The present invention relates to a capacitive measurement device for producing touch-sensitive and contactless human-machine interfaces, which allows an optimal integration of a large number of measurement electrodes on a detection surface.
The field of the invention is more particularly but is non-limitatively that of touch-sensitive and contactless human-machine interfaces.
Many devices used for communication and for work use a touch-sensitive or contactless command interface such as a pad or a screen. This type of interface can be found for example in mobile telephones, smartphones, computers with touch-sensitive screens, pads, PCs, mouse devices, touch pads and widescreens etc.
These interfaces frequently use capacitive technologies. The touch surface is equipped with conductive electrodes connected to electronic means which make it possible to measure the variation of the capacitances appearing between the electrodes and the object to be detected in order to carry out a command.
It is possible to provide transparent electrodes which make it possible to superimpose an interface onto a display screen, for example of a smartphone.
Most of these interfaces are touch-sensitive, that is they can detect contact between one or more command object(s) (usually the fingers) and the surface of the interface. Gestural or contactless interfaces are increasingly being developed which are capable of detecting command objects which are further from the interface, without contact with the surface.
The capacitive techniques currently implemented in touch-sensitive interfaces most frequently use two layers of conductive electrodes in the form of rows and columns. The electronics measure the coupling capacitances existing between these rows and columns. When a finger is very close to the active surface, the coupling capacitances close to the finger are altered and the electronics can thus locate the 2D position (XY) in the plane of the active surface.
These technologies, often called “mutual capacitance”, make it possible to detect the presence and the position of the finger through a thin dielectric. They have the advantage of enabling a very good resolution in the location in the plane (XY) of the touch surface of one or more fingers. With appropriate processing software, it is also possible to manage a large number of fingers if the surface of the interface is large enough.
However, these techniques have the drawback of generating on principle large leakage capacitances at the level of the measurement electrodes and of the electronics. In fact the detection of a finger is achieved by measuring the variation in the coupling capacitance created between each row and column of which one is the emitter of an electrical signal and the other is a receiver of the signal to be detected. This signal is proportional to the capacitance between the row and column selected. When a finger is very close to the intersection of the row and column in question, the coupling capacitance is reduced and the finger is detected.
These coupling capacitances, which can be significant even in the absence of the object to be detected, can also drift over time due to ageing, deformation of the materials, or the effect of the variation of the surrounding temperature. These variations can degrade the sensitivity of the electrodes, or can even trigger commands in an untimely manner. This is one of the reasons why these technologies can only detect contact with the finger and not its approach because it is necessary to create a large variation in the capacitance to enable the electric circuit to detect the variation which must be much larger than the drifts to avoid any [capacitance] artefact.
Techniques are also known which make it possible to measure the absolute capacitance which appears between the electrodes and an object to be detected. These techniques are often called “self capacitance”. Document FR 2 756 048 by Rozière is known for example, which discloses a method of capacitive measurement which makes it possible to measure the capacitance and the distance between a plurality of independent electrodes and a nearby object.
This technology uses a guard in order to eliminate all stray capacitance. All the electrodes have the same potential and there is therefore no coupling capacitance between the electrodes that is capable of degrading the capacitance measurement. This technology is well suited to touch-sensitive and contactless interfaces such as capacitive pads and transparent touchpads and/or small 3D screens, such as the pads of portable computers or the small screens of smartphones. On the other hand, when the pad or the screen is of greater size, the number of electrodes necessary to cover the entire touch surface is too large to be managed by a miniature electronic circuit. And above all, the surface at the periphery of the touch surface and between the electrodes which is necessary for the passage of the tracks connecting the electrodes to the electronics also becomes very significant.
With this technique it is possible to use electrodes in the form of rows and columns in order to minimize interconnection problems. This row-column structure, in which rows and columns are used as independent electrodes, makes contactless or gestural measurement over long distances possible (detection of a finger several centimeters away) but another problem appears when more than one object is to be detected. In fact, it is necessary to scan each row and each column which produces a measurement for virtual objects called ghosts. These ghosts prevent a number of objects from being located absolutely on the touch surface.
The purpose of the present invention is to propose a capacitive measurement device for touch-sensitive and/or contactless interfaces which makes it possible to implement a high number of capacitive measurement electrodes on a detection surface while limiting interconnection problems of these electrodes with the measurement electronics.
