This invention relates to the playback of streamed media content by multiple playback devices. More particularly, this invention relates to synchronizing the playback of media content by multiple playback devices of Over The Top (OTT) or other presentation time sensitive media streamed over a network.
The term streaming media describes the playback of media on a playback device, where the media is stored on a server and continuously sent to the playback device over a network during playback. For purposes of this discussion, media and/or encoded media are defined as data of a work that includes video, audio, pictures, or another type of presentation that may be displayed, played or in some other way presented by a playback device. Typically, the playback device stores a sufficient quantity of media in a buffer at any given time during playback to prevent disruption of playback due to the playback device completing playback of all the buffered media prior to receipt of the next portion of media. Adaptive bit rate streaming or adaptive streaming involves detecting the present streaming conditions (e.g. the user's network bandwidth and CPU capacity) in real time and adjusting the quality of the streamed media accordingly. Typically, the source media is encoded at multiple bit rates and the playback device or client switches between streaming the different encodings depending on available resources.
Adaptive streaming solutions typically utilize either Hypertext Transfer Protocol (HTTP), published by the Internet Engineering Task Force and the World Wide Web Consortium as RFC 2616, or Real Time Streaming Protocol (RTSP), published by the Internet Engineering Task Force as RFC 2326, to stream media between a server and a playback device. HTTP is a stateless protocol that enables a playback device to request a byte range within a file. HTTP is described as stateless, because the server is not required to record information concerning the state of the playback device requesting information or the byte ranges requested by the playback device in order to respond to requests received from the playback device. RTSP is a network control protocol used to control streaming media servers. Playback devices issue control commands, such as “play” and “pause”, to the server streaming the media to control the playback of media files. When RTSP is utilized, the media server records the state of each client device and determines the media to stream based upon the instructions received from the client devices and the client's state.
In adaptive streaming systems, the source media is typically stored on a media server as a top level index file pointing to a number of alternate streams that contain the actual video and audio data. Each stream is typically stored in one or more container files. Different adaptive streaming solutions typically utilize different index and media containers. The Synchronized Multimedia Integration Language (SMIL) developed by the World Wide Web Consortium is utilized to create indexes in several adaptive streaming solutions including IIS Smooth Streaming developed by Microsoft Corporation of Redmond, Wash., and Flash Dynamic Streaming developed by Adobe Systems Incorporated of San Jose, Calif. HTTP Adaptive Bitrate Streaming developed by Apple Computer Incorporated of Cupertino, Calif. implements index files using an extended M3U playlist file (.M3U8), which is a text file containing a list of URIs that typically identify a media container file. The most commonly used media container formats are the MP4 container format specified in MPEG-4 Part 14 (i.e. ISO/IEC 14496-14) and the MPEG transport stream (TS) container specified in MPEG-2 Part 1 (i.e. ISO/IEC Standard 13818-1). The MP4 container format is utilized in IIS Smooth Streaming and Flash Dynamic Streaming. The TS container is used in HTTP Adaptive Bitrate Streaming.
Adaptive bitrate streaming performs adequately for playback of media content on a device. However, there is currently no viable way to synchronize the playback of streamed content on two or more playback devices such that there is no discernible difference between the presentation times of the content on the two or more devices. Currently, the only way to synchronize the device is for the user to manually control the start and stop of the playback on each of the devices to synchronize the playback which is often impossible or at least very difficult to achieve. Furthermore, the streaming of Over The Top (OTT) content or other presentation time sensitive content using adaptive bit rate streaming and other streaming processes is becoming more prevalent. OTT content is content that a media content provider delivers but may not have any control of the content and can only provide the content as it is received. The best example of OTT content is a live broadcast. During a live broadcast, the content is streamed directly to the playback devices to be played shortly after it is received in real time. Due to differences in the capabilities of playback devices and the network connections of the devices, the timing of receipt and playback of the streamed content on different devices may not be synchronized. As such, the manual synchronization is even more difficult than it is for synchronizing the playback of stored content on playback devices.
The lack of synchronization may be a problem when one or more devices are performing the playback within close proximity of one another as the lack of synchronization may be noticeable by viewers. For example, two or more playback devices may be set up in a restaurant to view a live sporting event. If the playback is not synchronized, the user may notice the broadcast delay between devices.
Systems and methods for synchronizing the playback of streamed OTT content or other time sensitive content in accordance with embodiments of this invention are disclosed. In accordance with embodiments of this invention, a method for playback of encoded media performed by a playback device be performed by the following actions. The playback device transmits a request to a network time provider. In response to the request, the playback device receives the time information from the network time provider. The playback device sets a playback clock in the device using the received time information. In order to provide a playback of a stream of content, the playback device receives stream initiation information for the stream of encoded media from a stream media provider. The stream initiation information includes a stream start time. The playback device then receives the stream of encoded media. The stream includes frames of the encoded content. The presentation time information of each of the frames of the stream is adjusted in the playback device based upon the stream initiation information.
In accordance with some embodiments of this invention the network time provider is a Network Time Protocol Server and the transmitting of the request and receiving of the time information are performed using Network Time Protocol (NTP). Furthermore, the time information and/or the start time is provided in Coordinated Universal Time in accordance with some embodiments this invention.
In accordance with some other embodiments of this invention, the network time provider is a local time server. In accordance with some of these embodiments, the local time server performs the following process to obtain time information. The local time server transmits a request for time information to a Network Time Protocol server. In response to the request, the local time server, receives the time information from the Network Time Protocol server in the local time server. The local time server then may receive the request for time information from the playback device. The local time server then generates the time information for the playback device from the timing information received from the Network Time Protocol server and transmits the time information to the playback device.
