | A1 |
20120138660 | Shelton, IV | Jun 2012 | A1 |
20120160721 | Shelton, IV et al. | Jun 2012 | A1 |
20120175399 | Shelton et al. | Jul 2012 | A1 |
20120199630 | Shelton, IV et al. | Aug 2012 | A1 |
20120199631 | Shelton, IV et al. | Aug 2012 | A1 |
20120199632 | Spivey et al. | Aug 2012 | A1 |
20120199633 | Shelton, IV et al. | Aug 2012 | A1 |
20120203247 | Shelton, IV et al. | Aug 2012 | A1 |
20120205421 | Shelton, IV | Aug 2012 | A1 |
20120211546 | Shelton, IV | Aug 2012 | A1 |
20120234890 | Aronhalt et al. | Sep 2012 | A1 |
20120234891 | Aronhalt et al. | Sep 2012 | A1 |
20120234892 | Aronhalt et al. | Sep 2012 | A1 |
20120234893 | Schuckmann et al. | Sep 2012 | A1 |
20120234895 | O'Connor et al. | Sep 2012 | A1 |
20120234896 | Ellerhorst et al. | Sep 2012 | A1 |
20120234897 | Shelton, IV et al. | Sep 2012 | A1 |
20120234898 | Shelton, IV et al. | Sep 2012 | A1 |
20120234899 | Scheib et al. | Sep 2012 | A1 |
20120234900 | Swayze | Sep 2012 | A1 |
20120238823 | Hagerty et al. | Sep 2012 | A1 |
20120238824 | Widenhouse et al. | Sep 2012 | A1 |
20120238826 | Yoo et al. | Sep 2012 | A1 |
20120238829 | Shelton, IV et al. | Sep 2012 | A1 |
20120239009 | Mollere et al. | Sep 2012 | A1 |
20120239010 | Shelton, IV et al. | Sep 2012 | A1 |
20120239012 | Laurent et al. | Sep 2012 | A1 |
20120239075 | Widenhouse et al. | Sep 2012 | A1 |
20120239082 | Shelton, IV et al. | Sep 2012 | A1 |
20120241491 | Aldridge et al. | Sep 2012 | A1 |
20120241492 | Shelton, IV et al. | Sep 2012 | A1 |
20120241493 | Baxter, III et al. | Sep 2012 | A1 |
20120241496 | Mandakolathur Vasudevan et al. | Sep 2012 | A1 |
20120241497 | Mandakolathur Vasudevan et al. | Sep 2012 | A1 |
20120241498 | Gonzalez et al. | Sep 2012 | A1 |
20120241499 | Baxter, III et al. | Sep 2012 | A1 |
20120241500 | Timmer et al. | Sep 2012 | A1 |
20120241501 | Swayze et al. | Sep 2012 | A1 |
20120241502 | Aldridge et al. | Sep 2012 | A1 |
20120241503 | Baxter, III et al. | Sep 2012 | A1 |
20120241505 | Alexander, III et al. | Sep 2012 | A1 |
20120248169 | Widenhouse et al. | Oct 2012 | A1 |
20120253298 | Henderson et al. | Oct 2012 | A1 |
20120265230 | Yates et al. | Oct 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120286019 | Hueil et al. | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120292370 | Hess et al. | Nov 2012 | A1 |
20120298719 | Shelton, IV et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
2458946 | Mar 2003 | CA |
2512960 | Jan 2006 | CA |
2514274 | Jan 2006 | CA |
1634601 | Jul 2005 | CN |
1868411 | Nov 2006 | CN |
1915180 | Feb 2007 | CN |
101095621 | Jan 2008 | CN |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
3036217 | Apr 1982 | DE |
3210466 | Sep 1983 | DE |
9412228 | Sep 1994 | DE |
19509116 | Sep 1996 | DE |
19851291 | Jan 2000 | DE |
19924311 | Nov 2000 | DE |
69328576 | Jan 2001 | DE |
10052679 | May 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
10314072 | Oct 2004 | DE |
202007003114 | Jun 2007 | DE |
0122046 | Oct 1984 | EP |
0070230 | Oct 1985 | EP |
0387980 | Oct 1985 | EP |
