An exemplary embodiment of the present invention will be described in detail based on the following figures, wherein:
Explanation will now be given, with reference to the drawings, of a buckle switch according to an exemplary embodiment of the present invention and a buckle device to which such a buckle switch is applied.
As shown in
As shown in
Also, at the other end side in the longitudinal direction of the bottom plate portion 20, the leading end portion of an anchor plate 28 that has been inserted from the anchor insertion slot 16 of the body casing 12 is superimposed, and the bottom plate portion 20 and the anchor plate 28 are connected together by a rivet 30 that passes through the two elements. The base end side of the anchor plate 28 is fixed to a vehicle body at the side of a vehicle seat (both omitted from the drawing), and by doing so the buckle device 10 is fixed to the vehicle.
In the buckle body 18, there is a plate shaped ejector 32 disposed between the pair of side wall portions 22. The lower end portion of the ejector 32 engages with a substantially rectangular through hole 34 that has been formed in the bottom plate portion 20. The through hole 34 is formed so as to be long in the longitudinal direction of the bottom plate portion 20, and the ejector 32 is able to slide along the through hole 34 within a predetermined range in the longitudinal direction of the bottom plate portion 20. Specifically, the ejector 32 is able to slide in the insertion direction and the ejection direction between an ejection position (see
There is an engaging protrusion 36 formed at the internal periphery at the other end side in the longitudinal direction of the through hole 34 (the side in the direction of arrow I), and the engaging protrusion 36 is formed so as to protrude toward the ejection direction side. One end of an ejector spring 38 which is as a compression coil spring is latched to the engaging protrusion 36. The other end of the ejector spring 38 is latched to the ejector 32, and the ejector 32 is constantly biased by the biasing force of the ejector spring 38 toward the ejection direction side. The ejector 32 is configured such that when it is pressed by the insertion plate portion 26 of the tongue plate 24 that is inserted between the pair of side wall portions 22, the ejector 32 slides toward the insertion direction side of the bottom plate portion 20 against the biasing force of the ejector spring 38 (see the state shown in
As may be seen from
As shown in
Furthermore, at the base end side of the base portion 42, there are a pair of arm portions 48 protruding from both ends in the width direction out along the thickness direction of the device (to the arrow D direction side) toward the lower end side. The pair of arm portions 48 are formed so that the leading end sides thereof are positioned in the sliding path of the ejector 32, and when the ejector 32 slides toward the other end of the bottom plate portion 20 (the arrow I direction side), the pair of arm portions 48 are pressed toward the other end side of the bottom plate portion 20 by the end portion of the ejector 32, and the base portion 42 (lock plate 40) swings toward the bottom plate portion 20 side (to the arrow D direction side, into the engagement position) about the pair of support portions 44 as the centre.
There is an engaging tab 50 that extends out from the leading end portion of the base portion 42 (the end portion at the arrow E direction side), the engaging tab 50 extending along the thickness direction of the base portion 42 toward the bottom plate portion 20 side. The engaging tab 50 is formed so that the leading end side (the arrow D direction side) is slightly inclined toward the ejection direction side (the arrow E direction side). The leading end portion of the engaging tab 50 corresponds to the through hole 34 formed in the bottom plate portion 20, and when the lock plate 40 swings to a predetermined engagement position (see
As shown in
Furthermore, at both sides in the width direction of the engaging tab 50 there is a pair of abutment tabs 52 projecting toward the ejection direction side (the arrow E direction side) from the leading end portion of the base portion 42. The pair of abutment tabs 52 is provided to respectively correspond to a lock member 54, described below.