Turning now to the drawings, systems and methods for synchronizing playback of OTT content by multiple clients is provided. In particular, embodiments of this invention can use time information from a common source to set the playback clocks in the individual playback devices. The playback devices then receive start time information from a media content provider that indicate the time for the start of playback. The start time information is determined using the time information from the common source. Each device then adjusts the presentation time stamps of the frames in the received content based on the received start time information.
Streaming System Architecture
Turning now to the
Time server 22 is a server that provides Coordinated Universal Time (UTC) or equivalent information. In the shown embodiment, the time server 22 is a Network Time Protocol (NTP) server or an equivalent system that may be maintained by a third party. The use of NTP allows the time server 22 to provide time information to the devices allow internal clocks in the individual devices that are set using the time information to be synchronized within tens (10 s) of milliseconds (ms) of one another.
In the illustrated embodiment, playback devices include personal computers 18, CE players, and mobile phones 20. In other embodiments, playback devices can include consumer electronics devices such as DVD players, Blu-ray players, televisions, set top boxes, video game consoles, tablets, and other devices that are capable of connecting to a server via HTTP and playing back encoded media. Although a specific architecture is shown in
As illustrated, some playback devices, such as user computers 29, are connected to the network 16 via a Local Area Network (LAN) 25. LAN 25 may include a local time server 27. Local time server 27 receives time information from the NTP server 22 and generates local time information based upon the time information received from the NTP server 22. Although shown as a server, one skilled in the art will recognize that any device connected to LAN 25 that can provide time information may be used without departing from embodiments of this invention. The local time information of local time server 27 may be provided to the playback devices connected to the LAN 25 to ensure that better time synchronization between the connected devices. The use of local time server 27 connected to the LAN 25 may be used when a synchronization of less than the 10 s of ms achieved using network time server 22 is desired. Network time servers, playback devices, and local time servers in accordance with embodiments of the invention are discussed further below.
Playback Device
Some processes for providing methods and systems in accordance with embodiments of this invention are executed by a playback device. The relevant components in a playback device that can perform the processes in accordance with an embodiment of the invention are shown in
Servers
Some processes for providing methods and systems in accordance with embodiments of this invention are executed by the HTTP server; source encoding server; and/or local and network time servers. The relevant components in a server that perform the processes in accordance with embodiments of the invention are shown in
Playback Synchronization
In accordance with embodiments of this invention, playback devices obtain time information from a common source and use the time information to set the playback clock of the devices. The playback devices also receive playback time information from the stream content provider. The playback time information is then used to adjust the presentation time of frames in the stream based upon the playback clock. Since the playback clocks have been set based upon time information from a common source there should by less than 10 s of ms delay between the presentations. A timing diagram of messages and information passed between devices over a network in accordance some embodiments of this invention is illustrated in
In
In accordance with the timing diagram of
The first and second playback devices use the time information received to set the respective playback clocks in each playback device. The first playback device transmits a request 435 for OTT content or other presentation time sensitive content to the media server. The media server transmits stream initiation information for a stream of encoded media for the desired content 440 to the first playback device. Similarly, the second device transmits a request 445 for the same OTT content or other presentation for time sensitive content to the media server. The media server transmits stream initiation information for a stream of encoded media for the desired content 450 to the second playback device. In accordance with some embodiments, the stream initiation information includes a start time based on the UTC.
The media server then commences transmitting streams of the media content 455 and 460 to each of the first and second playback devices. Each of the first and second devices then adjusts the Presentation Time Stamp (PTS) of each frame received in the stream of media content based upon stream initiation information. In accordance with some of these embodiments, the start time in the stream will be based upon the playback clock derived from UTC and the UTC of the start time. Since the start time of the stream is derived from the UTC and the playback clock is derived from the UTC, the delay between the presentations will be in the 10 s of ms based on the difference of time information received by the various devices.
In some embodiments, it may be desirable to have the synchronization of playback of the content include less than 10 s of ms of delay. This may be the case where devices are providing playback of the content in close proximity to one another. A timing diagram of a system that provides for greater synchronization between playback devices in accordance with some embodiments of this invention is shown in
The system in
In accordance with the timing diagram of
The local time server then uses the time information to generate time information for use by the playback devices connected to the LAN. The first playback device transmits a request 525 to the local time server for time information and receives time information 530 from the local time server in response to the request. Likewise, the second playback device transmits a request 535 to the local time server for information and receives time information 540 from the local time server in response to the request. The first and second playback devices use the time information received to set the respective playback clocks in each device. As the time information is received over a LAN from the local server, there is less delay introduced into the time information. Thus, the playback clocks of the first and second playback devices will be more closely synchronized.
To start playback, the first device transmits a request 545 for OTT content or other presentation time sensitive content to the media server. The media server transmits stream initiation information for a stream of encoded media for the desired content 550 to the first playback device. Similarly, the second device transmits a request 555 for the same OTT content or other presentation for time sensitive content to the media server. The media server transmits stream initiation information for a stream of encoded media for the desired content 560 to the second playback device. In accordance with some embodiments, the stream initiation information includes a start time based on the UTC.