0033548 | May 1986 | EP |
0276104 | Jul 1988 | EP |
0248844 | Jan 1993 | EP |
0545029 | Jun 1993 | EP |
0277959 | Oct 1993 | EP |
0233940 | Nov 1993 | EP |
0261230 | Nov 1993 | EP |
0639349 | Feb 1994 | EP |
0324636 | Mar 1994 | EP |
0593920 | Apr 1994 | EP |
0594148 | Apr 1994 | EP |
0427949 | Jun 1994 | EP |
0523174 | Jun 1994 | EP |
0600182 | Jun 1994 | EP |
0310431 | Nov 1994 | EP |
0375302 | Nov 1994 | EP |
0376562 | Nov 1994 | EP |
0630612 | Dec 1994 | EP |
0634144 | Jan 1995 | EP |
0646356 | Apr 1995 | EP |
0646357 | Apr 1995 | EP |
0653189 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0511470 | Oct 1995 | EP |
0679367 | Nov 1995 | EP |
0392547 | Dec 1995 | EP |
0685204 | Dec 1995 | EP |
0364216 | Jan 1996 | EP |
0699418 | Mar 1996 | EP |
0702937 | Mar 1996 | EP |
0705571 | Apr 1996 | EP |
0711611 | May 1996 | EP |
0484677 | Jun 1996 | EP |
0541987 | Jul 1996 | EP |
0667119 | Jul 1996 | EP |
0708618 | Mar 1997 | EP |
0770355 | May 1997 | EP |
0503662 | Jun 1997 | EP |
0447121 | Jul 1997 | EP |
0625077 | Jul 1997 | EP |
0633749 | Aug 1997 | EP |
0710090 | Aug 1997 | EP |
0578425 | Sep 1997 | EP |
0625335 | Nov 1997 | EP |
0552423 | Jan 1998 | EP |
0592244 | Jan 1998 | EP |
0648476 | Jan 1998 | EP |
0649290 | Mar 1998 | EP |
0598618 | Sep 1998 | EP |
0676173 | Sep 1998 | EP |
0678007 | Sep 1998 | EP |
0603472 | Nov 1998 | EP |
0605351 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0879742 | Nov 1998 | EP |
0695144 | Dec 1998 | EP |
0722296 | Dec 1998 | EP |
0760230 | Feb 1999 | EP |
0623316 | Mar 1999 | EP |
0650701 | Mar 1999 | EP |
0537572 | Jun 1999 | EP |
0923907 | Jun 1999 | EP |
0843906 | Mar 2000 | EP |
0552050 | May 2000 | EP |
0833592 | May 2000 | EP |
0830094 | Sep 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
0694290 | Nov 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1090592 | Apr 2001 | EP |
1095627 | May 2001 | EP |
1256318 | May 2001 | EP |
0806914 | Sep 2001 | EP |
0768840 | Dec 2001 | EP |
0908152 | Jan 2002 | EP |
0872213 | May 2002 | EP |
0862386 | Jun 2002 | EP |
0949886 | Sep 2002 | EP |
1238634 | Sep 2002 | EP |
0858295 | Dec 2002 | EP |
0656188 | Jan 2003 | EP |
1284120 | Feb 2003 | EP |
1287788 | Mar 2003 | EP |
0717966 | Apr 2003 | EP |
0869742 | May 2003 | EP |
0829235 | Jun 2003 | EP |
0887046 | Jul 2003 | EP |
0852480 | Aug 2003 | EP |
0891154 | Sep 2003 | EP |
0813843 | Oct 2003 | EP |
0873089 | Oct 2003 | EP |
0856326 | Nov 2003 | EP |
1374788 | Jan 2004 | EP |
0741996 | Feb 2004 | EP |
0814712 | Feb 2004 | EP |
1402837 | Mar 2004 | EP |
0705570 | Apr 2004 | EP |
0959784 | Apr 2004 | EP |
1407719 | Apr 2004 | EP |
1086713 | May 2004 | EP |
0996378 | Jun 2004 | EP |
1426012 | Jun 2004 | EP |
0833593 | Jul 2004 | EP |
1442694 | Aug 2004 | EP |
0888749 | Sep 2004 | EP |
0959786 | Sep 2004 | EP |
1459695 | Sep 2004 | EP |
1473819 | Nov 2004 | EP |
1477119 | Nov 2004 | EP |
1479345 | Nov 2004 | EP |
1479347 | Nov 2004 | EP |
1479348 | Nov 2004 | EP |
0754437 | Dec 2004 | EP |
1025807 | Dec 2004 | EP |
1001710 | Jan 2005 | EP |
