The present invention relates to the movement of materials using rope shovels.
Embodiments of the invention provide a system and method for various levels of automation of a swing-to-hopper motion for a rope shovel. An operator controls a rope shovel during a dig operation to load a dipper with materials. A controller, either via operator input or sensor data, receives position data for the dipper and for a hopper where the materials are to be dumped from the dipper. The controller then calculates an ideal path for the dipper to travel to be positioned above the hopper to dump the contents of the dipper. In some embodiments, the controller outputs operator feedback to assist the operator in traveling along the ideal path to the hopper. In some embodiments, the controller restricts the dipper motion such that the operator is not able to deviate beyond certain limits of the ideal path. In some embodiments, the controller automatically controls the movement of the dipper to reach the hopper. The embodiments of the invention are also applied to assist swinging the dipper back from the hopper to a tuck position at the dig location.
In one embodiment, a rope shovel including an automated swing system is provided. The rope shovel includes a swing motor, a hoist motor, a crowd motor, a dipper that is operable to dig and dump materials and that is positioned via operation of the hoist motor, crowd motor, and swing motor, and a controller. The controller includes an ideal path generator module that receives current dipper data and dump location information indicating a location at which the dipper is to dump materials therein. The ideal path generator calculates an ideal swing path, and based on the ideal swing path, further calculates an ideal hoist path and an ideal crowd path. The ideal path generator then outputs the ideal swing path, the ideal hoist path, and the ideal crowd path.
In another embodiment, a method of generating an ideal path for swinging a rope shovel is provided. The rope shovel includes a swing motor, a hoist motor, a crowd motor, and a dipper operable to dig and dump materials. The dipper is positioned via operation of the hoist motor, crowd motor, and swing motor. The method includes receiving current dipper data and dump location information indicating a location at which the dipper is to dump materials therein. The method further includes calculating an ideal swing path and, based on the ideal swing path, further calculating an ideal hoist path and an ideal crowd path. The ideal swing path, the ideal hoist path, and the ideal crowd path are then outputted.
In another embodiment, a rope shovel including an automated swing system is provided. The rope shovel includes a swing motor, a hoist motor, a crowd motor, a dipper that is operable to dig and dump materials and that is positioned via operation of the hoist motor, crowd motor, and swing motor, and a controller. The controller includes an ideal path generator module that receives current dipper data and dump location information indicating a location at which the dipper is to dump materials therein. The ideal path generator calculates at least one of an ideal swing path, an ideal hoist path, and an ideal crowd path. The ideal path generator then outputs the ideal swing path, the ideal hoist path, and the ideal crowd path.
In some embodiments, the ideal path generator module further receives a swing aggressiveness level from an operator, wherein the ideal swing path is calculated based on the swing aggressiveness level. Additionally, the dump location information may be received from one of global positioning satellite (GPS) data and a memory storing a location of a previous operator-controlled dump. The rope shovel may further include a feedback module that receives the current dipper data including a current swing motor position, current hoist motor position, and current crowd motor position; receives the ideal swing path, the ideal hoist path, and the ideal crowd path, and provides an operator with at least one of audio, visual, and tactile feedback of the current dipper data relative to the dump location information. The feedback module may illustrate the dump location information and current dipper data to the operator, e.g., via a display.
In some embodiments, the rope shovel also includes a boundary generator module that receives the current dipper data including a current swing motor position, current hoist motor position, and current crowd motor position; receives the ideal swing path, the ideal hoist path, and the ideal crowd path; and generates boundaries for the ideal hoist path and the ideal crowd path.
In some embodiments, the rope shovel further includes a dipper control signal module that receives (a) the boundaries from the boundary generator module, (b) the current dipper data, and (c) operator controls for controlling movement of the dipper via the hoist motor, crowd motor, and swing motor. The dipper control signal module further compares the current dipper data to the boundaries, and when the current dipper data indicates that at least one of the hoist motor and crowd motor is at or outside of the boundaries, adjusts the operator controls to maintain the hoist motor and crowd motor within the boundaries. The boundaries may be one of a ramp function, a constant window, and a polynomial curve.
In some embodiments, the dipper control signal module receives the ideal swing path, ideal hoist path, and the ideal crowd path. In response, the dipper control signal module outputs control signals to control the swing motor, the hoist motor, and the crowd motor according to the ideal swing path, the ideal hoist path, and the ideal crowd path, respectively.
In some embodiments, the rope shovel further includes a mode selector module that receives an operator mode selection that indicates one of at least three modes of swing automation, and controls the rope shovel to operate in the selected swing automation mode. The at least three modes of operation may include at least three of the following: no swing automation mode, trajectory feedback mode, teach mode, motion restriction mode, and full automation mode. Additionally, the mode selector module may receive system information indicating at least one equipment fault, and as a result, control the rope shovel to operate in a different swing automation mode.
In some embodiments, the rope shovel further includes a hopper alignment system including at least one of a camera and a laser scanner. The hopper alignment system determines when the dipper is within a predetermined range of the dump location, and controls the dipper control signal module to perform visual servoing of the dipper to align the dipper with the dump location.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
The rope shovel 100 also includes taut suspension cables 150 coupled between the base 110 and dipper shaft 130 for supporting the dipper shaft 130; a hoist cable 155 attached to a winch (not shown) within the base 110 for winding the cable 155 to raise and lower the dipper 140; and a crowd cable 160 attached to another winch (not shown) for extending and retracting the dipper 140. In some instances, the rope shovel 100 is a P&H® 4100 series shovel produced by P&H Mining Equipment Inc.
The mobile mining crusher 175 includes the hopper 170 to receive materials from the dipper 140 and a conveyor or apron feeder 180 to transport the materials to a crusher 185. The crusher 185 crushes materials received from the apron feeder 180, and outputs the crushed material along the output conveyor 190. In some instances, the crusher 185 is a twin roll crusher with a capacity to crush approximately 10 metric tons per hour. The mobile mining crusher 175 also includes a boom 195 with a hammer/breaker at its distal end to break materials, for instance, on the apron feeder 180. The mobile mining crusher 175 is also able to turn and to propel forward and backward using the tracks 200. In some instances, the mobile mining crusher is a 4170C™ Mobile Mining Crusher produced by P&H Mining Equipment Inc. The mobile mining crusher 175 is sometimes also referred to an in-pit-crushing and conveying (IPCC) system.
Rope shovels such as the rope shovel 100 have the capacity to gather many tons of material from a single dig. For instance, in some embodiments, the dipper 140 has a capacity for a nominal payload of nearly 100 metric tons and over 50 m3 of material. In other embodiments, the rope shovel 100 has a larger or smaller capacity. With such a large amount of material collected by a single dig, it is desirable to properly locate the dipper 140 above the hopper 170 before releasing the door 145 to avoid missing the hopper and spilling materials. Additionally, it is generally desirable to improve the speed between the dig and dump cycles to improve overall efficiency and increase the rate at which of materials are moved. In some instances, rope shovel operators build up skill and technique over years of experience to ensure quick, safe, and efficient swing-to-dump motions with the rope shovel 100.
When the tracks 105 of the rope shovel 100 are static, the dipper 140 is operable to move based on three control actions: hoist, crowd, and swing. As noted above, the hoist control raises and lowers the dipper 140 by winding and unwinding hoist cable 155. The crowd control extends and retracts the position of the handle 135 and dipper 140. The swing control swivels the handle 135 relative to the swing axis 125 (see, e.g.,
The rope shovel 100 includes a control system 300 including a swing automation controller (controller) 305, as shown in
The controller 305 receives input from operator controls 320, which includes a crowd control 325, swing control 330, hoist control 335, and door control 340. The crowd control 325, swing control 330, hoist control 335, and door control 340 include, for instance, operator controlled input devices such as joysticks, levers, foot pedals, and other actuators. The operator controls 320 receive operator input via the input devices and outputs digital motion commands to the controller 305. The motion commands include, for example, hoist up, hoist down, crowd extend, crowd retract, swing clockwise, swing counterclockwise, dipper door release, left track forward, left track reverse, right track forward, and right track reverse. Upon receiving a motion command, the controller 305 generally controls dipper controls 343, which includes one or more of a crowd motor 345, swing motor 350, hoist motor 355, and shovel door latch 360, as commanded by the operator. For instance, if the operator indicates via swing control 330 to rotate the handle 135 counterclockwise, the controller 305 will generally control the swing motor 350 to rotate the handle 135 counterclockwise. As will be explained in greater detail, however, the controller 305 is operable to limit the operator motion commands and generate motion commands independent of the operator input in some embodiments of the invention.
The controller 305 is also in communication with a number of sensors 363 to monitor the location and status of the dipper 140. For example, the controller 305 is coupled to crowd sensors 365, swing sensors 370, hoist sensors 375, and shovel sensors 380. The crowd sensors 365 indicate to the controller 305 the level of extension or retraction of the dipper 140. The swing sensors 370 indicate to the controller 305 the swing angle of the handle 135. The hoist sensors 375 indicate to the controller 305 the height of the dipper 140 based on the hoist cable 155 position. The shovel sensors 380 indicate whether the dipper door 145 is open (for dumping) or closed. The shovel sensors 380 may also include weight sensors, acceleration sensors, and inclination sensors to provide additional information to the controller 305 about the load within the dipper 140. In some embodiments, one or more of the crowd sensors, swing sensors 370, and hoist sensors 375 are resolvers that indicate an absolute position or relative movement of the crowd motor 345, swing motor 350, and/or hoist motor 355. For instance, for indicating relative movement, as the hoist motor 355 rotates to wind the hoist cable 155 to raise the dipper 140, the hoist sensors 375 output a digital signal indicating an amount of rotation of the hoist and a direction of movement. The controller 305 translates these outputs to a height position, speed, and/or acceleration of the dipper 140. Of course, the crowd sensors 365, swing sensors 370, hoist sensors 375, and shovel sensors 380 incorporate other types of sensors in other embodiments of the invention.
