The heart of the invention lies in the recognition that the combination of a polarizing frequency-shifting component with a Fizeau interferometer adapted to produce the same frequency shift can be used advantageously to produce interferograms with orthogonally polarized beams without tilt or the use of short-coherence sources. As used herein, the terms “test surface” and “test object” are mostly used throughout to refer to the surface or object typically placed in a Fizeau interferometer for optical characterization. However, it is understood that a test surface or test object could refer as well to any medium (such as air, water, or glass) being measured for refractive index in-homogeneity in a Fizeau cavity. Therefore, the scope of the invention should be so construed.
Referring to
The combined beam 11 is directed through a beamsplitter 20 to a Fizeau optical cavity 24 that consists of a partially reflective mirror 25 and a return mirror 26. One of the two mirrors, preferably the partially reflective mirror 25, is driven by a transducer 27 at a velocity v1 in a direction substantially parallel to the incident combined beam 11. The beams reflected from the partially reflective mirror are shifted by a frequency ω1 due to the velocity of the mirror according to the Doppler shift
ω1=4πv1/λ, (1)
where λ is the nominal wavelength of the laser light. Thus, the unshifted beam 12 is reflected from the partially reflective mirror 25 to produce a first reflected beam 31 that has a frequency shift of ω1. The frequency shifted beam 13 is reflected from the partially reflective mirror 25 to produce a second reflected beam 32 that has a frequency shift of ω0+ω1.
The beams reflected from the nominally stationary return mirror 26 are reflected with frequency shift ω2 due to vibration in the test setup. In general, the frequency shift due to vibration will be time dependent, but for short integration times it can be approximated as constant. Therefore, the unshifted beam 12 is reflected from the return mirror 26 to produce a third beam 33 with a net frequency shift of ω2. The frequency-shifted beam 13 is reflected from the return mirror 26 to produce a fourth beam 34 with a net frequency shift of ω0+ω2.
The four beams, 31, 32, 33 and 34 are reflected by beamsplitter 20 and directed to a polarization phase-shift module 50 that contains one or more polarizers that create interference fringe patterns from the orthogonally polarized beams and a camera that operates with a frame integration time T to spatially measure the intensity pattern.
If the frequency shift produced by the relative motion of mirror 26 from vibration multiplied by the integration time T of the camera frame is sufficiently small, the contribution of ω2 can be neglected; that is, when
ω2<<2. (2)
For synchronous operation, the relative frequency shifts are selected such that ω0=±ω1. (That is, ω0 and ω1 are equal in magnitude—absolute value—regardless of sign.) In either case, one of the beams reflected from the partially reflective mirror 25 and one of the beams reflected from the return mirror 26 will have the same base frequency shift (either both equal to zero or both=ω0) and will produce a temporally stable interference fringe pattern on the camera. The other two beams will differ in frequency by 2ω0 and will produce a moving fringe pattern. For example, if ω0=+ω1, the first reflected beam 31 and the fourth reflected beam 34 will each have a frequency shift equal to ω0. At the same time, the second reflected beam 32 will have a frequency shift of 2ω0 and the third reflected beam 33 will have no frequency shift. By selecting the frequency shift ω0 and the camera integration time T such that
ω0T=n2π, (3)
the fringes resulting from the interference of all beams will produce zero contrast, except for the first reflected beam 31 and the fourth reflected beam 34 that will oscillate through an integer number of cycles during the camera integration time T and, therefore, will produce fringes.
Thus, the detected contrast of the interference fringes produced by all beams will be zero except for the pattern produced by the two desired beams. The system may also include imaging optics as necessary to relay an image of the object under test back to the sensor plane.
The contrast or fringe visibility of the unwanted fringe patterns can be calculated by the relation
(Contrast)−V=sin (ΔΦ)/ΔΦ, (4)
where ΔΦ=ω0 T/2 is the integrated phase.
ω2T<π. (5)
Under this restriction, relative motion of the cavity due to vibration only decreases the measured fringe contrast, but it does not introduce a significant phase-shift error in the measurement. Therefore, a large amount of relative motion can be tolerated during the integration time of the camera. In comparison, with a standard temporal phase-shift interferometer where the typical acquisition time is 120 ms, the integrated phase due to relative vibration motion must not exceed −π/10 in order to keep the relative phase-shift error between frames small. The present invention, with the design examples given here, provides a 1200 times improvement in vibration tolerance over standard techniques. Higher frequency shifts and shorter camera integration times can further increase the vibration tolerance.
Preferred embodiments for the moving mirror 9 and the stationary mirror 7 are corner cubes or cats-eye reflectors which make the overlap and co-linearity of the combined beam 11 insensitive to small fluctuations of the input beam or tilt of the mirrors.