The lock member 54 is disposed at the opposite side of the bottom plate portion 20 via the pair of abutment tabs 52, and is provided with a body portion 56 as shown in
Furthermore, the lock member 54 is provided with a shaft 58 that passes through an upper end portion (an end portion at the arrow U direction side) of the body portion 56 along the longitudinal direction thereof The shaft 58 is formed from a metal material (SUS in the present exemplary embodiment) into a bar shape that is substantially rectangular in cross-section (a so-called “double-D cut shape”). The shaft 58 is press-fitted into and fixed in a press-fit hole 59 of substantially rectangular in cross-section (a so-called “double-D cut shape”) that is formed in the upper portion of the body portion 56. Both end portions of the shaft 58 in the axial direction respectively protrude out from the both end portions in the longitudinal direction of the body portion 56, and intrude into a pair of engaging holes 60 (see
As is shown in
Furthermore, there is a lock face 56A, which is formed in an circular arc shape with the shaft 58 at the centre thereof, formed at the lower end side of the body portion 56 (the bottom plate portion 20 side, the arrow D direction side). When the lock plate 40 is positioned in the engagement position and also the body portion 56 of the lock member 54 is being maintained in a predetermined lock position (see
Furthermore, there is an abutment surface 56B formed at the other end side of the body portion 56 (the arrow I direction side). When the lock plate 40 is positioned in the release position and also the lock member 54 is being maintained in a predetermined unlock position (see
As is shown in the
As is shown in
At a central portion in the longitudinal direction of the base portion 65 there is a spring holding portion 75 formed protruding out toward the side that is opposite to the side of the body portion 56 (toward the arrow E direction side). This spring holding portion 75 is in correspondence with a lock spring 68, described later. The buckle device 10, as shown in
There is a pair of arm portions 74 that extend out toward the insertion direction side (the arrow I direction side) from both end portions in the width direction of the operation portion 72. There are extended portions 76 that respectively extend out toward the bottom plate portion 20 side (the arrow D direction side) from each of the leading end portions of the pair of arm portions 74. There are claw portions 78 formed protruding out toward the pair of side wall portions 22 side (inside) from each of the leading end portions of the pair of extended portions 76, and the claw portions 78 fit into elongated holes 80 that are formed respectively in the pair of side wall portions 22 of the buckle body 18. The elongated holes 80 are formed so as to be elongated along the insertion direction (the arrow I direction) of the tongue plate 24, and each of the claw portions 78 are enabled by the elongated holes 80 to move within a predetermined range along the insertion and ejection direction. By doing so, the movement direction (operation direction) of the release button 70 is limited within the insertion direction and the ejection direction.
Also, there is a substantially bar shaped connecting portion 82 formed with the length thereof in the width direction and spanning between the two leading end portions of the pair of arm portions 74, and the two leading ends of the pair of arm portions 74 are mutually connected by the connecting portion 82.
Furthermore, in the release button 70, there is a pressing portion 84 formed at the upper end side (the arrow U direction side) of the operation portion 72, protruding toward the insertion direction side (the arrow I direction side). The pressing portion 84 is disposed so as to oppose the portion to be pressed 62 of the lock member 54, and when the release button 70 is operated by pressing, the portion to be pressed 62 is pressed to the insertion direction side (the arrow I direction side) by the pressing portion 84, and the body portion 56 of the lock member 54 swings about the shaft 58 toward the ejection direction side (the arrow E direction side, unlock position).
Also, the lock spring 68, which is a compression coil spring, is disposed between the operation portion 72 of the release button 70 and the lock member 54. The holder 64 is disposed between one end of the lock spring 68 and the lock member 54, and one end of the lock spring 68 is latched to the spring holding portion 75 of the holder 64. The other end of the lock spring 68 is pressed against the bottom wall portion of the operation portion 72 of the release button 70, and the lock member 54 is biased toward the lock position (toward the arrow I direction side, the opposite side to that of the release button 70) via the holder 64 by the biasing force of the lock spring 68.