The operator feedback 385 provides information to the operator about the status of the rope shovel 100 and other systems communicating with the rope shovel 100 (e.g., the hopper 170). The operator feedback 385 includes one or more of the following: a display (e.g. a liquid crystal display (LCD)); one or more light emitting diodes (LEDs) or other illumination devices; a heads-up display (e.g., projected on a window of cab 115); speakers for audible feedback (e.g., beeps, spoken messages); tactile feedback devices such as vibration devices that cause vibration of the operator's seat or operator controls 320; or another feedback device. Specific implementation details of the operator feedback 385 are described more particularly below.
In some embodiments, the controller 305 also communicates with hopper communications system 390 and a hopper alignment system 395. For instance, the hopper communications system 390 is operable to send production data and status data to the controller 305. Exemplary production data includes hours of use, amount of material input, amount of material output, etc. Exemplary status data includes weight and height of the current load within the hopper 170, an indication of whether the apron feeder 180, crusher 185, and output conveyor 190, are currently enabled and related speeds of operation, whether the boom 195 is being operated, whether the mobile mining crusher 175 is being moved (e.g., via tracks 200) or the hopper or other portions of the mobile mining crusher 175 are being repositioned (e.g., with the tracks 200 immobile), as well as other status information. In some embodiments, the door 145 is prevented from being opened when the controller 305 receives an indication via hopper communications system 390 that the hopper 170 is full or otherwise unable to accept a load from dipper 140.
The hopper alignment system 395 includes, for instance, global positioning satellite (GPS) modules, optical cameras and image processing, and/or a scanning laser. The hopper alignment system 395 enables the controller 305 to obtain positioning information to align the dipper 140 with the hopper 170, particularly in a full automation mode described below. In some embodiments, the controller 305 includes other input and/or output (I/O) devices 400, such as a keyboard, mouse, external hard drives, wireless or wired communication devices, etc.
The control system 300 is part of a swing automation system of the rope shovel 100. The swing automation system provides various levels of assistance to an operator of the rope shovel 100. The swing automation system includes multiple modes of operation including at least: 1) a trajectory feedback mode; 2) a motion restriction mode; 3) a teach mode; and 4) a full automation mode. In some instances, the modes are designed in a modular fashion such that each mode builds upon features and components of a previous mode. For instance, the motion restriction mode builds on the trajectory feedback mode; the teach mode builds on the motion restriction mode; and the full automation mode builds on the teach mode. Using a common architecture and developing a module approach to component integration allows for a robust system that can react to the loss of sensors or information by reducing the complexity of the system down to a mode that can remain fully operational. The approach also allows for safer integration, testing, and prototyping, as well as expanding upon the technology with future sensor integration and customer requirements. Additionally, features and components from the various modes may be combined to form hybrid modes in some embodiments, as will become apparent from the disclosure herein.
In the trajectory feedback mode, the controller 305 identifies an ideal path that the rope shovel 100 should follow to position the dipper 140 correctly for dumping into the hopper 170. As the operator swings the dipper 140 to the hopper 170, the controller 305 provides the operator one or more forms of feedback via operator feedback 385 about the position and motion of the dipper 140 with respect to the ideal path. In the trajectory restriction mode, the controller 305 enforces an upper and lower boundary from the ideal path. Through the upper and lower boundaries, the controller 305 prevents the dipper 140 from deviating too far from the ideal path to the hopper 170. The teach mode enables a semi-autonomous operation of swing, crowd, and hoist controls. The operator first designates a dump location (e.g., a location of the hopper 170). After performing a dig operation, the operator initializes an automated swing phase (e.g., using operator controls 320). The controller 305 then controls the dipper 140 to follow the ideal path to reach the programmed dump location. In the full automation mode, after initiation, no active input from the operator is required to perform the swing phase. The position and orientation of the hopper 170 is actively measured with respect to the dipper 140 to identify the dumping location, generate an ideal path, and control the dipper 140 along the ideal path to reach the dumping location.
Trajectory Feedback Mode
The trajectory feedback mode includes: 1) generating of an ideal path for the dipper 140 to proceed along from the dig location 220 to the hopper 170 and to return along to the dig location 220; and 2) providing the operator visual, audible, or tactile feedback to indicate the variance of the dipper 140 from the ideal path. The trajectory feedback mode suggests to the operator an ideal path, but does not actively control the dipper 140. Thus, the trajectory feedback mode enables testing and analysis of the generated ideal path to diagnose issues and improve generation of the ideal path without concern that the controller 305 will control the dipper 140 improperly. To this end, the controller 305 is operable to output a comparison between the operator's actual path and the generated ideal path. The comparison is output to the operator via operator feedback 385 and/or output to an external device, e.g., for review by a supervisor. The external device may be local (e.g., another computer on-board the rope shovel 100), on-site (e.g., a laptop, tablet, or smart phone of a supervisor in a nearby vehicle or facility), or off-site (a computer device coupled via a network, such as the Internet).
In step 435, the controller 305 obtains a hopper data set. As shown in Table 2, the hopper data set includes the desired swing, hoist, and crowd position to position the dipper 140 above the hopper 170. In some embodiments, the hopper data set is obtained based on a previous operator dump operation. In other words, the swing, hoist, and crowd position at the time of the previous opening of the door 145 via door latch 360, as determined by the sensors 363, is recorded as the hopper data set. This hopper data set is presumed to be the ideal position for the unloading of the dipper 140 (e.g., over the hopper 170) when generating the ideal trajectory. In other embodiments, the hopper data set is determined using data from the hopper alignment system 395 or via the operator manually inputting the resolver count data.
In step 440, the controller 305 determines whether to activate swing feedback. In some embodiments, the operator indicates to the controller 305 via an actuator (e.g., a button) to activate swing feedback. In other embodiments, the controller 305 automatically activates swing feedback after detecting the completion of a dig cycle of the dipper 140 and the beginning of a swing-to-hopper operation. For instance, by monitoring the shovel data set, the controller 305 detects when one or more variables within the shovel data set (e.g., swing speed or position, hoist speed or position, crowd speed or position) exceed certain thresholds that indicate a swing-to-hopper operation has likely started (see, e.g.,
In step 445, the controller 305 generates an ideal path for the dipper 140 to arrive at the stored ideal dump position above the hopper 170. To generate the ideal path, the processor 310 executes an algorithm including one or more of the shovel data set parameters and the hopper data set parameters. The ideal path is generated such that the dipper 140 will be moved at or near the performance limits of the swing, hoist and crowd motions. However, the operator may specify that a less aggressive ideal path be generated such that the dipper 140 will be moved at a rate lower than the performance limits of the rope shovel 100. The aggressiveness level may be included, for instance, as part of the shovel data set.
To generate an ideal path in step 445, an accurate profile of the swing motion, including the swing speed, acceleration and deceleration, is determined. One aspect of the ideal path is to calculate the time needed to decelerate the dipper 140 and the point at which to begin decelerating. When the operator begins the swing phase the maximum acceleration rate ({umlaut over (θ)}s) is calculated as follows
where {dot over (θ)}s is the revolutions per minute (RPM) of the swing motor 350. The acceleration rate is measured during the initial portion of the swing, i.e., while maximum torque is being applied by the swing motor 350. When digging on level ground or at a downward slope, the deceleration rate ({umlaut over (θ)}decel) is assumed to be greater than the acceleration rate (i.e., {umlaut over (θ)}decel≥{umlaut over (θ)}accel). In turn, the deceleration rate ({umlaut over (θ)}decel) is estimated to be the acceleration rate {umlaut over (θ)}accel, since it is unlikely the estimated deceleration will yield an overshoot. Thus, {umlaut over (θ)}decel≅{umlaut over (θ)}accel.
Using the estimated deceleration rate ({umlaut over (θ)}decel) and the current, measured swing speed of the dipper 140 ({dot over (θ)}s), the controller 305 generates an estimated time required to decelerate the swing of the dipper 140 to line up above the hopper 170 with the following equation:
The amount of swing resolver displacement to return the swing speed ({dot over (θ)}s) of the dipper 140 to zero is estimated using the equation for displacement given constant acceleration, or, in this case, deceleration. In other words,
where SwgRatio is the ratio between the swing motor pinion and the swing resolver. As the dipper 140 is swung towards the hopper 170, the current swing resolver count SRCt and ΔSRCdecel are continually updated. Based on the aforementioned calculations, the controller 305 estimates that, given the current speed and position of the dipper 140 and the position of the hopper 170, beginning to decelerate when SRCt−SRCd=ΔSRCdecel (i.e., when the swing reversal trigger condition is true), will result in the controller 305 stopping the swing of the dipper 140 above the hopper 170 for dumping. Thus, once SRCt−SRCd=ΔSRCdecel, the swing of dipper 140 starts to decelerate by reversing the swing motor 350.
Additionally, the controller 305 calculates the time remaining in the swing to the hopper 170 (trem) based on the remaining swing resolver counts to the hopper 170 (SRCrem). The remaining swing resolver counts to the hopper 170 (SRCrem) is calculated assuming the current velocity is constant and using the following equation: SRCrem=SRCt−SRCd−ΔSRCdecel. In turn, the time remaining in the swing to the hopper 170 (trem) is calculated using the following equation:
The controller 305 continuously calculates the above-noted equations to maintain accurate estimations of swing deceleration rates and the appropriate time to begin deceleration.
Using the time remaining in the swing to the hopper 170 (trem), the controller 305 estimates the desired hoist and crowd trajectory of the dipper 140. The following naming conventions are used: HRCt0 is the initial hoist position at the start of the swing phase (t=t0); HRCt is the current hoist position; HRCd is the desired hoist position of the dipper 140 above the hopper 170; CRCt0 is the initial crowd position at the start of the swing phase (t=t0); CRCt is the current crowd position; and CRCd is the desired crowd position of the dipper 140 above the hopper 170.
