The present technology pertains to network security and more specifically to generating synthetic data to determine the health of a network security monitoring system.
Some sophisticated computer attacks first target security systems of a network. Once the security system is incapacitated, an attacker can strike other components of the network that are now less defended or undefended altogether. In a network environment, a network traffic monitoring system can detect attacks on network components and perform responsive measures. The network traffic monitoring system itself might also be the victim of attacks, such as a precursor to an attack against a network component. For example, sensors that gather network data might be incapacitated such that the network traffic monitoring system cannot detect data flows that pass between the network components that the sensors are designed to monitor. Without the sensor data, the network traffic monitoring system may be unaware that the network is being subject to an attack. As another example, the network traffic monitoring system may include a component such as an analytics module for analyzing the sensor data. An attack may incapacitate the analytics module such that the module is unable to effectively analyze the incoming data or provide false analysis.
In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only example embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Overview
An approach for detecting intra-datacenter attacks includes monitoring flows within the datacenter. An attacker may attempt to overwhelm or target the monitoring system so that the attacker can proceed with an attack undetected. The present technology involves generating synthetic traffic to test and verify network components of the network monitoring system.
An example method can include recognizing and storing a pattern or patterns of network traffic and other data associated with the traffic (e.g., host data, process data, user data, etc.). This pattern can be representative of a certain type of traffic such as an attack, misconfiguration, or device failure. The pattern can be generated by various types of components of a network and can be associated with expected behavior for these various components. A system performing this method can then select a node or nodes to generate traffic and associated data according to the pattern and send an instruction accordingly. After this synthetic traffic and associated data is generated, the system can compare the behavior of the selected node(s) with the expected behavior. An alert can then be created to notify an administrator or otherwise remedy the problem associated with the known pattern(s) of traffic.
Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the spirit and scope of the disclosure.
The disclosed technology addresses the need in the art for determining the health of a network security and monitoring system.
Configuration and image manager 102 can provision and maintain sensors 104. In some example embodiments, sensors 104 can reside within virtual machine images, and configuration and image manager 102 can be the component that also provisions virtual machine images.
Configuration and image manager 102 can configure and manage sensors 104. When a new virtual machine (VM) is instantiated or when an existing VM is migrated, configuration and image manager 102 can provision and configure a new sensor on the physical server hosting the VM. In some example embodiments configuration and image manager 102 can monitor the health of sensors 104. For instance, configuration and image manager 102 may request status updates or initiate tests. In some example embodiments, configuration and image manager 102 can also manage and provision the virtual machines themselves.
In some example embodiments, configuration and image manager 102 can verify and validate sensors 104. For example, sensors 104 can be provisioned a unique ID that is created using a one-way hash function of its basic input/output system (BIOS) universally unique identifier (UUID) and a secret key stored on configuration and image manager 102. This UUID can be a large number that is difficult for an imposter sensor to guess. In some example embodiments, configuration and image manager 102 can keep sensors 104 up to date by installing new versions of their software and applying patches. Configuration and image manager 102 can obtain these updates automatically from a local source or the Internet.
Sensors 104 can reside on nodes of a data center network (e.g., virtual partition, hypervisor, physical server, switch, router, gateway, other network device, other electronic device, etc.). In general, a virtual partition may be an instance of a virtual machine (VM) (e.g., VM 104a), sandbox, container (e.g., container 104c), or any other isolated environment that can have software operating within it. The software may include an operating system and application software. For software running within a virtual partition, the virtual partition may appear to be a distinct physical server. In some example embodiments, a hypervisor (e.g., hypervisor 104b) may be a native or “bare metal” hypervisor that runs directly on hardware, but that may alternatively run under host software executing on hardware. Sensors 104 can monitor communications to and from the nodes and report on environmental data related to the nodes (e.g., node IDs, statuses, etc.). Sensors 104 can send their records over a high-speed connection to collectors 108 for storage. Sensors 104 can comprise a piece of software (e.g., running on a VM, container, virtual switch, hypervisor, physical server, or other device), an application-specific integrated circuit (ASIC) (e.g., a component of a switch, gateway, router, standalone packet monitor, or other network device including a packet capture (PCAP) module or similar technology), or an independent unit (e.g., a device connected to a network device's monitoring port or a device connected in series along a main trunk of a datacenter). It should be understood that various software and hardware configurations can be used as sensors 104. Sensors 104 can be lightweight, thereby minimally impeding normal traffic and compute resources in a datacenter. Sensors 104 can “sniff” packets being sent over its host network interface card (NIC) or individual processes can be configured to report traffic to sensors 104. This sensor structure allows for robust capture of granular (i.e., specific) network traffic data from each hop of data transmission.
As sensors 104 capture communications, they can continuously send network traffic and associated data to collectors 108. The network traffic data can relate to a packet, a collection of packets, a flow, a group of flows, etc. The associated data can include details such as the VM BIOS ID, sensor ID, associated process ID, associated process name, process user name, sensor private key, geo-location of a sensor, environmental details, etc. The network traffic data can include information describing the communication on all layers of the Open Systems Interconnection (OSI) model. For example, the network traffic data can include signal strength (if applicable), source/destination media access control (MAC) address, source/destination internet protocol (IP) address, protocol, port number, encryption data, requesting process, a sample packet, etc.
In some example embodiments, sensors 104 can preprocess network traffic data before sending to collectors 108. For example, sensors 104 can remove extraneous or duplicative data or they can create a summary of the data (e.g., latency, packets and bytes sent per flow, flagged abnormal activity, etc.). In some example embodiments, sensors 104 can be configured to only capture certain types of connection information and disregard the rest. Because it can be overwhelming for a system to capture every packet in a network, in some example embodiments, sensors 104 can be configured to capture only a representative sample of packets (e.g., every 1,000th packet or other suitable sample rate).
Sensors 104 can send network traffic data to one or multiple collectors 108. In some example embodiments, sensors 104 can be assigned to a primary collector and a secondary collector. In other example embodiments, sensors 104 are not assigned a collector, but can determine an optimal collector through a discovery process. Sensors 104 can change where they send their network traffic data if their environments change, such as if a certain collector experiences failure or if a sensor is migrated to a new location and becomes closer to a different collector. In some example embodiments, sensors 104 can send different types of network traffic data to different collectors. For example, sensors 104 can send network traffic data related to one type of process to one collector and network traffic data related to another type of process to another collector.
Collectors 108 can serve as a repository for the data recorded by sensors 104. In some example embodiments, collectors 108 can be directly connected to a top of rack switch. In other example embodiments, collectors 108 can be located near an end of row switch. Collectors 108 can be located on or off premises. It will be appreciated that the placement of collectors 108 can be optimized according to various priorities such as network capacity, cost, and system responsiveness. In some example embodiments, data storage of collectors 108 is located in an in-memory database, such as dashDB by International Business Machines. This approach benefits from rapid random access speeds that typically are required for analytics software. Alternatively, collectors 108 can utilize solid state drives, disk drives, magnetic tape drives, or a combination of the foregoing according to cost, responsiveness, and size requirements. Collectors 108 can utilize various database structures such as a normalized relational database or NoSQL database.
In some example embodiments, collectors 108 may only serve as network storage for network traffic monitoring system 100. In other example embodiments, collectors 108 can organize, summarize, and preprocess data. For example, collectors 108 can tabulate how often packets of certain sizes or types are transmitted from different nodes of a data center. Collectors 108 can also characterize the traffic flows going to and from various nodes. In some example embodiments, collectors 108 can match packets based on sequence numbers, thus identifying traffic flows and connection links. In some example embodiments, collectors 108 can flag anomalous data. Because it would be inefficient to retain all data indefinitely, in some example embodiments, collectors 108 can periodically replace detailed network traffic flow data and associated data (host data, process data, user data, etc.) with consolidated summaries. In this manner, collectors 108 can retain a complete dataset describing one period (e.g., the past minute or other suitable period of time), with a smaller dataset of another period (e.g., the previous 2-10 minutes or other suitable period of time), and progressively consolidate network traffic flow data and associated data of other periods of time (e.g., day, week, month, year, etc.). By organizing, summarizing, and preprocessing the network traffic flow data and associated data, collectors 108 can help network traffic monitoring system 100 scale efficiently. Although collectors 108 are generally referred to herein in the plurality, it will be appreciated that collectors 108 can be implemented using a single machine, especially for smaller datacenters.
In some example embodiments, collectors 108 can receive data from external data sources 106, such as security reports, white-lists (106a), IP watchlists (106b), whois data (106c), or out-of-band data, such as power status, temperature readings, etc.
In some example embodiments, network traffic monitoring system 100 can include a wide bandwidth connection between collectors 108 and analytics module 110. Analytics module 110 can include application dependency (ADM) module 160, reputation module 162, vulnerability module 164, malware detection module 166, etc., to accomplish various tasks with respect to the flow data and associated data collected by sensors 104 and stored in collectors 108. In some example embodiments, network traffic monitoring system 100 can automatically determine network topology. Using network traffic flow data and associated data captured by sensors 104, network traffic monitoring system 100 can determine the type of devices existing in the network (e.g., brand and model of switches, gateways, machines, etc.), physical locations (e.g., latitude and longitude, building, datacenter, room, row, rack, machine, etc.), interconnection type (e.g., 10 Gb Ethernet, fiber-optic, etc.), and network characteristics (e.g., bandwidth, latency, etc.). Automatically determining the network topology can assist with integration of network traffic monitoring system 100 within an already established datacenter. Furthermore, analytics module 110 can detect changes of network topology without the need of further configuration.
Analytics module 110 can determine dependencies of components within the network using ADM module 160. For example, if component A routinely sends data to component B but component B never sends data to component A, then analytics module 110 can determine that component B is dependent on component A, but A is likely not dependent on component B. If, however, component B also sends data to component A, then they are likely interdependent. These components can be processes, virtual machines, hypervisors, virtual local area networks (VLANs), etc. Once analytics module 110 has determined component dependencies, it can then form a component (“application”) dependency map. This map can be instructive when analytics module 110 attempts to determine a root cause of a failure (because failure of one component can cascade and cause failure of its dependent components). This map can also assist analytics module 110 when attempting to predict what will happen if a component is taken offline. Additionally, analytics module 110 can associate edges of an application dependency map with expected latency, bandwidth, etc. for that individual edge.
Analytics module 110 can establish patterns and norms for component behavior. For example, it can determine that certain processes (when functioning normally) will only send a certain amount of traffic to a certain VM using a small set of ports. Analytics module can establish these norms by analyzing individual components or by analyzing data coming from similar components (e.g., VMs with similar configurations). Similarly, analytics module 110 can determine expectations for network operations. For example, it can determine the expected latency between two components, the expected throughput of a component, response times of a component, typical packet sizes, traffic flow signatures, etc. In some example embodiments, analytics module 110 can combine its dependency map with pattern analysis to create reaction expectations. For example, if traffic increases with one component, other components may predictably increase traffic in response (or latency, compute time, etc.).
In some example embodiments, analytics module 110 can use machine learning techniques to identify security threats to a network using malware detection module 166. For example, malware detection module 166 can be provided with examples of network states corresponding to an attack and network states corresponding to normal operation. Malware detection module 166 can then analyze network traffic flow data and associated data to recognize when the network is under attack. In some example embodiments, the network can operate within a trusted environment for a time so that analytics module 110 can establish baseline normalcy. In some example embodiments, analytics module 110 can contain a database of norms and expectations for various components. This database can incorporate data from sources external to the network (e.g., external sources 106). Analytics module 110 can then create access policies for how components can interact using policy engine 112. In some example embodiments, policies can be established external to network traffic monitoring system 100 and policy engine 112 can detect the policies and incorporate them into analytics module 110. A network administrator can manually tweak the policies. Policies can dynamically change and be conditional on events. These policies can be enforced by the components depending on a network control scheme implemented by a network. Policy engine 112 can maintain these policies and receive user input to change the policies.
Policy engine 112 can configure analytics module 110 to establish or maintain network policies. For example, policy engine 112 may specify that certain machines should not intercommunicate or that certain ports are restricted. A network and security policy controller (not shown) can set the parameters of policy engine 112. In some example embodiments, policy engine 112 can be accessible via presentation module 116. In some example embodiments, policy engine 112 can include policy data 112. In some example embodiments, policy data 112 can include endpoint group (EPG) data 114, which can include the mapping of EPGs to IP addresses and/or MAC addresses. In some example embodiments, policy data 112 can include policies for handling data packets.
In some example embodiments, analytics module 110 can simulate changes in the network. For example, analytics module 110 can simulate what may result if a machine is taken offline, if a connection is severed, or if a new policy is implemented. This type of simulation can provide a network administrator with greater information on what policies to implement. In some example embodiments, the simulation may serve as a feedback loop for policies. For example, there can be a policy that if certain policies would affect certain services (as predicted by the simulation) those policies should not be implemented. Analytics module 110 can use simulations to discover vulnerabilities in the datacenter. In some example embodiments, analytics module 110 can determine which services and components will be affected by a change in policy. Analytics module 110 can then take necessary actions to prepare those services and components for the change. For example, it can send a notification to administrators of those services and components, it can initiate a migration of the components, it can shut the components down, etc.
In some example embodiments, analytics module 110 can supplement its analysis by initiating synthetic traffic flows and synthetic attacks on the datacenter. These artificial actions can assist analytics module 110 in gathering data to enhance its model. In some example embodiments, these synthetic flows and synthetic attacks are used to verify the integrity of sensors 104, collectors 108, and analytics module 110. Over time, components may occasionally exhibit anomalous behavior. Analytics module 110 can analyze the frequency and severity of the anomalous behavior to determine a reputation score for the component using reputation module 162. Analytics module 110 can use the reputation score of a component to selectively enforce policies. For example, if a component has a high reputation score, the component may be assigned a more permissive policy or more permissive policies; while if the component frequently violates (or attempts to violate) its relevant policy or policies, its reputation score may be lowered and the component may be subject to a stricter policy or stricter policies. Reputation module 162 can correlate observed reputation score with characteristics of a component. For example, a particular virtual machine with a particular configuration may be more prone to misconfiguration and receive a lower reputation score. When a new component is placed in the network, analytics module 110 can assign a starting reputation score similar to the scores of similarly configured components. The expected reputation score for a given component configuration can be sourced outside of the datacenter. A network administrator can be presented with expected reputation scores for various components before installation, thus assisting the network administrator in choosing components and configurations that will result in high reputation scores.
Some anomalous behavior can be indicative of a misconfigured component or a malicious attack. Certain attacks may be easy to detect if they originate outside of the datacenter, but can prove difficult to detect and isolate if they originate from within the datacenter. One such attack could be a distributed denial of service (DDOS) where a component or group of components attempt to overwhelm another component with spurious transmissions and requests. Detecting an attack or other anomalous network traffic can be accomplished by comparing the expected network conditions with actual network conditions. For example, if a traffic flow varies from its historical signature (packet size, transport control protocol header options, etc.) it may be an attack.
In some cases, a traffic flow and associated data may be expected to be reported by a sensor, but the sensor may fail to report it. This situation could be an indication that the sensor has failed or become compromised. By comparing the network traffic flow data and associated data from multiple sensors 104 spread throughout the datacenter, analytics module 110 can determine if a certain sensor is failing to report a particular traffic flow.