1520521 | Apr 2005 | EP |
1520523 | Apr 2005 | EP |
1520525 | Apr 2005 | EP |
1522264 | Apr 2005 | EP |
1523942 | Apr 2005 | EP |
1550408 | Jul 2005 | EP |
1557129 | Jul 2005 | EP |
1064883 | Aug 2005 | EP |
1067876 | Aug 2005 | EP |
0870473 | Sep 2005 | EP |
1157666 | Sep 2005 | EP |
0880338 | Oct 2005 | EP |
1158917 | Nov 2005 | EP |
1344498 | Nov 2005 | EP |
1330989 | Dec 2005 | EP |
0771176 | Jan 2006 | EP |
1621138 | Feb 2006 | EP |
1621139 | Feb 2006 | EP |
1621141 | Feb 2006 | EP |
1621145 | Feb 2006 | EP |
1621151 | Feb 2006 | EP |
1034746 | Mar 2006 | EP |
1632191 | Mar 2006 | EP |
1065981 | May 2006 | EP |
1082944 | May 2006 | EP |
1652481 | May 2006 | EP |
1382303 | Jun 2006 | EP |
1253866 | Jul 2006 | EP |
1032318 | Aug 2006 | EP |
1045672 | Aug 2006 | EP |
1617768 | Aug 2006 | EP |
1693015 | Aug 2006 | EP |
1400214 | Sep 2006 | EP |
1702567 | Sep 2006 | EP |
1129665 | Nov 2006 | EP |
1400206 | Nov 2006 | EP |
1721568 | Nov 2006 | EP |
1256317 | Dec 2006 | EP |
1285633 | Dec 2006 | EP |
1728473 | Dec 2006 | EP |
1728475 | Dec 2006 | EP |
1479346 | Jan 2007 | EP |
1484024 | Jan 2007 | EP |
1754445 | Feb 2007 | EP |
1759812 | Mar 2007 | EP |
1767163 | Mar 2007 | EP |
1769756 | Apr 2007 | EP |
1769758 | Apr 2007 | EP |
1581128 | May 2007 | EP |
1785097 | May 2007 | EP |
1790293 | May 2007 | EP |
1800610 | Jun 2007 | EP |
1300117 | Aug 2007 | EP |
1813199 | Aug 2007 | EP |
1813201 | Aug 2007 | EP |
1813203 | Aug 2007 | EP |
1813207 | Aug 2007 | EP |
1813209 | Aug 2007 | EP |
1487359 | Oct 2007 | EP |
1599146 | Oct 2007 | EP |
1839596 | Oct 2007 | EP |
2110083 | Oct 2007 | EP |
1857057 | Nov 2007 | EP |
1402821 | Dec 2007 | EP |
1872727 | Jan 2008 | EP |
1897502 | Mar 2008 | EP |
1330201 | Jun 2008 | EP |
1702568 | Jul 2008 | EP |
1943957 | Jul 2008 | EP |
1943964 | Jul 2008 | EP |
1943976 | Jul 2008 | EP |
1593337 | Aug 2008 | EP |
1970014 | Sep 2008 | EP |
1980213 | Oct 2008 | EP |
1759645 | Nov 2008 | EP |
1990014 | Nov 2008 | EP |
1693008 | Dec 2008 | EP |
1759640 | Dec 2008 | EP |
2000102 | Dec 2008 | EP |
2008595 | Dec 2008 | EP |
1736104 | Mar 2009 | EP |
1749486 | Mar 2009 | EP |
2039316 | Mar 2009 | EP |
1721576 | Apr 2009 | EP |
1733686 | Apr 2009 | EP |
2044890 | Apr 2009 | EP |
1550413 | Jun 2009 | EP |
1745748 | Aug 2009 | EP |
2090237 | Aug 2009 | EP |
2090256 | Aug 2009 | EP |
2095777 | Sep 2009 | EP |
2110082 | Oct 2009 | EP |
1813208 | Nov 2009 | EP |
2116195 | Nov 2009 | EP |
1607050 | Dec 2009 | EP |
1815804 | Dec 2009 | EP |
1566150 | Apr 2010 | EP |
1813206 | Apr 2010 | EP |
1769754 | Jun 2010 | EP |
1535565 | Oct 2010 | EP |
1702570 | Oct 2010 | EP |
1785098 | Oct 2010 | EP |
2030578 | Nov 2010 | EP |
1627605 | Dec 2010 | EP |
1813205 | Jun 2011 | EP |
1785102 | Jan 2012 | EP |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2598905 | Nov 1987 | FR |
2765794 | Jan 1999 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
1217159 | Dec 1970 | GB |
1339394 | Dec 1973 | GB |
2109241 | Jun 1983 | GB |
2272159 | May 1994 | GB |
2284242 | May 1995 | GB |