This objective is achieved with a capacitive measurement device for touch-sensitive and/or contactless interfaces comprising at least one capacitive measurement electrode and means of electrode switching capable of electrically connecting said at least one electrode, either to capacitive measurement means or to a guard potential, characterized in that said at least one capacitive measurement electrode and said means of electrode switching are produced on a single detection surface according to a manufacturing technique for electronic components of planar type.
Manufacturing techniques for electronic components of planar type can comprise in particular techniques originating from microelectronics. They can comprise, but are not limited to, layer deposition operations, in particular of thin layers, evaporation, masking, chemical etching, dry etching, ion implantation, deposition of products in solution, inkjet printing etc.
The device according to the invention can comprise moreover:
The capacitive measurement electrodes can in particular be distributed on the detection surface following a matrix structure approximately in rows and columns According to embodiments, the device according to the invention can comprise moreover:
The means of electrode switching can comprise two transistors, of which a first transistor is capable of connecting a measurement electrode to the capacitive measurement means and a second transistor is capable of connecting said measurement electrode to the guard potential, which transistors are controlled by a switching signal such that when one is on-state the other is off-state.
According to embodiments, the device according to the invention can comprise moreover:
According to embodiments, the device according to the invention can be produced in such a way as to be substantially transparent.
It can comprise at least one element among measurement electrodes, a guard plane and tracks comprising ITO (tin-doped indium oxide).
According to embodiments, the device according to the invention can comprise moreover second switching means capable of connecting the means of electrode switching either to capacitive measurement means or to a guard potential.
According to embodiments, the device according to the invention can comprise moreover capacitive measurement means at least in part referenced to a reference electrical potential which is floating with respect to earth potential.
The reference electrical potential can be approximately equal to the guard potential. According to another aspect, a human-machine interface device is proposed comprising a command interface and a capacitive measurement device according to the invention.
The human-machine interface device can comprise a command interface equipped with a display screen, and a capacitive measurement device which is substantially transparent.
According to yet another aspect, a device is proposed of one of the following types: smartphone, tablet, display screen, computer, control pad for a machine or vehicle, comprising a human-machine interface device according to the invention.
Thus, according to the particularly advantageous aspects, the invention makes it possible to provide measurement devices:
Other advantages and features of the invention will become apparent on reading the detailed description of implementations and embodiments which are in no way limitative, and from the following attached drawings:
An example of an embodiment of a device according to the invention will be described which makes it possible to manufacture touch-sensitive and contactless interfaces for systems or devices such as mobile telephones (smartphones), tablets, computers or control pads.
With reference to
The detection surface 7 constitutes the surface of a command interface 10 which comprises a display screen, for example of the TFT (Thin-Film Transistor) type or OLED (organic light-emitting diodes) type.
The command interface 10 and the superimposed capacitive measurement device constitute a human-machine interface for the system.
The electrodes 1 make it possible to detect the approach and/or contact of one or more object(s) of interest 15 such as a finger 15 by measuring the capacitive coupling which is established between them and the finger 15.
The distance between the finger 15 and the electrodes 1 can be deduced from measuring the capacitive coupling, while the location of the finger 15 in the plane (X, Y) of the detection surface 7 can be obtained from the location of the electrodes 1 which detect the presence of the finger 15.
With reference to
The electrodes 1 are connected to the means of electrode switching 2 which make it possible to connect them:
The means of electrode switching 2 are controlled by a switching signal to which they are connected by the second electrical connection tracks 6, or switching tracks 6.
The measurement tracks 5 connect the electrodes 1 distributed according to a direction X of the matrix, and the switching tracks 6 connect the electrodes 1 distributed according to a second direction Y of the matrix.
The device also comprises a guard plane 15 at an electrical guard potential 11, which is placed below the electrodes 1 opposite their detection surface. This guard plane 15 forms an electrical shielding which protects the electrodes from the influence of the command interface 10.
The assembly is formed according to a multilayer structure with:
The layers are separated by layers of insulating material 12.
The switching means are connected to the guard potential 11 by passing through connections 14 connected to the guard plane 15.
The electrodes 1, the guard plane 15 and the tracks 5, 6 are made from a material which is substantially transparent such as ITO (tin-doped indium oxide) deposited for example by evaporation under vacuum onto the underlying insulating dielectric layer.
The surface of the command interface 10 can be made of glass or a polymer such as PET.
The layers of insulating material 12 are made of a polymer material.