The desired speed ({dot over (θ)}d) of the hoist motor 355 is calculated continuously using the following equation:
where trem is the time remaining in the swing to the hopper 170 described above and HstRatio is a gain parameter equal to the ratio between the shaft speed of the hoist motor and the count speed of the hoist resolver. This equation assumes that the dipper 140 will arrive at the desired hoist position HRCd above the hopper 170 simultaneously with the dipper 140 arriving at the proper swing position SRCd above the hopper 170. The equation is modified in other embodiments to have the dipper 140 reach the desired hoist position HRCd before reaching the desired swing position SRCd (e.g., reducing the value of trem). By continuously calculating {dot over (θ)}d, the controller 305 is able to adjust the ideal {dot over (θ)}d if the operator is moving the hoist motor too fast or too slow relative to the ideal hoist path.
The desired speed ({dot over (θ)}d) of the crowd motor 345 is calculated continuously using the following equation:
where trem is the time remaining in the swing to the hopper 170 described above and CwdRatio is a gain parameter equal to the ratio between the shaft speed of the crowd motor and the count speed of the crowd resolver. This equation assumes that the dipper 140 will arrive at the desired crowd position CRCd above the hopper 170 simultaneously with the dipper 140 arriving at the proper swing position SRCd above the hopper 170. Again, the equation is modified in other embodiments to have the dipper 140 reach the desired crowd position CRCd before reaching the desired swing position SRCd (e.g., by reducing the value of trem). By continuously calculating {dot over (θ)}d, the controller 305 is able to adjust the ideal {dot over (θ)}d if the operator is moving the crowd motor too fast or too slow relative to the ideal crowd path.
After generating an initial ideal path at time=t0 in step 445, the controller 305 outputs feedback via operator feedback 385 in step 450. For instance, the controller 305 outputs the desired hoist, crowd, and swing trajectory simultaneously to the operator. The particular methods and systems used to provide feedback to the operator are described in greater detail below. In general, however, the feedback indicates to the operator whether the hoist, crowd, and swing motions of the dipper 140 are following the ideal path generated in step 445. In step 455, the controller 305 determines whether the dipper 140 has reached the hopper 170. In other words, in step 455, the controller 305 determines whether CRCd=CRCt; HRCd=HRCt; and SRCd=SRCt. If the dipper 140 has reached the hopper 170, the operator causes the dipper door 145 to open in step 460, e.g., by activating the door latch 360 via door control 340.
If the dipper 140 has not reached the hopper 170, the controller 305 obtains an updated shovel data set in step 465. Thereafter, the controller 305 returns to step 445 to re-generate the ideal path to the hopper 170 using the updated shovel data set obtained in step 465. By continuously cycling through steps 445, 450, 455, and 465 while moving the dipper 140 to the hopper 170, the controller 305 continuously updates the ideal path to the hopper 170 based on current conditions and provides updated feedback to the operator.
Upon reaching the hopper 170 as determined in step 455 and dumping the load of the dipper 140 in step 460, the controller 305 proceeds to step 470 to generate an ideal return path back to the dig location 220. Generating an ideal return path in step 470, providing operator feedback in step 475, determining whether the dig location 220 is reached in step 480, and updating the shovel data set in step 485 are similar to steps 445, 450, 455, and 465, respectively. The equations described above with respect to steps 445, 450, 455, and 465 apply to the steps 470, 475, 480, and 485, respectively, with the exception that the start and end positions of the crowd, hoist, and swing are swapped. Thus, the equations described above with respect to steps 445, 450, 455, and 465 apply to the steps 470, 475, 480, and 485, with the exception that CRCt0, HRCt0, and SRCt0 are replaced with the corresponding crowd, hoist, and swing position of the hopper 170 and CRCd, HRCd, and SRCd are replaced with the corresponding crowd, hoist, and swing position of the dig location 220
In some embodiments, the controller 305 recalls the initial crowd, hoist, and swing position at time to (i.e., CRCt0, HRCt0, and SRCt0) and uses them as the desired destination, since they represented the dipper 140 position at the start of the swing-to-hopper motion. In other embodiments, the operator stores the desired dig location 220 in the controller 305 by activating an actuator (e.g., that is part of other I/O devices 400) when the dipper 140 is at the desired dig location 220. In some embodiments, the crowd and hoist positions of a tuck position for the dipper 140 are stored as the desired crowd and hoist positions. Using these tuck position values, at the completion of the swing to the dig location 220, the dipper 140 is in a tuck position and ready to begin the next dig cycle. The tuck position values for the crowd and hoist may be stored by the operator using an actuator, may be inferred by the controller based on the previous start of a dig cycle, or may be preset values (e.g., during a manufacturing process). As the dipper 140 is moved into the tuck position, gravity closes the door 145, allowing for the shovel door latch 360 to engage to keep the door closed until the next dump operation.
As noted above, various forms of feedback may be provided in steps 450 and 475 to the operator via operator feedback 385. In some embodiments, a visual output system is employed as part of the operator feedback 385. In some embodiments, audio feedback and/or tactile feedback is provided either in addition or in place of the visual output system.
The hoist window 510a, crowd window 510b, and swing window 510c each use the same time scale and make the current time position easily identifiable to the operator via the windows 525a, 525b, and 525c. Each of the hoist window 510a, crowd window 510b, and swing window 510c are continuously updated as the dipper 140 is swung to the hopper 170, with the current data shifted to the left on the x-axis towards a set time horizon, while the windows 525a, 525b, and 525c remain static. Thus, the operator observes the desired final position of each of the hoist, crowd, and swing motions (horizontal dashed lines 520a, 520b, and 520c), the past position data for each of the hoist, crowd, and swing motions (the position lines 515a, 515b, and 515c to the left of the windows 525a, 525b, and 525c, respectively), and the current hoist, crowd, and swing position of the dipper 140 as highlighted by the windows 525a, 525b, 525c.
In some embodiments, the position lines 515a, 515c, and 515c are in a first color (e.g., green), the windows 525a, 525b, and 525c are in a second color (e.g., yellow), and the horizontal dashed lines 520a, 520b, and 520c are in a third color (e.g., red). In some embodiments, the lines 515a and 520a within the hoist window 510a are a first color (e.g., green), the lines 515b and 520b within the crowd window 510b are a second color (e.g., blue), and the lines 515c and 520c within the swing window 510c are a third color (e.g., red).
As the dipper 140 is moved up and down via the hoist motor 355, the beacon 560a moves up and down, respectively, on the crowd-hoist screen 550 along the y-axis. As the dipper 140 is extended and retracted via the crowd motor 345, the beacon 560a moves left and right, respectively, on the crowd-hoist screen 550 along the x-axis. In some embodiments, the movements of the beacon 560a up, down, left, and right, may be reversed and/or the x- and y-axis are swapped.
The four quadrants 575 in the crowd-hoist screen 550, outside of the horizontal area 565 and vertical area 570, are illuminated red via a red LED array. The desired hoist position (horizontal area 565) and desired crowd position (vertical area 570) are illuminated green via a green LED array. The beacon 560a is illuminated yellow or another color that contrasts with the red and green colors of the four quadrants 575 and the desired hoist position (horizontal area 565) and desired crowd position (vertical area 570). The dipper 140 has the proper hoist and crowd position above the hopper 170 when the beacon 560a is at the intersection of horizontal area 565 and the vertical area 570.
In the swing screen 555, the swing position of the dipper 140 is conveyed along a position arc 580 based on the resolver count of the swing sensors 370. The swing position of the dipper 140 is represented by a beacon 560b and the desired swing position 585 is represented at the middle of the position arc 580. As the dipper 140 is swung between the dig location 220 and the hopper 170, the beacon 560b moves along the arc towards the desired swing position 585. The arc portions 590 that are outside of the desired swing position 585 are illuminated red via an arc of red LEDs, similar to the quadrants 575. The desired swing position 585 is illuminated green via a green LED array. Similar to the beacon 560a, the beacon 560b is yellow or another color that contrasts with red and green so as to be easily identifiable by the operator.
In some embodiments, the green LEDs of the desired hoist position (horizontal area 565), the desired crowd position (vertical area 570), and desired swing position 585 are independently illuminated once the beacons 560a and 560b reach the respective desired positions. For example, the desired swing position 585 is illuminated red or not illuminated initially; however, once the beacon 560b reaches the swing position 585, the swing position 585 is illuminated green to indicate to the operator that the dipper 140 is at the proper swing position above the hopper 170. Similarly, the desired hoist position (horizontal area 565) is not illuminated green until the beacon 560a is at the proper hoist position above the hopper 170 and the desired crowd position (vertical area 570) is not illuminated green until the beacon 560a is at the proper crowd position above the hopper 170. Thus, once the desired crowd position (vertical area 570), the desired hoist position (horizontal area 565), and desired swing position 585 are all illuminated green, the operator would know that the dipper 140 is in the proper position above the hopper 170 to dump its contents.
Additionally, in some embodiments, only the quadrant 575 in which the beacon 560a is located is illuminated red, while the other quadrants 575 are not illuminated. Similarly, the portion of the arc 580 in which the beacon 560b is located is illuminated red, while the portion of the arc 580 on the other side of the desired swing position 585 is not illuminated. Given the beacons 560a and 560b positions in
Although the display 545 is described in terms of an LED array, other display screens, such as a plasma or LCD display screen, are used in some embodiments of the invention. Additionally, other color schemes and methods to highlight the current and desired swing, crowd, and hoist positions on the display 545 are contemplated by embodiments of the invention.
In some embodiments of the invention, the operator feedback 385 is provided in part by a heads up display (HUD) 600 as shown in
The HUD 600 is generated by projecting images on the front glass 605 of the cab 115 via a projector 610 mounted to the ceiling of the cab 115. Additional feedback related to the rope shovel 100 and crusher 175 may also be displayed on the HUD, such as additional position data, fault data, and other desired information given the operators current task.