2336214 | Oct 1999 | GB |
2425903 | Nov 2006 | GB |
58500053 | Jan 1983 | JP |
61-98249 | May 1986 | JP |
63-203149 | Aug 1988 | JP |
3-12126 | Jan 1991 | JP |
5-212039 | Aug 1993 | JP |
6007357 | Jan 1994 | JP |
7051273 | Feb 1995 | JP |
8033641 | Feb 1996 | JP |
8229050 | Sep 1996 | JP |
2000033071 | Feb 2000 | JP |
2000171730 | Jun 2000 | JP |
2000287987 | Oct 2000 | JP |
2000325303 | Nov 2000 | JP |
2001-514541 | Sep 2001 | JP |
2001286477 | Oct 2001 | JP |
2002143078 | May 2002 | JP |
2002369820 | Dec 2002 | JP |
2004-344663 | Dec 2004 | JP |
2005-028149 | Feb 2005 | JP |
2005505322 | Feb 2005 | JP |
2005103293 | Apr 2005 | JP |
2005131163 | May 2005 | JP |
2005131164 | May 2005 | JP |
2005131173 | May 2005 | JP |
2005131211 | May 2005 | JP |
2005131212 | May 2005 | JP |
2005137423 | Jun 2005 | JP |
2005152416 | Jun 2005 | JP |
2005-523105 | Aug 2005 | JP |
2005524474 | Aug 2005 | JP |
2006-281405 | Oct 2006 | JP |
2008830 | Mar 1994 | RU |
2187249 | Aug 2002 | RU |
2225170 | Mar 2004 | RU |
189517 | Jan 1967 | SU |
328636 | Sep 1972 | SU |
886900 | Dec 1981 | SU |
1009439 | Apr 1983 | SU |
1333319 | Aug 1987 | SU |
1377053 | Feb 1988 | SU |
1561964 | May 1990 | SU |
1722476 | Mar 1992 | SU |
WO 8202824 | Sep 1982 | WO |
WO 9115157 | Oct 1991 | WO |
WO 9220295 | Nov 1992 | WO |
WO 9221300 | Dec 1992 | WO |
WO 9308755 | May 1993 | WO |
WO 9313718 | Jul 1993 | WO |
WO 9314690 | Aug 1993 | WO |
WO 9315648 | Aug 1993 | WO |
WO 9315850 | Aug 1993 | WO |
WO 9319681 | Oct 1993 | WO |
WO 9400060 | Jan 1994 | WO |
WO 9411057 | May 1994 | WO |
WO 9412108 | Jun 1994 | WO |
WO 9418893 | Sep 1994 | WO |
WO 9422378 | Oct 1994 | WO |
WO 9423659 | Oct 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9503743 | Feb 1995 | WO |
WO 9506817 | Mar 1995 | WO |
WO 9509576 | Apr 1995 | WO |
WO 9509577 | Apr 1995 | WO |
WO 9514436 | Jun 1995 | WO |
WO 9517855 | Jul 1995 | WO |
WO 9518383 | Jul 1995 | WO |
WO 9518572 | Jul 1995 | WO |
WO 9519739 | Jul 1995 | WO |
WO 9520360 | Aug 1995 | WO |
WO 9523557 | Sep 1995 | WO |
WO 9524865 | Sep 1995 | WO |
WO 9525471 | Sep 1995 | WO |
WO 9526562 | Oct 1995 | WO |
WO 9529639 | Nov 1995 | WO |
WO 9604858 | Feb 1996 | WO |
WO 9619151 | Jun 1996 | WO |
WO 9619152 | Jun 1996 | WO |
WO 9620652 | Jul 1996 | WO |
WO 9621119 | Jul 1996 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9623448 | Aug 1996 | WO |
WO 9624301 | Aug 1996 | WO |
WO 9627337 | Sep 1996 | WO |
WO 9631155 | Oct 1996 | WO |
WO 9635464 | Nov 1996 | WO |
WO 9639085 | Dec 1996 | WO |
WO 9639086 | Dec 1996 | WO |
WO 9639087 | Dec 1996 | WO |
WO 9639088 | Dec 1996 | WO |
WO 9639089 | Dec 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO 9706582 | Feb 1997 | WO |
WO 9710763 | Mar 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9711648 | Apr 1997 | WO |
WO 9711649 | Apr 1997 | WO |
WO 9715237 | May 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9730644 | Aug 1997 | WO |
WO 9734533 | Sep 1997 | WO |
WO 9737598 | Oct 1997 | WO |
WO 9739688 | Oct 1997 | WO |