The switching means 1 comprise two transistors of the field-effect type 3, 4, one of which is set to channel N and the other is set to channel P:
Depending on the polarity and/or the level of the switching signal, one of the transistors 3, 4 is on-state with a very low electrical resistance while the other is off-state with a very high electrical resistance, and vice versa. Thus, the electrode 1 is always connected either to a measurement track 5 or to the guard potential 11.
The transistors 3, 4 are produced using a technique which makes it possible to produce transistors which are substantially transparent to the human eye. Thus, the whole capacitive measurement device is sufficiently transparent to be able to be superimposed on a display screen.
Two known families of techniques are suitable for producing the transistors 3, 4 in the embodiment presented: TFT type transistors (Thin-Film Transistors) or OFET type transistors (field-effect transistors made from organic semiconductors). In both cases the electrodes can be made from ITO.
The TFT type transistors are based on thin layers of silicon depositions. This is a very common technique for producing display screens but it has the drawback, at least for certain embodiments, of requiring operations at high temperature.
OFET type transistors are made from organic semiconductors using structures which are often similar to those of TFT transistors. They can, for example, utilize an organic polymer such as polymethyl methacrylate (PMMA) as gate dielectric.
OFET type transistors can be produced using well known techniques of evaporation under vacuum, by deposition from polymer solutions, by mechanical transfer or even by inkjet printing techniques. Therefore they have the advantage of being able to be produced using low cost techniques at ambient temperature.
The measurement electrodes 1 are connected to the electronic capacitive measurement means 27 via the measurement tracks 5.
These electronic capacitive measurement means 27, in the embodiment in
The detection circuit comprises a part known as a floating part 26 the reference potential 11 of which, called guard potential 11, oscillates with respect to the earth 23 of the overall system. The alternating potential difference between the guard potential 11 and the earth 23 is generated by an excitation source, or an oscillator 24. The floating part 26 comprises the sensitive part of the capacitive detection, represented in
The power supply of the floating part 26 is ensured by floating power transfer means 25, comprising for example DC/DC converters.
This capacitive measurement system makes it possible to measure capacitance data between a measurement electrode 1 and an object such as a finger 15.
The object to be detected 15 must be connected to a potential which is different from the guard potential 11, such as for example the earth potential 23. A finger 15 of a user, whose body defines an electrical earth, is useful in this configuration.
An array of switches or analogue switches 20, controlled by the electronic control means, makes it possible to select a measurement track 5. It can potentially select all the electrodes 1 in one row in the embodiment in
The switches 20 are configured in such a way that a measurement track 5 is connected either to the capacitive detection electronics 27, or to the guard potential 11.
The selection of a particular electrode 1 connected to this measurement track 5 can be carried out by sending a switching signal on the corresponding switching track 6 so as to configure the means of electrode switching 2 of the electrode 1 to connect it to the measurement track 5.
Thus it is possible to connect only a single electrode 1 to the capacitive detection electronics 27 in order to measure the coupling capacitance between it and the object 15.
Thus all the electrodes can be “interrogated” sequentially and individually. It is also possible to interrogate groups of electrodes 1 globally by activating several switching signals and/or by implementing several detection electronics 27.
The electrodes 1 which are not connected to the capacitive detection electronics 27 are all connected to the guard potential 11, either by the means of electrode switching 2, or by the switches 20.
The sensitive part of the detection is protected by a guard shielding 22 connected to the guard potential 11.
Thus, an active electrode 1 connected to the capacitive detection electronics 27 is surrounded by elements connected to the guard potential 11, including the inactive electrodes 1 and on its rear face the guard plane 15.
As the active measurement electrode 1 is also at the guard potential 11, it is therefore possible to avoid stray capacitances between this electrode 1 and its surroundings in such a way that only the coupling with the object of interest 15 is measured with a maximum sensitivity.
The floating electronics 26 are connected at the output to the system electronics 28 referenced to earth 23 by electrical connections which are compatible with the difference in reference potentials. These connections can comprise for example differential amplifiers or optocouplers.
Data about the position of the object or the objects 15 in space relative to the detection surface 7 are obtained in this way.