Presentation module 116 can include serving layer 118, authentication module 120, web front end 122, public alert module 124, and third party tools 126. In some example embodiments, presentation module 116 can provide an external interface for network monitoring system 100. Using presentation module 116, a network administrator, external software, etc. can receive data pertaining to network monitoring system 100 via a webpage, application programming interface (API), audiovisual queues, etc. In some example embodiments, presentation module 116 can preprocess and/or summarize data for external presentation. In some example embodiments, presentation module 116 can generate a webpage. As analytics module 110 processes network traffic flow data and associated data and generates analytic data, the analytic data may not be in a human-readable form or it may be too large for an administrator to navigate. Presentation module 116 can take the analytic data generated by analytics module 110 and further summarize, filter, and organize the analytic data as well as create intuitive presentations of the analytic data.
Serving layer 118 can be the interface between presentation module 116 and analytics module 110. As analytics module 110 generates reports, predictions, and conclusions, serving layer 118 can summarize, filter, and organize the information that comes from analytics module 110. In some example embodiments, serving layer 118 can also request raw data from a sensor or collector.
Web frontend 122 can connect with serving layer 118 to present the data from serving layer 118 in a webpage. For example, web frontend 122 can present the data in bar charts, core charts, tree maps, acyclic dependency maps, line graphs, tables, etc. Web frontend 122 can be configured to allow a user to “drill down” on information sets to get a filtered data representation specific to the item the user wishes to drill down to. For example, individual traffic flows, components, etc. Web frontend 122 can also be configured to allow a user to filter by search. This search filter can use natural language processing to analyze the user's input. There can be options to view data relative to the current second, minute, hour, day, etc. Web frontend 122 can allow a network administrator to view traffic flows, application dependency maps, network topology, etc.
In some example embodiments, web frontend 122 may be solely configured to present information. In other example embodiments, web frontend 122 can receive inputs from a network administrator to configure network traffic monitoring system 100 or components of the datacenter. These instructions can be passed through serving layer 118 to be sent to configuration and image manager 102 or policy engine 112. Authentication module 120 can verify the identity and privileges of users. In some example embodiments, authentication module 120 can grant network administrators different rights from other users according to established policies.
Public alert module 124 can identify network conditions that satisfy specified criteria and push alerts to third party tools 126. Public alert module 124 can use analytic data generated or accessible through analytics module 110. One example of third party tools 126 is a security information and event management system (SIEM). Third party tools 126 may retrieve information from serving layer 118 through an API and present the information according to the SIEM's user interfaces.
Network environment 200 can include network fabric 212, layer 2 (L2) network 206, layer 3 (L3) network 208, endpoints 210a, 210b, . . . , and 210d (collectively, “204”). Network fabric 212 can include spine switches 202a, 202b, . . . , 202n (collectively, “202”) connected to leaf switches 204a, 204b, 204c, . . . , 204n (collectively, “204”). Spine switches 202 can connect to leaf switches 204 in network fabric 212. Leaf switches 204 can include access ports (or non-fabric ports) and fabric ports. Fabric ports can provide uplinks to spine switches 202, while access ports can provide connectivity for devices, hosts, endpoints, VMs, or other electronic devices (e.g., endpoints 204), internal networks (e.g., L2 network 206), or external networks (e.g., L3 network 208).
Leaf switches 204 can reside at the edge of network fabric 212, and can thus represent the physical network edge. In some cases, leaf switches 204 can be top-of-rack switches configured according to a top-of-rack architecture. In other cases, leaf switches 204 can be aggregation switches in any particular topology, such as end-of-row or middle-of-row topologies. Leaf switches 204 can also represent aggregation switches, for example.
Network connectivity in network fabric 212 can flow through leaf switches 204. Here, leaf switches 204 can provide servers, resources, VMs, or other electronic devices (e.g., endpoints 210), internal networks (e.g., L2 network 206), or external networks (e.g., L3 network 208), access to network fabric 212, and can connect leaf switches 204 to each other. In some example embodiments, leaf switches 204 can connect endpoint groups (EPGs) to network fabric 212, internal networks (e.g., L2 network 206), and/or any external networks (e.g., L3 network 208). EPGs can be used in network environment 200 for mapping applications to the network. In particular, EPGs can use a grouping of application endpoints in the network to apply connectivity and policy to the group of applications. EPGs can act as a container for buckets or collections of applications, or application components, and tiers for implementing forwarding and policy logic. EPGs also allow separation of network policy, security, and forwarding from addressing by instead using logical application boundaries. For example, each EPG can connect to network fabric 212 via leaf switches 204.
Endpoints 210 can connect to network fabric 212 via leaf switches 204. For example, endpoints 210a and 210b can connect directly to leaf switch 204a, which can connect endpoints 210a and 210b to network fabric 212 and/or any other one of leaf switches 204. Endpoints 210c and 210d can connect to leaf switch 204b via L2 network 206. Endpoints 210c and 210d and L2 network 206 are examples of LANs. LANs can connect nodes over dedicated private communications links located in the same general physical location, such as a building or campus.
Wide area network (WAN) 212 can connect to leaf switches 204c or 204d via L3 network 208. WANs can connect geographically dispersed nodes over long-distance communications links, such as common carrier telephone lines, optical lightpaths, synchronous optical networks (SONET), or synchronous digital hierarchy (SDH) links. LANs and WANs can include layer 2 (L2) and/or layer 3 (L3) networks and endpoints.
The Internet is an example of a WAN that connects disparate networks throughout the world, providing global communication between nodes on various networks. The nodes typically communicate over the network by exchanging discrete frames or packets of data according to predefined protocols, such as the Transmission Control Protocol/Internet Protocol (TCP/IP). In this context, a protocol can refer to a set of rules defining how the nodes interact with each other. Computer networks may be further interconnected by an intermediate network node, such as a router, to extend the effective size of each network. Endpoints 210 can include any communication device or component, such as a computer, server, hypervisor, virtual machine, container, process (e.g., running on a virtual machine), switch, router, gateway, host, device, external network, etc. In some example embodiments, endpoints 210 can include a server, hypervisor, process, or switch configured with virtual tunnel endpoint (VTEP) functionality which connects an overlay network with network fabric 212. The overlay network may allow virtual networks to be created and layered over a physical network infrastructure. Overlay network protocols, such as Virtual Extensible LAN (VXLAN), Network Virtualization using Generic Routing Encapsulation (NVGRE), Network Virtualization Overlays (NVO3), and Stateless Transport Tunneling (STT), can provide a traffic encapsulation scheme which allows network traffic to be carried across L2 and L3 networks over a logical tunnel. Such logical tunnels can be originated and terminated through VTEPs. The overlay network can host physical devices, such as servers, applications, endpoint groups, virtual segments, virtual workloads, etc. In addition, endpoints 210 can host virtual workload(s), clusters, and applications or services, which can connect with network fabric 212 or any other device or network, including an internal or external network. For example, endpoints 210 can host, or connect to, a cluster of load balancers or an EPG of various applications.
Network environment 200 can also integrate a network traffic monitoring system, such as the one shown in
Although network fabric 212 is illustrated and described herein as an example leaf-spine architecture, one of ordinary skill in the art will readily recognize that the subject technology can be implemented based on any network topology, including any data center or cloud network fabric. Indeed, other architectures, designs, infrastructures, and variations are contemplated herein. For example, the principles disclosed herein are applicable to topologies including three-tier (including core, aggregation, and access levels), fat tree, mesh, bus, hub and spoke, etc. It should be understood that sensors and collectors can be placed throughout the network as appropriate according to various architectures.
The system performing example method 300 can then continue by determining a pattern in the network traffic data and the associated data, the pattern associated with respective expected behavior for at least the first virtual machine, the first server, and the first networking device (step 302). A pattern of network traffic can be representative of an attack, of communications from a misconfigured network entity, of normal traffic, etc. Examples of attacks can include a distributed denial of service (DDoS) attack, media access control (MAC) address spoofing, Internet Protocol (IP) address spoofing, port knock (a technique whereby a command and control server can activate and control a subservient machine), and route table poisoning. An example of a misconfigured network entity includes a machine that attempts to communicate with a machine, application, or service that does not exist or rejects the communication. A misconfigured network entity may communicate with a frequency that overwhelms a portion of the network, for example, if an application consistently updates over the network instead of pausing between updates. A pattern of network traffic that is representative of normal traffic can include traffic that is typical of a particular protocol (e.g., File Transfer Protocol, Hypertext Transfer Protocol, or Simple Mail Transfer Protocol) and/or a particular application (e.g., database server, web server, mail server, instant messaging, phone, or file server). Such a pattern can also be designed to represent traffic representative of a certain network portion (e.g., a domain, subnet, or virtual local area network). This pattern can also represent traffic typical of a particular time period, such as a night, weekend, or holiday. In some embodiments, this pattern can emulate scenarios of traffic such as a system-wide update, a spike in external traffic, etc.
In some example embodiments, the patterns determined in step 302 can be associated with recorded packet logs and/or core dumps of network nodes corresponding to the patterns. For example, a system can detect and store a snapshot of flows and core dumps, and this snapshot can be reproduced as a pattern. In other embodiments, network data, host data, process data, user data, VM data, tenant data, etc. corresponding to the patterns can be stored by collectors, such as the collectors 108 of
A pattern can be stored in memory on the system or can be dynamically constructed by analyzing past traffic data. Determining a pattern of step 302 can include a user identifying a network condition such as an attack and the system collecting relevant data surrounding the network condition (e.g., traffic data, packet data, host data, process data, data identifying a user, label, etc.). This received data can be provided to a analytics engine or other machine learning module running on the system which can derive correlations, dependencies, and other characteristics of the data corresponding to the network condition. This relevant data, in combination with the correlations, dependencies, and other characteristics can be used as a known pattern (e.g., signature or profile) for the network condition (e.g., an attack, a misconfiguration, or a device failure) that can be associated with expected behavior for the network elements affected by the network condition. The patterns can then be shared and distributed to other installations of the system (e.g., running on a separate network) or separate systems using different network monitoring systems. In some embodiments, a pattern can have an associated severity ranking that indicates the amount of damage that can be inflicted by traffic described by the pattern. In some embodiments, the determining a pattern of step 302 can include selecting a pattern based on its severity ranking.
A system performing example method 300 can continue by determining a plurality of selected nodes of the network for generating synthetic data corresponding to the pattern, the plurality of selected nodes including at least a second virtual machine of the network corresponding to the first virtual machine, a second server corresponding to the first server, and a second networking device corresponding to the first networking device (step 304). For example, the first VM, first server, and first networking device will each be associated with first respective sensors having respective expected behavior. The second VM, second server, and second networking device will each be associated with second respective sensors. After the synthetic data is generated, the second VM, second server, and second networking device will have respective actual behavior that corresponds to the respective expected behavior of the first VM, first server, and first networking device. The system can select appropriate patterns, nodes, etc. so as to validate various network monitoring system components. For example, various flows can be generated within a time period so that each of the network monitoring system components are validated at least once within the time period. In the following time period, various other flows can similarly be generated to validate the components again. The synthetic flows can be identical across periods or can be varied to prevent an attacker from learning the behavior. Step 304 can include identifying a respective sensor 104 that is associated with each of the plurality of nodes. The system can utilize an application dependency map to identify critical nodes in the network to apply a pattern. For example, if an application dependency map shows that a variety of applications depend on one root node (either directly or via an intermediary dependency), the system can select at least the root node.
A system performing step 304 can select any of the plurality of nodes based on the plurality of patterns. For example, if a pattern is related to an email application (e.g., receiving an external email to a mail server; filtering the external email through a security application for detecting spam, malware, blocked email addresses, etc.; and distributing the external email to the intended recipient), at least some nodes can be nodes that are associated with the mail server (e.g., by hosting the mail server application).
A system performing step 304 can select any of the plurality of patterns based on target nodes. The plurality of nodes in step 304 can be selected as source nodes for a pattern that might attack the target nodes. For example, if one node (e.g., spine switch 202) is determined to be critical to a network segment (e.g., if spine switch 202 connects two buildings in a campus network), neighboring nodes can be selected, and a pattern can be selected that affects the target node. For example, a particular switch might be more susceptible to content addressable memory (CAM) table attacks, a node connected to the switch can be selected and a pattern representing a CAM table attack can be chosen for the particular node. In some embodiments, pattern may represent normal traffic (e.g., traffic that is not malicious or a non-attack); the plurality of nodes in step 304 can thus be selected to participate in a pattern that emulates normal traffic. This can include recording a pattern of normal traffic and emulating that normal traffic at a later time. This emulation can occur in whole (e.g., generating traffic identical to the recorded pattern) or in part (e.g., generating only a portion of the recorded pattern's traffic). Alternatively, the normal traffic can be initiated in a non-synthetic manner; for example, if the normal traffic includes a file backup procedure, the system can initiate the file backup procedure. Patterns for normal traffic can be useful in verifying that the system does not identify false positives.
A system performing example method 300 can cause each of the plurality of selected nodes to generate a respective portion of the data corresponding to the pattern (step 306). Step 306 can include selecting a sensor associated with at least one of the plurality of nodes and sending an instruction to the sensor that causes the sensor to generate the portion of the data. Thus, an instruction for a sensor to generate a portion of the pattern of traffic and associated data can result in that portion being generated from the node (i.e., because the sensor can reside on the node).
The instruction in step 306 can be sent immediately prior to the time for the generation of synthetic traffic or a period of time before. The instruction can include a schedule for the synthetic traffic (or portion thereof) to be sent. For example, the schedule can set a certain time or algorithm for generating the portion of the synthetic traffic.
In some embodiments, the instruction of step 306 can include a directive for the node to further instruct another node (or nodes) to generate a portion of the synthetic traffic. For example, a first node can receive the instruction of step 306 and send, based on that instruction, a second instruction to a second node for generating a portion of the synthetic traffic.
Step 306 can include causing respective data corresponding to each of the plurality of patterns to be generated over a specified period of time. For example, a pattern can include sending a large quantity of data; this large quantity of data can be generated immediately (i.e., as fast as possible) or spread out over a period of time. This step can include repeatedly generating data for a certain pattern; for example, the pattern may specify a certain packet or sequence of packets and this packet or sequence of packets can be repeatedly generated over a specified period of time. Various respective data can be generated sequentially; for example, data corresponding to one pattern can be generated and then data corresponding to a second pattern can be generated. The ordering for this sequential generation can be determined based on the patterns (e.g., each pattern can have a sequence, priority, or precedence indication), or the ordering can be random.
In some embodiments, step 306 can include selecting a random port of at least one node of the plurality of selected nodes from which to generate the respective portion of data corresponding to the at least one pattern.
A system performing example method 300 can continue by comparing actual behavior of the plurality of selected nodes to the respective expected behavior associated with the pattern (step 308). This can include receiving reports from sensors 104. Such reports can include network traffic flow data and associated data. In some embodiments, step 300 is performed by at least one of sensor 104, collector 108, analytics module 110, etc.