The HUD 600 is also operable to use alternate gauge types to convey and compare the dipper 140 current position versus the desired position (e.g., above the hopper 170 or the dig location 220). As shown in
Motion Restriction Mode
The motion restriction mode builds on the trajectory feedback mode in that it includes an ideal path generation, but it also assists the operator in moving the dipper 140 towards the hopper 170 by limiting the motion of the dipper 140. As the operator swings the dipper 140 towards the hopper 170, the controller 305 monitors the current hoist and crowd position of the dipper 140 against boundary limits of the ideal path. If operator crowd or hoist control inputs would cause the dipper 140 to deviate past a boundary limit of the ideal path, the controller 305 overrides the operator input and prevents these motions. Various embodiments of the motion restriction mode incorporated different constraint methodologies to restrict the motion of the dipper 140.
In step 675, the controller 305 generates the boundary limits for the crowd and hoist motions of the dipper 140 along the generated ideal path. Generation of the boundary limits is described in greater detail below. In step 680, the controller 305 optionally provides operator feedback as described above with respect to method 425. Thus, in addition to limiting dipper 140 motion, the motion restriction mode may also provide operator feedback to assist the operator in moving the dipper 140 between the hopper 170 and dig location 220.
In step 685, the controller 305 determines whether a crowd or hoist boundary limit generated in step 675 has been exceeded by the operator. If a crowd or hoist boundary limit has been exceeded, the controller 305 adjusts (boosts, limits, or zeros) the motion of the violating crowd or hoist motion in step 690, as appropriate, to prevent further deviation from the ideal path generated in step 670. To limit or zero crowd and/or hoist motion, the controller 305 reduces or zeros crowd and/or hoist commands to the respective hoist motor 355 and crowd motor 345. To boost the crowd and/or hoist motion, the controller 305 increases the crowd and/or hoist commands to the respective hoist motor 355 and crowd motor 345. Thereafter, if a boundary has not been exceeded, the controller 305 proceeds to step 695 to determine if the hopper 170 has been reached. If not, the controller 305 obtains an updated shovel data set in step 700. The controller 305 then returns to generate updated boundary limits in step 675. The controller 305 repeats steps 675-700 until, in step 695, the hopper 170 is reached and the dump phase is performed (step 705). In the dump phase, the operator causes the dipper door 145 to open to dump the load, e.g., by activating the door latch 360 via door control 340.
After dumping the load of the dipper 140 in step 705, the controller 305 proceeds to step 710 to generate an ideal return path back to the dig location 220. Generating an ideal return path in step 710, generating boundary limits in step 715, optionally providing operator feedback in step 720, determining whether a boundary limit is exceeded in step 725, limiting motion in step 730, determining whether the dig location 220 is reached in step 735, and updating the shovel data set in step 740 are similar to steps 670, 675, 680, 685, 690, 695, and 700, respectively, with the exception that the start and end positions of the crowd, hoist, and swing are swapped. Thus, the equations described above with respect to steps 670, 675, 680, 685, 690, 695, and 700 apply to the steps 710, 715, 720, 725, 730, 735, and 740, with the exception that CRCt0, HRCt0, and SRCt0 are replaced with the corresponding crowd, hoist, and swing position of the hopper 170 and CRCd, HRCd, and SRCd are replaced with the corresponding crowd, hoist, and swing position of the dig location 220.
In some embodiments, the desired dig location 220 is the initial crowd, hoist, and swing position at time to (i.e., CRCt0, HRCt0, and SRCt0) used to generate the ideal path in step 670. In other embodiments, the operator stores the desired dig location 220 in the controller 305 by activating an actuator (e.g., that is part of other I/O devices 400) when the dipper 140 is at the desired dig location 220. In some embodiments, the crowd and hoist positions of a tuck position for the dipper 140 are stored as the desired crowd and hoist positions for the dig location 220. Using these tuck position values, at the completion of the swing to the dig location 220, the dipper 140 is in a tuck position and ready to begin the next dig cycle. The tuck position values for the crowd and hoist may be stored by the operator using an actuator, may be inferred by the controller based on the previous start of a dig cycle, or may be preset values (e.g., during a manufacturing process). As the dipper 140 is moved into the tuck position, gravity closes the door 145, allowing for the shovel door latch 360 to engage to keep the door closed until the next dump operation.
As noted above, in step 670, the controller 305 calculates the ideal path between the dipper 140 hoist and crowd start position (HRCt0, CRCt0) and the desired position (HRCd, CRCd). The ideal path enables a constant trajectory equation for any given swing and may be designed and modified to suit the engineering needs or customer preferences.
In some embodiments, the ideal path used by the motion restriction algorithm is a ramp equation between the dipper 140 hoist and crowd start position (HRCt0, CRCt0) to the desired position (HRCd, CRCd). A ramp equation minimizes computational cost and yields a gradual, smooth motion in hoist and crowd movements, without over-stressing the rope shovel 100. An example hoist ramp equation is
Assuming SRCt0<SRCd for illustration purposes, as the operator swings the dipper 140 towards the desired swing location SRCd, SRCt (current dipper 140 swing position) increases such that HRCtraj approaches the desired hoist location SRCd. In other words, when the dipper 140 reaches the desired swing location SRCd, 1) SRCd=SRCt, making the ramp portion of the equation
become zero, and 2) the hoist trajectory HRCtraj equals the desired hoist location HRCd.
The custom trajectory equation for the crowd motion is similar, with
These equations can be modified and changed to match a variety of desired trajectories. For instance, the ideal path may use a polynomial curve, it may change the time when the desired location is achieved (e.g., such that the hoist is at the desired hoist location before the dipper 140 reaches the desired swing position), it may specify desired enter/exit velocities, or include other customizations.
To generate boundary limits for the motion of the dipper 140, a motion restriction algorithm is also evaluated in step 675. The motion restriction algorithm prevents the operator from excessively deviating from the desired trajectories of the swing and crowd motions. The motion restriction algorithm is used to adjust (boost, limit, or zero) the speed of the crowd and/or hoist motions once an upper or lower limit is exceeded. As an example, if the operator attempts to hoist the dipper 140 too high above the hopper 170 such that the dipper 140 would exceed the upper limit when near the hopper 170, the controller 305 would zero the hoist speed reference command sent to the hoist motor 355 (preventing further raising of the dipper 140 via the hoist motor 355). The upper and lower limits of the hoist and crowd motions are established using a variety of constraint equations. The boundary limits are applied to the ideal path and are continuously updated as the operator moves the dipper 140 towards or away from the desired swing position SRCd.
A ramp constraint equation is one type of constraint equation used by method 640. The ramp constraint equation includes a start and end limit, and the slope of the ramp is scaled dependent on the total swing distance (abs(SRCd−SRCt0)) to the desired swing position SRCd. For illustration purposes, a ramp constraint equation for the hoist motion is:
where mr is the starting position of the ramp slope in hoist resolver counts, and cr is the end position of the ramp slope in hoist resolver counts. HRCboundary is then calculated based on HRClim and HRCtraj as follows:
HRCboundary=HRCtraj±HRClim.
The hoist trajectory (HRCtraj) equation noted above is dependent on the swing motion.
An alternative constraint equation is a constant constraint equation that is a static window. For instance, the boundary equation remains HRCboundary=HRCtraj±HRClim, however, HRClim is set to a constant value cw (i.e., HRClim=cw), where cw indicates the size of the static window about the ideal path.
An alternative constraint equation is a polynomial curve. The polynomial curve is based on establishing a characteristic equation and solving a series of coefficients that are dependent on the hoist and crowd start position, desired position, and desired velocities. The limit equation is a third-order polynomial:
HRClim=a0+a1*SRCt+a2*SRC22+SRCt3.
The coefficients are solved for each swing phase due to the dependencies of where the operator started to swing.
The initial and desired hoist resolver velocities (H{dot over (R)}Ct0 and H{dot over (R)}Cd) can be changed to augment the polynomial curve allowing for some degree of customization.
Additional constraint equations may also be used. For instance, the controller 305 may implement different constraint equations for the upper and lower boundaries (see, e.g.,
Teach Mode
In the teach mode, 1) the operator “teaches” the controller 305 the desired end position of the dipper 140 (e.g., over the hopper 170) and the start position of the dipper 140 (the dig location 220), 2) the controller 305 generates an ideal path, and 3) the controller 305 automatically controls the swing-to-hopper motion of the dipper 140.
To teach the controller 305, the operator may manually enter the end position and start position by moving the dipper 140 to the appropriate position and triggering a store operation, which stores the swing, crowd, and hoist resolver counts in the controller 305. For instance, the operator may trigger the store operation by changing the desired dump position trigger to be true. The operator changes the desired dump position trigger to be true by depressing a joystick button, depressing foot pedals and/or horn triggers in a particular manner, and/or via input to a graphical user interface (GUI). In some embodiments, the controller 305 is operable to automatically detect the desired end position and start position. For instance, the controller 305 may automatically detect the desired end position by storing the swing, crowd, and hoist resolver counts upon a dump operation (i.e., releasing door 145 of the dipper 140). Additionally, the controller 305 may automatically detect the start position of the dipper 140 by noting the swing, crowd, and hoist resolver counts upon completion of a dig cycle.
In step 865, the controller determines whether the dipper 140 is clear of a bank at the dig location 220 and the swing automation has been activated. In some embodiments, the operator manually actuates a swing automation button (e.g., via other I/O devices 400) to activate swing automation. In other embodiments, the controller 305 automatically detects that the operator is retracting away from the bank and has begun to swing towards the desired dump position (i.e., the hopper 170). For instance,
Once conditions of step 865d, 865e, and 865f are evaluated to be true, the controller 305 stops the timer started in step 865c (step 865g). In step 865h, the controller determines if the elapsed time between the start and stop of the timer is less than a predetermined value (e.g., three seconds). If so, the controller 305 determines that the operator has begun a swing-to-hopper motion (step 865i) and evaluates step 865 (of
In some embodiments, the automatic swing-to-hopper detection of
After determining the swing automation has been activated in step 865, the controller 305 proceeds to generate an ideal path for the dipper 140 to the hopper 170 (step 870). In the teach method, the ideal path for the swing motion of the dipper 140 is calculated in the same manner as described above with respect to the operator feedback mode. That is, the controller estimates the total swing resolver counts needed to stop the dipper 140 above the hopper 170 (ΔSRCdecel) based on current dipper swing speed (SRC) and swing resolver counts remaining to arrive at the hopper 170 (SRCrem). As the dipper 140 is swung, ΔSRCdecel eventually becomes equal to the current swing resolver count position (SRCt) less the desired swing resolver count (SRCd), which signals to the controller 305 to start decelerating the dipper swing motion. The swing motion is continuously monitored with ΔSRCdecel and SRCrem being continuously updated as the dipper 140 is swung to the hopper 170, which ensures that the continuously calculated ideal path remains accurate.