These data are processed by the detection electronics 27 and transmitted to the system electronics 28 to be utilized in particular in the human-machine interface. According to variants:
Of course, the invention is not limited to the examples which have just been described and numerous adjustments can be made to these examples without exceeding the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
11 62246 | Dec 2011 | FR | national |
This application is a continuation of U.S. application Ser. No. 14/354,334, filed Apr. 25, 2014 and published on Sep. 18, 2014 as U.S. Publication No. 2014-0267165, the contents of which are incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4526043 | Boie | Jul 1985 | A |
4571454 | Tamaru et al. | Feb 1986 | A |
4686332 | Greanias et al. | Aug 1987 | A |
4698461 | Meadows et al. | Oct 1987 | A |
4700022 | Salvador et al. | Oct 1987 | A |
4922061 | Meadows et al. | May 1990 | A |
5062198 | Sun | Nov 1991 | A |
5083118 | Kazama | Jan 1992 | A |
5113041 | Blonder et al. | May 1992 | A |
5305017 | Gerpheide | Apr 1994 | A |
5442347 | Vranish | Aug 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5528267 | Ise | Jun 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5565658 | Gerpheide et al. | Oct 1996 | A |
5648642 | Miller et al. | Jul 1997 | A |
5650597 | Redmayne | Jul 1997 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5841427 | Teterwak | Nov 1998 | A |
5844506 | Binstead | Dec 1998 | A |
5847690 | Boie et al. | Dec 1998 | A |
5861875 | Gerpheide | Jan 1999 | A |
5869791 | Young | Feb 1999 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5914465 | Allen et al. | Jun 1999 | A |
5920309 | Bisset et al. | Jul 1999 | A |
5942733 | Allen et al. | Aug 1999 | A |
6025647 | Shenoy et al. | Feb 2000 | A |
6128045 | Anai | Oct 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6204897 | Colgan et al. | Mar 2001 | B1 |
6232937 | Jacobsen et al. | May 2001 | B1 |
6236386 | Watanabe | May 2001 | B1 |
6239788 | Nohno et al. | May 2001 | B1 |
6297811 | Kent | Oct 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6417627 | Derraa | Jul 2002 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6492979 | Kent et al. | Dec 2002 | B1 |
6587358 | Yasumura | Jul 2003 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6847354 | Vranish | Jan 2005 | B2 |
6888536 | Westerman et al. | May 2005 | B2 |
6891531 | Lin | May 2005 | B2 |
6943705 | Bolender et al. | Sep 2005 | B1 |
6970160 | Mulligan et al. | Nov 2005 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7030860 | Hsu et al. | Apr 2006 | B1 |
7098897 | Vakil et al. | Aug 2006 | B2 |
7129935 | Mackey | Oct 2006 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7218314 | Itoh | May 2007 | B2 |
7236161 | Geaghan et al. | Jun 2007 | B2 |
7339579 | Richter et al. | Mar 2008 | B2 |
7356575 | Shapiro | Apr 2008 | B1 |
7362313 | Geaghan et al. | Apr 2008 | B2 |
7372455 | Perski et al. | May 2008 | B2 |
7382139 | Mackey | Jun 2008 | B2 |
7511702 | Hotelling | Mar 2009 | B2 |
7532205 | Gillespie et al. | May 2009 | B2 |
7567240 | Peterson et al. | Jul 2009 | B2 |
7570064 | Roziere | Aug 2009 | B2 |
7639238 | Hauck | Dec 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7692729 | Pak et al. | Apr 2010 | B2 |
7808255 | Hristov et al. | Oct 2010 | B2 |
7812827 | Hotelling et al. | Oct 2010 | B2 |