The system performing example method 300 can identify traffic in the network traffic flow data as synthetic. Synthetic traffic (e.g., simulated traffic) can include the traffic that results from the instruction in step 306. In various embodiments, the instruction of step 306 can include an instruction to flag the data as synthetic traffic. In some embodiments, a flag is determined by the plurality of patterns. In some embodiments, the flag can be stored in a header in the network traffic. In some embodiments, the flag can be located within the data payload of the network traffic. In some embodiments, the flag can be located within a secret address within a payload or header to increase security. The flag can be encrypted or otherwise disguised. For example, certain protocols utilize pseudo-random numbers to avoid collisions and increase security—these pseudo-random numbers can be determined according to a scheme described in the instruction of step 306. The flag can be a particular MAC address or scheme for the source or destination MAC address (e.g., for MAC address spoofing patterns). In some embodiments, the flag can be a combination of IP address, port number, and other header data. In other embodiments, the flag can be a virtual routing and forwarding (VRF) tag; for example, by using a VRF tag that is not used by the datacenter. In some embodiments, the system can be aware of all the VRF tags currently in use in the datacenter and the system can choose a VRF flag not in use). The identifying technique (e.g., flag or description of the traffic) can indicate other information such as the pattern or portion of the pattern that the synthetic traffic was generated to emulate. For example, if a node receives three different instructions to generate synthetic traffic (according to step 306), it can indicate (through a flag, description, etc.) which instruction and/or pattern the synthetic traffic corresponds to. The instruction of step 306 can include a pseudo-random identifier which can be repeated in the flag or description of the traffic.
Identifying traffic as synthetic can help prevent interference with standard operation of response and reporting systems. For example, in some embodiments, upon detecting a synthetic attack, the system can abstain from notifying an administrator or otherwise taking action (e.g., shutting down malicious hosts) in response to the synthetic attack. In other embodiments, after identifying traffic as synthetic, the system can perform the normal response but with an indication that the response is related to synthetic traffic. This can, for example, alert an administrator that the system is functioning correctly in detecting synthetic traffic; the administrator can then ignore the alert. Such an indication can also alert response systems that the traffic is synthetic so that they take a different course of action rather than actions responsive to an actual attack. In addition, in some embodiments, after identifying traffic as synthetic, the system can ensure that the synthetic traffic does not get counted, analyzed, or reported as actual or non-synthetic traffic.
Step 308 can include comparing a received network traffic flow data and associated data with expected network traffic flow data and associated data. Expected network traffic flow data and associated data can be automatically generated based on network characteristics (e.g., link or node loads, layer 2 topology, or link or node capacities), application dependency characteristics (e.g., by referencing an application dependency map), historical data (e.g., historical network traffic flow data and associated data that has been correlated to prior-identified patterns), and pattern characteristics (e.g., parameters of the selected pattern of network traffic). Expected network traffic flow data can also include user-supplied data (e.g., an administrator's prediction of what the network traffic should be).
The comparison of step 308 can pertain to sensors; e.g., the system performing example method 300 can verify that the relevant sensors observed the portion of synthetic traffic. For example if the portion of the pattern of network traffic includes sending traffic from node A→B→C→D and A is the node that generates the synthetic traffic, the system can ensure that sensors on B, C, and D report the synthetic traffic. In some embodiments, the reporting sensors (e.g., sensors B, C, and D) can be unaware that the traffic is synthetic and report the synthetic traffic along with non-synthetic traffic. For example, an element of the system down the data pipeline, such as a collector, may identify the synthetic traffic from A→B→C→D as synthetic.
Similarly, the comparison of step 308 can pertain to collectors; e.g., the system performing example method 300 can verify that the relevant collectors observed (or received reports according to) the relevant portion of a pattern of network traffic data. If the relevant collector summarizes traffic data, the system can compare such a summary with an expected summary.
The comparison of step 308 can pertain to analytics module 110, ensuring that analytics module 110 correctly identifies the pattern being generated. For example, the system performing example method 300 can verify that a synthetic DDoS attack is correctly identified by analytics module 110 as such.
Step 308 can include first verifying analytics module 110 and, if it fails verification, the system can verify the relevant collectors. If the collectors fail the comparison, the system can verify the sensors. Thus, step 308 can efficiently identify problems of reporting and identifying traffic patterns. Step 308 can include verifying all targeted components in a network (e.g., those nodes and components that are expected to detect or identify the pattern of traffic).
A system performing example method 300 can continue by determining whether the actual behavior of at least one node of the plurality of selected nodes does not correspond to the respective expected behavior associated with the at least one pattern (step 310). Expected behavior can include detecting, reporting, or identifying the synthetic traffic correctly. Expected behavior can include a sensor, collector, analytics module, etc. generating and sending a report. The report can contain an indication of the type of traffic detected. Expected behavior can also include a collector changing a reporting type (e.g., instead of generating a summary of a captured packet or packets storing the captured packet or packets to enable an administrator to further investigate a network condition). In some embodiments, expected behavior can also include throttling a subnet where an attack is occurring. In some embodiments, expected behavior can include modifying the privileges, access control lists, endpoint group assignment, etc. for an endpoint to limit the endpoint's ability to communicate with other endpoints or nodes. This can include limiting an endpoint's ability to communicate to be exclusive to a remediation server that can update, reset, diagnose, etc. the misbehaving endpoint.
Step 310 can include generating a report of components that failed to correspond to expected behavior. This report can include services or applications that are associated with the components that failed to correspond to the expected behavior. For example, if a sensor on a virtual machine fails to correspond to expected behavior, all the applications running on the virtual machine can be identified in the report. Step 310 can include determining the number of components that fail to correspond to expected behavior. The components that fail can be identified in a physical topology map or in an application dependency map. A comparison of actual and expected behavior can be represented in a graph, chart, spreadsheet or other report.
If step 310 results in a “yes” and a component failed to correspond to expected behavior then the method can continue by sending an alert that at least one node does not correspond to the expected behavior associated with the at least one pattern (step 314). This alert can include an identification of the component that does correspond to the expected behavior (e.g., a non-conforming component). An identification of a non-conforming component can include a possible cause of non-conformity. For example, if some network traffic was reported or identified but not the synthetic traffic, the component might be misconfigured or compromised. Another example is if the non-conforming component does not report any traffic then it might be down or incapacitated. The cause of non-conformity can be correlated with system problems; for example a network outage might interrupt all traffic, the synthetic traffic as well as non-synthetic traffic. In some embodiments, network outages that cause non-conformity can be ignored. Thus, step 314 can include determining if a non-conformity is the result of a network outage (i.e., network traffic did not occur) or an incapacitated component (i.e., network traffic occurred, but was not correctly detected or identified).
In some embodiments, when a component's behavior does not correspond to the expected behavior, the component (or a component that the component depends on) might be compromised or misconfigured. A first check (e.g., a comparison between actual behavior and expected behavior) can be applied to determine if the component (or related component) is either misconfigured or compromised. This first check might not be able to discriminate between a misconfigured and compromised component. A second check can then provide greater granularity and determine that a component is misconfigured; alternatively the second check can determine that a component is compromised. Similarly, a check can exclude the possibility that a component is compromised (e.g., a malicious program can be incapable of replicating a report by a sensor); thus, if a check determines that the component is not behaving as expected, a second check can determine whether such a device is compromised. A module can check reports from components to verify that they are authentic. For example, components can utilize an encryption key to sign their reports and such a module can verify the correctness of the signature. A check can include comparing a subset of behavior.
The alert of step 314 can include a report of the non-conforming component and applications or services associated with the non-conforming component. As described previously, this report can be as a map such as a physical map or an application dependency map. The alert of step 314 can include a push notification, an email, a phone call, or any other type of audio/visual/physical alert. The alert can be part of an application program interface such that other computer systems can learn of the alert. The alert can include possible causes for the non-conformity and possible remedial measures.
Step 314 can be performed by a presentation module. For example, in an embodiment, the presentation module can display a network topology with various network components and their statuses. This topology can include an indication that some of the components may be influenced by synthetic flows. For example, a representation of a component can indicate that the component was tested using synthetic flows and that the component failed (e.g., red X mark) or passed the test (e.g., green check mark). In some embodiments, network traffic data may be associated with a VRF and the presentation module can filter the network traffic by VRF, including a special VRF (e.g., −1) for synthetic traffic. Therefore, synthetic flows and the resulting conclusion (e.g., that a certain flow is associated with an attack) can be identified and isolated from non-synthetic flows via an identifier (e.g., VRF flag and packet characteristics). Synthetic flows can also be further identified based on their scheduled time of generation (e.g., a certain synthetic flow may be generated every 30 minutes and can be identified based at least in part on the schedule).
After a synthetic flow or plurality of synthetic flows has been generated, a presentation module can generate a report of the success or failure of various components to comport with expected behavior. The report can be saved and recalled for later comparison; e.g., if a battery of synthetic flows are run on a repeating schedule, reports of different time periods can be compared to identify changes in the underlying components and the ability of the system to detect problems with such components. A report can be generated that highlights the differences between various reports.
In some embodiments, step 314 includes repeating portions of example method 300 such that the non-conforming components are verified another time. For example, repeating example method on a non-conforming component can determine whether the non-conformity is intermittent or persistent. If example method 300 is initially performed according to a coarse analysis (e.g., being used to verify collectors and analytics module 110), the example method 300 can subsequently be performed with more granularity to isolate and target non-conforming sub-components (e.g., the non-conforming sensors that might be failing to report to their assigned non-conforming collector).
Step 314 can also include implementing remedial measures to correct non-conformity.
Such remedial measures can include restarting a component (e.g., rebooting a process or machine), implementing policies (e.g., access control lists, quality of service parameters, or collector assignments), modifying traffic routes, etc. in order to increase the chances that the non-conforming components will correspond to expected behavior (e.g., detect the patterns of network traffic). After remedial measures are instituted, a system can perform example method 300 to determine the effectiveness of the remedial measures.
If step 310 results in a “no” (e.g., by determining that the actual behavior of the plurality of selected nodes corresponds to the respective expected behavior associated with the at least one pattern) then the method can continue by providing information to a presentation module that the actual behavior of the plurality of selected nodes corresponds to the respective expected behavior associated with the at least one pattern (step 312). This can include an alert similar to the alert provided in step 314, except the alert can indicate that all components are conforming. For example step 310 can expose the current status of the network as an application program interface.
The instructions, determinations, comparisons, alerts, etc. that are described with example method 300 can be recorded in a historical database. The historical database can indicate the health and stability of the network over time. For example, the historical database can indicate the count, locations, and identities of non-conforming components.
Because the headers in
In some embodiments, a combination of fields can indicate a pattern of traffic. This can be used for redundancy or security purposes. Some communications interfaces might not inspect a packet sufficiently to allow an attached sensor to sufficiently use all fields that might include an pattern of traffic identifier, thus having the traffic identifier in various parts of a packet (e.g., an IPv4 header and TCP header) can provide redundancy. Also, one field can act as a check on the traffic identifier.
In some embodiments, a field can contain an illegal value such that it will be discarded in transit. For example, destination port 454 can be a port that is known to be closed, which will ensure that the packet will be discarded by the destination. This can help prevent synthetic traffic from being accepted and processed which might interfere with standard operation of a network.
A field can contain an instruction to a sensor that the sensor should report the packet. For example, options 420 can instruct the sensor to report the current packet, or a collection of packets. The field can indicate a non-standard method for reporting the packet. For example, the field can instruct the sensor to report the packet to a different collector (distinct from the collector that would otherwise receive a packet report), analytics module 110, or any other component in the network traffic monitoring system.
A field can instruct a network component to drop the packet. For example, even though the packet describes a destination of B, node A can detect a field that instructs it to prematurely drop the packet and refuse to transmit it to B.
In some embodiments, reports of synthetic traffic can be ignored before presentation. For example, after analytics module identifies the synthetic traffic (e.g., the selected pattern) and an alert about a non-compliant component is generated, the system can disregard the synthetic traffic before general reports are generated. This can prevent the system from generating a negative report of the system health (e.g., prevent the system from reporting an attack, when the traffic was not a legitimate attack but synthetic traffic). This can also prevent the system from incorrectly taking corrective action to remedy a situation indicated by the synthetic traffic.
To enable user interaction with the computing device 500, an input device 545 can represent any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 535 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems can enable a user to provide multiple types of input to communicate with the computing device 500. The communications interface 540 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.
Storage device 530 is a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 575, read only memory (ROM) 570, and hybrids thereof.
The storage device 530 can include software modules 537, 534, 536 for controlling the processor 510. Other hardware or software modules are contemplated. The storage device 530 can be connected to the system bus 505. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as the processor 510, bus 505, display 535, and so forth, to carry out the function.
Chipset 560 can also interface with one or more communication interfaces 590 that can have different physical interfaces. Such communication interfaces can include interfaces for wired and wireless local area networks, for broadband wireless networks, as well as personal area networks. Some applications of the methods for generating, displaying, and using the GUI disclosed herein can include receiving ordered datasets over the physical interface or be generated by the machine itself by processor 555 analyzing data stored in storage 570 or 575. Further, the machine can receive inputs from a user via user interface components 585 and execute appropriate functions, such as browsing functions by interpreting these inputs using processor 555.
It can be appreciated that example systems 500 and 550 can have more than one processor 510 or be part of a group or cluster of computing devices networked together to provide greater processing capability.
For clarity of explanation, in some instances the present technology may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.
In some embodiments the computer-readable storage devices, mediums, and memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.
Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.
Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, rackmount devices, standalone devices, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.
The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.
Although a variety of examples and other information was used to explain aspects within the scope of the appended claims, no limitation of the claims should be implied based on particular features or arrangements in such examples, as one of ordinary skill would be able to use these examples to derive a wide variety of implementations. Further and although some subject matter may have been described in language specific to examples of structural features and/or method steps, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to these described features or acts. For example, such functionality can be distributed differently or performed in components other than those identified herein. Rather, the described features and steps are disclosed as examples of components of systems and methods within the scope of the appended claims. Moreover, claim language reciting “at least one of” a set indicates that one member of the set or multiple members of the set satisfy the claim.