In the teach mode, however, the ideal paths for the hoist and crowd motions are calculated as done in the motion restriction mode. That is, the ideal paths for the hoist and crowd, HRCtraj and CRCtraj, respectively, are calculated as follows:
Once the ideal paths for the hoist, crowd, and swing motions are generated, the controller 305 proceeds to actively and automatically control the dipper 140 without the need for operator input (e.g., via operator controls 320). In step 875, the controller 305 accelerates the swing motion of the dipper 140 towards the hopper 170 according to the ideal path generated in step 870. Simultaneously, the controller 305 begins controlling the hoist and crowd motions according to the ideal paths generated in step 870. In step 880, the controller 305 determines whether the dipper 140 has reached the point along the ideal swing path where the controller 305 is to begin deceleration. If not, the controller 305 updates the shovel data set in step 882 before returning to step 870. In step 870, the controller 305 updates the ideal swing path, but maintains the previously generated ideal paths for the hoist and crowd motions.
The controller 305 cycles through steps 870, 875, 880, and 882 until the controller 305 determines in step 880 that the dipper 140 is to be decelerated (based on the ideal swing path). The controller 305 proceeds to step 885 and decelerates the swing motion of the dipper 140 along the ideal swing path and continues to control the hoist and crowd motions along their respective ideal paths. The controller 305 also continues to update the shovel data set in step 887 and update the ideal swing path in step 885 until, in step 890, the dipper 140 is stopped above the hopper 170. The controller 305 proceeds to dump the contents of the dipper 140 in step 895. In some embodiments, the controller 305 cannot dump the load without operator input (e.g., to confirm the dipper 140 is above the hopper 170).
After dumping the load of the dipper 140 in step 895, the controller 305 awaits a determination that the operator desires to swing the dipper 140 back to the dig location 220 similar to how step 865 determines a swing-to-hopper motion is desired (e.g., the operator depresses a swing automation button). Once the controller 305 determines that the operator desires to swing the dipper 140 to the dig location 220, the controller 305 proceeds to step 897 to generate an ideal return path back to the dig location 220.
Generating an ideal return path in step 897, accelerating the dipper 140 in step 900, determining whether to begin decelerating the dipper 140 in step 905, updating the shovel data set in step 907, decelerating the dipper 140 and updating the ideal swing path in step 910, determining whether the dig location is reached in step 915, and updated the shovel data set in step 917 are similar to steps 870, 875, 880, 882, 885, 890, and 887 respectively, with the exception that the start and end positions of the crowd, hoist, and swing are swapped. Thus, the equations described above with respect to steps 870, 875, 880, 882, 885, 890, and 887 apply to the steps 897, 900, 905, 907, 910, 915, and 917, with the exception that CRCt0, HRCt0, and SRCt0 are replaced with the corresponding crowd, hoist, and swing positions of the hopper 170, and CRCd, HRCd, and SRCd are replaced with the corresponding crowd, hoist, and swing position of the dig location 220. In some embodiments, the desired dig location 220 is the initial crowd, hoist, and swing position at time to (i.e., CRCt0, HRCt0, and SRCt0). In other embodiments, the operator stores the desired dig location 220 in the controller 305 by activating an actuator (e.g., that is part of other I/O devices 400) when the dipper 140 is at the desired dig location 220.
In some embodiments, the crowd and hoist positions of a tuck position for the dipper 140 are stored as the desired crowd and hoist positions. Using these tuck position values, at the completion of the swing to the dig location 220, the dipper 140 is in a tuck position and ready to begin the next dig cycle. The tuck position values for the crowd and hoist may be stored by the operator using an actuator, may be inferred by the controller based on the previous start of a dig cycle, or may be preset values (e.g., during a manufacturing process). As the dipper 140 is moved into the tuck position, gravity closes the door 145, allowing for the shovel door latch 360 to engage to keep the door closed until the next dump operation.
Once the swing automation has been activated as determined in step 865, the controller 305 may exit the automated swing motion through a variety of techniques. For instance, if the rope shovel 100 or mobile mining crusher 175 is propelled, the method 850 may automatically cease or automatically control the dipper 140 to a stop (e.g., by applying reverse torque to each of the swing, crowd, and hoist motors). Alternatively, an operator may be required to keep a swing joystick or another actuator at near full-reference to continue the method 850 (e.g., a “dead man switch”). If the operator pulls away from the swing joystick or other actuator, the method 850 will stop and the dipper 140 motion will be halted.
To effect the acceleration of the dipper 140 along the ideal swing path, the controller 305 includes an acceleration controller 930 as illustrated in
After the controller 305 determines to decelerate the swing motion of the dipper 140 (step 880), the switch 935 is set to receive the zero output from the zero source 945 and the deceleration controller 950 is activated (step 885). The deceleration controller 950 slows the swing motion of the dipper 140 such that is stops above the hopper 170. Similar to an operator's manual deceleration of dipper 140, the deceleration controller 950 pulses the torque reversal command to the swing motor 350 as the swing motion of the dipper 140 nears zero.
Initially, the deceleration controller 950 outputs via switch 955 and switch 960 a torque reversal command from triggered step 965, which is equal to or greater than the torque command from triggered step 940 in the acceleration controller 930. With the deceleration command greater than the acceleration command, the earlier assumptions made in generating the ideal swing path are maintained.
Once the swing speed drops below a threshold stored in switch 955, the switch 955 switches to receive the output of a pulse generator 970. The pulse generator 970 is designed to mimic the operator's control of the swing motion by pulsing the torque reversal command to decelerate the swing speed when the speed of the swing motor 350 nears zero. Once the swing speed drops below a lower threshold stored in switch 960, the switch 960 switches to receive the zero output of the zero source 975.
The pulse generator 970 is operable to vary the magnitude and duration of pulses to control the deceleration level of the swing motor 350. The magnitude of the pulse is dependent on the difference between the current swing speed SRC and zero, while duration of the pulse is dependent on the difference between the current swing resolver position (SRCt) and the desired swing position (SRCd). As the current swing speed SRC nears zero, the magnitude of the pulse is reduced. As the current swing resolver position (SRCt) nears the desired swing position (SRCd), the duration of the pulse is reduced. The pulsed approach enables a controlled deceleration of the dipper 140 and minimizes overshoot of the hopper 170. In some embodiments, only one of the magnitude and duration of the pulse generator 970 is varied as the dipper 140 approaches the hopper 170. The one of the magnitude and duration may be varied based on either or both of the difference between S{dot over (R)}C and 0 or the difference between SRCt and SRCd. In other embodiments, the pulse generator 970 outputs a pulse with a constant magnitude and duration.
In some embodiments, an adaptive deceleration controller 980 is included in the controller 305 in addition to the acceleration controller 930 and deceleration controller 950 of
Based on monitored swings to the hopper 170, the adaptive deceleration controller 980 generates a coefficient kadapt to adjust the swing deceleration rate according to the following equation: {umlaut over (θ)}swing_decel=kadapt*{umlaut over (θ)}swing_accel Initially, kadapt is set to one. If, based on the monitored swings, the adaptive deceleration controller 980 determines that the deceleration rate is too aggressive and the dipper 140 is decelerating unnecessarily fast (reducing overall efficiency of the rope shovel 100), the adaptive deceleration controller 980 lowers kadapt. Conversely, if the deceleration rate is not aggressive enough, kadapt is increased. Once the rope shovel 100 propels, kadapt is reset to one and the adaptive deceleration controller 980 begins monitoring again to determine if kadapt should be adjusted. In some embodiments, the kadapt does not adjust the actual deceleration rate but, rather, adjusts when the deceleration is triggered (i.e., when step 880 is evaluated as true).
The adaptive deceleration controller 980 also receives the shovel inclination data from machine house inclinometers to increase the accuracy of the predicted swing deceleration rate and to perform a sanity check to make sure the dipper 140 is not positioned in a way that the acceleration rate can overcome the deceleration rate of the swing motion. In other words, the inclinometer data enables the system to check whether the rope shovel 100 is resting at an angle (i.e., tilted with respect to the ground) such that the adaptive deceleration controller 980 is able to verify the acceleration/deceleration relationship assumption and, if necessary, alter the ideal path to compensate for variations.
In some embodiments, the controller 305 considers the mass of the load of the dipper 140 while generating ideal paths in one or more of the teach mode, operator feedback mode, and motion restriction mode. As the mass of the dipper 140 increases, the maximum acceleration and deceleration levels of the swing, hoist, and crowd motions are reduced. In some embodiments, the mass of the dipper 140 is continuously monitored. In other embodiments, to reduce complexity of the ideal path generation, a constant mass of the dipper 140 is estimated and maintained for the duration of a swing-to-hopper or return-to-dig-location motion. However, to reduce complexity further, the measured acceleration rate is used as the estimated deceleration rate, as was described with respect to the operator feedback mode above.
Full Automation Mode
In the full automation mode, the control system 300, without operator input, is operable to 1) detect the relative positions of the hopper 170 and dipper 140; 2) generate an ideal path, and 3) control the swing-to-hopper motion of the dipper 140. The previous modes infer the desired dump position either from the previous dump position or from operator feedback. The full automation mode integrates the hopper alignment system 395 to obtain the position of the hopper 170, or relative position between the hopper 170 and dipper 140, without operator input. Thus, in some embodiments, the full automation mode is similar to the teach mode, except that the operator does not teach the controller 305 the position of the hopper 170. Rather, the hopper alignment system 395 is operable to obtain and communicate to the controller 305 the desired dump position (hopper 170), without the operator needing to teach the controller 305. In other embodiments, the hopper alignment system 395 is used in the user feedback mode and/or motion restriction mode to obtain the location of the hopper 170 without user feedback or prior dumping.