7812828 | Westerman et al. | Oct 2010 | B2 |
7821502 | Hristov | Oct 2010 | B2 |
7825885 | Sato et al. | Nov 2010 | B2 |
7825905 | Philipp | Nov 2010 | B2 |
7898122 | Andrieux et al. | Mar 2011 | B2 |
7920129 | Hotelling et al. | Apr 2011 | B2 |
7932898 | Philipp et al. | Apr 2011 | B2 |
7948477 | Hotelling | May 2011 | B2 |
8149002 | Ossart et al. | Apr 2012 | B2 |
8159213 | Roziere | Apr 2012 | B2 |
8264428 | Nam | Sep 2012 | B2 |
8355887 | Harding et al. | Jan 2013 | B1 |
8390582 | Hotelling et al. | Mar 2013 | B2 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8576161 | Chang et al. | Nov 2013 | B2 |
8654083 | Hotelling et al. | Feb 2014 | B2 |
8665237 | Koshiyama et al. | Mar 2014 | B2 |
8766950 | Morein et al. | Jul 2014 | B1 |
8770033 | Roziere | Jul 2014 | B2 |
8773351 | Rekimoto | Jul 2014 | B2 |
8884890 | Hotelling et al. | Nov 2014 | B2 |
8890850 | Chung et al. | Nov 2014 | B2 |
8917256 | Roziere | Dec 2014 | B2 |
9000782 | Roziere | Apr 2015 | B2 |
9035903 | Binstead | May 2015 | B2 |
9075491 | Hotelling et al. | Jul 2015 | B2 |
9117679 | Ma | Aug 2015 | B2 |
9151791 | Roziere | Oct 2015 | B2 |
9250757 | Roziere | Feb 2016 | B2 |
9268427 | Yousefpor et al. | Feb 2016 | B2 |
9336723 | Gupta et al. | May 2016 | B2 |
9423897 | Bae | Aug 2016 | B2 |
9442330 | Huo | Sep 2016 | B2 |
9448675 | Morein et al. | Sep 2016 | B2 |
9465502 | Hotelling et al. | Oct 2016 | B2 |
9535547 | Roziere | Jan 2017 | B2 |
9640991 | Blondin et al. | May 2017 | B2 |
9836160 | Hotelling et al. | Dec 2017 | B2 |
10007388 | Roziere | Jun 2018 | B2 |
10019103 | Gupta et al. | Jul 2018 | B2 |
20020015024 | Westerman | Feb 2002 | A1 |
20030075427 | Caldwell | Apr 2003 | A1 |
20030231168 | Bell et al. | Dec 2003 | A1 |
20040135773 | Bang et al. | Jul 2004 | A1 |
20040243747 | Rekimoto | Dec 2004 | A1 |
20050219228 | Alameh et al. | Oct 2005 | A1 |
20050270273 | Marten | Dec 2005 | A1 |
20060001640 | Lee | Jan 2006 | A1 |
20060022956 | Lengeling et al. | Feb 2006 | A1 |
20060084852 | Mason et al. | Apr 2006 | A1 |
20060092142 | Gillespie et al. | May 2006 | A1 |
20060097733 | Roziere | May 2006 | A1 |
20060161871 | Hotelling et al. | Jul 2006 | A1 |
20060187214 | Gillespie et al. | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060207806 | Philipp | Sep 2006 | A1 |
20060227114 | Geaghan et al. | Oct 2006 | A1 |
20060274055 | Reynolds et al. | Dec 2006 | A1 |
20070034423 | Rebeschi et al. | Feb 2007 | A1 |
20070062739 | Philipp et al. | Mar 2007 | A1 |
20070074913 | Geaghan et al. | Apr 2007 | A1 |
20070273560 | Hua et al. | Nov 2007 | A1 |
20070279395 | Philipp | Dec 2007 | A1 |
20080006454 | Hotelling | Jan 2008 | A1 |
20080012835 | Rimon et al. | Jan 2008 | A1 |
20080042985 | Katsuhito et al. | Feb 2008 | A1 |
20080062148 | Hotelling et al. | Mar 2008 | A1 |
20080074401 | Chung et al. | Mar 2008 | A1 |
20080088595 | Liu et al. | Apr 2008 | A1 |
20080100572 | Boillot | May 2008 | A1 |
20080143683 | Hotelling | Jun 2008 | A1 |
20080158167 | Hotelling et al. | Jul 2008 | A1 |
20080158182 | Westerman | Jul 2008 | A1 |
20080158198 | Elias | Jul 2008 | A1 |
20080174321 | Kang et al. | Jul 2008 | A1 |
20080180365 | Ozaki | Jul 2008 | A1 |
20080231292 | Ossart et al. | Sep 2008 | A1 |
20080231603 | Parkinson et al. | Sep 2008 | A1 |
20080246496 | Hristov et al. | Oct 2008 | A1 |
20080284261 | Andrieux et al. | Nov 2008 | A1 |