The media server then commences transmitting streams of the media content 565 and 570 to each of the first and second playback devices. Each of the first and second devices then adjusts the Presentation Time Stamp (PTS) of each frame received in the stream of media content based upon stream initiation information. In accordance with some of these embodiments, the start time in the stream will be based upon the playback clock derived from UTC information received from the local time server and the UTC of the start time. Since the start time of the stream is derived from the UTC and the playback clock is derived from the UTC received from the local time server instead of the network time server, the delay between the presentations will typically be less than the 10 s of ms of the system described above in reference to
A process performed by a playback device to provide synchronized playback in accordance with some embodiments of this invention is illustrated in
When the playback device plays back OTT or other presentation time content, the playback device receives stream initiation information (620). In accordance with some embodiments, the stream initiation information may be in the top level index of the requested content or provided along with some other type of administrative information such as metadata or the like. In accordance with some embodiments, the stream initiation information includes a start time based on the UTC. The playback device then receives the stream of media content. As the stream is received, the playback device adjusts the presentation time information of each frame based upon the stream initiation information and the playback clock (625). The presentation time information may be the Presentation Time Stamp (PTS) of a frame, PTS of a reference frame for a frame, or any other information that may be used to determine the time at which a frame may be presented. In accordance with some of these embodiments, the start time and the time of the playback clock are used to adjust the PTS of each frame. In particular, the difference between the start time received from the media server and the playback clock may be used to adjust the PTS of each frame. The playback of the stream then commences (630).
A process for providing stream initiation time information performed by a media server in accordance with embodiments of this invention is illustrated in
The stream initiation time is then used to generate stream initiation information for the stream of content (720). When a request for a stream of the content is received (725), the stream initiation information is provided to the requesting playback device (730) and the content is streamed to the playback device (735).
The above is description of embodiments of systems and methods in accordance with the present invention. It is foreseen that other skilled in the art will design alternative systems that infringe on this invention as set forth in the following claims either literally or through the Doctrine of Equivalents.
This application is a continuation of U.S. application Ser. No. 16/729,102, entitled “Synchronizing Multiple Over the Top Streaming Clients” to Amidei et al., filed Dec. 27, 2019, which is a continuation of U.S. application Ser. No. 16/111,662, entitled “Synchronizing Multiple Over the Top Streaming Clients” to Amidei et al., filed Aug. 24, 2018 and issued on Dec. 31, 2019 as U.S. Pat. No. 10,523,984, which application is a continuation of U.S. application Ser. No. 15/587,200, entitled “Synchronizing Multiple over the Top Streaming Clients” to Amidei et al., filed May 4, 2017 and issued on Aug. 28, 2018 as U.S. Pat. No. 10,063,896, which application is a continuation of U.S. application Ser. No. 15/192,695, entitled “Synchronizing Multiple Over The Top Streaming Clients” to Amidei et al., filed Jun. 24, 2016 and issued on May 9, 2017 as U.S. Pat. No. 9,648,362, which application is a continuation of U.S. application Ser. No. 13/906,952, entitled “Synchronizing Multiple Over the Top Streaming Clients” to Amidei et al., filed May 31, 2013 and issued on Jun. 28, 2016 as U.S. Pat. No. 9,380,099, the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5400401 | Wasilewski et al. | Mar 1995 | A |
5574785 | Ueno et al. | Nov 1996 | A |
5600721 | Kitazato | Feb 1997 | A |
5621794 | Matsuda et al. | Apr 1997 | A |
5642338 | Fukushima et al. | Jun 1997 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5813010 | Kurano et al. | Sep 1998 | A |
5854873 | Mori et al. | Dec 1998 | A |
5907658 | Murase et al. | May 1999 | A |
