Not Applicable.
The present invention relates to a swim spa that provides water current toward a swimmer to allow in-place swimming, and more particularly an improved swim spa that more efficiently provides water current toward a swimmer to allow in-place swimming and which includes a wall insert to allow the pumping equipment to be easily accessed for maintenance, repair and/or replacement.
Swim Spas
Prior art swim spas have provided circulating water current in swim spas for the purpose of allowing swimming in a small confined swimming pool, or a swim spa. United Kingdom Patent GB 2 296 861 A entitled “Swimming Pool Having Circulating Water Flow” published Jul. 17, 1996 by Spaform Limited describes such a swim spa. This has a water propulsion device, such as a water pump, that forces a jet of water through an opening in an intermediate wall near a head wall into the spa toward a foot wall, past a swimmer, thereby allowing the swimmer to swim in-place and exercise. Once the water stream is past the swimmer, it impacts the back wall of the spa. In this patent, two orderly streams are shown that angle to the left and to the right, then curve toward the front.
In reality, the oncoming stream expands by friction with water below it to become a deeper stream as it progresses from the front wall to the back wall. This water stream impacts the back wall and rebounds toward the front wall, but encounters the oncoming stream. The collision of the oncoming stream and the rebounding water causes turbulence which is worst near the foot wall of the swim spa. Since there is a constant stream passing down the middle of the swim spa, the turbulent rebounding water finds its way to either side of the stream and back toward the front wall. This causes considerable turbulence and interference with the water stream, slowing it and creating turbulence which increases toward the sides of the stream. The turbulence and interference with the water stream cause the stream's velocity and force to be diminished. Therefore, stronger pumps requiring more energy must be used to attain a desirable stream intensity suitable for the swimmer to swim in place. All factors being equal, a pump which is required to provide additional water speed, will not last as long as one that is required to provide lower water speed. Therefore, pump life is reduced by an inefficient system.
Published US Patent Application 2008/0148470 A1, now U.S. Pat. No. 9,038,208, May 26, 2015 by Ferris et al., entitled “Swim Spa With Plenum Arrangement at Head End” describes a similar design as that of the Spaform Limited patent described above. However, Ferriss has sidewalls which bulge inward at various points. These bulges actually slow or partially inhibit the water from returning along the sidewalls toward the head end. The inward side bulges are counterproductive, decrease the efficiency of the swim spa and increase the amount of energy required to operate the swim spa.
There have been attempts to reduce the turbulence and increase the efficiency of the swim spa described in U.S. Pat. No. 5,044,021, Sep. 3, 1991 by Murdock entitled “Continuous Swimming Apparatus” which employs side conduits which run the length of the swim spa. They have an opening at the foot end which allows the water to enter the conduits then pass through the conduits to the front end where they enter the intake to the pump. This segregation between the water traveling down toward the foot end and the return water passing in the opposite direction reduces turbulence and wasted energy. The problem with this design is that it considerably increases the weight and cost of the swim spa.
Similarly, U.S. Pat. No. 5,207,729, May 4, 1993 by Hatanaka entitled “Circulating Type Water Flow Pool” discloses a swim spa having a partial second floor which creates a conduit also passing from the foot end of the swim spa to the head end. Although this design also reduces the turbulence and energy required to operate the device, it increases the weight and cost of the swim spa.
As the swimmer is swimming in the forward current, the swimmer sometimes swims a little to the left or right of center. Since the forward current in swim spas on the market typically use a single propeller to create the forward current, the forward current is only the width of a single propeller. If the swimmer deviates slightly to the left or right of the center of the forward current, the swimmer is no longer in the forward current and must reposition him/herself.
Also, since the prior art swim spas use a single propeller, they create a forward current which is as deep as it is wide. This deep forward current significantly interacts with the return current and reduces the efficiency of the system.
Finally, current, prior art swim spas do not have an efficient way to access the pumping equipment if the pumping equipment needs to be maintained, repaired or replaced. Currently, at least a portion of the water from the swim spa must be removed from the swim spa in order to access the pumping equipment in order to maintain, repair or replace the pumping equipment.
Currently, there is a need to provide an improved swim spa which has a wider forward current, is more efficient without reducing operation costs, and increases pump life and which is able to access the pumping equipment without removing any of the water from the swim spa so that the pumping equipment can be maintained, repaired or replaced.
The advantages of the system described in this application will become more apparent when read with the exemplary embodiment described specification and shown in the drawings. Further, in the accompanying drawings and description that follow, like parts are indicated throughout the drawings and description with the same reference numerals, respectively. The figures may not be drawn to scale and the proportions of certain parts have been exaggerated for convenience of illustration.
The current invention may be embodied as an improved swim spa having a tank with a head end and a foot end, the tank being filled with a volume of water, the tank having two side walls each having a head end and a foot end, a foot wall positioned substantially perpendicular to the side walls, connecting the foot ends of the side walls, a head wall positioned substantially perpendicular to the side walls, connecting the head ends of the side walls enclosing the tank.