20080303770 | Oke et al. | Dec 2008 | A1 |
20080303964 | Lee et al. | Dec 2008 | A1 |
20090009485 | Bytheway | Jan 2009 | A1 |
20090091546 | Joo et al. | Apr 2009 | A1 |
20090141046 | Rathnam et al. | Jun 2009 | A1 |
20090174686 | Jeon et al. | Jul 2009 | A1 |
20090179868 | Ayres et al. | Jul 2009 | A1 |
20090212642 | Krah | Aug 2009 | A1 |
20090238012 | Tatapudi et al. | Sep 2009 | A1 |
20090251427 | Hung et al. | Oct 2009 | A1 |
20090309851 | Bernstein | Dec 2009 | A1 |
20090322730 | Yamamoto et al. | Dec 2009 | A1 |
20100004029 | Kim | Jan 2010 | A1 |
20100007616 | Jang | Jan 2010 | A1 |
20100013745 | Kim et al. | Jan 2010 | A1 |
20100019779 | Kato et al. | Jan 2010 | A1 |
20100031174 | Kim | Feb 2010 | A1 |
20100052700 | Yano et al. | Mar 2010 | A1 |
20100090964 | Soo et al. | Apr 2010 | A1 |
20100097346 | Sleeman | Apr 2010 | A1 |
20100123667 | Kim et al. | May 2010 | A1 |
20100139991 | Philipp et al. | Jun 2010 | A1 |
20100149127 | Fisher et al. | Jun 2010 | A1 |
20100182018 | Hazelden | Jul 2010 | A1 |
20100201635 | Klinghult et al. | Aug 2010 | A1 |
20100253638 | Yousefpor et al. | Oct 2010 | A1 |
20100265187 | Chang et al. | Oct 2010 | A1 |
20100265188 | Chang et al. | Oct 2010 | A1 |
20100321305 | Chang et al. | Dec 2010 | A1 |
20100328262 | Huang | Dec 2010 | A1 |
20110001491 | Huang et al. | Jan 2011 | A1 |
20110006999 | Chang et al. | Jan 2011 | A1 |
20110007021 | Bernstein et al. | Jan 2011 | A1 |
20110007030 | Mo et al. | Jan 2011 | A1 |
20110061949 | Krah et al. | Mar 2011 | A1 |
20110080391 | Brown et al. | Apr 2011 | A1 |
20110169783 | Wang et al. | Jul 2011 | A1 |
20110242027 | Chang | Oct 2011 | A1 |
20110298727 | Yousefpor et al. | Dec 2011 | A1 |
20120044662 | Kim et al. | Feb 2012 | A1 |
20120132006 | Roziere | May 2012 | A1 |
20120182251 | Krah | Jul 2012 | A1 |
20120187965 | Roziere | Jul 2012 | A1 |
20120188200 | Roziere | Jul 2012 | A1 |
20120188201 | Binstead | Jul 2012 | A1 |
20120235949 | Ligtenberg | Sep 2012 | A1 |
20120242597 | Hwang et al. | Sep 2012 | A1 |
20120274603 | Kim et al. | Nov 2012 | A1 |
20130076647 | Yousefpor et al. | Mar 2013 | A1 |
20130076648 | Krah et al. | Mar 2013 | A1 |
20130106755 | Hotelling et al. | May 2013 | A1 |
20130135247 | Na et al. | May 2013 | A1 |
20130141343 | Yu et al. | Jun 2013 | A1 |
20130170116 | In et al. | Jul 2013 | A1 |
20130181943 | Bulea et al. | Jul 2013 | A1 |
20130194231 | Smith et al. | Aug 2013 | A1 |
20130285971 | Eltas et al. | Oct 2013 | A1 |
20130293499 | Chang et al. | Nov 2013 | A1 |
20130307776 | Roziere | Nov 2013 | A1 |
20130314393 | Min et al. | Nov 2013 | A1 |
20130328795 | Yao et al. | Dec 2013 | A1 |
20130328800 | Pu et al. | Dec 2013 | A1 |
20130342431 | Saeedi et al. | Dec 2013 | A1 |
20130342479 | Pyo et al. | Dec 2013 | A1 |
20140028535 | Min et al. | Jan 2014 | A1 |
20140043546 | Yamazaki et al. | Feb 2014 | A1 |
20140070823 | Roziere | Mar 2014 | A1 |
20140078096 | Tan et al. | Mar 2014 | A1 |
20140078097 | Shepelev et al. | Mar 2014 | A1 |
20140103712 | Blondin et al. | Apr 2014 | A1 |
20140111496 | Gomez et al. | Apr 2014 | A1 |
20140132335 | Rauhala et al. | May 2014 | A1 |
20140132534 | Kim | May 2014 | A1 |
20140132560 | Huang et al. | May 2014 | A1 |
20140267070 | Shahparnia et al. | Sep 2014 | A1 |
20140267165 | Roziere | Sep 2014 | A1 |
20140327654 | Sugita et al. | Nov 2014 | A1 |