This application is a continuation of U.S. patent application Ser. No. 15/157,300 filed on May 17, 2016, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/171,899 filed Jun. 5, 2015, the contents of which are incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5086385 | Launey et al. | Feb 1992 | A |
5319754 | Meinecke et al. | Jun 1994 | A |
5400246 | Wilson et al. | Mar 1995 | A |
5436909 | Dev et al. | Jul 1995 | A |
5555416 | Owens et al. | Sep 1996 | A |
5726644 | Jednacz et al. | Mar 1998 | A |
5742803 | Igarashi et al. | Apr 1998 | A |
5742829 | Davis et al. | Apr 1998 | A |
5751914 | Coley et al. | May 1998 | A |
5794047 | Meier | Aug 1998 | A |
5822731 | Schultz | Oct 1998 | A |
5831848 | Rielly et al. | Nov 1998 | A |
5903545 | Sabourin et al. | May 1999 | A |
6012096 | Link et al. | Jan 2000 | A |
6026362 | Kim et al. | Feb 2000 | A |
6085243 | Fletcher et al. | Jul 2000 | A |
6115462 | Servi et al. | Sep 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6144962 | Weinberg et al. | Nov 2000 | A |
6204850 | Green | Mar 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6230312 | Hunt | May 2001 | B1 |
6239699 | Ronnen | May 2001 | B1 |
6247058 | Miller et al. | Jun 2001 | B1 |
6249241 | Jordan et al. | Jun 2001 | B1 |
6279035 | Brown et al. | Aug 2001 | B1 |
6295527 | McCormack et al. | Sep 2001 | B1 |
6307837 | Ichikawa | Oct 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6338131 | Dillon | Jan 2002 | B1 |
6351843 | Berkley et al. | Feb 2002 | B1 |
6353775 | Nichols | Mar 2002 | B1 |
6381735 | Hunt | Apr 2002 | B1 |
6499137 | Hunt | Dec 2002 | B1 |
6525658 | Streetman et al. | Feb 2003 | B2 |
6546420 | Lemler et al. | Apr 2003 | B1 |
6546553 | Hunt | Apr 2003 | B1 |
6597663 | Rekhter | Jul 2003 | B1 |
6611896 | Mason, Jr. et al. | Aug 2003 | B1 |
6629123 | Hunt | Sep 2003 | B1 |
6654750 | Adams et al. | Nov 2003 | B1 |
6718414 | Doggett | Apr 2004 | B1 |
6728779 | Griffin et al. | Apr 2004 | B1 |
6751663 | Farrell et al. | Jun 2004 | B1 |
6774899 | Ryall et al. | Aug 2004 | B1 |
6801878 | Hintz et al. | Oct 2004 | B1 |
6816461 | Scrandis et al. | Nov 2004 | B1 |
6847993 | Novaes et al. | Jan 2005 | B1 |
6848106 | Hipp | Jan 2005 | B1 |
6925490 | Novaes et al. | Aug 2005 | B1 |
6958998 | Shorey | Oct 2005 | B2 |
6965861 | Dailey et al. | Nov 2005 | B1 |
6983323 | Cantrell et al. | Jan 2006 | B2 |
6996808 | Niewiadomski et al. | Feb 2006 | B1 |
6996817 | Birum et al. | Feb 2006 | B2 |
6999452 | Drummond-Murray et al. | Feb 2006 | B1 |
7002464 | Bruemmer et al. | Feb 2006 | B2 |
7024468 | Meyer et al. | Apr 2006 | B1 |
7089583 | Mehra et al. | Aug 2006 | B2 |
7096368 | Kouznetsov et al. | Aug 2006 | B2 |
7111055 | Falkner | Sep 2006 | B2 |
7120934 | Ishikawa | Oct 2006 | B2 |
7133923 | MeLampy et al. | Nov 2006 | B2 |
7162643 | Sankaran et al. | Jan 2007 | B1 |
7167483 | Sharma et al. | Jan 2007 | B1 |
7181769 | Keanini et al. | Feb 2007 | B1 |
7185103 | Jain | Feb 2007 | B1 |
7194664 | Fung et al. | Mar 2007 | B1 |
7203740 | Putzolu et al. | Apr 2007 | B1 |
7263689 | Edwards et al. | Aug 2007 | B1 |
7296288 | Hill et al. | Nov 2007 | B1 |
7302487 | Ylonen et al. | Nov 2007 | B2 |
7327735 | Robotham et al. | Feb 2008 | B2 |
7331060 | Ricciulli | Feb 2008 | B1 |
7337206 | Wen et al. | Feb 2008 | B1 |
7349761 | Cruse | Mar 2008 | B1 |
7353507 | Gazdik et al. | Apr 2008 | B2 |
7353511 | Ziese | Apr 2008 | B1 |
7356679 | Le et al. | Apr 2008 | B1 |
7360072 | Soltis et al. | Apr 2008 | B1 |
7370092 | Aderton et al. | May 2008 | B2 |
7395195 | Suenbuel et al. | Jul 2008 | B2 |
7444404 | Wetherall et al. | Oct 2008 | B2 |
7453879 | Lo | Nov 2008 | B1 |
7454486 | Kaler et al. | Nov 2008 | B2 |
7466681 | Ashwood-Smith et al. | Dec 2008 | B2 |
7467205 | Dempster et al. | Dec 2008 | B1 |
7496040 | Seo | Feb 2009 | B2 |
7496575 | Buccella et al. | Feb 2009 | B2 |
7496661 | Morford et al. | Feb 2009 | B1 |
7523465 | Aamodt et al. | Apr 2009 | B2 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530105 | Gilbert et al. | May 2009 | B2 |
7539770 | Meier | May 2009 | B2 |
7568107 | Rathi et al. | Jul 2009 | B1 |
7571478 | Munson et al. | Aug 2009 | B2 |
7606203 | Shabtay et al. | Oct 2009 | B1 |
7610330 | Quinn et al. | Oct 2009 | B1 |
7633942 | Bearden et al. | Dec 2009 | B2 |
7644438 | Dash et al. | Jan 2010 | B1 |
7676570 | Levy et al. | Mar 2010 | B2 |
7681131 | Quarterman et al. | Mar 2010 | B1 |
7693947 | Judge et al. | Apr 2010 | B2 |
7742406 | Muppala | Jun 2010 | B1 |
7742413 | Bugenhagen | Jun 2010 | B1 |
7743242 | Oberhaus et al. | Jun 2010 | B2 |
7752307 | Takara | Jul 2010 | B2 |
7774498 | Kraemer et al. | Aug 2010 | B1 |
7783457 | Cunningham | Aug 2010 | B2 |
7787480 | Mehta et al. | Aug 2010 | B1 |
7788477 | Huang et al. | Aug 2010 | B1 |
7808897 | Mehta et al. | Oct 2010 | B1 |
7813822 | Hoffberg | Oct 2010 | B1 |
7840618 | Zhang et al. | Nov 2010 | B2 |
7844696 | Labovitz et al. | Nov 2010 | B2 |
7844744 | Abercrombie et al. | Nov 2010 | B2 |
7864707 | Dimitropoulos | Jan 2011 | B2 |
7870204 | LeVasseur et al. | Jan 2011 | B2 |
7873025 | Patel et al. | Jan 2011 | B2 |
7873074 | Boland | Jan 2011 | B1 |
7874001 | Beck et al. | Jan 2011 | B2 |
7885197 | Metzler | Feb 2011 | B2 |
7895649 | Brook et al. | Feb 2011 | B1 |
7904420 | Ianni | Mar 2011 | B2 |
7930752 | Hertzog et al. | Apr 2011 | B2 |
7934248 | Yehuda et al. | Apr 2011 | B1 |
7957934 | Greifeneder | Jun 2011 | B2 |
7961637 | McBeath | Jun 2011 | B2 |
7970946 | Djabarov et al. | Jun 2011 | B1 |
7975035 | Popescu et al. | Jul 2011 | B2 |
7990847 | Leroy et al. | Aug 2011 | B1 |
8001610 | Chickering et al. | Aug 2011 | B1 |
8005935 | Pradhan et al. | Aug 2011 | B2 |
8040232 | Oh et al. | Oct 2011 | B2 |
8040822 | Proulx et al. | Oct 2011 | B2 |
8040832 | Nishio et al. | Oct 2011 | B2 |
8056134 | Ogilvie | Nov 2011 | B1 |
8115617 | Thubert et al. | Feb 2012 | B2 |
8135657 | Kapoor et al. | Mar 2012 | B2 |
8135847 | Pujol et al. | Mar 2012 | B2 |
8156430 | Newman | Apr 2012 | B2 |
8160063 | Maltz et al. | Apr 2012 | B2 |
8179809 | Eppstein et al. | May 2012 | B1 |
8181248 | Oh et al. | May 2012 | B2 |
8181253 | Zaitsev et al. | May 2012 | B1 |
8185343 | Fitzgerald et al. | May 2012 | B1 |
8185824 | Mitchell et al. | May 2012 | B1 |
8239365 | Salman | Aug 2012 | B2 |
8239915 | Satish et al. | Aug 2012 | B1 |
8250657 | Nachenberg et al. | Aug 2012 | B1 |
8255972 | Azagury et al. | Aug 2012 | B2 |
8266697 | Coffman | Sep 2012 | B2 |
8272875 | Jurmain | Sep 2012 | B1 |
8280683 | Finkler | Oct 2012 | B2 |
8281397 | Vaidyanathan et al. | Oct 2012 | B2 |
8291495 | Burns et al. | Oct 2012 | B1 |
8296847 | Mendonca et al. | Oct 2012 | B2 |
8311973 | Zadeh | Nov 2012 | B1 |
8312540 | Kahn et al. | Nov 2012 | B1 |
8339959 | Moisand et al. | Dec 2012 | B1 |
8356007 | Larson et al. | Jan 2013 | B2 |
8365005 | Bengtson et al. | Jan 2013 | B2 |
8365286 | Poston | Jan 2013 | B2 |
8370407 | Devarajan et al. | Feb 2013 | B1 |
8381289 | Pereira et al. | Feb 2013 | B1 |
8391270 | Van Der Stok et al. | Mar 2013 | B2 |
8407164 | Malik et al. | Mar 2013 | B2 |
8407798 | Lotem et al. | Mar 2013 | B1 |
8413235 | Chen et al. | Apr 2013 | B1 |
8442073 | Skubacz et al. | May 2013 | B2 |
8451731 | Lee et al. | May 2013 | B1 |
8462212 | Kundu et al. | Jun 2013 | B1 |
8463860 | Guruswamy et al. | Jun 2013 | B1 |
8489765 | Vasseur et al. | Jul 2013 | B2 |
8494985 | Keralapura et al. | Jul 2013 | B1 |
8499348 | Rubin | Jul 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8527977 | Cheng et al. | Sep 2013 | B1 |
8549635 | Muttik et al. | Oct 2013 | B2 |
8565109 | Poovendran et al. | Oct 2013 | B1 |
8570861 | Brandwine et al. | Oct 2013 | B1 |
8572600 | Chung et al. | Oct 2013 | B2 |
8572734 | McConnell et al. | Oct 2013 | B2 |
8572735 | Ghosh et al. | Oct 2013 | B2 |
8572739 | Cruz et al. | Oct 2013 | B1 |
8578491 | Mcnamee et al. | Nov 2013 | B2 |
8588081 | Salam et al. | Nov 2013 | B2 |
8595709 | Rao et al. | Nov 2013 | B2 |
8600726 | Varshney et al. | Dec 2013 | B1 |
8612530 | Sapovalovs et al. | Dec 2013 | B1 |
8613084 | Dalcher | Dec 2013 | B2 |
8615803 | Dacier et al. | Dec 2013 | B2 |
8630316 | Haba | Jan 2014 | B2 |
8631464 | Belakhdar et al. | Jan 2014 | B2 |
8640086 | Bonev et al. | Jan 2014 | B2 |
8656493 | Capalik | Feb 2014 | B2 |
8661544 | Yen et al. | Feb 2014 | B2 |
8677487 | Balupari et al. | Mar 2014 | B2 |
8683389 | Bar-Yam et al. | Mar 2014 | B1 |
8689172 | Amaral et al. | Apr 2014 | B2 |
8706914 | Duchesneau | Apr 2014 | B2 |
8713676 | Pandrangi et al. | Apr 2014 | B2 |
8719452 | Ding et al. | May 2014 | B1 |
8719835 | Kanso et al. | May 2014 | B2 |
8750287 | Bui et al. | Jun 2014 | B2 |
8752042 | Ratica | Jun 2014 | B2 |
8752179 | Zaitsev | Jun 2014 | B2 |
8755396 | Sindhu et al. | Jun 2014 | B2 |
8762951 | Kosche et al. | Jun 2014 | B1 |
8769084 | Westerfeld et al. | Jul 2014 | B2 |
8775577 | Alford et al. | Jul 2014 | B1 |
8776180 | Kumar et al. | Jul 2014 | B2 |
8779921 | Curtiss | Jul 2014 | B1 |
8793255 | Bilinski | Jul 2014 | B1 |
8805946 | Glommen | Aug 2014 | B1 |
8812448 | Anderson et al. | Aug 2014 | B1 |
8812725 | Kulkarni | Aug 2014 | B2 |
8813236 | Saha et al. | Aug 2014 | B1 |
8825848 | Dotan et al. | Sep 2014 | B1 |
8832013 | Adams et al. | Sep 2014 | B1 |
8832103 | Isaacson et al. | Sep 2014 | B2 |
8832461 | Saroiu et al. | Sep 2014 | B2 |
8849926 | Marzencki et al. | Sep 2014 | B2 |
8881258 | Paul et al. | Nov 2014 | B2 |
8887238 | Howard et al. | Nov 2014 | B2 |
8887285 | Jordan et al. | Nov 2014 | B2 |
8904520 | Nachenberg et al. | Dec 2014 | B1 |
8908685 | Patel et al. | Dec 2014 | B2 |
8914497 | Xiao et al. | Dec 2014 | B1 |
8924941 | Krajec et al. | Dec 2014 | B2 |
8931043 | Cooper et al. | Jan 2015 | B2 |
8954546 | Krajec | Feb 2015 | B2 |
8954610 | Berke et al. | Feb 2015 | B2 |
8955124 | Kim et al. | Feb 2015 | B2 |
8966021 | Allen | Feb 2015 | B1 |
8966625 | Zuk et al. | Feb 2015 | B1 |
8973147 | Pearcy et al. | Mar 2015 | B2 |
8984331 | Quinn | Mar 2015 | B2 |
8990386 | He et al. | Mar 2015 | B2 |
8996695 | Anderson et al. | Mar 2015 | B2 |
8997063 | Krajec et al. | Mar 2015 | B2 |
8997227 | Mhatre et al. | Mar 2015 | B1 |
9014047 | Alcala et al. | Apr 2015 | B2 |
9015716 | Fletcher et al. | Apr 2015 | B2 |
9043905 | Allen et al. | May 2015 | B1 |
9071575 | Lemaster et al. | Jun 2015 | B2 |
9088598 | Zhang et al. | Jul 2015 | B1 |
9104543 | Cavanagh et al. | Aug 2015 | B1 |
9110905 | Polley et al. | Aug 2015 | B2 |
9117075 | Yeh | Aug 2015 | B1 |
9130836 | Kapadia et al. | Sep 2015 | B2 |
9135145 | Voccio et al. | Sep 2015 | B2 |
9141912 | Shircliff et al. | Sep 2015 | B2 |
9141914 | Viswanathan et al. | Sep 2015 | B2 |
9146820 | Alfadhly et al. | Sep 2015 | B2 |
9152789 | Natarajan et al. | Oct 2015 | B2 |
9158720 | Shirlen et al. | Oct 2015 | B2 |
9160764 | Stiansen et al. | Oct 2015 | B2 |
9170917 | Kumar et al. | Oct 2015 | B2 |
9178906 | Chen et al. | Nov 2015 | B1 |
9179058 | Zeira et al. | Nov 2015 | B1 |
9185127 | Neou et al. | Nov 2015 | B2 |
9191042 | Dhayni | Nov 2015 | B2 |
9191400 | Ptasinski et al. | Nov 2015 | B1 |
9191402 | Yan | Nov 2015 | B2 |
9197654 | Ben-Shalom et al. | Nov 2015 | B2 |
9225793 | Dutta et al. | Dec 2015 | B2 |
9237111 | Banavalikar et al. | Jan 2016 | B2 |