As shown in
The buckle switch 100, as shown in
The switch base plate 104 is formed from an electrically insulating material, and one of the faces thereof in the thickness direction is a sliding surface 110. There are plural (3 in the present exemplary embodiment) conducting patterns 112, 114, and 116 (see
As shown in
The contact member 122, as shown in
The pair of flexible tabs 126 extend respectively in the insertion direction (the arrow I direction) from both end portions in the width direction of the base portion 124, and the pair of flexible tabs 126 are supported in a cantilever manner by the base portion 124. Also, the base end portions of the pair of flexible tabs 126 are bent so as to be inclined toward the sliding surface 110 side of the switch base plate 104, and also the intermediate portions in the longitudinal direction of the pair of flexible tabs 126 are bent around in the reverse direction to that of the base portions so as to be inclined toward the guide surface 118 side. By so doing, the shape of the pair of flexible tabs 126 overall becomes that of a V-shaped bent cantilevered beam, being deformable so as to bow in the thickness direction thereof Furthermore, the curved portions that are formed in the intermediate portion in the longitudinal direction of the pair of flexible tabs 126 become contact portions 130 that contact with the sliding surface 110 of the switch base plate 104 (with the conducting patterns 112, 114, and 116).
The pair of flexible tabs 128 are formed and disposed along the insertion and ejection direction so as to be symmetrical to the pair of flexible tabs 126 (linear symmetric), and there are contact portions 132 formed at the intermediate portions in the longitudinal direction of the pair of flexible tabs 128, contacting with the sliding surface 110 of the switch base plate 104 (with the conducting patterns 112, 114, and 116).
Also, as shown in
There are plate shaped guide members 136, 138 integrally formed to the sliding member 106 along both ends in the width direction of the guide surface 118. The pair of guide members 136, 138 are each formed into substantially rectangular flat plate shapes, and extend in a direction (the thickness direction) that is orthogonal to the guide surface 118, and are disposed extending in straight lines along the insertion and ejection direction. Also, the separation in the width direction between the pair of guide members 136 and 138 is slightly wider than the width of the switch base plate 104. By doing so, when the switch base plate 104 is inserted between the pairs of guide members 136, 138, the switch base plate 104 is guided so as to move in a straight line along the insertion and ejection direction.
There are cut-out portions 140 formed in respective intermediate portions along the insertion and ejection direction of the pair of guide members 136, 138, and the cut-out portions 140 are provided such that when the contact member 122 is being assembled to the inside of the groove portion 120 of the sliding member 106 using a jig, the jig is guided to the groove portion 120 side and the sliding member 106 interferes with the jig.
There is a pair of first claw portions 142 formed integrally to one guide member 136 and extending out to the inside in the width direction from the leading end portions of the guide member 136. The pair of first claw portions 142 is disposed to the guide member 136 at one end side and at the other end side, in the insertion and ejection direction, respectively. The pair of first claw portions 142 is formed so as to be substantially rectangular flat plate shaped, and the restoring force of the first claw portions 142 is configured so as to be greater than the restoring force in the bending direction of the pair of flexible tabs 126 in the contact member 122. There is also a pair of second claw portions 144 formed to the other guide member 138, and the pair of second claw portions 144 are formed and disposed so as to be symmetrical to the pair of first claw portions 142 of the guide member 136.
There is an engaging projection 146 formed integrally to the sliding member 106 at the face side thereof that is opposite to the side of the guide surface 118 of the body portion 107. The engaging projection 146 is disposed in a central position in the width direction and in the insertion and ejection direction of the body portion 107, and the engaging projection 146 projects out in the thickness direction to the side of the ejector 32 that is disposed between the pair of side wall portions 22 of the buckle body 18. When the buckle switch 100, as shown in
As shown in
There is a recessed portion 152 formed at the other end face of the base plate base 108 at the base end side relative to the step portion 150, and also a latching rib 154 is formed across inside the recessed portion 152 along the insertion and ejection direction. The latching rib 154 extends along the insertion and ejection direction and the width thereof in the thickness direction is equivalent to the depth of the recessed portion 152.