20150035787 | Shahparnia et al. | Feb 2015 | A1 |
20150035792 | Roziere et al. | Feb 2015 | A1 |
20150084911 | Stronks et al. | Mar 2015 | A1 |
20150116243 | Saitou et al. | Apr 2015 | A1 |
20150194470 | Hwang | Jul 2015 | A1 |
20150277648 | Small | Oct 2015 | A1 |
20160034102 | Roziere et al. | Feb 2016 | A1 |
20160117017 | Kremin et al. | Apr 2016 | A1 |
20160170533 | Roziere | Jun 2016 | A1 |
20160211808 | Lee et al. | Jul 2016 | A1 |
20160224177 | Krah | Aug 2016 | A1 |
20160253034 | Gupta et al. | Sep 2016 | A1 |
20160320898 | Tang | Nov 2016 | A1 |
20170003817 | Hotelling et al. | Jan 2017 | A1 |
20170090644 | Yao | Mar 2017 | A1 |
20170108968 | Roziere | Apr 2017 | A1 |
20170139539 | Yao et al. | May 2017 | A1 |
20170168619 | Yang et al. | Jun 2017 | A1 |
20170220156 | Blondin | Aug 2017 | A1 |
20170262121 | Kurasawa | Sep 2017 | A1 |
20170315646 | Roziere | Nov 2017 | A1 |
20170351378 | Wang et al. | Dec 2017 | A1 |
20180074633 | Kida | Mar 2018 | A1 |
20180101275 | Hotelling et al. | Apr 2018 | A1 |
20180107309 | Endo et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
1202254 | Dec 1998 | CN |
2012-18943 | Apr 2009 | CN |
10-2483659 | May 2012 | CN |
102 760 405 | Oct 2012 | CN |
10-2881839 | Jan 2013 | CN |
11-2012 004912 | Aug 2014 | DE |
2 144 146 | Jan 2010 | EP |
2 148 264 | Jan 2010 | EP |
2 224 277 | Sep 2010 | EP |
2 256 606 | Dec 2010 | EP |
2 267 791 | Dec 2010 | EP |
2756048 | May 1998 | FR |
2756048 | May 1998 | FR |
2 896 595 | Jul 2007 | FR |
2 949 008 | Feb 2011 | FR |
3 004 551 | Oct 2014 | FR |
H10-505183 | May 1998 | JP |
2000-163031 | Jun 2000 | JP |
2002-342033 | Nov 2002 | JP |
2004-526265 | Aug 2004 | JP |
2006-251927 | Sep 2006 | JP |
2008-117371 | May 2008 | JP |
2009-086240 | Apr 2009 | JP |
2009-157373 | Jul 2009 | JP |
2011-141464 | Jul 2011 | JP |
2013-109095 | Jun 2013 | JP |
10-2008-0041278 | May 2008 | KR |
10-2008-0060127 | Jul 2008 | KR |
10-2010-0054899 | May 2010 | KR |
10-2011-0044670 | Apr 2011 | KR |
200508580 | Mar 2005 | TW |
201126236 | Aug 2011 | TW |
WO-0044018 | Jul 2000 | WO |
WO-2005073834 | Aug 2005 | WO |
WO-2005114369 | Dec 2005 | WO |
WO-2005114369 | Dec 2005 | WO |
WO-2006126703 | Nov 2006 | WO |
WO-2007003108 | Jan 2007 | WO |
WO-2007146780 | Dec 2007 | WO |
WO-2008000964 | Jan 2008 | WO |
WO-2008030780 | Mar 2008 | WO |
WO-2011015795 | Feb 2011 | WO |
WO-2013093327 | Jun 2013 | WO |
WO-2014126661 | Aug 2014 | WO |
WO-2015088629 | Jun 2015 | WO |
WO-2015175013 | Nov 2015 | WO |
WO-2015178920 | Nov 2015 | WO |
WO-2016066282 | May 2016 | WO |
WO-2016126525 | Aug 2016 | WO |
Entry |
---|
International Search Report dated Apr. 16, 2013, corresponding to PCT/FR2012/052974. |
Final Office Action dated Jan. 15, 2015, for U.S. Appl. No. 14/354,334, filed Apr. 25, 2014, 23 pages. |
Non-Final Office Action dated Sep. 16, 2014, for U.S. Appl. No. 14/354,334, filed Apr. 25, 2014, 24 pages. |
Notice of Allowance dated Sep. 25, 2015, for U.S. Appl. No. 14/354,334, filed Apr. 25, 2014, seven pages. |
Japanese Office Action dated Feb. 9, 2016, for JP Application No. 2015-092901, with English translation, 11 pages. |
Non-Final Office Action dated Mar. 17, 2014, for U.S. Appl. No. 13/388,611, filed Apr. 10, 2012, sixteen pages. |
Non-Final Office Action dated May 1, 2014, for U.S. Appl. No. 13/388,627, filed Apr. 10, 2012, eight pages. |