9246702 | Sharma et al. | Jan 2016 | B1 |
9246773 | Degioanni | Jan 2016 | B2 |
9252915 | Bakken | Feb 2016 | B1 |
9253042 | Lumezanu et al. | Feb 2016 | B2 |
9253206 | Fleischman | Feb 2016 | B1 |
9258217 | Duffield et al. | Feb 2016 | B2 |
9276829 | Castro et al. | Mar 2016 | B2 |
9281940 | Matsuda et al. | Mar 2016 | B2 |
9286047 | Avramov et al. | Mar 2016 | B1 |
9292415 | Seto et al. | Mar 2016 | B2 |
9294486 | Chiang et al. | Mar 2016 | B1 |
9294498 | Yampolskiy et al. | Mar 2016 | B1 |
9300689 | Tsuchitoi | Mar 2016 | B2 |
9317574 | Brisebois et al. | Apr 2016 | B1 |
9319384 | Yan et al. | Apr 2016 | B2 |
9369435 | Short et al. | Jun 2016 | B2 |
9369479 | Lin | Jun 2016 | B2 |
9378068 | Anantharam et al. | Jun 2016 | B2 |
9385917 | Khanna et al. | Jul 2016 | B1 |
9396327 | Auger et al. | Jul 2016 | B2 |
9397902 | Dragon et al. | Jul 2016 | B2 |
9405903 | Xie et al. | Aug 2016 | B1 |
9417985 | Baars et al. | Aug 2016 | B2 |
9418222 | Rivera et al. | Aug 2016 | B1 |
9426068 | Dunbar et al. | Aug 2016 | B2 |
9454324 | Madhavapeddi | Sep 2016 | B1 |
9462013 | Boss et al. | Oct 2016 | B1 |
9465696 | McNeil et al. | Oct 2016 | B2 |
9483334 | Walsh | Nov 2016 | B2 |
9487222 | Palmer et al. | Nov 2016 | B2 |
9501744 | Brisebois et al. | Nov 2016 | B1 |
9531589 | Clemm et al. | Dec 2016 | B2 |
9536084 | Lukacs et al. | Jan 2017 | B1 |
9552221 | Pora | Jan 2017 | B1 |
9563517 | Natanzon et al. | Feb 2017 | B1 |
9575869 | Pechanec et al. | Feb 2017 | B2 |
9575874 | Gautallin et al. | Feb 2017 | B2 |
9576240 | Jeong et al. | Feb 2017 | B2 |
9582669 | Shen et al. | Feb 2017 | B1 |
9596196 | Hills | Mar 2017 | B1 |
9602536 | Brown, Jr. et al. | Mar 2017 | B1 |
9621413 | Lee | Apr 2017 | B1 |
9621575 | Jalan et al. | Apr 2017 | B1 |
9634915 | Bley | Apr 2017 | B2 |
9645892 | Patwardhan | May 2017 | B1 |
9658942 | Bhat et al. | May 2017 | B2 |
9665474 | Li et al. | May 2017 | B2 |
9678803 | Suit | Jun 2017 | B2 |
9684453 | Holt et al. | Jun 2017 | B2 |
9686233 | Paxton | Jun 2017 | B2 |
9697033 | Koponen et al. | Jul 2017 | B2 |
9727394 | Xun et al. | Aug 2017 | B2 |
9729568 | Lefebvre et al. | Aug 2017 | B2 |
9733973 | Prasad et al. | Aug 2017 | B2 |
9736041 | Lumezanu et al. | Aug 2017 | B2 |
9749145 | Banavalikar et al. | Aug 2017 | B2 |
9800608 | Korsunsky et al. | Oct 2017 | B2 |
9804830 | Raman et al. | Oct 2017 | B2 |
9804951 | Liu et al. | Oct 2017 | B2 |
9813307 | Walsh et al. | Nov 2017 | B2 |
9813324 | Nampelly et al. | Nov 2017 | B2 |
9813516 | Wang | Nov 2017 | B2 |
9825911 | Brandwine | Nov 2017 | B1 |
9836183 | Love et al. | Dec 2017 | B1 |
9857825 | Johnson et al. | Jan 2018 | B1 |
9858621 | Konrardy et al. | Jan 2018 | B1 |
9860208 | Ettema et al. | Jan 2018 | B1 |
9904584 | Konig et al. | Feb 2018 | B2 |
9916232 | Voccio et al. | Mar 2018 | B2 |
9916538 | Zadeh et al. | Mar 2018 | B2 |
9935851 | Gandham et al. | Apr 2018 | B2 |
9967158 | Pang et al. | May 2018 | B2 |
9979615 | Kulshreshtha et al. | May 2018 | B2 |
9996529 | McCandless et al. | Jun 2018 | B2 |
10002187 | McCandless et al. | Jun 2018 | B2 |
10009240 | Rao et al. | Jun 2018 | B2 |
10116531 | Attar et al. | Oct 2018 | B2 |
10142353 | Yadav et al. | Nov 2018 | B2 |
10171319 | Yadav et al. | Jan 2019 | B2 |
10243862 | Cafarelli et al. | Mar 2019 | B2 |
10394692 | Liu et al. | Aug 2019 | B2 |
10447551 | Zhang et al. | Oct 2019 | B1 |
10454793 | Deen et al. | Oct 2019 | B2 |
10454999 | Eder | Oct 2019 | B2 |
10476982 | Tarre et al. | Nov 2019 | B2 |
10516586 | Gandham et al. | Dec 2019 | B2 |
10652225 | Koved et al. | May 2020 | B2 |
10686804 | Yadav et al. | Jun 2020 | B2 |
10749890 | Aloisio et al. | Aug 2020 | B1 |
10944683 | Roskind | Mar 2021 | B1 |
11368378 | Gandham et al. | Jun 2022 | B2 |
11516098 | Spadaro et al. | Nov 2022 | B2 |
11528283 | Yadav et al. | Dec 2022 | B2 |
11556808 | Kim et al. | Jan 2023 | B1 |
20010028646 | Arts et al. | Oct 2001 | A1 |
20020023210 | Tuomenoksa | Feb 2002 | A1 |
20020053033 | Cooper et al. | May 2002 | A1 |
20020083175 | Afek et al. | Jun 2002 | A1 |
20020097687 | Meiri et al. | Jul 2002 | A1 |
20020103793 | Koller et al. | Aug 2002 | A1 |
20020107857 | Teraslinna | Aug 2002 | A1 |
20020107875 | Seliger et al. | Aug 2002 | A1 |
20020141343 | Bays | Oct 2002 | A1 |
20020184393 | Leddy et al. | Dec 2002 | A1 |
20020196292 | Itoh et al. | Dec 2002 | A1 |
20030005145 | Bullard | Jan 2003 | A1 |
20030016627 | MeLampy et al. | Jan 2003 | A1 |
20030023600 | Nagamura et al. | Jan 2003 | A1 |
20030023601 | Fortier, Jr. et al. | Jan 2003 | A1 |
20030046388 | Milliken | Mar 2003 | A1 |
20030065986 | Fraenkel et al. | Apr 2003 | A1 |
20030072269 | Teruhi et al. | Apr 2003 | A1 |
20030084158 | Saito et al. | May 2003 | A1 |
20030086425 | Bearden | May 2003 | A1 |
20030097439 | Strayer et al. | May 2003 | A1 |
20030105976 | Copeland, III | Jun 2003 | A1 |
20030126242 | Chang | Jul 2003 | A1 |
20030133443 | Klinker et al. | Jul 2003 | A1 |
20030145232 | Poletto et al. | Jul 2003 | A1 |
20030149888 | Yadav | Aug 2003 | A1 |
20030151513 | Herrmann et al. | Aug 2003 | A1 |
20030154399 | Zuk et al. | Aug 2003 | A1 |
20030177208 | Harvey, IV | Sep 2003 | A1 |
20030206205 | Kawahara et al. | Nov 2003 | A1 |
20040019676 | Iwatsuki et al. | Jan 2004 | A1 |
20040030776 | Cantrell et al. | Feb 2004 | A1 |
20040036478 | Logvinov et al. | Feb 2004 | A1 |
20040046787 | Henry et al. | Mar 2004 | A1 |
20040049698 | Ott et al. | Mar 2004 | A1 |
20040054680 | Kelley | Mar 2004 | A1 |
20040111679 | Subasic et al. | Jun 2004 | A1 |
20040133640 | Yeager et al. | Jul 2004 | A1 |
20040133690 | Chauffour et al. | Jul 2004 | A1 |
20040137908 | Sinivaara et al. | Jul 2004 | A1 |
20040167921 | Carson et al. | Aug 2004 | A1 |
20040205536 | Newman et al. | Oct 2004 | A1 |
20040213221 | Civanlar et al. | Oct 2004 | A1 |
20040218532 | Khirman | Nov 2004 | A1 |
20040220984 | Dudfield et al. | Nov 2004 | A1 |
20040243533 | Dempster et al. | Dec 2004 | A1 |
20040255050 | Takehiro et al. | Dec 2004 | A1 |
20040268149 | Aaron | Dec 2004 | A1 |
20050028154 | Smith et al. | Feb 2005 | A1 |
20050039104 | Shah et al. | Feb 2005 | A1 |
20050060403 | Bernstein et al. | Mar 2005 | A1 |
20050063377 | Bryant et al. | Mar 2005 | A1 |
20050068907 | Garg et al. | Mar 2005 | A1 |
20050083933 | Fine et al. | Apr 2005 | A1 |
20050104885 | Jager et al. | May 2005 | A1 |
20050108331 | Osterman | May 2005 | A1 |
20050122325 | Twait | Jun 2005 | A1 |
20050138157 | Jung et al. | Jun 2005 | A1 |
20050154625 | Chua et al. | Jul 2005 | A1 |
20050166066 | Ahuja et al. | Jul 2005 | A1 |
20050177829 | Vishwanath | Aug 2005 | A1 |
20050177871 | Roesch | Aug 2005 | A1 |
20050182681 | Bruskotter et al. | Aug 2005 | A1 |
20050185621 | Sivakumar et al. | Aug 2005 | A1 |
20050198247 | Perry et al. | Sep 2005 | A1 |
20050198371 | Smith et al. | Sep 2005 | A1 |
20050198629 | Vishwanath | Sep 2005 | A1 |
20050207376 | Ashwood-Smith et al. | Sep 2005 | A1 |
20050210331 | Connelly et al. | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050228885 | Winfield et al. | Oct 2005 | A1 |
20050237948 | Wan et al. | Oct 2005 | A1 |
20050257244 | Joly et al. | Nov 2005 | A1 |
20050289244 | Sahu et al. | Dec 2005 | A1 |
20060004758 | Teng et al. | Jan 2006 | A1 |
20060026669 | Zakas | Feb 2006 | A1 |
20060048218 | Lingafelt et al. | Mar 2006 | A1 |
20060058218 | Syud et al. | Mar 2006 | A1 |
20060075396 | Surasinghe | Apr 2006 | A1 |
20060077909 | Saleh et al. | Apr 2006 | A1 |
20060080733 | Khosmood et al. | Apr 2006 | A1 |
20060089985 | Poletto | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060098625 | King | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060106550 | Morin et al. | May 2006 | A1 |
20060143432 | Rothman et al. | Jun 2006 | A1 |
20060156408 | Himberger et al. | Jul 2006 | A1 |
20060158266 | Yonekawa et al. | Jul 2006 | A1 |
20060158354 | Aberg et al. | Jul 2006 | A1 |
20060159032 | Ukrainetz et al. | Jul 2006 | A1 |
20060173912 | Lindvall et al. | Aug 2006 | A1 |
20060195448 | Newport | Aug 2006 | A1 |
20060212556 | Yacoby et al. | Sep 2006 | A1 |
20060224398 | Lakshman et al. | Oct 2006 | A1 |
20060253566 | Stassinopoulos et al. | Nov 2006 | A1 |
20060265713 | Depro et al. | Nov 2006 | A1 |
20060272018 | Fouant | Nov 2006 | A1 |
20060274659 | Ouderkirk | Dec 2006 | A1 |
20060280179 | Meier | Dec 2006 | A1 |
20060294219 | Ogawa et al. | Dec 2006 | A1 |
20070010898 | Hosek et al. | Jan 2007 | A1 |
20070014275 | Bettink et al. | Jan 2007 | A1 |
20070019618 | Shaffer | Jan 2007 | A1 |
20070025306 | Cox et al. | Feb 2007 | A1 |
20070044147 | Choi et al. | Feb 2007 | A1 |
20070067756 | Garza | Mar 2007 | A1 |
20070074288 | Chang et al. | Mar 2007 | A1 |
20070097976 | Wood et al. | May 2007 | A1 |
20070118654 | Jamkhedkar et al. | May 2007 | A1 |
20070124376 | Greenwell | May 2007 | A1 |
20070127491 | Verzijp et al. | Jun 2007 | A1 |
20070140131 | Malloy et al. | Jun 2007 | A1 |
20070150568 | Ruiz | Jun 2007 | A1 |
20070162420 | Ou et al. | Jul 2007 | A1 |
20070169179 | Narad | Jul 2007 | A1 |
20070177626 | Kotelba | Aug 2007 | A1 |
20070180526 | Copeland, III | Aug 2007 | A1 |
20070195729 | Li et al. | Aug 2007 | A1 |
20070195794 | Fujita et al. | Aug 2007 | A1 |
20070195797 | Patel et al. | Aug 2007 | A1 |
20070199060 | Touboul | Aug 2007 | A1 |
20070201474 | Isobe | Aug 2007 | A1 |
20070209074 | Coffman | Sep 2007 | A1 |
20070211637 | Mitchell | Sep 2007 | A1 |
20070214348 | Danielsen | Sep 2007 | A1 |
20070223388 | Arad et al. | Sep 2007 | A1 |
20070230415 | Malik | Oct 2007 | A1 |
20070232265 | Park et al. | Oct 2007 | A1 |
20070250640 | Wells | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070280108 | Sakurai | Dec 2007 | A1 |
20070300061 | Kim et al. | Dec 2007 | A1 |
20080002697 | Anantharamaiah et al. | Jan 2008 | A1 |
20080013532 | Garner et al. | Jan 2008 | A1 |
20080017619 | Yamakawa et al. | Jan 2008 | A1 |
20080022385 | Crowell et al. | Jan 2008 | A1 |
20080028389 | Genty et al. | Jan 2008 | A1 |
20080040088 | Vankov et al. | Feb 2008 | A1 |
20080046708 | Fitzgerald et al. | Feb 2008 | A1 |
20080049633 | Edwards et al. | Feb 2008 | A1 |
20080052387 | Heinz et al. | Feb 2008 | A1 |
20080056124 | Nanda et al. | Mar 2008 | A1 |
20080066009 | Gardner et al. | Mar 2008 | A1 |
20080082662 | Danliker et al. | Apr 2008 | A1 |
20080101234 | Nakil et al. | May 2008 | A1 |
20080120350 | Grabowski et al. | May 2008 | A1 |
20080126534 | Mueller et al. | May 2008 | A1 |
20080141246 | Kuck et al. | Jun 2008 | A1 |
20080155245 | Lipscombe et al. | Jun 2008 | A1 |
20080181100 | Yang et al. | Jul 2008 | A1 |
20080185621 | Yi et al. | Aug 2008 | A1 |
20080201109 | Zill et al. | Aug 2008 | A1 |
20080208367 | Koehler et al. | Aug 2008 | A1 |
20080222352 | Booth et al. | Sep 2008 | A1 |
20080232358 | Baker et al. | Sep 2008 | A1 |
20080247539 | Huang et al. | Oct 2008 | A1 |
20080250122 | Zsigmond et al. | Oct 2008 | A1 |
20080250128 | Sargent | Oct 2008 | A1 |
20080262990 | Kapoor et al. | Oct 2008 | A1 |
20080270199 | Chess et al. | Oct 2008 | A1 |
20080282347 | Dadhia et al. | Nov 2008 | A1 |
20080295163 | Kang | Nov 2008 | A1 |
20080298271 | Morinaga et al. | Dec 2008 | A1 |
20080301755 | Sinha et al. | Dec 2008 | A1 |