The tank includes pumping equipment that has at least two side-by-side propellers that force a forward current of water through one or more conduits at a surface of the water, wherein the forward current has a width at least twice its depth. A diverter is positioned at the foot wall having at least one curved surface for smoothly diverting the forward current toward at least one side wall, reducing turbulence and the energy required to operate the swim spa. In an alternative embodiment, the curved surface of the diverter has a parabolic shape.
The invention may also be embodied as a method of allowing a swimmer to swim in place by providing a tank filled with water by providing a forward current from a head end of the tank toward a swimmer. The forward current has a width which is at least twice its depth.
The forward current is redirected back toward the head end of the tank with a diverter having a smooth curved surface to result in a more efficient swim spa. In an alternative embodiment, the curved surface of the diverter approximates a parabolic shape.
Finally, the invention may be embodied as a swim spa wall insert that can be removably secured within the swim spa such that the pumping equipment is attached to the swim spa wall insert, wherein the swim spa wall insert is still be able to be lifted away from the swim spa insert retainers for maintenance, repair or replacement of the pumping equipment.
The present invention will now be described in detail by describing various illustrative, non-limiting embodiments thereof with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the illustrative embodiments set forth herein. Rather, the embodiments are provided so that this disclosure will be thorough and will fully convey the concept of the invention to those skilled in the art. The claims should be consulted to ascertain the true scope of the invention.
The goal of a swim spa is to provide an oncoming current of water directed from the head end of the swim spa into a swimmer and toward the foot end of the swim spa (forward current). The swimmer is typically swimming on the surface of the water in a direction toward the head end and into the oncoming water current.
If the swimmer swims at the same speed as the current, the swimmer remains in the same location relative to the swim spa. This allows a swimmer to swim in place and exercise without the need of a large, expensive swimming pool.
There are water pumps which create the water current, and require energy to operate. The amount of energy required to create a desired current flow decreases when there is an organized current flow circuit and the backpressure is low. Backpressure is typically caused by turbulence or collision with currents in the opposite direction, as described above. This increased backpressure not only requires more energy, but also reduces the lifespan of the pumping equipment. Therefore, if one can reduce this backpressure and develop organized current circuits, the swim spa will become more efficient and have a longer life.
As described above, the dedicated return conduits, on the sides or under the floor, work well to create more organized current flow; however, it makes the swim spas more costly. Little work has been done on trying to optimize the current flow of swim spas which do not employ dedicated current return conduits.
A water current passing through slower water, causes a frictional force on adjacent water molecules (water layer) causing them to move in the same direction as the water current, effectively ‘hitching a ride’. This friction diminished with each successive water layer as the distance from the center of the water jet increases. As the water jet moves down the swim spa, the amount of water travelling with the water jet increases leading to a current at the foot end which is significantly deeper than at the head end.
The goal is to apply a forward current from the head end to foot end current passing around the swimmer that has a cross-sectional width and height approximately the same as that of the swimmer when in a prone position swimming on top of the water. This minimizes the forward current to areas to the left, right and below the swimmer. This allows these areas to the left, right and below the swimmer to be used as return paths from the foot end of the swim spa to the head end (reverse flow).
The output of the pumping equipment is a forward current marked by the arrows “A” which pass through output window 113. Forward current “A” encounters the swimmer as the swimmer is swimming on the surface of the water, passes from the swimmer's head toward his/her feet around the swimmer, then toward the foot wall 111. These currents impact the foot wall 111 and rebound as shown by arrows “B” back toward the intermediate wall 109. As they do, they encounter the stronger forward current indicated by arrows “A”. The forward current, Arrows “A”, may also divert the rebounding water outward near the foot wall, as indicated by arrows “C”.
The currents of arrows “B” and “C” are diverted outward as indicated by arrows “D” as they encounter the forward current, arrow “A”. The water currents then find their way to inlets 115 as shown by arrows “E”.
The collision of the rebounding water, Arrows “B” and forward current, Arrows “A” cause considerable turbulence and loss of energy, making the design somewhat inefficient.
The water currents of
The collision of the rebounding water indicated by Arrows “B” and “C”, with the forward current, indicated by arrows “A”, cause considerable turbulence and loss of energy in this dimension.
If one were to tailor the size and shape of the forward current to match the size and shape of a swimmer as (s)he is swimming, and minimize the interaction between the forward current, arrows “A”, and the rebound stream, arrows “B”, a more efficient design may be achieved.
In an embodiment of the invention shown in
In the preferred embodiment, there is a single hydraulic pump that feeds high pressure hydraulic fluid to the hydraulic motors. This causes all motors to run equally and provides a homogeneous forward current which has very similar speed and volume on either side of the forward current.
In
Even though the example embodiment shows two propellers, it is possible and within the spirit of the invention to have multiple side-by-side propellers.
The purpose of using two or more side-by-side propellers creates a forward current which is wider than it is high. The dimensions may be selected to create a wider forward current which is wider and not as deep as prior art designs.