As shown in
Furthermore, the cut-out portion 156 of the switch base plate 104 is provided to correspond to one of the pair of second claw portions 144 in the sliding member 106 which is at the insertion direction side. Basically, the cut-out portion 156 is provided so that, as shown in
In the buckle switch 100, as shown in
The sliding member 106 that is supported so as to be able to slide by the switch base plate 104, is able to slide along the insertion and ejection direction between an ejection position shown in
The body casing 12 of the buckle device 10 configures a part of the buckle switch 100 according to the present exemplary embodiment. That is to say, the body casing 12 is configured as a housing portion for accommodating the body unit 102 which is provided with the switch base plate 104, the base plate base 108 and the sliding member 106.
As shown in
There is a support bracket 162 provided to the switch mounting portion 160 at an end portion at the ejection direction side, with the support bracket 162 projecting out from the bottom plate portion 93. The support bracket 162 is formed substantially in a U-shape, with the opening thereof facing toward the insertion direction when a cross-section is taken along the insertion and ejection direction. Passing through a wall portion at the outside in the ejection direction of the support bracket 162, there is a long and thin fitting insertion hole 164 that is along the thickness direction (the arrow D direction). The fitting insertion hole 164 corresponds to the extended portion 158 in the switch base plate 104, and the width in the thickness direction of the fitting insertion hole 164 is slightly wider than the width of the leading end portion of the extended portion 158, and also the width in the width direction of the fitting insertion hole 164 is slightly wider than the thickness of the switch base plate 104.
A stopper portion 166 that restricts movement to the ejection direction side of the sliding member 106 which is slidably supported switch base plate 104 is integrally formed to the support bracket 162, and a base plate abutment portion 168 is integrally formed to the support bracket 162, abutting the reverse face side of the switch base plate 104, which is the opposite side to that of the sliding surface 110, and restricting displacement (jolting) of the switch base plate 104 in the width direction.
There is a latching lug 170 provided in the switch mounting portion 160 at an end portion thereof at the insertion direction side, protruding out from the bottom plate portion 93. The latching lug 170 is formed in a substantially rectangular plate shape with the length thereof in the insertion and ejection direction, and the thickness direction of the latching lug 170 is in the same direction as the width direction of the device (the arrow W direction). There is a latching claw portion 172 formed integrally to the latching lug 170 at the leading end side on the outside face in the width direction thereof, and the latching claw portion 172 corresponds to the latching rib 154 of the base plate base 108. The latching claw portion 172 has cross-section with a slope shape with the thickness thereof gradually increasing on progression from the leading end side to the base end side of the latching lug 170, and the bottom end face at the base end side of the latching claw portion 172 is able to latch to the top face side of the latching rib 154.
There is a base abutment portion 174 formed to the lower casing 92, protruding out from the bottom plate portion 93 so as to correspond with the latching lug 170 in the width direction of the device, and the base abutment portion 174 abuts one end face in the thickness direction of the base plate base 108, and restricts displacement (jolting) in the width direction of the base plate base 108. Furthermore, there is a pair of guide protrusions 176, 178 formed to the bottom plate portion 93 of the lower casing 92, at the insertion direction side relative to the latching lug 170 and the base abutment portion 174. In the body casing 12, a cable (not illustrated in the figure) extending from the back end side of the base plate base 108 is guided through between the guide protrusions 176, 178 and out to the anchor insertion slot 16 side.
Explanation will now be given of an assembly method for the buckle device 10 according to the present exemplary embodiment configured as above.
First, when assembling the body unit 102 of the buckle switch 100, as shown in
Next, as shown in
Next, as shown in
Then, as shown in
Next, explanation will be given of an assembly method of the body unit 102 to the mounting portion 160 of the lower casing 92.
First, as shown in
Next, when the base plate base 108 side of the body unit 102 is swung to the bottom plate portion 93 side, the other end face of the base plate base 108 abuts the inclined face at the upper side of the latching claw portion 172 of the latching lug 170, and the latching lug 170 is deformed to bend toward the inside in the width direction (the arrow W direction). Then, as shown in
Explanation will now be given of the operation of a switch device according to the present exemplary embodiment, and of the operation of a buckle device to which such a switch device has been applied.