The combined beam 11 is expanded with a first lens 15, reflected off a non-polarizing beamsplitter 20, recollimated by a second lens 21, and launched into the Fizeau cavity 24 that consists of a partially reflective mirror 25 and a return mirror 26. The partially reflective mirror 25 is driven by transducers 27 at a velocity v1 in a direction substantially parallel to the incident combined beam 11. The beams reflected from the partially reflective mirror are shifted by a frequency ω0 due to the velocity of the mirror.
In one embodiment of the invention, both the partially reflecting mirror 25 and the moving mirror 9 are driven by the same transducer(s) 27. This ensures that the frequency shift produced by each element is identical regardless of the transducer response and drive signal linearity.
The unshifted beam 12 is reflected from the partially reflective mirror 25 to produce a first reflected beam 31 that has a frequency shift of ω0. The frequency-shifted beam 13 is reflected from the partially reflective mirror 25 to produce a second reflected beam 32 that has a frequency shift of 2ω0.
The unshifted beam 12 is reflected from the stationary return mirror 26 to produce a third beam 33 without a frequency shift. The frequency-shifted beam 13 is reflected from the return mirror 26 to produce a fourth beam 34 with a frequency shift of o. The four beams 31, 32, 33, 34 are focused by the second lens 21, transmitted through the beamsplitter 20, optionally filtered by an aperture 40 to block any stray reflections, recollimated by lens 41, transmitted through an imaging module that may include zoom optics to scale the image, and are incident on the polarization phase sensor 50. Electronic signals from the polarization phase sensor 50 are sent to a computer for analysis and display. By selecting the mirror velocity and the camera integration time appropriately, the fringes produced by the interference between all the beams except the first reflected beam 31 and the fourth reflected beam 34 will oscillate through an integer number of cycles during the camera integration time T and produce zero contrast.
The laser source may be selected with a periodic coherence function having a repeat length Lc. For example, a multi-mode helium-neon laser typically has a periodic coherence function where Lc is equal to twice the tube length. By moving mirrors 9 and 7 relative to each other (such as by adding an additional translation mechanism 16, as seen in
ΔL=Lf−(n/2)Lc, (6)
where Lf is the cavity length of the Fizeau cavity and n is selected to be the largest integer that still produces a positive difference. The advantage of utilizing a source with periodic coherence is that higher laser powers, and thus shorter integration times, can be readily achieved at a modest cost.
In order to reduce any residual phase-dependent systematic measurement errors, a phase-shifting device (such as the translation mechanism 16 of
In another embodiment of the invention, shown in
In still another embodiment, not shown, the return mirror 26 could be moved synchronously with the polarization frequency shifting element 10 to produce an equivalent interference between selected polarization components, while the partially reflecting mirror 25 is left stationary.
Another advantageous feature of the present invention is that the interferometer can function as a standard temporal phase-shifting Fizeau interferometer by blocking one of the two arms in the frequency-shifting module 10 (such as by using a beam block 14, as shown in
A second method for calibrating any residual errors is to make measurements using only the two orthogonally polarized beams 31 and 32 reflecting from the transmission reference optic 25. This can be accomplished by blocking the return from the test part 26, either by mechanical attenuation or by adjusting the angle of the test part so that the return beam does not pass through the aperture 40. The frequency shifting mechanism 27 is switched off so that the frequency-shifted beam 13 is substantially the same frequency as the unshifted beam 12, allowing the two beams to produce a stable interference pattern when combined at the polarization phase sensor 50. Since both beams are reflected from the same surface of the transmission test optic 25, only the polarization aberrations in the interferometer due to such things as residual birefringence in the transmission optics and polarization dependent phase-shift from reflecting optics are measured. This can be recorded in software and digitally subtracted from subsequent measurements to produce a calibrated surface map.
As those skilled in the art will readily understand, the various optimal operating conditions described above are relevant only during the integration time T of the sensor. That is, the speed of the mechanism producing the frequency shifts (such as a transducer operating on both a mirror in the Fizeau cavity and a mirror in the polarization frequency-shifting element) needs to be synchronized only during the integration time, thereby facilitating the practical implementation of the invention by overlapping the data acquisition time with the appropriate segment of the transducer's travel.
Therefore, while the present invention has been shown and described herein in what is believed to be the most practical and preferred embodiments, it is recognized that departures can be made therefrom within the scope of the invention, which is not to be limited to the disclosed details but is to be accorded the full scope of the claims to embrace any and all equivalent methods and products.
This application is based on and claims the priority of U.S. Provisional Application Ser. No. 60/842,754, filed Sep. 9, 2006.
Number | Date | Country | |
---|---|---|---|
60842754 | Sep 2006 | US |