5923869 | Kashiwagi et al. | Jul 1999 | A |
6002834 | Hirabayashi et al. | Dec 1999 | A |
6009237 | Hirabayashi et al. | Dec 1999 | A |
6016381 | Taira et al. | Jan 2000 | A |
6057832 | Lev et al. | May 2000 | A |
6065050 | DeMoney | May 2000 | A |
6266483 | Okada et al. | Jul 2001 | B1 |
6282320 | Hasegawa et al. | Aug 2001 | B1 |
6320905 | Konstantinides | Nov 2001 | B1 |
6351538 | Uz | Feb 2002 | B1 |
6373803 | Ando et al. | Apr 2002 | B2 |
6415031 | Colligan et al. | Jul 2002 | B1 |
6445877 | Okada et al. | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6453116 | Ando et al. | Sep 2002 | B1 |
6504873 | Vehvilaeinen | Jan 2003 | B1 |
6512883 | Shim et al. | Jan 2003 | B2 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6654933 | Abbott et al. | Nov 2003 | B1 |
6671408 | Kaku | Dec 2003 | B1 |
6690838 | Zhou | Feb 2004 | B2 |
6724944 | Kalevo et al. | Apr 2004 | B1 |
6751623 | Basso et al. | Jun 2004 | B1 |
6813437 | Ando et al. | Nov 2004 | B2 |
6871006 | Oguz et al. | Mar 2005 | B1 |
6912513 | Candelore | Jun 2005 | B1 |
6931531 | Takahashi | Aug 2005 | B1 |
6957350 | Demos | Oct 2005 | B1 |
6970564 | Kubota et al. | Nov 2005 | B1 |
6983079 | Kim | Jan 2006 | B2 |
7006757 | Ando et al. | Feb 2006 | B2 |
7007170 | Morten | Feb 2006 | B2 |
7020287 | Unger | Mar 2006 | B2 |
7151832 | Fetkovich et al. | Dec 2006 | B1 |
7188183 | Paul et al. | Mar 2007 | B1 |
7212726 | Zetts | May 2007 | B2 |
7242772 | Tehranchi | Jul 2007 | B1 |
7246367 | Iivonen | Jul 2007 | B2 |
7274861 | Yahata et al. | Sep 2007 | B2 |
7295673 | Grab et al. | Nov 2007 | B2 |
7349886 | Morten et al. | Mar 2008 | B2 |
7352956 | Winter et al. | Apr 2008 | B1 |
7382879 | Miller | Jun 2008 | B1 |
7397853 | Kwon et al. | Jul 2008 | B2 |
7400679 | Kwon et al. | Jul 2008 | B2 |
7418132 | Hoshuyama | Aug 2008 | B2 |
7457415 | Reitmeier et al. | Nov 2008 | B2 |
7499930 | Naka et al. | Mar 2009 | B2 |
7546641 | Robert et al. | Jun 2009 | B2 |
7627808 | Blank et al. | Dec 2009 | B2 |
7639921 | Seo et al. | Dec 2009 | B2 |
7640435 | Morten | Dec 2009 | B2 |
7711052 | Hannuksela et al. | May 2010 | B2 |
7853980 | Pedlow, Jr. et al. | Dec 2010 | B2 |
7864186 | Robotham et al. | Jan 2011 | B2 |
7945143 | Yahata et al. | May 2011 | B2 |
7996700 | Celinski et al. | Aug 2011 | B2 |
8131875 | Chen | Mar 2012 | B1 |
8169916 | Pai et al. | May 2012 | B1 |
8243924 | Chen et al. | Aug 2012 | B2 |
8286213 | Seo | Oct 2012 | B2 |
8312079 | Newsome et al. | Nov 2012 | B2 |
8369421 | Kadono et al. | Feb 2013 | B2 |
8649669 | Braness et al. | Feb 2014 | B2 |
8683066 | Hurst et al. | Mar 2014 | B2 |
8782268 | Pyle et al. | Jul 2014 | B2 |
8819116 | Tomay et al. | Aug 2014 | B1 |
8849950 | Stockhammer et al. | Sep 2014 | B2 |
9038116 | Knox et al. | May 2015 | B1 |
9100687 | Amidei | Aug 2015 | B2 |
9380099 | Amidei et al. | Jun 2016 | B2 |
9432718 | Amidei | Aug 2016 | B2 |
9648362 | Amidei et al. | May 2017 | B2 |
10063896 | Amidei et al. | Aug 2018 | B2 |
10205981 | Amidei | Feb 2019 | B2 |
10523984 | Amidei et al. | Dec 2019 | B2 |
10880620 | Amidei | Dec 2020 | B2 |
11272232 | Amidei et al. | Mar 2022 | B2 |
20010021276 | Zhou | Sep 2001 | A1 |
20010052077 | Fung et al. | Dec 2001 | A1 |
20010052127 | Seo et al. | Dec 2001 | A1 |
20020048450 | Zetts | Apr 2002 | A1 |
20020067432 | Kondo et al. | Jun 2002 | A1 |
20020135607 | Kato et al. | Sep 2002 | A1 |
20020141503 | Kobayashi et al. | Oct 2002 | A1 |
20020154779 | Asano et al. | Oct 2002 | A1 |
20020164024 | Arakawa et al. | Nov 2002 | A1 |
20020169971 | Asano et al. | Nov 2002 | A1 |
20030002577 | Pinder | Jan 2003 | A1 |
20030044080 | Frishman et al. | Mar 2003 | A1 |
20030053541 | Sun et al. | Mar 2003 | A1 |
20030063675 | Kang et al. | Apr 2003 | A1 |
20030077071 | Lin et al. | Apr 2003 | A1 |
20030135742 | Evans | Jul 2003 | A1 |
20030142594 | Tsumagari et al. | Jul 2003 | A1 |
20030206717 | Yogeshwar et al. | Nov 2003 | A1 |
20040001594 | Krishnaswamy et al. | Jan 2004 | A1 |
20040022391 | Obrien | Feb 2004 | A1 |
20040028227 | Yu | Feb 2004 | A1 |
20040037421 | Truman | Feb 2004 | A1 |
20040047592 | Seo et al. | Mar 2004 | A1 |
20040047607 | Seo et al. | Mar 2004 | A1 |
20040076237 | Kadono et al. | Apr 2004 | A1 |
20040081333 | Grab et al. | Apr 2004 | A1 |
20040093494 | Nishimoto et al. | May 2004 | A1 |
20040101059 | Joch et al. | May 2004 | A1 |
20040107356 | Shamoon et al. | Jun 2004 | A1 |
20050013494 | Srinivasan et al. | Jan 2005 | A1 |
20050063541 | Candelore | Mar 2005 | A1 |
20050076232 | Kawaguchi | Apr 2005 | A1 |
20050144468 | Northcutt | Jun 2005 | A1 |
20050166135 | Burke | Jul 2005 | A1 |