In the buckle device 10, when the insertion plate portion 26 of the tongue plate 24 in the unfastened state shown in
When the ejector 32 slides by a predetermined amount to the insertion direction side and reaches the insertion position, the opposing state between the mounting portion 32A of the ejector 32 and the engaging tab 50 of the lock plate 40 is released, and also the ejector 32 presses the pair of arm portions 48 of the lock plate 40, and swings the lock plate 40 toward the bottom plate portion 20 side (engagement position). When this occurs, the sliding member 106 that has become integrated to the ejector 32 also reaches the insertion position.
Thereby, the leading end portion of the engaging tab 50 moves to the vicinity of the bottom plate portion 20. Furthermore, in this state, the engaging hole 26A of the insertion plate portion 26 and the through hole 34 formed in the bottom plate portion 20 overlap each other. Therefore, in this state, as shown in
Also, by the swinging of the lock plate 40 to the engagement position, the abutting state of the pair of abutment tabs 52 of the lock plate 40 and the abutment surface 56B of the lock member 54 is released. Here, since the biasing force of the lock spring 68 is received by the lock member 54 via the holder 64, the body portion 56 of the lock member 54 swings to the insertion direction side (the arrow I direction, lock position) by the biasing force of the lock spring 68 as coupled to the swinging of the lock plate 40, and the lock face 56A of the body portion 56 abuts with the face (face at the arrow U direction side) of the pair of abutment tabs 52 (the state shown in
On the other hand, in the above mounted state of the tongue plate 24, if the operation portion 72 of the release button 70 is operated by pressing, the portion to be pressed 62 of the lock member 54 is pressed to the other end side in the longitudinal direction of the bottom plate portion 20 (the arrow I direction side) by the pressing portion 84 of the release button 70, and the body portion 56 of the lock member 54 is swung toward the ejection direction side (the arrow E direction side, unlock position) against the biasing force of the lock spring 68.
Therefore, the abutment state of the lock face 56A of the body portion 56 and the pair of abutment tabs 52 of the lock plate 40 is released, and the restriction of swinging (movement prevention) of the lock plate 40 by the lock member 54 is released. Further, since the biasing force of the ejector spring 38 acts on the engaging tab 50 of the lock plate 40, through the insertion plate portion 26 of the tongue plate 24 and the ejector 32, a component of the force acts on the engaging tab 50 in the direction of separation from the bottom plate portion 20. Therefore, the lock plate 40 is separated from the bottom plate portion 20 by the component of force acting on the engaging tab 50, and the lock plate 40 is swung to the release position, and the retaining of the tongue plate 24 by the engaging tab 50 is released. By doing so, when the ejector 32 slides to the ejection direction side (the arrow E direction side) due to the biasing force of the ejector spring 38 and reaches the ejection position, the insertion plate portion 26 of the tongue plate 24 is ejected from the tongue insertion slot 14 of the body casing 12 due to the sliding of the ejector 32. At this time, the sliding member 106 of the buckle switch 100 also recovers to the ejection position.
In the buckle switch 100 that is applied to the buckle device 10, when the sliding member 106 is in the ejection position shown in
Also, in the buckle switch 100, when the sliding member 106 is in the insertion position as shown in
In the buckle switch 100 according to the present exemplary embodiment described above, the extended portion 158 is formed at the leading end portion of the switch base plate 104, wherein one end side in the width direction of the leading end portion of the switch base plate 104 is extended partially toward the ejection direction relative to the other end side thereof, and the extended portion 158 is caused to be able to be latched by one of the first claw portions 142 that is positioned at the insertion direction side of the sliding member 106. Thereby, when the switch base plate 104 is latched by the first claw portions 142 and the second claw portions 144 of the sliding member 106, the switch base plate 104 may be supported by the sliding member 106 so as to be able to swing with the one of the first claw portions 142 at the insertion direction side as the center by latching the extended portion 158 with the one of the first claw portions 142.