20080301765 | Nicol et al. | Dec 2008 | A1 |
20080320592 | Suit et al. | Dec 2008 | A1 |
20090019026 | Valdes-Perez et al. | Jan 2009 | A1 |
20090059934 | Aggarwal et al. | Mar 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077097 | Lacapra et al. | Mar 2009 | A1 |
20090077543 | Siskind et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090106646 | Mollicone et al. | Apr 2009 | A1 |
20090109849 | Wood et al. | Apr 2009 | A1 |
20090133126 | Jang et al. | May 2009 | A1 |
20090138590 | Lee et al. | May 2009 | A1 |
20090158432 | Zheng et al. | Jun 2009 | A1 |
20090161658 | Danner | Jun 2009 | A1 |
20090177484 | Davis et al. | Jul 2009 | A1 |
20090180393 | Nakamura | Jul 2009 | A1 |
20090192847 | Lipkin et al. | Jul 2009 | A1 |
20090193495 | McAfee et al. | Jul 2009 | A1 |
20090241170 | Kumar et al. | Sep 2009 | A1 |
20090249302 | Xu et al. | Oct 2009 | A1 |
20090252181 | Desanti | Oct 2009 | A1 |
20090260083 | Szeto et al. | Oct 2009 | A1 |
20090271412 | Lacapra et al. | Oct 2009 | A1 |
20090292795 | Ford et al. | Nov 2009 | A1 |
20090296593 | Prescott | Dec 2009 | A1 |
20090300180 | Dehaan et al. | Dec 2009 | A1 |
20090307753 | Dupont et al. | Dec 2009 | A1 |
20090310485 | Averi et al. | Dec 2009 | A1 |
20090313373 | Hanna et al. | Dec 2009 | A1 |
20090313698 | Wahl | Dec 2009 | A1 |
20090319912 | Serr et al. | Dec 2009 | A1 |
20090323543 | Shimakura | Dec 2009 | A1 |
20090328219 | Narayanaswamy | Dec 2009 | A1 |
20100005288 | Rao et al. | Jan 2010 | A1 |
20100005478 | Helfman et al. | Jan 2010 | A1 |
20100042716 | Farajidana et al. | Feb 2010 | A1 |
20100049839 | Parker et al. | Feb 2010 | A1 |
20100054241 | Shah et al. | Mar 2010 | A1 |
20100070647 | Irino et al. | Mar 2010 | A1 |
20100077445 | Schneider et al. | Mar 2010 | A1 |
20100095293 | O'Neill et al. | Apr 2010 | A1 |
20100095367 | Narayanaswamy | Apr 2010 | A1 |
20100095377 | Krywaniuk | Apr 2010 | A1 |
20100138526 | DeHaan et al. | Jun 2010 | A1 |
20100138810 | Komatsu et al. | Jun 2010 | A1 |
20100148940 | Gelvin et al. | Jun 2010 | A1 |
20100153316 | Duffield et al. | Jun 2010 | A1 |
20100153696 | Beachem et al. | Jun 2010 | A1 |
20100157809 | Duffield et al. | Jun 2010 | A1 |
20100161817 | Xiao et al. | Jun 2010 | A1 |
20100174813 | Hildreth et al. | Jul 2010 | A1 |
20100180016 | Bugwadia et al. | Jul 2010 | A1 |
20100188989 | Wing et al. | Jul 2010 | A1 |
20100188995 | Raleigh | Jul 2010 | A1 |
20100194741 | Finocchio | Aug 2010 | A1 |
20100220584 | DeHaan et al. | Sep 2010 | A1 |
20100226373 | Rowell et al. | Sep 2010 | A1 |
20100235514 | Beachem | Sep 2010 | A1 |
20100235879 | Burnside et al. | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100246432 | Zhang et al. | Sep 2010 | A1 |
20100287266 | Asati et al. | Nov 2010 | A1 |
20100303240 | Beachem | Dec 2010 | A1 |
20100306180 | Johnson et al. | Dec 2010 | A1 |
20100317420 | Hoffberg | Dec 2010 | A1 |
20100319060 | Aiken et al. | Dec 2010 | A1 |
20110004935 | Moffie et al. | Jan 2011 | A1 |
20110010585 | Bugenhagen et al. | Jan 2011 | A1 |
20110022641 | Werth et al. | Jan 2011 | A1 |
20110055381 | Narasimhan et al. | Mar 2011 | A1 |
20110055382 | Narasimhan | Mar 2011 | A1 |
20110055388 | Yumerefendi et al. | Mar 2011 | A1 |
20110066719 | Miryanov et al. | Mar 2011 | A1 |
20110069685 | Tofighbakhsh | Mar 2011 | A1 |
20110072119 | Bronstein et al. | Mar 2011 | A1 |
20110083124 | Moskal et al. | Apr 2011 | A1 |
20110083125 | Komatsu et al. | Apr 2011 | A1 |
20110085556 | Breslin et al. | Apr 2011 | A1 |
20110103259 | Aybay et al. | May 2011 | A1 |
20110107074 | Chan et al. | May 2011 | A1 |
20110107331 | Evans et al. | May 2011 | A1 |
20110125894 | Anderson et al. | May 2011 | A1 |
20110126136 | Abella et al. | May 2011 | A1 |
20110126275 | Anderson et al. | May 2011 | A1 |
20110145885 | Rivers et al. | Jun 2011 | A1 |
20110153039 | Gvelesiani et al. | Jun 2011 | A1 |
20110153811 | Jeong et al. | Jun 2011 | A1 |
20110158088 | Lofstrand et al. | Jun 2011 | A1 |
20110158112 | Finn | Jun 2011 | A1 |
20110158410 | Falk et al. | Jun 2011 | A1 |
20110167435 | Fang | Jul 2011 | A1 |
20110170860 | Smith et al. | Jul 2011 | A1 |
20110173490 | Narayanaswamy et al. | Jul 2011 | A1 |
20110185423 | Sallam | Jul 2011 | A1 |
20110191465 | Hofstaedter et al. | Aug 2011 | A1 |
20110196957 | Ayachitula et al. | Aug 2011 | A1 |
20110202655 | Sharma et al. | Aug 2011 | A1 |
20110202761 | Sarela et al. | Aug 2011 | A1 |
20110214174 | Herzog et al. | Sep 2011 | A1 |
20110225207 | Subramanian et al. | Sep 2011 | A1 |
20110228696 | Agarwal et al. | Sep 2011 | A1 |
20110231510 | Korsunsky et al. | Sep 2011 | A1 |
20110238793 | Bedare et al. | Sep 2011 | A1 |
20110239194 | Braude | Sep 2011 | A1 |
20110246663 | Melsen et al. | Oct 2011 | A1 |
20110267952 | Ko et al. | Nov 2011 | A1 |
20110276951 | Jain | Nov 2011 | A1 |
20110277034 | Hanson | Nov 2011 | A1 |
20110283266 | Gallagher et al. | Nov 2011 | A1 |
20110283277 | Castillo et al. | Nov 2011 | A1 |
20110289122 | Grube et al. | Nov 2011 | A1 |
20110289301 | Allen et al. | Nov 2011 | A1 |
20110302295 | Westerfeld et al. | Dec 2011 | A1 |
20110302652 | Westerfeld | Dec 2011 | A1 |
20110310892 | Dimambro | Dec 2011 | A1 |
20110314148 | Petersen et al. | Dec 2011 | A1 |
20110317982 | Xu et al. | Dec 2011 | A1 |
20120005542 | Petersen et al. | Jan 2012 | A1 |
20120011153 | Buchanan et al. | Jan 2012 | A1 |
20120017262 | Kapoor et al. | Jan 2012 | A1 |
20120047394 | Jain et al. | Feb 2012 | A1 |
20120075999 | Ko et al. | Mar 2012 | A1 |
20120079592 | Pandrangi | Mar 2012 | A1 |
20120089664 | Igelka | Apr 2012 | A1 |
20120096394 | Balko et al. | Apr 2012 | A1 |
20120102361 | Sass et al. | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120102545 | Carter, III et al. | Apr 2012 | A1 |
20120110188 | Van Biljon et al. | May 2012 | A1 |
20120117226 | Tanaka et al. | May 2012 | A1 |
20120117642 | Lin et al. | May 2012 | A1 |
20120136996 | Seo et al. | May 2012 | A1 |
20120137278 | Draper et al. | May 2012 | A1 |
20120137361 | Yi et al. | May 2012 | A1 |
20120140626 | Anand et al. | Jun 2012 | A1 |
20120144030 | Narasimhan | Jun 2012 | A1 |
20120167057 | Schmich et al. | Jun 2012 | A1 |
20120195198 | Regan | Aug 2012 | A1 |
20120197856 | Banka et al. | Aug 2012 | A1 |
20120198541 | Reeves | Aug 2012 | A1 |
20120216271 | Cooper et al. | Aug 2012 | A1 |
20120216282 | Pappu et al. | Aug 2012 | A1 |
20120218989 | Tanabe et al. | Aug 2012 | A1 |
20120219004 | Balus et al. | Aug 2012 | A1 |
20120233348 | Winters | Sep 2012 | A1 |
20120233473 | Vasseur et al. | Sep 2012 | A1 |
20120240185 | Kapoor et al. | Sep 2012 | A1 |
20120240232 | Azuma | Sep 2012 | A1 |
20120246303 | Petersen et al. | Sep 2012 | A1 |
20120254109 | Shukla et al. | Oct 2012 | A1 |
20120255875 | Vicente et al. | Oct 2012 | A1 |
20120260135 | Beck et al. | Oct 2012 | A1 |
20120260227 | Shukla et al. | Oct 2012 | A1 |
20120268405 | Ferren et al. | Oct 2012 | A1 |
20120278021 | Lin et al. | Nov 2012 | A1 |
20120281700 | Koganti et al. | Nov 2012 | A1 |
20120287815 | Attar | Nov 2012 | A1 |
20120300628 | Prescott et al. | Nov 2012 | A1 |
20130003538 | Greenburg et al. | Jan 2013 | A1 |
20130003733 | Venkatesan et al. | Jan 2013 | A1 |
20130006935 | Grisby | Jan 2013 | A1 |
20130007435 | Bayani | Jan 2013 | A1 |
20130019008 | Jorgenson et al. | Jan 2013 | A1 |
20130038358 | Cook et al. | Feb 2013 | A1 |
20130041934 | Annamalaisami et al. | Feb 2013 | A1 |
20130054682 | Malik et al. | Feb 2013 | A1 |
20130055145 | Antony et al. | Feb 2013 | A1 |
20130055373 | Beacham et al. | Feb 2013 | A1 |
20130064096 | Degioanni et al. | Mar 2013 | A1 |
20130080375 | Viswanathan et al. | Mar 2013 | A1 |
20130085889 | Fitting et al. | Apr 2013 | A1 |
20130086272 | Chen et al. | Apr 2013 | A1 |
20130094372 | Boot | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130103827 | Dunlap et al. | Apr 2013 | A1 |
20130107709 | Campbell et al. | May 2013 | A1 |
20130114598 | Schrum et al. | May 2013 | A1 |
20130117748 | Cooper et al. | May 2013 | A1 |
20130122854 | Agarwal et al. | May 2013 | A1 |
20130124807 | Nielsen et al. | May 2013 | A1 |
20130125107 | Bandakka et al. | May 2013 | A1 |
20130145099 | Liu et al. | Jun 2013 | A1 |
20130148663 | Xiong | Jun 2013 | A1 |
20130159999 | Chiueh et al. | Jun 2013 | A1 |
20130160128 | Dolan-Gavitt et al. | Jun 2013 | A1 |
20130166730 | Wilkinson | Jun 2013 | A1 |
20130173784 | Wang et al. | Jul 2013 | A1 |
20130173787 | Tateishi et al. | Jul 2013 | A1 |
20130174256 | Powers | Jul 2013 | A1 |
20130179487 | Lubetzky et al. | Jul 2013 | A1 |
20130179879 | Zhang et al. | Jul 2013 | A1 |
20130198509 | Buruganahalli et al. | Aug 2013 | A1 |
20130198517 | Mazzarella | Aug 2013 | A1 |
20130198839 | Wei et al. | Aug 2013 | A1 |
20130201986 | Sajassi et al. | Aug 2013 | A1 |
20130205137 | Farrugia et al. | Aug 2013 | A1 |
20130205293 | Levijarvi et al. | Aug 2013 | A1 |
20130219161 | Fontignie et al. | Aug 2013 | A1 |
20130219263 | Abrahami | Aug 2013 | A1 |
20130219500 | Lukas et al. | Aug 2013 | A1 |
20130232498 | Mangtani et al. | Sep 2013 | A1 |
20130238665 | Sequin | Sep 2013 | A1 |
20130242999 | Kamble et al. | Sep 2013 | A1 |
20130246925 | Ahuja et al. | Sep 2013 | A1 |
20130247201 | Alperovitch et al. | Sep 2013 | A1 |
20130254879 | Chesla et al. | Sep 2013 | A1 |
20130268994 | Cooper et al. | Oct 2013 | A1 |
20130275579 | Hernandez et al. | Oct 2013 | A1 |
20130283240 | Krajec et al. | Oct 2013 | A1 |
20130283281 | Krajec et al. | Oct 2013 | A1 |
20130283374 | Zisapel et al. | Oct 2013 | A1 |
20130290521 | Labovitz | Oct 2013 | A1 |
20130297771 | Osterloh et al. | Nov 2013 | A1 |
20130298244 | Kumar et al. | Nov 2013 | A1 |
20130301472 | Allan | Nov 2013 | A1 |
20130304900 | Trabelsi et al. | Nov 2013 | A1 |
20130305369 | Karta et al. | Nov 2013 | A1 |
20130308468 | Cowie | Nov 2013 | A1 |
20130312097 | Turnbull | Nov 2013 | A1 |
20130318357 | Abraham et al. | Nov 2013 | A1 |
20130322441 | Anumala | Dec 2013 | A1 |
20130326623 | Kruglick | Dec 2013 | A1 |
20130326625 | Anderson et al. | Dec 2013 | A1 |
20130332773 | Yuan et al. | Dec 2013 | A1 |
20130333029 | Chesla et al. | Dec 2013 | A1 |
20130335219 | Malkowski | Dec 2013 | A1 |
20130336164 | Yang et al. | Dec 2013 | A1 |
20130343207 | Cook et al. | Dec 2013 | A1 |
20130346054 | Mumtaz | Dec 2013 | A1 |
20130346736 | Cook et al. | Dec 2013 | A1 |
20130347103 | Veteikis et al. | Dec 2013 | A1 |
20140006610 | Formby et al. | Jan 2014 | A1 |
20140006871 | Lakshmanan et al. | Jan 2014 | A1 |
20140009338 | Lin et al. | Jan 2014 | A1 |
20140012562 | Chang et al. | Jan 2014 | A1 |
20140012814 | Bercovici et al. | Jan 2014 | A1 |
20140019972 | Yahalom et al. | Jan 2014 | A1 |
20140020099 | Vaidyanathan et al. | Jan 2014 | A1 |
20140031005 | Sumcad et al. | Jan 2014 | A1 |
20140033193 | Palaniappan | Jan 2014 | A1 |
20140036688 | Stassinopoulos et al. | Feb 2014 | A1 |
20140040343 | Nickolov et al. | Feb 2014 | A1 |
20140047185 | Peterson et al. | Feb 2014 | A1 |
20140047274 | Lumezanu et al. | Feb 2014 | A1 |
20140047372 | Gnezdov et al. | Feb 2014 | A1 |
20140050222 | Lynar et al. | Feb 2014 | A1 |
20140053226 | Fadiad et al. | Feb 2014 | A1 |
20140056318 | Hansson et al. | Feb 2014 | A1 |