20050177741 | Chen et al. | Aug 2005 | A1 |
20050243912 | Kwon et al. | Nov 2005 | A1 |
20050265555 | Pippuri | Dec 2005 | A1 |
20060002681 | Spilo | Jan 2006 | A1 |
20060013568 | Rodriguez | Jan 2006 | A1 |
20060165163 | Burazerovic et al. | Jul 2006 | A1 |
20070047645 | Takashima | Mar 2007 | A1 |
20070067472 | Maertens et al. | Mar 2007 | A1 |
20070083467 | Lindahl et al. | Apr 2007 | A1 |
20070110074 | Bradley et al. | May 2007 | A1 |
20070180051 | Kelly et al. | Aug 2007 | A1 |
20070250761 | Bradley et al. | Oct 2007 | A1 |
20080086570 | Dey et al. | Apr 2008 | A1 |
20080101718 | Yang et al. | May 2008 | A1 |
20080137847 | Candelore et al. | Jun 2008 | A1 |
20080177822 | Yoneda | Jul 2008 | A1 |
20080270800 | Krober et al. | Oct 2008 | A1 |
20090010622 | Yahata et al. | Jan 2009 | A1 |
20090013195 | Ochi et al. | Jan 2009 | A1 |
20090077143 | Macy, Jr. | Mar 2009 | A1 |
20090106082 | Senti et al. | Apr 2009 | A1 |
20090129752 | Yamada et al. | May 2009 | A1 |
20090132599 | Soroushian et al. | May 2009 | A1 |
20090178090 | Oztaskent | Jul 2009 | A1 |
20090249081 | Zayas | Oct 2009 | A1 |
20090249222 | Schmidt | Oct 2009 | A1 |
20090282162 | Mehrotra et al. | Nov 2009 | A1 |
20090310819 | Hatano | Dec 2009 | A1 |
20100100917 | Chiao et al. | Apr 2010 | A1 |
20100111491 | Kamoto | May 2010 | A1 |
20100142915 | Mcdermott et al. | Jun 2010 | A1 |
20110010466 | Fan et al. | Jan 2011 | A1 |
20110047247 | Katz | Feb 2011 | A1 |
20110058675 | Brueck et al. | Mar 2011 | A1 |
20110096828 | Chen et al. | Apr 2011 | A1 |
20110103374 | Lajoie et al. | May 2011 | A1 |
20110110360 | Fenwick | May 2011 | A1 |
20110135090 | Chan et al. | Jun 2011 | A1 |
20110145858 | Philpott et al. | Jun 2011 | A1 |
20110173345 | Knox et al. | Jul 2011 | A1 |
20110179185 | Wang et al. | Jul 2011 | A1 |
20110197261 | Dong et al. | Aug 2011 | A1 |
20110218656 | Bishop et al. | Sep 2011 | A1 |
20110246661 | Manzari et al. | Oct 2011 | A1 |
20110276648 | Soldan | Nov 2011 | A1 |
20110296048 | Knox et al. | Dec 2011 | A1 |
20110314130 | Strasman | Dec 2011 | A1 |
20120005312 | Mcgowan et al. | Jan 2012 | A1 |
20120042047 | Chen et al. | Feb 2012 | A1 |
20120042090 | Chen et al. | Feb 2012 | A1 |
20120047542 | Lewis et al. | Feb 2012 | A1 |
20120082424 | Hubner et al. | Apr 2012 | A1 |
20120110120 | Willig et al. | May 2012 | A1 |
20120144435 | Spilo et al. | Jun 2012 | A1 |
20120167132 | Mathews et al. | Jun 2012 | A1 |
20120311174 | Bichot et al. | Dec 2012 | A1 |
20120331167 | Hunt | Dec 2012 | A1 |
20130013803 | Bichot et al. | Jan 2013 | A1 |
20130067116 | Ostergren | Mar 2013 | A1 |
20130080267 | McGowan | Mar 2013 | A1 |
20130128116 | Knowles | May 2013 | A1 |
20140140253 | Lohmar et al. | May 2014 | A1 |
20140149557 | Lohmar et al. | May 2014 | A1 |
20140237086 | Legallais | Aug 2014 | A1 |
20140359075 | Amidei et al. | Dec 2014 | A1 |
20140359681 | Amidei | Dec 2014 | A1 |
20150179227 | Russell | Jun 2015 | A1 |
20150288530 | Oyman | Oct 2015 | A1 |
20150341683 | Amidei et al. | Nov 2015 | A1 |
20160302166 | Dang et al. | Oct 2016 | A1 |
20160309206 | Amidei et al. | Oct 2016 | A1 |
20160353143 | Amidei | Dec 2016 | A1 |
20170034263 | Archambault et al. | Feb 2017 | A1 |
20170238027 | Amidei et al. | Aug 2017 | A1 |
20180367824 | Amidei et al. | Dec 2018 | A1 |
20190238910 | Amidei | Aug 2019 | A1 |
20200137434 | Amidei et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
2237293 | Jul 1997 | CA |
101647273 | Feb 2010 | CN |
102782669 | Nov 2012 | CN |
105247437 | Jan 2018 | CN |
108092973 | May 2018 | CN |
1453319 | Sep 2004 | EP |
1283640 | Oct 2006 | EP |
2180664 | Apr 2010 | EP |
2290899 | Mar 2011 | EP |
2360923 | Aug 2011 | EP |
3005013 | Apr 2016 | EP |
3005013 | Jan 2017 | EP |
3005013 | Aug 2018 | EP |
3462275 | Apr 2019 | EP |
1217049 | Dec 2016 | HK |
1250553 | Dec 2018 | HK |
1217049 | Jan 2019 | HK |
1262076 | Jan 2020 | HK |
2001091680 | Apr 2001 | JP |
2003085068 | Mar 2003 | JP |
2006101364 | Apr 2006 | JP |
2008252422 | Oct 2008 | JP |
2011223060 | Nov 2011 | JP |
2016526349 | Sep 2016 | JP |
2019050636 | Mar 2019 | JP |
6509826 | May 2019 | JP |
6783293 | Oct 2020 | JP |
20040039852 | May 2004 | KR |
20060106250 | Oct 2006 | KR |
20160021152 | Feb 2016 | KR |
1017481998 | Jun 2017 | KR |
2328040 | Jun 2008 | RU |
201246873 | Nov 2012 | TW |
2000049762 | Aug 2000 | WO |
2000049763 | Aug 2000 | WO |
2003047262 | Jun 2003 | WO |
2004012378 | Feb 2004 | WO |
2004100158 | Nov 2004 | WO |
2005008385 | Jan 2005 | WO |
2005015935 | Feb 2005 | WO |
2009006302 | Jan 2009 | WO |
2009109976 | Sep 2009 | WO |