Furthermore, in the buckle switch 100, in the state in which the extended portion 158 is latched by one of the first claw portions 142 as described above, by the cut-out portion 156 that has been formed on the leading end portion of the switch base plate 104 making the leading end portion of the switch base plate 104 be in a non contact state with the second claw portions 144, when the extended portion 158 of the switch base plate 104 is only latched by one of the first claw portions 142, the switch base plate 104 is able to be swung, with one of the first claw portion 142 at the center, from a position where the sliding surface 110 is separated from the contact member 122 to a position where the flexible tabs 126 at the insertion direction side of the contact member 122 are deformed by the sliding surface 110 with a predetermined amount of bending, without contacting with the second claw portions 144.
Therefore, in the buckle switch 100 there is no contact of the switch base plate 104 with the second claw portions 144, and after swinging, with one of the first claw portions 142 at the center, the switch base plate 104 from a position in which the sliding surface 110 is separated from the contact member 122, to a position in which the flexible tabs 126 of the contact member 122 are deformed by the sliding surface 110 with a predetermined amount of bending, if the switch base plate 104 is moved relative to the sliding member 106 toward the ejection direction, and the base end side of the extended portion 158 and the cut-out portion 156 of the switch base plate 104 are inserted between the first claw portions 142 and the second claw portions 144, then both end portions in the width direction of the switch base plate 104 are respectively latched by the first claw portions 142 and the second claw portions 144, and the sliding member 106 can be supported by the switch base plate 104 so as to be slidable.
Here, after the pair of flexible tabs 126 of the contact member 122 is pressed by the sliding surface 110 of the switch base plate 104 and deformed by bending, the base end side of the extended portion 158 and the cut-out portion 156 in the switch base plate 104 is able to be inserted between the first claw portions 142 and the second claw portions 144. Therefore, when the switch base plate 104 is being inserted between the first claw portions 142 and the second claw portions 144, there is no pressing force acting from the switch base plate 104 on the flexible tabs 126 along the ejection direction, and plastic deformation of the flexible tabs 126 of the contact member 122, due to such a pressing force along the ejection direction, may be prevented.
As a result of this, by providing the buckle switch 100, when assembling the sliding member 106 to the switch base plate 104, operations that require a skilled operator become unnecessary, and also, when inserting the switch base plate 104 between the first claw portions 142 and the second claw portions 144, since plastic deformation of the contact member 122 due to the pressing force from the switch base plate 104 is eliminated, the sliding member 106 may be assembled simply to the switch base plate 104, and damage to the contact member 122 disposed on the sliding member 106 during assembly is effectively prevented.
Furthermore, in the buckle switch 100 according to the present exemplary embodiment, the extended portion 158 of the switch base plate 104 is able to be inserted into the fitting insertion hole 164 of the support bracket 162 provided in the lower casing 92 along the ejection direction, and also in the state in which the extended portion 158 of the switch base plate 104 has been fitted into the fitting insertion hole 164, by providing on the lower casing 92 the latching lug 170 with the latching claw portion 172 for latching the base plate base 108, if the base plate base 108 is latched by the latching claw portion 172 of the latching lug 170 after the extended portion 158 of the switch base plate 104 has been fitted into the fitting insertion hole 164 of the support bracket 162, the body unit 102 may be fixed to the lower casing 92. Therefore, the operation of fixing the body unit 102 of the buckle switch 100 to the lower casing 92 (body casing 12) may be made simple.
It is to be noted that in the present exemplary embodiment, explanation has only been given of application of the switch device according to the present invention to a buckle switch, however, switch devices configured according to the present invention are applicable to switch devices other than buckle devices, and may be applied to the switch devices in which a sliding member is supported by a switch base plate so as to be able to slide, and a switching operation is carried out according to the position of the sliding member along the sliding direction. By so applying the configuration according to the present invention, damage to the contact member disposed on the sliding member during assembly of the sliding member to the switch base plate may be effectively prevented.
Number | Date | Country | Kind |
---|---|---|---|
2006-217713 | Aug 2006 | JP | national |