Non-Final Office Action dated Nov. 2, 2015, for U.S. Appl. No. 14/341,230, filed Jul. 25, 2014, nine pages. |
Notice of Allowance dated Nov. 28, 2014, for U.S. Appl. No. 13/388,627, filed Apr. 10, 2012, seven pages. |
Notice of Allowance dated Jun. 10, 2015, for U.S. Appl. No. 14,082,678, filed Nov. 18, 2013, seven pages. |
Notice of Allowance dated May 9, 2016, for U.S. Appl. No. 14/341,230, filed Jul. 25, 2014, five pages. |
French Search Report, dated Mar. 14, 2012, from corresponding FR application. |
International Search Report, dated Nov. 27, 2012, from corresponding PCT application. |
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25. |
Non-Final Office Action dated Mar. 10, 2016, for U.S. Appl. No. 14/126,163, filed Dec. 13, 2013, four pages. |
Notice of Allowance dated Aug. 8, 2016, for U.S. Appl. No. 14/126,163, filed Dec. 13, 2013, seven pages. |
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages. |
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI '92, pp. 659-660. |
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages. |
Chinese Search Report dated Apr. 6, 2017, for CN Application No. 201280063934.9, with English translation, four pages. |
International Search Report dated Oct. 21, 2015, for PCT Application No. PCT/EP2015/063857, six pages. |
Yang, J-H. et al. (Jul. 2013). “A Noise-Immune High-Speed Readout Circuit for In-Cell Touch Screen Panels,” IEEE Transactions on Circuits and Systems—1: Regular Papers 60(7):1800-1809. |
Notice of Allowance dated Jan. 13, 2017, for U.S. Appl. No. 14/126,163, filed Dec. 13, 2013, seven pages. |
Chinese Search Report dated Mar. 2, 2018, for CN Application No. 201510863213.1, with English translation, four pages. |
Notice of Allowance dated Mar. 14, 2018, for U.S. Appl. No. 15/396,213, filed Dec. 30, 2016, nine pages. |
Boie, R.A. (Mar. 1984). “Capacitive Impedance Readout Tactile Image Sensor,” Proceedings of 1984 IEEE International Conference on Robotics and Automation, pp. 370-378. |
Chun, K. et al. (Jul. 1985). “A High-Performance Silicon Tactile Imager Based on a Capacitive Cell,” IEEE Transactions on Electron Devices 32(7):1196-1201. |
Kamba, T. et al. (1996). “Using Small Screen Space More Efficiently,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, pp. 383-390. |
Krein, P. et al. (May/Jun. 1990). “The Electroquasistatics of the Capacitive Touch Panel,” IEEE Transactions on Industry Applications 26(3):529-534. |
Leeper, A.K. (May 21, 2002). “14.2: Integration of a Clear Capacitive Touch Screen with a 1/8-VGA FSTN-LCD to Form and LCD-Based TouchPad,” SID 02 Digest, pp. 187-189. |
Quantum Research Group. (2006). “Design Wins,” 25 pages. |
Quantum Research Group. (2006). “Qmatrix Technology White Paper,” four pages. |
Sarma, K. (2004). “Liquid Crystal Displays,” Electrical Measurement, Chapter 32 In Signal Processing and Displays, CRC Press LLC. pp. 32.1-32.21. |
Suzuki, K. et al. (Aug. 1990). “A 1024-Element High-Performance Silicon Tactile Imager,” IEEE Transactions on Electron Devices 37(8):1852-1860. |
Synaptics. (2005). “Transparent Capacitive Position Sensing”, located at http://www.synaptics.com/technology/tcps.cfm, last visited Sep. 16, 2011, two pages. |
Number | Date | Country | |
---|---|---|---|
20160170533 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14354334 | US | |
Child | 15008369 | US |