20140059200 | Nguyen et al. | Feb 2014 | A1 |
20140074946 | Dirstine et al. | Mar 2014 | A1 |
20140075048 | Yuksel et al. | Mar 2014 | A1 |
20140075336 | Curtis et al. | Mar 2014 | A1 |
20140081596 | Agrawal et al. | Mar 2014 | A1 |
20140089494 | Dasari et al. | Mar 2014 | A1 |
20140092884 | Murphy et al. | Apr 2014 | A1 |
20140096058 | Molesky et al. | Apr 2014 | A1 |
20140105029 | Jain et al. | Apr 2014 | A1 |
20140108665 | Arora et al. | Apr 2014 | A1 |
20140115219 | Ajanovic et al. | Apr 2014 | A1 |
20140115403 | Rhee et al. | Apr 2014 | A1 |
20140115654 | Rogers et al. | Apr 2014 | A1 |
20140122656 | Baldwin et al. | May 2014 | A1 |
20140129942 | Rathod | May 2014 | A1 |
20140136680 | Joshi et al. | May 2014 | A1 |
20140137109 | Sharma et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140140213 | Raleigh et al. | May 2014 | A1 |
20140140244 | Kapadia et al. | May 2014 | A1 |
20140141524 | Keith | May 2014 | A1 |
20140143825 | Behrendt et al. | May 2014 | A1 |
20140149490 | Luxenberg et al. | May 2014 | A1 |
20140156814 | Barabash et al. | Jun 2014 | A1 |
20140156861 | Cruz-Aguilar et al. | Jun 2014 | A1 |
20140164607 | Bai et al. | Jun 2014 | A1 |
20140165200 | Singla | Jun 2014 | A1 |
20140165207 | Engel et al. | Jun 2014 | A1 |
20140173623 | Chang et al. | Jun 2014 | A1 |
20140173723 | Singla et al. | Jun 2014 | A1 |
20140192639 | Smirnov | Jul 2014 | A1 |
20140201717 | Mascaro et al. | Jul 2014 | A1 |
20140201838 | Varsanyi | Jul 2014 | A1 |
20140208296 | Dang et al. | Jul 2014 | A1 |
20140210616 | Ramachandran | Jul 2014 | A1 |
20140215443 | Voccio et al. | Jul 2014 | A1 |
20140215573 | Cepuran | Jul 2014 | A1 |
20140215621 | Xaypanya et al. | Jul 2014 | A1 |
20140224784 | Kohler | Aug 2014 | A1 |
20140225603 | Auguste et al. | Aug 2014 | A1 |
20140230062 | Kumaran | Aug 2014 | A1 |
20140233387 | Zheng et al. | Aug 2014 | A1 |
20140247206 | Grokop et al. | Sep 2014 | A1 |
20140258310 | Wong et al. | Sep 2014 | A1 |
20140269777 | Rothstein et al. | Sep 2014 | A1 |
20140280499 | Basavaiah et al. | Sep 2014 | A1 |
20140280892 | Reynolds et al. | Sep 2014 | A1 |
20140280908 | Rothstein et al. | Sep 2014 | A1 |
20140281030 | Cui et al. | Sep 2014 | A1 |
20140286174 | Iizuka et al. | Sep 2014 | A1 |
20140286354 | Van De Poel et al. | Sep 2014 | A1 |
20140289418 | Cohen et al. | Sep 2014 | A1 |
20140289854 | Mahvi | Sep 2014 | A1 |
20140297357 | Zeng et al. | Oct 2014 | A1 |
20140298461 | Hohndel et al. | Oct 2014 | A1 |
20140301213 | Khanal et al. | Oct 2014 | A1 |
20140307686 | Su et al. | Oct 2014 | A1 |
20140317278 | Kersch et al. | Oct 2014 | A1 |
20140317737 | Shin et al. | Oct 2014 | A1 |
20140321290 | Jin et al. | Oct 2014 | A1 |
20140330616 | Lyras | Nov 2014 | A1 |
20140331048 | Casas-Sanchez et al. | Nov 2014 | A1 |
20140331276 | Frascadore et al. | Nov 2014 | A1 |
20140331280 | Porras et al. | Nov 2014 | A1 |
20140331304 | Wong | Nov 2014 | A1 |
20140344438 | Chen et al. | Nov 2014 | A1 |
20140348182 | Chandra et al. | Nov 2014 | A1 |
20140351203 | Kunnatur et al. | Nov 2014 | A1 |
20140351415 | Harrigan et al. | Nov 2014 | A1 |
20140359695 | Chari et al. | Dec 2014 | A1 |
20140363076 | Han | Dec 2014 | A1 |
20140376379 | Fredette et al. | Dec 2014 | A1 |
20150006689 | Szilagyi et al. | Jan 2015 | A1 |
20150006714 | Jain | Jan 2015 | A1 |
20150007317 | Jain | Jan 2015 | A1 |
20150009840 | Pruthi et al. | Jan 2015 | A1 |
20150019140 | Downey et al. | Jan 2015 | A1 |
20150019569 | Parker et al. | Jan 2015 | A1 |
20150023170 | Kakadia et al. | Jan 2015 | A1 |
20150026794 | Zuk et al. | Jan 2015 | A1 |
20150026809 | Altman et al. | Jan 2015 | A1 |
20150033305 | Shear et al. | Jan 2015 | A1 |
20150036480 | Huang et al. | Feb 2015 | A1 |
20150036533 | Sodhi et al. | Feb 2015 | A1 |
20150039751 | Harrigan et al. | Feb 2015 | A1 |
20150039757 | Petersen et al. | Feb 2015 | A1 |
20150043351 | Ohkawa et al. | Feb 2015 | A1 |
20150046882 | Menyhart et al. | Feb 2015 | A1 |
20150047032 | Hannis et al. | Feb 2015 | A1 |
20150052441 | Degioanni | Feb 2015 | A1 |
20150058976 | Carney et al. | Feb 2015 | A1 |
20150067143 | Babakhan et al. | Mar 2015 | A1 |
20150067786 | Fiske | Mar 2015 | A1 |
20150082151 | Liang et al. | Mar 2015 | A1 |
20150082430 | Sridhara et al. | Mar 2015 | A1 |
20150085665 | Kompella et al. | Mar 2015 | A1 |
20150089614 | Mathew et al. | Mar 2015 | A1 |
20150095332 | Beisiegel et al. | Apr 2015 | A1 |
20150112933 | Satapathy | Apr 2015 | A1 |
20150113063 | Liu et al. | Apr 2015 | A1 |
20150113133 | Srinivas et al. | Apr 2015 | A1 |
20150117624 | Rosenshine | Apr 2015 | A1 |
20150124608 | Agarwal et al. | May 2015 | A1 |
20150124652 | Dhamapurikar et al. | May 2015 | A1 |
20150128133 | Pohlmann | May 2015 | A1 |
20150128205 | Mahaffey et al. | May 2015 | A1 |
20150128246 | Feghali et al. | May 2015 | A1 |
20150134801 | Walley et al. | May 2015 | A1 |
20150138993 | Forster et al. | May 2015 | A1 |
20150142962 | Srinivas et al. | May 2015 | A1 |
20150147973 | Williams et al. | May 2015 | A1 |
20150156118 | Madani et al. | Jun 2015 | A1 |
20150170213 | O'Malley | Jun 2015 | A1 |
20150195291 | Zuk et al. | Jul 2015 | A1 |
20150199254 | Vesepogu et al. | Jul 2015 | A1 |
20150222516 | Deval et al. | Aug 2015 | A1 |
20150222939 | Gallant et al. | Aug 2015 | A1 |
20150227396 | Nimmagadda et al. | Aug 2015 | A1 |
20150227598 | Hahn et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150244739 | Ben-Shalom et al. | Aug 2015 | A1 |
20150249622 | Phillips et al. | Sep 2015 | A1 |
20150254330 | Chan et al. | Sep 2015 | A1 |
20150256413 | Du et al. | Sep 2015 | A1 |
20150256555 | Choi et al. | Sep 2015 | A1 |
20150256587 | Walker et al. | Sep 2015 | A1 |
20150261842 | Huang et al. | Sep 2015 | A1 |
20150261886 | Wu et al. | Sep 2015 | A1 |
20150261887 | Joukov | Sep 2015 | A1 |
20150271008 | Jain et al. | Sep 2015 | A1 |
20150271255 | Mackay et al. | Sep 2015 | A1 |
20150278273 | Wigington et al. | Oct 2015 | A1 |
20150281116 | Ko et al. | Oct 2015 | A1 |
20150281277 | May | Oct 2015 | A1 |
20150281407 | Raju et al. | Oct 2015 | A1 |
20150294212 | Fein | Oct 2015 | A1 |
20150295945 | Canzanese, Jr. et al. | Oct 2015 | A1 |
20150304346 | Kim | Oct 2015 | A1 |
20150312233 | Graham, III et al. | Oct 2015 | A1 |
20150356297 | Yang et al. | Oct 2015 | A1 |
20150336016 | Chaturvedi | Nov 2015 | A1 |
20150341376 | Nandy | Nov 2015 | A1 |
20150341379 | Lefebvre et al. | Nov 2015 | A1 |
20150341383 | Reddy et al. | Nov 2015 | A1 |
20150347554 | Vasantham et al. | Dec 2015 | A1 |
20150358287 | Caputo, II et al. | Dec 2015 | A1 |
20150358352 | Chasin et al. | Dec 2015 | A1 |
20150379278 | Thota et al. | Dec 2015 | A1 |
20150381409 | Margalit et al. | Dec 2015 | A1 |
20160006753 | McDaid et al. | Jan 2016 | A1 |
20160019030 | Shukla et al. | Jan 2016 | A1 |
20160020959 | Rahaman | Jan 2016 | A1 |
20160021131 | Heilig | Jan 2016 | A1 |
20160026552 | Holden et al. | Jan 2016 | A1 |
20160028605 | Gil et al. | Jan 2016 | A1 |
20160030683 | Taylor et al. | Feb 2016 | A1 |
20160034560 | Setayesh et al. | Feb 2016 | A1 |
20160035787 | Matsuda | Feb 2016 | A1 |
20160036636 | Erickson et al. | Feb 2016 | A1 |
20160036833 | Ardeli et al. | Feb 2016 | A1 |
20160036837 | Jain et al. | Feb 2016 | A1 |
20160036838 | Jain et al. | Feb 2016 | A1 |
20160050128 | Schaible et al. | Feb 2016 | A1 |
20160050132 | Zhang et al. | Feb 2016 | A1 |
20160072638 | Amer et al. | Mar 2016 | A1 |
20160072815 | Rieke et al. | Mar 2016 | A1 |
20160080414 | Kolton et al. | Mar 2016 | A1 |
20160087861 | Kuan et al. | Mar 2016 | A1 |
20160094394 | Sharma et al. | Mar 2016 | A1 |
20160094529 | Mityagin | Mar 2016 | A1 |
20160094994 | Kirkby et al. | Mar 2016 | A1 |
20160103692 | Guntaka et al. | Apr 2016 | A1 |
20160105333 | Lenglet et al. | Apr 2016 | A1 |
20160105350 | Greifeneder et al. | Apr 2016 | A1 |
20160112269 | Singh et al. | Apr 2016 | A1 |
20160112270 | Danait et al. | Apr 2016 | A1 |
20160112284 | Pon et al. | Apr 2016 | A1 |
20160119234 | Valencia Lopez et al. | Apr 2016 | A1 |
20160127395 | Underwood et al. | May 2016 | A1 |
20160147585 | Konig et al. | May 2016 | A1 |
20160148251 | Thomas et al. | May 2016 | A1 |
20160150060 | Meng et al. | May 2016 | A1 |
20160162308 | Chen et al. | Jun 2016 | A1 |
20160162312 | Doherty et al. | Jun 2016 | A1 |
20160173446 | Nantel | Jun 2016 | A1 |
20160173535 | Barabash et al. | Jun 2016 | A1 |
20160183093 | Vaughn et al. | Jun 2016 | A1 |
20160191362 | Hwang et al. | Jun 2016 | A1 |
20160191466 | Pernicha | Jun 2016 | A1 |
20160191469 | Zatko et al. | Jun 2016 | A1 |
20160191476 | Schutz et al. | Jun 2016 | A1 |
20160196374 | Bar | Jul 2016 | A1 |
20160205002 | Rieke et al. | Jul 2016 | A1 |
20160216994 | Sefidcon et al. | Jul 2016 | A1 |
20160217022 | Velipasaoglu et al. | Jul 2016 | A1 |
20160218933 | Porras et al. | Jul 2016 | A1 |
20160234083 | Ahn et al. | Aug 2016 | A1 |
20160248794 | Cam | Aug 2016 | A1 |
20160255082 | Rathod | Sep 2016 | A1 |
20160269424 | Chandola et al. | Sep 2016 | A1 |
20160269442 | Shieh | Sep 2016 | A1 |
20160269482 | Jamjoom et al. | Sep 2016 | A1 |
20160277272 | Peach et al. | Sep 2016 | A1 |
20160277435 | Salajegheh et al. | Sep 2016 | A1 |
20160283307 | Takeshima et al. | Sep 2016 | A1 |
20160285730 | Ohkawa et al. | Sep 2016 | A1 |
20160292065 | Thangamani et al. | Oct 2016 | A1 |
20160294691 | Joshi | Oct 2016 | A1 |
20160306550 | Liu et al. | Oct 2016 | A1 |
20160308908 | Kirby et al. | Oct 2016 | A1 |
20160321452 | Richardson et al. | Nov 2016 | A1 |
20160321455 | Deng et al. | Nov 2016 | A1 |
20160330097 | Kim et al. | Nov 2016 | A1 |
20160337204 | Dubey et al. | Nov 2016 | A1 |
20160357424 | Pang et al. | Dec 2016 | A1 |
20160357546 | Chang et al. | Dec 2016 | A1 |
20160357587 | Yadav et al. | Dec 2016 | A1 |
20160357957 | Deen et al. | Dec 2016 | A1 |
20160359592 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359628 | Singh et al. | Dec 2016 | A1 |
20160359658 | Yadav et al. | Dec 2016 | A1 |
20160359673 | Gupta et al. | Dec 2016 | A1 |
20160359677 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359678 | Madani et al. | Dec 2016 | A1 |
20160359679 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359680 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359686 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359695 | Yadav et al. | Dec 2016 | A1 |
20160359696 | Yadav et al. | Dec 2016 | A1 |
20160359697 | Scheib et al. | Dec 2016 | A1 |
20160359698 | Deen et al. | Dec 2016 | A1 |
20160359699 | Gandham et al. | Dec 2016 | A1 |
20160359700 | Pang et al. | Dec 2016 | A1 |
20160359701 | Pang et al. | Dec 2016 | A1 |
20160359703 | Gandham et al. | Dec 2016 | A1 |
20160359704 | Gandham et al. | Dec 2016 | A1 |
20160359705 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359708 | Gandham et al. | Dec 2016 | A1 |
20160359709 | Deen et al. | Dec 2016 | A1 |
20160359711 | Deen et al. | Dec 2016 | A1 |
20160359712 | Alizadeh Attar et al. | Dec 2016 | A1 |
20160359740 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359759 | Singh et al. | Dec 2016 | A1 |
20160359872 | Yadav et al. | Dec 2016 | A1 |
20160359877 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359878 | Prasad et al. | Dec 2016 | A1 |