WO 9817180 | Apr 1998 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9830153 | Jul 1998 | WO |
WO 9847436 | Oct 1998 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9912483 | Mar 1999 | WO |
WO 9912487 | Mar 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9915086 | Apr 1999 | WO |
WO 9915091 | Apr 1999 | WO |
WO 9923933 | May 1999 | WO |
WO 9923959 | May 1999 | WO |
WO 9925261 | May 1999 | WO |
WO 9929244 | Jun 1999 | WO |
WO 9934744 | Jul 1999 | WO |
WO 9945849 | Sep 1999 | WO |
WO 9948430 | Sep 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 0024322 | May 2000 | WO |
WO 0024330 | May 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0048506 | Aug 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0054653 | Sep 2000 | WO |
WO 0057796 | Oct 2000 | WO |
WO 0064365 | Nov 2000 | WO |
WO 0072762 | Dec 2000 | WO |
WO 0072765 | Dec 2000 | WO |
WO 0103587 | Jan 2001 | WO |
WO 0105702 | Jan 2001 | WO |
WO 0110482 | Feb 2001 | WO |
WO 0135845 | May 2001 | WO |
WO 0154594 | Aug 2001 | WO |
WO 0158371 | Aug 2001 | WO |
WO 0162158 | Aug 2001 | WO |
WO 0162161 | Aug 2001 | WO |
WO 0162162 | Aug 2001 | WO |
WO 0162164 | Aug 2001 | WO |
WO 0162169 | Aug 2001 | WO |
WO 0178605 | Oct 2001 | WO |
WO 0191646 | Dec 2001 | WO |
WO 0207608 | Jan 2002 | WO |
WO 0207618 | Jan 2002 | WO |
WO 0217799 | Mar 2002 | WO |
WO 0219920 | Mar 2002 | WO |
WO 0219932 | Mar 2002 | WO |
WO 0230297 | Apr 2002 | WO |
WO 0232322 | Apr 2002 | WO |
WO 0236028 | May 2002 | WO |
WO 0243571 | Jun 2002 | WO |
WO 02058568 | Aug 2002 | WO |
WO 02060328 | Aug 2002 | WO |
WO 02067785 | Sep 2002 | WO |
WO 02098302 | Dec 2002 | WO |
WO 03000138 | Jan 2003 | WO |
WO 03001329 | Jan 2003 | WO |
WO 03013363 | Feb 2003 | WO |
WO 03015604 | Feb 2003 | WO |
WO 03020106 | Mar 2003 | WO |
WO 03020139 | Mar 2003 | WO |
WO 03024339 | Mar 2003 | WO |
WO 03079909 | Mar 2003 | WO |
WO 03030743 | Apr 2003 | WO |
WO 03037193 | May 2003 | WO |
WO 03047436 | Jun 2003 | WO |
WO 03055402 | Jul 2003 | WO |
WO 03057048 | Jul 2003 | WO |
WO 03057058 | Jul 2003 | WO |
WO 03063694 | Aug 2003 | WO |
WO 03077769 | Sep 2003 | WO |
WO 03079911 | Oct 2003 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03094745 | Nov 2003 | WO |
WO 03094746 | Nov 2003 | WO |
WO 03094747 | Nov 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03101313 | Dec 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 03105702 | Dec 2003 | WO |
WO 2004006980 | Jan 2004 | WO |
WO 2004011037 | Feb 2004 | WO |
WO 2004019769 | Mar 2004 | WO |
WO 2004021868 | Mar 2004 | WO |
WO 2004028585 | Apr 2004 | WO |
WO 2004032754 | Apr 2004 | WO |
WO 2004032760 | Apr 2004 | WO |
WO 2004032762 | Apr 2004 | WO |
WO 2004032763 | Apr 2004 | WO |
WO 2004034875 | Apr 2004 | WO |
WO 2004047626 | Jun 2004 | WO |
WO 2004047653 | Jun 2004 | WO |
WO 2004049956 | Jun 2004 | WO |
WO 2004052426 | Jun 2004 | WO |
WO 2004056276 | Jul 2004 | WO |
WO 2004056277 | Jul 2004 | WO |
WO 2004062516 | Jul 2004 | WO |
WO 2004078050 | Sep 2004 | WO |
WO 2004078051 | Sep 2004 | WO |
WO 2004086987 | Oct 2004 | WO |