In prior art designs, an electric motor is used to power the propeller. Since this is a wet environment, it causes corrosion of the motors if there is a leak in the seal. In other prior art designs, the motors were placed outside of the tank and a shaft was inserted through the tank head wall. This also causes problems of leakage around the shaft.
Hydraulic motors 229 may be made of materials which do not corrode when positioned in the water. Also, the use of hydraulic motors 229 allows the use of flexible hydraulic lines 233 which can be routed over the head wall 207 as shown in
As shown in
In an alternative embodiment, an optional nozzle 221 is used which can adjust the width and depth of the forward current (arrows “A”). Also, in another alternative embodiment, the nozzle 221 may slightly adjust the direction of the forward current (arrows “A”) to compensate for offsets due to changes in velocity, structure or obstructions to direct the forward current (arrows “A”) in the desired direction.
In another alternative embodiment, some or all of the functions of a nozzle described above may be performed by adjustable louvers within the path of the forward current (arrows “A”).
Referring to
In an optional embodiment, the side diverters 303 stop just short of a complete 90 degree turn and retain a component of its centrifugal force. This centrifugal force causes the water stream “G” to be forced against, and run along the side wall 201 and into an intake window 215 as shown by arrows “H” as a more distinct intake current providing less turbulence and interference with the forward current (arrows “A”).
A lower diverter 307 then continuously redirects the downward current (arrows “G”) to a current toward the head wall 207, shown by arrows marked “G”. The water stream “G” runs along the bottom and into an intake window 215 as shown by arrows “H” as an intake current.
In an optional embodiment, the lower diverter 307 stops just short of a complete 90-degree turn allowing the current (arrows “G”) to retain a component of its centrifugal force. This centrifugal force causes the water current “G” to be forced against, and run along the floor and into an intake window 215 as shown by arrows “H” as a more distinct intake current providing less turbulence and interference with the forward current (arrows “H”).
The diverters described above, may be employed in the plane shown in
In order to make the diverters more efficient, the radius of curvature of the curved portion decreases over its length, approximating one half of a parabola. This may be referred to as a parabolic shape. The water encounters the diverter with a given speed. Therefore, the energy required to redirect the water is at its highest. Therefore, it is redirected a minimal amount. This equate to a large radius of curvature. As the water passes along the curved surface, it slows. The radius of curvature is gradually decreased along the length of the curved surface to minimize turbulence created, the wasted energy and increase the efficiency of the diverter.
Even though the novel features of this invention have been described in connection with a swim spa without dedicated return ducts, all will also be applicable to increase the efficiency of those having dedicated return ducts such as swim spas similar to those described in the Murdock and the Hatanaka patents described above. The design shown in
The design shown in
In still another alternative of the embodiment of
In still another alternative embodiment,
In order to address the shortcomings of the prior, known swim spas, as discussed earlier, reference is made now to
As shown in
Regarding swim spa 200, as shown in
During the operation of swim spa wall insert 400, as shown in
A unique aspect of the present invention is that the swim spa wall insert 400 can be used to lift the pumping equipment 219 out of the swim spa 200 if the pumping equipment 219 needs to be maintained, repaired or replaced. In particular, if the pumping equipment 219 needs to be maintained, repaired or replaced, the swim spa wall insert 400 is conventionally lifted up from the bottom of the swim spa 200 and away from swim spa bottom retainer 452 and swim spa side wall retainers 454, as shown in
Another unique aspect of the invention is that connecting lines (typically hydraulic lines) between the hydraulic pump and the hydraulic motors are installed above the water line and run under the swim spa wall insert 400. In this manner, the connecting lines are not run through the swim spa walls and thus do not require any type of seal. Furthermore, when the swim spa wall insert 400 is raised or lifted, the connecting lines will not have to be pulled through any openings in the swim spa walls.
While the present disclosure illustrates various aspects of the present teachings, and while these aspects have been described in some detail, it is not the intention of the applicant to restrict or in any way limit the scope of the claimed systems and methods to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the teachings of the present application, in its broader aspects, are not limited to the specific details and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the teachings of the present application. Moreover, the foregoing aspects are illustrative, and no single feature or element essential to all possible combinations may be claimed in this or a later application.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/997,687, filed on Jan. 18, 2016, the disclosure of which is hereby incorporated by reference in its entirety to provide continuity of disclosure to the extent that such a disclosure is not inconsistent with the disclosure herein.
Number | Name | Date | Kind |
---|---|---|---|
4290153 | Kockerols et al. | Sep 1981 | A |
4352215 | Laing | Oct 1982 | A |
4907304 | Davidson et al. | Mar 1990 | A |
5044021 | Murdock | Sep 1991 | A |
5207729 | Hatanaka | May 1993 | A |
9038208 | Ferriss et al. | May 2015 | B2 |
Number | Date | Country |
---|---|---|
2296861 | Jul 1996 | GB |
Number | Date | Country | |
---|---|---|---|
20190134479 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14997687 | Jan 2016 | US |
Child | 16192295 | US |