As shown in
In operation, the mobile mining crusher 175 transmits the position and orientation information from GPS unit 990b to the controller 305 wirelessly via a radio or mesh-wireless connection. The position and orientation information from the GPS unit 990b is referenced against the position of the dipper 140 to provide a desired dump position with respect to the swing axis 125. The desired dump position is transformed into a swing resolver position (SRC), which is provided to the controller 305 and used in the methods 425, 640, and 850 described above.
The desired crowd and hoist positions of dipper 140 are independent of the desired swing position and are, therefore, calculated independently. A goal is to transform a physical dump position (x, y coordinates), based on the output of the GPS unit 990b, into a hoist and crowd resolver count to use in the trajectory generation and motion control of the dipper 140. Three methods of calculating the desired hoist and crowd positions of the dipper 140 include using 1) a mathematical kinematic model, 2) a hoist-crowd Cartesian displacement assumption, and 3) a saddle block installed inclinometer.
A mathematical kinematic model is a vector representation of the rope shovel 100. The mathematical kinematic model uses geometric information of the various components (e.g., height of the dipper 140, length of the dipper handle 135, etc.) and understanding of the constraints on the shovel (e.g., dipper 140 connects to the dipper handle 135, the dipper handle 135 connects to the dipper shaft 130, etc.) to position the attachment (e.g., the dipper 140 and the dipper handle 135) of the rope shovel 100 as desired. The kinematic model receives data from sensors 363 (e.g., crowd, hoist, and swing resolver data) to track the position of the dipper 140 as the hoist motor 355 and crowd motor 345 rotate. The controller 305 interprets the location data from GPS unit 990a for the rope shovel 100 along with the kinematic model data of the rope shovel 100 to determine the desired crowd, hoist, and swing resolver counts to position the dipper 140 above the dump position (as determined based on the output of the GPS unit 990b).
A hoist-crowd Cartesian displacement assumption includes an assumption that the dipper 140 is at a near-horizontal crowd position and a near-vertical hoist position. With this assumption, moving the crowd is approximated as moving horizontally (x-axis motion) and moving the hoist is approximated as moving vertically (y-axis motion). Thus, the hoist-crowd Cartesian displacement assumption also includes an assumption that crowd motion only moves the dipper 140 along the x-axis and hoist motion only moves the dipper 140 along the y-axis. The controller 305 interprets the location data from GPS unit 990a for the rope shovel 100, along with the assumed position of the dipper 140 based on the hoist-crowd Cartesian displacement assumption, to determine the desired crowd, hoist, and swing resolver counts to position the dipper 140 above the dump position (as determined based on the output of the GPS unit 990b).
In a third implementation, a saddle block inclinometer is used to calculate the desired hoist and crowd positions of the dipper 140. The method includes securing a saddle block inclinometer to the handle to measure the handle angle. The controller 305 is then able to calculate the position of the dipper 140 based on the handle angle and the current crowd resolver count. The controller 305 interprets the location data from GPS unit 990a for the rope shovel 100, along with the determined position of the dipper 140 based on handle angle and current crowd resolver count, to determine the desired crowd, hoist, and swing resolver counts to position the dipper 140 above the dump position (as determined based on the output of the GPS unit 990b).
In some embodiments, the hopper alignment system 395 uses one or more optical cameras or 3-D laser scanners to implement visual or laser-based servoing. One of the above-described operation modes (e.g., trajectory feedback mode, motion restriction mode, teach mode, or full-automation mode using GPS units) is used to swing the dipper 140 within a predetermined range of the hopper 170. The predetermined range may be the range at which the optical cameras or 3-D laser scanners recognize the hopper 170 and/or dipper 140, or a particular distance (e.g., 3 meters). Once within range, the visual servoing is used to particularly align the dipper 140 in the proper position above the hopper 170 with a high degree of accuracy. In some instances, however, the full-automation mode with GPS units has a degree of accuracy that is high enough to render the visual or laser servoing unnecessary.
In the optical camera arrangement, visual servoing controls the dipper 140 movement based on the output of the optical cameras.
The stereoscopic arrangement allows for a more accurate depth perception of the position of the dipper 140 relative to the hopper 170. The optical cameras 995a and 995b provide a usable controlled output with limited modeling of the base system. Each camera 995a and 995b acts like a human eye and tracks key positions on the dipper 140 (e.g., outer edges of the dipper 140). Once the dipper 140 is identified by the controller 305 via the output of the cameras 995a and 995b, the controller 305 performs trajectory calculations and identifies any control corrections to position the dipper 140 above the hopper 170.
In some embodiments, a 3-D scanning laser 998 is used. The scanning laser 998a operates based on principles similar to those of the visual servoing system, but uses the scanning laser 998 in place of the cameras 995a and 995b. The scanning laser 998 is installed on one of the mobile mining crusher 175 (see
When mounted on the dipper 140, the scanning laser 998 is oriented to look forward towards the mobile mining crusher 175 to identify the shape and structure of the hopper 170. The controller 305 is also designed to recognize obstacles with the scanning laser 998 along the swing path, and to avoid collisions with those obstacles by making adjustments to the crowd, hoist, and swing motion along the swing path. When mounted on the mobile mining crusher 175, the scanning laser 998 is oriented to look towards the rope shovel 100 to identify the position and orientation of the dipper 140. Like the stereoscopic camera arrangement, once the dipper 140 or hopper 170 is identified by the controller 305 via the output of the scanning laser 998, the controller 305 performs trajectory calculations and identifies any control corrections to position the dipper 140 above the hopper 170.
The swing aggressiveness level may be input by an operator or other user via the other I/O 400. The swing aggressiveness level indicates the aggressiveness of the swing to be used in generating an ideal path. Generally, the more aggressive (faster) the swing, the further the limits of the shovel and, potentially, the operator are pushed. For instance, a more experienced operator may opt for a more aggressive ideal path for use in the feedback mode. Accordingly, the acceleration, top speed, and deceleration of the dipper during a swing operation may be increased. A less experienced operator, or in the case of an obstacle-prone path between the dig zone and the dump area, a less aggressive swing may be requested. Generally, a less aggressive swing exposed components of the rope shovel 100 to less mechanical wear.
The ideal path generator 1000 generates an ideal path as described above (e.g., with respect to methods 425, 640, and 850). The ideal swing path module 1010 generates an ideal swing path and provides the ideal swing path to the ideal hoist path module 1012 and the ideal crowd path module 1014. Thereafter, the ideal hoist path module 1012 and the ideal crowd path module 1014 generate an ideal hoist path and an ideal crowd path, respectively. The ideal swing, crowd, and hoist paths are output to the boundary generator module 1002, the dipper control signal module 1004, and the feedback module 1006.
The boundary generator module 1002, the dipper control signal module 1004, and the feedback module 1006 vary their operation depending on mode indicated by the mode selector module 1008. The mode selector module 1008 receives as input a user mode selection 1022 and system information 1024. The user mode selection 1022 indicates the swing automation mode that the operator would like to use to operate the rope shovel 100. For instance, the operator may use a GUI or switching device of the operator controls 320 or other I/O 400 to input a mode selection. The mode selection may be one of (a) a no swing automation mode, (b) the trajectory feedback mode; (c) the motion restriction mode; (d) the teach mode; (e) the full automation mode; and (e) a hybrid mode. The system information 1024 is also provided to the mode selector module 1008. The system information may come from, for instance, sensors 363, and other fault detection systems of the rope shovel 100. In normal operation (i.e., no faults that effect the swing automation system), the mode selector module 1008 will then indicate to the boundary generator module 1002, dipper control signal module 1004, and feedback module 1006 the selected mode.
In the no swing automation mode, the controller 305 does not implement swing automation features such as found in the trajectory feedback mode, motion restriction mode, teach mode, or full automation mode. Rather, the operator controls the rope shovel 100 normally with no swing automation assistance.
In the trajectory feedback mode, the ideal path is received by the feedback module 1006, along with the current dipper data 1018. In response, the feedback module 1006 implements the computations and processing of method 425, and outputs the control signals to the operator feedback 385 to provide the feedback.
In the motion restriction mode, the boundary generator module 1002 receives the ideal path and generates boundaries according to one of the various techniques described above (e.g., with respect to
In the teach mode, the operator first performs a swing and dump operation manually such that the ideal path generator module 1000 may be taught the dump location data 1016. Thereafter, the user commands 1026 may be used to indicate whether to carry-out the swing, for instance, via the dead-man switch technique noted above. The dipper control signal module 1004 then receives the ideal path from the ideal path generator module 1000. The dipper control signal module 1004 generates control signals for the dipper controls 343 such that the dipper 140 follows the ideal path.
In the full automation mode, the dump location data 1016 is provided by the hopper alignment system 395 to obtain the position of the dump location, or relative position between the dump location and dipper 140, without operator input. Once initiated, the dipper control signal module 1004 receives the ideal path from the ideal path generator module 1000 and generates control signals for the dipper controls 343 such that the dipper 140 follows the ideal path. Similar to the other modes, the ideal path generator module 1000 may continuously receive the current dipper data 1018, swing aggressiveness level 1020, and dump location data 1016 to continuously update the ideal path for use by the other modules of the controller 305.