2011087449 | Jul 2011 | WO |
2011101371 | Aug 2011 | WO |
2011103364 | Aug 2011 | WO |
2012021747 | Feb 2012 | WO |
2013045456 | Apr 2013 | WO |
2014194232 | Dec 2014 | WO |
2014194236 | Dec 2014 | WO |
2014194236 | May 2015 | WO |
Entry |
---|
Extended European Search Report for European Application No. 14805026.3, Search completed Dec. 20, 2016, dated Jan. 3, 2017, 9 Pgs. |
Extended European Search Report for European Application No. 18191099.3, Search completed Dec. 11, 2018, dated Jan. 7, 2019, 9 Pgs. |
Information Technology—MPEG Systems Technologies—Part 7: Common Encryption in ISO Base Media File Format Files (ISO/IEC 23001-7), Apr. 2015, 24 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/040299, Report dated Dec. 1, 2015, dated Dec. 10, 2015, 06 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/040308, Report dated Dec. 1, 2015, dated Dec. 10, 2015, 08 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/040308, Report Completed Sep. 10, 2014, dated Mar. 27, 2015, 9 pgs. |
ISO/IEC 14496-12 Information technology—Coding of audio-visual objects—Part 12: ISO base media file format, Feb. 2004 (“MPEG-4 Part 12 Standard”), 62 pgs. |
ISO/IEC 14496-12:2008(E) Informational Technology—Coding of Audio-Visual Objects Part 12: ISO Base Media File Format, Oct. 2008, 120 pgs. |
ISO/IEC FCD 23001-6 MPEG systems technologies Part 6: Dynamic adaptive streaming over HTTP (DASH), Jan. 28, 2011, 86 pgs. |
Microsoft Corporation, Advanced Systems Format (ASF) Specification, Revision 01.20.03, Dec. 2004, 121 pgs. |
MPEG-DASH presentation at Streaming Media West 2011, Nov. 2011, 14 pgs. |
Pomelo, LLC Tech Memo, Analysis of Netflix's Security Framework for ‘Watch Instantly’ Service, Mar.-Apr. 2009, 18 pgs. |
Server-Side Stream Repackaging (Streaming Video Technologies Panorama, Part 2), Jul. 2011, 15 pgs. |
Text of ISO/IEC 23001-6: Dynamic adaptive streaming over HTTP (DASH), Oct. 2010, 71 pgs. |
Universal Mobile Telecommunications System (UMTS), ETSI TS 126 233 V9.1.0 (Jun. 2011) 3GPP TS 26.233 version 9.1.0 Release 9, 18 pgs. |
Universal Mobile Telecommunications Systems (UMTS); ETSI TS 126 244 V9.4.0 (May 2011) 3GPP TS 26.244 version 9.4.0 Release 9, 58 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/040299, report completed Sep. 8, 2014, dated Oct. 6, 2014, 7 pgs. |
“Apple HTTP Live Streaming specification”, Aug. 2017, 60 pgs. |
“Data Encryption Decryption using AES Algorithm, Key and Salt with Java Cryptography Extension”, Available at https://www.digizol.com/2009/10/java-encrypt-decrypt-jce-salt.html, Oct. 200, 6 pgs. |
“Delivering Live and On-Demand Smooth Streaming”, Microsoft Silverlight, 2009, 28 pgs. |
“HTTP Based Adaptive Streaming over HSPA”, Apr. 2011, 73 pgs. |
“HTTP Live Streaming”, Mar. 2011, 24 pgs. |
“HTTP Live Streaming”, Sep. 2011, 33 pgs. |
“Information Technology—Coding of Audio Visual Objects—Part 2: Visual”, International Standard, ISO/IEC 14496-2, Third Edition, Jun. 1, 2004, pp. 1-724. (presented in three parts). |
“Java Cryptography Architecture API Specification & Reference”, Available at https://docs.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html, Jul. 25, 2004, 68 pgs. |
“Java Cryptography Extension, javax.crypto.Cipher class”, Available at https://docs.oracle.eom/javase/1.5.0/docs/api/javax/crypto/Cipher.html, 2004, 24 pgs. |
“JCE Encryption—Data Encryption Standard (DES) Tutorial”, Available at https://mkyong.com/java/jce-encryption-data-encryption-standard-des-tutorial/, Feb. 25, 2009, 2 pgs. |
“Live and On-Demand Video with Silverlight and IIS Smooth Streaming”, Microsoft Silverlight, Windows Server Internet Information Services 7.0, Feb. 2010, 15 pgs. |
“Microsoft Smooth Streaming specification”, Jul. 22, 2013, 56 pgs. |
“MPEG-2, Part 1, ISO/IEC 13818-1”, Information technology—Generic Coding of Moving Pictures and Associated Audio: Systems, 161 pgs., Nov. 13, 1994. |
“MPEG-4, Part 14, ISO/IEC 14496-14”, Information technology—Coding of audio-visual objects, 18 pgs., Nov. 15, 2003. |
“OpenDML AVI File Format Extensions Version 1.02”, OpenDMLAVI MJPEG File Format Subcommittee. Last revision: Feb. 28, 1996. Reformatting Sep. 1997, 42 pgs. |
“Single-Encode Streaming for Multiple Screen Delivery”, Telestream Wowza Media Systems, 2009, 6 pgs. |
“The MPEG-DASH Standard for Multimedia Streaming Over the Internet”, IEEE MultiMedia, vol. 18, No. 4, 2011, 7 pgs. |
“Windows Media Player 9”, Microsoft, Mar. 23, 2017, 3 pgs. |
Abomhara et al., “Enhancing Selective Encryption for H.264/AVC Using Advanced Encryption Standard”, International Journal of computer Theory and Engineering, Apr. 2010, vol. 2, No. 2, pp. 223-229. |