WO 2004096015 | Nov 2004 | WO |
WO 2004096057 | Nov 2004 | WO |
WO 2004103157 | Dec 2004 | WO |
WO 2004105593 | Dec 2004 | WO |
WO 2004105621 | Dec 2004 | WO |
WO 2004112618 | Dec 2004 | WO |
WO 2004112652 | Dec 2004 | WO |
WO 2005027983 | Mar 2005 | WO |
WO 2005037329 | Apr 2005 | WO |
WO 2005044078 | May 2005 | WO |
WO 2005055846 | Jun 2005 | WO |
WO 2005072634 | Aug 2005 | WO |
WO 2005078892 | Aug 2005 | WO |
WO 2005079675 | Sep 2005 | WO |
WO 2005096954 | Oct 2005 | WO |
WO 2005112806 | Dec 2005 | WO |
WO 2005112808 | Dec 2005 | WO |
WO 2005115251 | Dec 2005 | WO |
WO 2005115253 | Dec 2005 | WO |
WO 2005117735 | Dec 2005 | WO |
WO 2005122936 | Dec 2005 | WO |
WO 2006027014 | Mar 2006 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006044581 | Apr 2006 | WO |
WO 2006044810 | Apr 2006 | WO |
WO 2006051252 | May 2006 | WO |
WO 2006059067 | Jun 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2006092563 | Sep 2006 | WO |
WO 2006092565 | Sep 2006 | WO |
WO 2006115958 | Nov 2006 | WO |
WO 2006125940 | Nov 2006 | WO |
WO 2006132992 | Dec 2006 | WO |
WO 2007002180 | Jan 2007 | WO |
WO 2007016290 | Feb 2007 | WO |
WO 2007018898 | Feb 2007 | WO |
WO 2007098220 | Aug 2007 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2007131110 | Nov 2007 | WO |
WO 2007137304 | Nov 2007 | WO |
WO 2007139734 | Dec 2007 | WO |
WO 2007142625 | Dec 2007 | WO |
WO 2007147439 | Dec 2007 | WO |
WO 2008021969 | Feb 2008 | WO |
WO 2008039249 | Apr 2008 | WO |
WO 2008039270 | Apr 2008 | WO |
WO 2008045383 | Apr 2008 | WO |
WO 2008070763 | Jun 2008 | WO |
WO 2008089404 | Jul 2008 | WO |
WO 2008109125 | Sep 2008 | WO |
WO 2010063795 | Jun 2010 | WO |
WO 2012044844 | Apr 2012 | WO |
Entry |
---|
European Search Report for 06255759.0, dated Feb. 6, 2009 (7 pages). |
International Search Report for PCT/US2011/021051, dated May 31, 2011 (4 pages). |
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008. |
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748. |
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journa1/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages). |
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages. |
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page). |
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005). |
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005). |
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages). |
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages. |
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000). |
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010). |
Number | Date | Country | |
---|---|---|---|
20120273551 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
60591694 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12696397 | Jan 2010 | US |
Child | 13544128 | US | |
Parent | 11271234 | Nov 2005 | US |
Child | 11731521 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11731521 | Mar 2007 | US |
Child | 12696397 | US | |
Parent | 11141753 | Jun 2005 | US |
Child | 11271234 | US |