In abnormal operation, the mode selector module 1008 receives an indication from the system information 1024 that faults are present that effect swing automation. The mode selector module 1008 determines if the faults prevent the user-selected swing automation mode from properly operating. If the faults prevent the user-selected swing automation modes from properly operating, the mode selector module 1008 will determine the next highest level mode of automation that is operational and output that mode as the selected mode to the boundary generator module 10002, dipper control signal module 1004, and feedback module 1006. For example, if the user has selected the full automation mode, but the system information 1024 indicates that the hopper communications system 390 is not able to provide a dump location to the ideal path generator module 1000, the mode selector module 1008 will automatically select the teach mode. Similarly, if in the motion restriction mode, teach mode, or full automation mode, and the system information 1024 indicates that the dipper control signals module 1004 is malfunctioning and cannot provide control signals to the dipper controls 343, the mode selector module 1008 will automatically select the trajectory feedback mode. Accordingly, in the presence of faults affecting the swing automation system, the mode selector module 1008 may override the user-selected swing automation mode.
In some embodiments, some or all of controller 305 functions and components, including the ideal path generation, are performed external to the rope shovel 100 and/or mobile mining crusher 175. For instance, the rope shovel 100 and/or mobile mining crusher 175 may output position data to a remote server that calculated an ideal path for the dipper 140 and returns the ideal path to the controller 305.
Thus, the invention provides, among other things, a swing automation system and method with various operation modes and combinations of operation modes.
This application is a continuation of U.S. patent application Ser. No. 15/401,620, filed Jan. 9, 2017, which claims the benefit of U.S. patent application Ser. No. 15/067,353 filed Mar. 11, 2016, now U.S. Pat. No. 9,567,725, which claims the benefit of U.S. patent application Ser. No. 14/321,511, filed Jul. 1, 2014, now U.S. Pat. No. 9,315,967, which claims the benefit of U.S. patent application Ser. No. 13/446,817, filed Apr. 13, 2012, now U.S. Pat. No. 8,768,579, which claims the benefit of U.S. Provisional Application No. 61/475,474, filed Apr. 14, 2011, the entire contents of all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3207339 | Neslin | Sep 1965 | A |
3648029 | Ungnadner | Mar 1972 | A |
3856161 | Baron | Dec 1974 | A |
4104518 | Schachinger et al. | Aug 1978 | A |
4268214 | Zeldman | May 1981 | A |
4398851 | Geuns et al. | Aug 1983 | A |
5327347 | Hagenbuck | Jul 1994 | A |
5404661 | Sahm et al. | Apr 1995 | A |
5408767 | Hazama et al. | Apr 1995 | A |
5442868 | Ahn | Aug 1995 | A |
5461803 | Rocke | Oct 1995 | A |
5493798 | Rocke et al. | Feb 1996 | A |
5528498 | Scholl | Jun 1996 | A |
5548516 | Gudat et al. | Aug 1996 | A |
5601393 | Waldschmitt | Feb 1997 | A |
5629870 | Farag et al. | May 1997 | A |
5646844 | Gudat et al. | Jul 1997 | A |
5701691 | Watanabe et al. | Dec 1997 | A |
5717628 | Hammerl et al. | Feb 1998 | A |
5748097 | Collins | May 1998 | A |
5752333 | Nakagawa et al. | May 1998 | A |
5835874 | Hirata et al. | Nov 1998 | A |
5850341 | Fournier | Dec 1998 | A |
5854988 | Davidson et al. | Dec 1998 | A |
5903988 | Tochizawa et al. | May 1999 | A |
5908458 | Rowe et al. | Jun 1999 | A |
5918527 | Haga et al. | Jul 1999 | A |
5937292 | Hammerl et al. | Aug 1999 | A |
5953977 | Krishna et al. | Sep 1999 | A |
5968103 | Rocke | Oct 1999 | A |
5978504 | Leger | Nov 1999 | A |
6025686 | Wickert et al. | Feb 2000 | A |
6058344 | Rowe et al. | May 2000 | A |
6076030 | Rowe | Jun 2000 | A |
6085583 | Cannon et al. | Jul 2000 | A |
6108949 | Ingh et al. | Aug 2000 | A |
6112143 | Allen et al. | Aug 2000 | A |
6138837 | Santa Cruz | Oct 2000 | A |
6167336 | Ingh et al. | Dec 2000 | A |
6223110 | Rowe et al. | Apr 2001 | B1 |
6247538 | Takeda et al. | Jun 2001 | B1 |
6272413 | Takahashi et al. | Aug 2001 | B1 |
6317669 | Kurenuma et al. | Nov 2001 | B1 |
6349252 | Imanishi et al. | Feb 2002 | B1 |
6363173 | Stentz et al. | Mar 2002 | B1 |
6363632 | Stentz et al. | Apr 2002 | B1 |
6385870 | Webel et al. | May 2002 | B1 |
6466850 | Hilgart | Oct 2002 | B1 |
6532409 | Fujishima | Mar 2003 | B1 |
6691010 | Gray | Feb 2004 | B1 |
6732458 | Karenuma et al. | May 2004 | B2 |
6836982 | Augustine | Jan 2005 | B1 |
6856879 | Arakawa et al. | Feb 2005 | B2 |
6885930 | Wang | Apr 2005 | B2 |
7034476 | Wang et al. | Apr 2006 | B2 |
7079982 | Ogura et al. | Jul 2006 | B2 |
7126299 | Jackson | Oct 2006 | B2 |
7181370 | Furem et al. | Feb 2007 | B2 |
7227273 | Ahmad et al. | Jun 2007 | B2 |
7287188 | Shibata et al. | Oct 2007 | B2 |
7293376 | Glover | Nov 2007 | B2 |
7307399 | Furem | Dec 2007 | B2 |
7308352 | Wang et al. | Dec 2007 | B2 |
7375490 | Furem | May 2008 | B2 |
7385372 | Ahmad et al. | Jun 2008 | B2 |
7398012 | Koellner | Jul 2008 | B2 |
7406399 | Furem et al. | Jul 2008 | B2 |
7479757 | Ahmad | Jan 2009 | B2 |
7574821 | Furem | Aug 2009 | B2 |
7578079 | Furem | Aug 2009 | B2 |
7587264 | Furuno et al. | Sep 2009 | B2 |
7606648 | Shepherd | Oct 2009 | B2 |
7622884 | Furem | Nov 2009 | B2 |
7689394 | Furem et al. | Mar 2010 | B2 |
7726048 | Stanek et al. | Jun 2010 | B2 |
7734397 | Peterson et al. | Jun 2010 | B2 |
7751927 | Pulli et al. | Jul 2010 | B2 |
7752779 | Schoenmaker et al. | Jul 2010 | B2 |
7831362 | Ishibashi et al. | Nov 2010 | B2 |
7832126 | Koellner et al. | Nov 2010 | B2 |
7852126 | Yokoyama | Dec 2010 | B2 |
7979182 | Ooki et al. | Jul 2011 | B2 |
8145355 | Danko | Mar 2012 | B2 |
8275576 | Furem et al. | Sep 2012 | B2 |
8332188 | McConaghy | Dec 2012 | B2 |
8437920 | Hobenshield | May 2013 | B2 |
8571765 | Lehtinen | Oct 2013 | B2 |
8620533 | Taylor | Dec 2013 | B2 |
8620536 | Colwell et al. | Dec 2013 | B2 |
8688334 | Taylor | Apr 2014 | B2 |
8707193 | Khazanov et al. | Apr 2014 | B2 |
8756839 | Hren et al. | Jun 2014 | B2 |
8768579 | Taylor | Jul 2014 | B2 |
8768583 | Hargrace et al. | Jul 2014 | B2 |
8788155 | Claxton | Jul 2014 | B2 |
8806361 | Noel et al. | Aug 2014 | B1 |
8831911 | Lipowsky | Sep 2014 | B2 |
8838417 | Rikkola et al. | Sep 2014 | B2 |
8886493 | Taylor | Nov 2014 | B2 |
8930091 | Upcroft et al. | Jan 2015 | B2 |
8935061 | Colwell et al. | Jan 2015 | B2 |
8972120 | Linstroth et al. | Mar 2015 | B2 |
8984779 | Knuth | Mar 2015 | B2 |
8994519 | Miyoshi | Mar 2015 | B1 |
9031750 | Miyoshi | May 2015 | B2 |
9043098 | Nomura et al. | May 2015 | B2 |
9045883 | Schob et al. | Jun 2015 | B2 |
9133600 | Martinsson et al. | Sep 2015 | B2 |
9206587 | Linstroth et al. | Dec 2015 | B2 |
9221480 | Daum et al. | Dec 2015 | B2 |
9255377 | Colwell et al. | Feb 2016 | B2 |
9260834 | Lee | Feb 2016 | B2 |
9311616 | Westerlage et al. | Apr 2016 | B2 |
9315967 | Taylor | Apr 2016 | B2 |
9361270 | Colwell et al. | Jun 2016 | B2 |
9372482 | Rikkola et al. | Jun 2016 | B2 |
9397890 | Petersen et al. | Jul 2016 | B2 |
9411325 | Baba et al. | Aug 2016 | B2 |
9562341 | Voelz | Feb 2017 | B2 |
9567725 | Taylor | Feb 2017 | B2 |
9574326 | Swiderski | Feb 2017 | B2 |
9611625 | Koetz et al. | Apr 2017 | B2 |
9624648 | Arimatsu et al. | Apr 2017 | B2 |
9650755 | Nomura | May 2017 | B2 |