Alattar et al., A.M. “Improved selective encryption techniques for secure transmission of MPEG video bit-streams”, In Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), vol. 4, IEEE, 1999, pp. 256-260. |
Antoniou et al., “Adaptive Methods for the Transmission of Video Streams in Wireless Networks”, 2015, 50 pgs. |
Apostolopoulos et al., “Secure Media Streaming and Secure Transcoding”, Multimedia Security Technologies for Digital Rights Management, 2006, 33 pgs. |
Asai et al., “Essential Factors for Full-Interactive VOD Server: Video File System, Disk Scheduling, Network”, Proceedings of Globecom '95, Nov. 14-16, 1995, 6 pgs. |
Beker et al., “Cipher Systems, The Protection of Communications”, 1982, 40 pgs. |
Bocharov et al, “Portable Encoding of Audio-Video Objects, The Protected Interoperable File Format (PIFF)”, Microsoft Corporation, First Edition Sep. 8, 2009, 30 pgs. |
Bulterman et al., “Synchronized Multimedia Integration Language (SMIL 3.0)”, W3C Recommendation, Dec. 1, 2008, https://www.w3.org/TR/2008/REC-SMIL3-20081201/, 321 pgs. (presented in five parts). |
Cahill et al., “Locally Adaptive Deblocking Filter for Low Bit Rate Video”, Proceedings 2000 International Conference on Image Processing, Sep. 10-13, 2000, Vancouver, BC, Canada, 4 pgs. |
U.S. Appl. No. 60/372,901, filed Apr. 17, 2002, 5 pgs. |
Chaddha et al., “A Frame-work for Live Multicast of Video Streams over the Internet”, Proceedings of 3rd IEEE International Conference on Image Processing, Sep. 19, 1996, Lausanne, Switzerland, 4 pgs. |
Cheng, “Partial Encryption for Image and Video Communication”, Thesis, Fall 1998, 95 pgs. |
Cheng et al., “Partial encryption of compressed images and videos”, IEEE Transactions on Signal Processing, vol. 48, No. 8, Aug. 2000, 33 pgs. |
Cheung et al., “On the Use of Destination Set Grouping to Improve Fairness in Multicast Video Distribution”, Proceedings of IEEE INFOCOM'96, Conference on Computer Communications, vol. 2, IEEE, 1996, 23 pgs. |
Collet, “Delivering Protected Content, an Approach for Next Generation Mobile Technologies”, Thesis, 2010, 84 pgs. |
Diamantis et al., “Real Time Video Distribution using Publication through a Database”, Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237), Oct. 1990, 8 pgs. |
Dworkin, “Recommendation for Block Cipher Modes of Operation: Methods and Techniques”, NIST Special Publication 800-38A, 2001, 66 pgs. |
Fang et al., “Real-time deblocking filter for MPEG-4 systems”, Asia-Pacific Conference on Circuits and Systems, Oct. 28-31, 2002, Bail, Indonesia, pp. 541-544. |
Fecheyr-Lippens, “A Review of HTTP Live Streaming”, Jan. 2010, 38 pgs. |
Fielding et al., “Hypertext Transfer Protocol—HTTP1.1”, Network Working Group, RFC 2616, Jun. 1999, 114 pgs. |
Fukuda et al., “Reduction of Blocking Artifacts by Adaptive DCT Coefficient Estimation in Block-Based Video Coding”, Proceedings 2000 International Conference on Image Processing, Sep. 10-13, 2000, Vancouver, BC, Canada, pp. 969-972. |
Huang, U.S. Pat. No. 7,729,426, U.S. Appl. No. 11/230,794, filed Sep. 20, 2005, 143 pgs. |
Huang et al., “Adaptive MLP post-processing for block-based coded images”, IEEE Proceedings—Vision, Image and Signal Processing, vol. 147, No. 5, Oct. 2000, pp. 463-473. |
Huang et al., “Architecture Design for Deblocking Filter in H.264/JVT/AVC”, 2003 International Conference on Multimedia and Expo., Jul. 6-9, 2003, Baltimore, MD, 4 pgs. |
Jain et al., U.S. Appl. No. 61/522,623, filed Aug. 11, 2011, 44 pgs. |
Jung et al., “Design and Implementation of an Enhanced Personal Video Recorder for DTV”, IEEE Transactions on Consumer Electronics, vol. 47, No. 4, Nov. 2001, 6 pgs. |
Kalva, Hari “Delivering MPEG-4 Based Audio-Visual Services”, 2001, 113 pgs. |
Kang et al., “Access Emulation and Buffering Techniques for Steaming of Non- Stream Format Video Files”, IEEE Transactions on Consumer Electronics, vol. 43, No. 3, Aug. 2001, 7 pgs. |
Kim et al., “A Deblocking Filter with Two Separate Modes in Block-Based Video Coding”, IEEE transactions on circuits and systems for video technology, vol. 9, No. 1, 1999, pp. 156-160. |
Kim et al., “Tree-Based Group Key Agreement”, Feb. 2004, 37 pgs. |
Laukens, “Adaptive Streaming—A Brief Tutorial”, EBU Technical Review, 2011, 6 pgs. |
Legault et al., “Professional Video Under 32-bit Windows Operating Systems”, SMPTE Journal, vol. 105, No. 12, Dec. 1996, 10 pgs. |
Li et al., “Layered Video Multicast with Retransmission (LVMR): Evaluation of Hierarchical Rate Control”, Proceedings of IEEE INFOCOM'98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century, Cat. No. 98, vol. 3, 1998, 26 pgs. |
List et al., “Adaptive deblocking filter”, IEEE transactions on circuits and systems for video technology, vol. 13, No. 7, Jul. 2003, pp. 614-619. |
Massoudi et al., “Overview on Selective Encryption of Image and Video Challenges and Perspectives”, EURASIP Journal on Information Security, Nov. 2008, 18 pgs. |
McCanne et al., “Receiver-driven Layered Multicast”, Conference proceedings on Applications, technologies, architectures, and protocols for computer communications, Aug. 1996, 14 pgs. |
Meier, “Reduction of Blocking Artifacts in Image and Video Coding”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, No. 3, Apr. 1999, pp. 490-500. |
Nelson, “Smooth Streaming Deployment Guide”, Microsoft Expression Encoder, Aug. 2010, 66 pgs. |
Newton et al., “Preserving Privacy by De-identifying Facial Images”, Carnegie Mellon University School of Computer Science, Technical Report, CMU-CS-03-119, Mar. 2003, 26 pgs. |
O'Brien, U.S. Appl. No. 60/399,846, filed Jul. 30, 2002, 27 pgs. |
O'Rourke, “Improved Image Decompression for Reduced Transform Coding Artifacts”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, No. 6, Dec. 1995, pp. 490-499. |
Park et al., “A postprocessing method for reducing quantization effects in low bit-rate moving picture coding”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, No. 1, Feb. 1999, pp. 161-171. |
Richardson, “H.264 and MPEG-4 Video Compression”, Wiley, 2003, 306 pgs. (presented in 2 parts). |
Schulzrinne et al., “Real Time Streaming Protocol (RTSP)”, Internet Engineering Task Force, RFC 2326, Apr. 1998, 80 pgs. |
Sima et al., “An Efficient Architecture for Adaptive Deblocking Filter of H.264 AVC Video Coding”, IEEE Transactions on Consumer Electronics, vol. 50, No. 1, Feb. 2004, pp. 292-296. |
Spanos et al., “Performance Study of a Selective Encryption Scheme for the Security of Networked, Real-Time Video”, Proceedings of the Fourth International Conference on Computer Communications and Networks, IC3N'95, Sep. 20-23, 1995, Las Vegas, NV, pp. 2-10. |
Srinivasan et al., “Windows Media Video 9: overview and applications”, Signal Processing: Image Communication, 2004, 25 pgs. |
Stockhammer, “Dynamic Adaptive Streaming over HTTP—Standards and Design Principles”, Proceedings of the second annual ACM conference on Multimedia, Feb. 2011, pp. 133-145. |
Timmerer et al., “HTTP Streaming of MPEG Media”, Proceedings of Streaming Day, 2010, 4 pgs. |
Tiphaigne et al., “A Video Package for Torch”, Jun. 2004, 46 pgs. |
Trappe et al., “Key Management and Distribution for Secure Multimedia Multicast”, IEEE Transaction on Multimedia, vol. 5, No. 4, Dec. 2003, pp. 544-557. |
Van Deursen et al., “On Media Delivery Protocols in the Web”, 2010 IEEE International Conference on Multimedia and Expo, Jul. 19-23, 2010, 6 pgs. |
Ventura, Guillermo Albaida “Streaming of Multimedia Learning Objects”, AG Integrated Communication System, Mar. 2003, 101 pgs. |
Waggoner, “Compression for Great Digital Video”, 2002, 184 pgs. |
Watanabem et al., “MPEG-2 decoder enables DTV trick plays”, esearcher System LSI Development Lab, Fujitsu Laboratories Ltd., Kawasaki, Japan, Jun. 2001, 2 pgs. |
Wiegand, “Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG”, Jan. 2002, 70 pgs. |
Willig et al., U.S. Appl. No. 61/409,285, filed Nov. 2, 2010, 43 pgs. |
Yang et al., “Projection-Based Spatially Adaptive Reconstruction of Block-Transform Compressed Images”, IEEE Transactions on Image Processing, vol. 4, No. 7, Jul. 1995, pp. 896-908. |
Yang et al., “Regularized Reconstruction to Reduce Blocking Artifacts of Block Discrete Cosine Transform Compressed Images”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, No. 6, Dec. 1993, pp. 421-432. |
Yu et al., “Video deblocking with fine-grained scalable complexity for embedded mobile computing”, Proceedings 7th International Conference on Signal Processing, Aug. 31-Sep. 4, 2004, pp. 1173-1178. |
Zakhor, “Iterative Procedures for Reduction of Blocking Effects in Transform Image Coding”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 2, No. 1, Mar. 1992, pp. 91-95. |
Number | Date | Country | |
---|---|---|---|
20220264161 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16729102 | Dec 2019 | US |
Child | 17653605 | US | |
Parent | 16111662 | Aug 2018 | US |
Child | 16729102 | US | |
Parent | 15587200 | May 2017 | US |
Child | 16111662 | US | |
Parent | 15192695 | Jun 2016 | US |
Child | 15587200 | US | |
Parent | 13906952 | May 2013 | US |
Child | 15192695 | US |