9666095 | Swiderski et al. | May 2017 | B2 |
9745721 | Linstroth | Aug 2017 | B2 |
9752298 | Nakamura | Sep 2017 | B2 |
9809949 | Voelz et al. | Nov 2017 | B2 |
9811144 | Taylor | Nov 2017 | B2 |
9863118 | Brandt et al. | Jan 2018 | B2 |
10048154 | Claxton | Aug 2018 | B2 |
10227754 | Taylor | Mar 2019 | B2 |
10435863 | Ishihara | Oct 2019 | B2 |
10450727 | Collins | Oct 2019 | B2 |
10750082 | Takahashi | Aug 2020 | B2 |
20040158355 | Holmqvist | Aug 2004 | A1 |
20050027420 | Fujishima | Feb 2005 | A1 |
20050081410 | Furem et al. | Apr 2005 | A1 |
20050083196 | Furem et al. | Apr 2005 | A1 |
20050197756 | Taylor | Sep 2005 | A1 |
20050203691 | Kim | Sep 2005 | A1 |
20050256607 | Shepherd | Nov 2005 | A1 |
20060090378 | Furem | May 2006 | A1 |
20070150149 | Peterson et al. | Jun 2007 | A1 |
20070168100 | Danko | Jul 2007 | A1 |
20070240341 | Hyde | Oct 2007 | A1 |
20070266601 | Claxton | Nov 2007 | A1 |
20080201108 | Furem et al. | Aug 2008 | A1 |
20080212344 | Furem | Sep 2008 | A1 |
20080234901 | Johnson | Sep 2008 | A1 |
20080234902 | Johnson | Sep 2008 | A1 |
20080282583 | Koellner et al. | Nov 2008 | A1 |
20090053028 | Osanai | Feb 2009 | A1 |
20090055056 | Ooki et al. | Feb 2009 | A1 |
20090099738 | Danko | Apr 2009 | A1 |
20090228176 | Mintah | Sep 2009 | A1 |
20090229101 | Ahmed et al. | Sep 2009 | A1 |
20090319133 | Ekvall et al. | Dec 2009 | A1 |
20100010714 | Claxton | Jan 2010 | A1 |
20100036645 | McAree | Feb 2010 | A1 |
20100063682 | Akaki | Mar 2010 | A1 |
20100070905 | Mizumori | Mar 2010 | A1 |
20100076612 | Robertson | Mar 2010 | A1 |
20100109417 | Jackson et al. | May 2010 | A1 |
20100185416 | Furem et al. | Jul 2010 | A1 |
20100223008 | Dunbabin et al. | Sep 2010 | A1 |
20100243593 | King et al. | Sep 2010 | A1 |
20110029206 | Kang et al. | Feb 2011 | A1 |
20110029279 | McAree | Feb 2011 | A1 |
20110292279 | Lung | Dec 2011 | A1 |
20110301817 | Hobenshield | Dec 2011 | A1 |
20110314802 | Lastre et al. | Dec 2011 | A1 |
20120101693 | Taylor | Apr 2012 | A1 |
20120249593 | Nakagome | Oct 2012 | A1 |
20120263566 | Taylor et al. | Oct 2012 | A1 |
20120277959 | Colwell et al. | Nov 2012 | A1 |
20120277961 | Colwell et al. | Nov 2012 | A1 |
20120283919 | Kuras et al. | Nov 2012 | A1 |
20130031963 | Ritchie | Feb 2013 | A1 |
20130051963 | Taylor | Feb 2013 | A1 |
20130066527 | Mizuochi et al. | Mar 2013 | A1 |
20130096782 | Good et al. | Apr 2013 | A1 |
20130103247 | Ogawa | Apr 2013 | A1 |
20130110460 | Taylor | May 2013 | A1 |
20130158785 | Fukano | Jun 2013 | A1 |
20130158786 | Fukano | Jun 2013 | A1 |
20130158787 | Nomura | Jun 2013 | A1 |
20130158797 | Fukano | Jun 2013 | A1 |
20130195595 | Hottmann et al. | Aug 2013 | A1 |
20130261885 | Hargrave, Jr. et al. | Oct 2013 | A1 |
20130261904 | Linstroth et al. | Oct 2013 | A1 |
20130317709 | Colwell et al. | Nov 2013 | A1 |
20140019042 | Sugawara | Jan 2014 | A1 |
20140025265 | Taylor | Jan 2014 | A1 |
20140032059 | Udagawa et al. | Jan 2014 | A1 |
20140064897 | Montgomery | Mar 2014 | A1 |
20140100712 | Nomura | Apr 2014 | A1 |
20140338235 | Ryan | Nov 2014 | A1 |
20150275471 | Matasumoto et al. | Oct 2015 | A1 |
20150308073 | Voelz et al. | Oct 2015 | A1 |
20160017573 | Colwell et al. | Jan 2016 | A1 |
20160024757 | Nomura et al. | Jan 2016 | A1 |
20160069040 | Kami | Mar 2016 | A1 |
20160069044 | Takaura | Mar 2016 | A1 |
20160125095 | Xu | May 2016 | A1 |
20160138240 | Ikegami | May 2016 | A1 |
20160145827 | Kami | May 2016 | A1 |
20160194850 | Taylor et al. | Jul 2016 | A1 |
20160195871 | Taylor et al. | Jul 2016 | A1 |
20160237654 | Arimatsu et al. | Aug 2016 | A1 |
20160246357 | Taylor | Aug 2016 | A1 |
20160251834 | Arimatsu et al. | Sep 2016 | A1 |
20160251835 | Kitajima | Sep 2016 | A1 |
20160265187 | Baba | Sep 2016 | A1 |
20160273194 | Ikegami | Sep 2016 | A1 |
20160281331 | Ikegami | Sep 2016 | A1 |
20160340866 | Koetz et al. | Nov 2016 | A1 |
20170016211 | Arimatsu et al. | Jan 2017 | A1 |
20170114527 | Taylor | Apr 2017 | A1 |
20170147575 | Pappu et al. | May 2017 | A1 |
20170175364 | Hasegawa | Jun 2017 | A1 |
20180002899 | Morimoto | Jan 2018 | A1 |
20180080193 | Myers | Mar 2018 | A1 |
20180223504 | Gonzalez et al. | Aug 2018 | A1 |
20180305898 | Kobayashi | Oct 2018 | A1 |
20190017249 | Uji | Jan 2019 | A1 |
20190024344 | Okui | Jan 2019 | A1 |
20190078302 | Yamada | Mar 2019 | A1 |
20190218744 | Izumikawa | Jul 2019 | A1 |
20200277758 | Edamura | Sep 2020 | A1 |
20200332496 | Natzke | Oct 2020 | A1 |
20210002852 | Nishi | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
215375 | Jan 1922 | CA |
86204530 | Dec 1987 | CN |
1074263 | Jul 1993 | CN |
2804183 | Aug 2006 | CN |
101614024 | Dec 2009 | CN |
101672046 | Mar 2010 | CN |
201546247 | Aug 2010 | CN |
202644604 | Jan 2013 | CN |
19856610 | Jun 1999 | DE |
0003287 | Aug 1979 | EP |
0003287 | Mar 1981 | EP |
0036384 | Sep 1981 | EP |
0036384 | Mar 1982 | EP |
0053270 | Jun 1982 | EP |
0053270 | Jul 1984 | EP |
0114024 | Jul 1984 | EP |
0036384 | Nov 1984 | EP |
0114024 | Mar 1987 | EP |
0402517 | Dec 1990 | EP |
0412395 | Feb 1991 | EP |
0412398 | Feb 1991 | EP |
0412399 | Feb 1991 | EP |
0412400 | Feb 1991 | EP |
0412402 | Feb 1991 | EP |
0414926 | Mar 1991 | EP |
0428778 | May 1991 | EP |
0428783 | May 1991 | EP |
0442344 | Aug 1991 | EP |
0442344 | Apr 1992 | EP |
0412402 | Apr 1993 | EP |
0535765 | Apr 1993 | EP |
0402518 | Sep 1993 | EP |
0412399 | Jan 1994 | EP |
0428783 | Jan 1994 | EP |
0402517 | Mar 1994 | EP |
0412400 | Mar 1994 | EP |
0414926 | Mar 1994 | EP |
0412395 | Sep 1994 | EP |
0412398 | Sep 1994 | EP |
0442344 | Jan 1995 | EP |
0907805 | Jan 2001 | EP |
0912806 | Sep 2001 | EP |
2080730 | Jul 2009 | EP |
19780157033 | Dec 1978 | JP |
2000192514 | Jul 2000 | JP |
2009068197 | Apr 2009 | JP |
2009214967 | Sep 2009 | JP |
643597 | Jan 1979 | SU |
WO9746763 | Dec 1997 | WO |
WO9746767 | Dec 1997 | WO |
WO9902788 | Jan 1999 | WO |
WO0004240 | Jan 2000 | WO |
WO0140824 | Jun 2001 | WO |
WO02092921 | Nov 2002 | WO |
WO2005012028 | Feb 2005 | WO |
WO2005118329 | Dec 2005 | WO |
WO2006028938 | Mar 2006 | WO |
WO2007057305 | May 2007 | WO |
WO2008014571 | Feb 2008 | WO |
WO2008144043 | Nov 2008 | WO |
WO2008144043 | Feb 2009 | WO |
WO2009024405 | Feb 2009 | WO |
WO2009086601 | Jul 2009 | WO |
WO2009131635 | Oct 2009 | WO |
WO2009131635 | Oct 2009 | WO |
WO2009131635 | Dec 2009 | WO |
WO2009131635 | Dec 2009 | WO |
WO2010033959 | Mar 2010 | WO |
WO2010132065 | Nov 2010 | WO |
WO2010149857 | Dec 2010 | WO |
Entry |
---|
Winstanley, Graeme et al., Dragline Automation—A Decade of Development, IEEE Robotics & Automation Magazine, Sep. 2007, p. 52-64. |
4170C Service Manual—Section 17 Crawler Maintenance, p. 127. |
Autonomous Loading Application, Carnegie Mellon University Roboticts Institute, national Robotics Engineering Center, Retrieved from Internet on Dec. 28, 2010 <URL:http://www.rec.ri.cmu.edu/projects/als/application/>. |
Canadian Office Action for Application No. 2774658 dated Apr. 24, 2018 (5 pages). |
Chinese Office Action for Application No. 201710077956.5 dated Oct. 24, 2018 (11 pages with English translation). |
Number | Date | Country | |
---|---|---|---|
20190153702 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
61475474 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15401620 | Jan 2017 | US |
Child | 16255616 | US | |
Parent | 15067353 | Mar 2016 | US |
Child | 15401620 | US | |
Parent | 14321511 | Jul 2014 | US |
Child | 15067353 | US | |
Parent | 13446817 | Apr 2012 | US |
Child | 14321511 | US |