20160359879 | Deen et al. | Dec 2016 | A1 |
20160359880 | Pang et al. | Dec 2016 | A1 |
20160359881 | Yadav et al. | Dec 2016 | A1 |
20160359888 | Gupta et al. | Dec 2016 | A1 |
20160359889 | Yadav et al. | Dec 2016 | A1 |
20160359890 | Deen et al. | Dec 2016 | A1 |
20160359891 | Pang et al. | Dec 2016 | A1 |
20160359897 | Yadav et al. | Dec 2016 | A1 |
20160359905 | Touboul et al. | Dec 2016 | A1 |
20160359912 | Gupta et al. | Dec 2016 | A1 |
20160359913 | Gupta et al. | Dec 2016 | A1 |
20160359914 | Deen et al. | Dec 2016 | A1 |
20160359915 | Gupta et al. | Dec 2016 | A1 |
20160359917 | Rao et al. | Dec 2016 | A1 |
20160373481 | Sultan et al. | Dec 2016 | A1 |
20160380865 | Dubal et al. | Dec 2016 | A1 |
20160380869 | Shen et al. | Dec 2016 | A1 |
20170006141 | Bhadra | Jan 2017 | A1 |
20170024453 | Raja et al. | Jan 2017 | A1 |
20170032122 | Thakar et al. | Feb 2017 | A1 |
20170032310 | Mimnaugh | Feb 2017 | A1 |
20170034018 | Parasdehgheibi et al. | Feb 2017 | A1 |
20170048121 | Hobbs et al. | Feb 2017 | A1 |
20170054643 | Fraser | Feb 2017 | A1 |
20170059353 | Madine et al. | Mar 2017 | A1 |
20170070582 | Desai et al. | Mar 2017 | A1 |
20170075710 | Prasad et al. | Mar 2017 | A1 |
20170085483 | Mihaly et al. | Mar 2017 | A1 |
20170091204 | Minwalla et al. | Mar 2017 | A1 |
20170093910 | Gukal et al. | Mar 2017 | A1 |
20170118244 | Bai et al. | Apr 2017 | A1 |
20170163502 | Macneil et al. | Jun 2017 | A1 |
20170187733 | Ahn et al. | Jun 2017 | A1 |
20170201448 | Deval et al. | Jul 2017 | A1 |
20170208487 | Ratakonda et al. | Jul 2017 | A1 |
20170214708 | Gukal et al. | Jul 2017 | A1 |
20170222909 | Sadana et al. | Aug 2017 | A1 |
20170223052 | Stutz | Aug 2017 | A1 |
20170250880 | Akens et al. | Aug 2017 | A1 |
20170250951 | Wang et al. | Aug 2017 | A1 |
20170257424 | Neogi et al. | Sep 2017 | A1 |
20170284839 | Ojala | Oct 2017 | A1 |
20170289067 | Lu et al. | Oct 2017 | A1 |
20170295141 | Thubert et al. | Oct 2017 | A1 |
20170302691 | Singh et al. | Oct 2017 | A1 |
20170324518 | Meng et al. | Nov 2017 | A1 |
20170331747 | Singh et al. | Nov 2017 | A1 |
20170346736 | Chander et al. | Nov 2017 | A1 |
20170364380 | Frye, Jr. et al. | Dec 2017 | A1 |
20180005427 | Marvie et al. | Jan 2018 | A1 |
20180006911 | Dickey | Jan 2018 | A1 |
20180007115 | Nedeltchev et al. | Jan 2018 | A1 |
20180013670 | Kapadia et al. | Jan 2018 | A1 |
20180032905 | Abercrombie | Feb 2018 | A1 |
20180098123 | Larson et al. | Apr 2018 | A1 |
20180145906 | Yadav et al. | May 2018 | A1 |
20180191617 | Caulfield et al. | Jul 2018 | A1 |
20200225110 | Knauss et al. | Jul 2020 | A1 |
20200273040 | Novick et al. | Aug 2020 | A1 |
20200279055 | Nambiar et al. | Sep 2020 | A1 |
20200396129 | Tedaldi et al. | Dec 2020 | A1 |
20220141103 | Gandham et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
1486555 | Mar 2004 | CN |
101093452 | Dec 2007 | CN |
101465763 | Jun 2009 | CN |
101667935 | Mar 2010 | CN |
101770551 | Jul 2010 | CN |
102142009 | Aug 2011 | CN |
102204170 | Sep 2011 | CN |
102521537 | Jun 2012 | CN |
103023970 | Apr 2013 | CN |
103699664 | Apr 2014 | CN |
103716137 | Apr 2014 | CN |
104065518 | Sep 2014 | CN |
107196807 | Sep 2017 | CN |
0811942 | Dec 1997 | EP |
1039690 | Sep 2000 | EP |
1069741 | Jan 2001 | EP |
1076848 | Jul 2002 | EP |
1383261 | Jan 2004 | EP |
1450511 | Aug 2004 | EP |
2045974 | Apr 2008 | EP |
2043320 | Apr 2009 | EP |
2427022 | Mar 2012 | EP |
2723034 | Apr 2014 | EP |
2860912 | Apr 2015 | EP |
2887595 | Jun 2015 | EP |
3069241 | Aug 2018 | EP |
3793166 | Jan 2023 | EP |
2009-016906 | Jan 2009 | JP |
1394338 | May 2014 | KR |
0145370 | Jun 2001 | WO |
2006045793 | May 2006 | WO |
WO 2007014314 | Feb 2007 | WO |
2007042171 | Apr 2007 | WO |
WO 2007070711 | Jun 2007 | WO |
WO 2008069439 | Jun 2008 | WO |
2010048693 | May 2010 | WO |
2010059972 | May 2010 | WO |
2012139288 | Oct 2012 | WO |
WO 2013030830 | Mar 2013 | WO |
2013126759 | Aug 2013 | WO |
2014127008 | Aug 2014 | WO |
WO 2015042171 | Mar 2015 | WO |
WO 2015099778 | Jul 2015 | WO |
2015118454 | Aug 2015 | WO |
WO 2016004075 | Jan 2016 | WO |
WO 2016019523 | Feb 2016 | WO |
Entry |
---|
Al-Fuqaha, Ala, et al., “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communication Surveys & Tutorials. vol. 17, No. 4, Nov. 18, 2015, pp. 2347-2376. |
Arista Networks, Inc., “Application Visibility and Network Telemtry using Splunk,” Arista White Paper, Nov. 2013, 11 pages. |
Aydin, et al., “Architecture and Implementation of a Scalable Sensor Data Storage and Analysis System Using Cloud Computing and Big Data Technologies,” Journal of Sensors, vol. 2015, pp. 1-11. |
Australian Government Department of Defence, Intelligence and Security, “Top 4 Strategies to Mitigate Targeted Cyber Intrusions,” Cyber Security Operations Centre Jul. 2013, http://www.asd.gov.au/infosec/top-mitigations/top-4-strategies-explained.htm. |
Author Unknown, “Blacklists & Dynamic Reputation: Understanding Why the Evolving Threat Eludes Blacklists,” www.dambala.com, 9 pages, Dambala, Atlanta, GA, USA. |
Backes, Michael, et al., “Data Lineage in Malicious Environments,” IEEE 2015, pp. 1-13. |
Baek, Kwang-Hyun, et al., “Preventing Theft of Quality of Service on Open Platforms,” 2005 Workshop of the 1st International Conference on Security and Privacy for Emerging Areas in Communication Networks, 2005, 12 pages. |
Bauch, Petr, “Reader's Report of Master's Thesis, Analysis and Testing of Distributed NoSQL Datastore Riak,” May 28, 2015, Brno. 2 pages. |
Bayati, Mohsen, et al., “Message-Passing Algorithms for Sparse Network Alignment,” Mar. 2013, 31 pages. |
Berezinski, Przemyslaw, et al., “An Entropy-Based Network Anomaly Detection Method,” Entropy, 2015, vol. 17, www.mdpi.com/journal/entropy, pp. 2367-2408. |
Berthier, Robin, et al. “Nfsight: Netflow-based Network Awareness Tool,” 2010, 16 pages. |
Bhuyan, Dhiraj, “Fighting Bots and Botnets,” 2006, pp. 23-28. |
Blair, Dana, et al., U.S. Appl. No. 62/106,006, tiled Jan. 21, 2015, entitled “Monitoring Network Policy Compliance.” |
Bosch, Greg, “Virtualization,” 2010, 33 pages. |
Breen, Christopher, “MAC 911, How to dismiss Mac App Store Notifications,” Macworld.com, Mar. 24, 2014, 3 pages. |
Brocade Communications Systems, Inc., “Chapter 5—Configuring Virtual LANs (VLANs),” Jun. 2009, 38 pages. |
Chandran, Midhun, et al., “Monitoring in a Virtualized Environment,” GSTF International Journal on Computing, vol. 1, No. 1, Aug. 2010. |
Chari, Suresh, et al., “Ensuring continuous compliance through reconciling policy with usage,” Proceedings of the 18th ACM symposium on Access control models and technologies (SACMAT '13). ACM, New York, NY, USA, 49-60. |
Chen, Xu, et al., “Automating network application dependency discovery: experiences, limitations, and new solutions,” 8th USENIX conference on Operating systems design and implementation (OSDI'08), USENIX Association, Berkeley, CA, USA, 117-130. |
Chou, C.W., et al., “Optical Clocks and Relativity,” Science vol. 329, Sep. 24, 2010, pp. 1630-1633. |
Cisco Systems, “Cisco Network Analysis Modules (NAM) Tutorial,” Cisco Systems, Inc., Version 3.5. |
Cisco Systems, Inc. “Cisco, Nexus 3000 Series NX-OS Release Notes, Release 5.0(3)U3(1),” Feb. 29, 2012, Part No. OL-26631-01, 16 pages. |
Cisco Systems, Inc., “Addressing Compliance from One Infrastructure: Cisco Unified Compliance Solution Framework,” 2014. |
Cisco Systems, Inc., “Cisco—VPN Client User Guide for Windows,” Release 4.6, Aug. 2004, 148 pages. |
Cisco Systems, Inc., “Cisco 4710 Application Control Engine Appliance Hardware Installation Guide,” Nov. 2007, 66 pages. |
Cisco Systems, Inc., “Cisco Application Dependency Mapping Service,” 2009. |
Cisco Systems, Inc., “Cisco Data Center Network Architecture and Solutions Overview,” Feb. 2006, 19 pages. |
Cisco Systems, Inc., “Cisco IOS Configuration Fundamentals Configuration Guide: Using Autoinstall and Setup,” Release 12.2, first published Apr. 2001, last updated Sep. 2003, 32 pages. |
Cisco Systems, Inc., “Cisco VN-Link: Virtualization-Aware Networking,” White Paper, Mar. 2009, 10 pages. |
Cisco Systems, Inc., “Cisco, Nexus 5000 Series and Cisco Nexus 2000 Series Release Notes, Cisco NX-OS Release 5.1(3)N2(1b), NX-OS Release 5.1(3)N2(1a) and NX-OS Release 5.1(3)N2(1),” Sep. 5, 2012, Part No. OL-26652-03 CO, 24 pages. |
Cisco Systems, Inc., “Nexus 3000 Series NX-OS Fundamentals Configuration Guide, Release 5.0(3)U3(1): Using PowerOn Auto Provisioning,” Feb. 29, 2012, Part No. OL-26544-01, 10 pages. |
Cisco Systems, Inc., “Quick Start Guide, Cisco ACE 4700 Series Application Control Engine Appliance,” Software Ve740rsion A5(1.0), Sep. 2011, 138 pages. |
Cisco Systems, Inc., “Routing And Bridging Guide, Cisco ACE Application Control Engine,” Software Version A5(1.0), Sep. 2011, 248 pages. |
Cisco Systems, Inc., “VMWare and Cisco Virtualization Solution: Scale Virtual Machine Networking,” Jul. 2009, 4 pages. |
Cisco Systems, Inc., “White Paper—New Cisco Technologies Help Customers Achieve Regulatory Compliance,” 1992-2008. |
Cisco Systems, Inc., “A Cisco Guide to Defending Against Distributed Denial of Service Attacks,” May 3, 2016, 34 pages. |
Cisco Systems, Inc., “Cisco Application Visibility and Control,” Oct. 2011, 2 pages. |
Cisco Systems, Inc., “Cisco Remote Integrated Service Engine for Citrix NetScaler Appliances and Cisco Nexus 7000 Series Switches Configuration Guide,” Last modified Apr. 29, 2014, 78 pages. |
Cisco Systems, Inc., “Cisco Tetration Platform Data Sheet”, Updated Mar. 5, 2018, 21 pages. |
Cisco Technology, Inc., “Cisco IOS Software Release 12.4T Features and Hardware Support,” Feb. 2009, 174 pages. |
Cisco Technology, Inc., “Cisco Lock-and-Key:Dynamic Access Lists,” http://www/cisco.com/c/en/us/support/docs/security-vpn/lock-key/7604-13.html; Updated Jul. 12, 2006, 16 pages. |
Cisco Systems, Inc., “Cisco Application Control Engine (ACE) Troubleshooting Guide—Understanding the ACE Module Architecture and Traffic Flow,” Mar. 11, 2011, 6 pages. |
Costa, Raul, et al., “An Intelligent Alarm Management System for Large-Scale Telecommunication Companies,” In Portuguese Conference on Artificial Intelligence, Oct. 2009, 14 pages. |
De Carvalho, Tiago Filipe Rodrigues, “Root Cause Analysis in Large and Complex Networks,” Dec. 2008, Repositorio.ul.pt, pp. 1-55. |
Di Lorenzo, Guisy, et al., “EXSED: An Intelligent Tool for Exploration of Social Events Dynamics from Augmented Trajectories,” Mobile Data Management (MDM), pp. 323-330, Jun. 3-6, 2013. |
Duan, Yiheng, et al., Detective: Automatically Identify and Analyze Malware Processes in Forensic Scenarios via DLLs, IEEE ICC 2015—Next Generation Networking Symposium, pp. 5691-5696. |
Feinstein, Laura, et al., “Statistical Approaches to DDOS Attack Detection and Response,” Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX '03), Apr. 2003, 12 pages. |
Foundation for Intelligent Physical Agents, “FIPA Agent Message Transport Service Specification,” Dec. 3, 2002, http://www.fipa.org; 15 pages. |
George, Ashley, et al., “NetPal: A Dynamic Network Administration Knowledge Base,” 2008, pp. 1-14. |
Gia, Tuan Nguyen, et al., “Fog Computing in Healthcare Internet of Things: A Case Study on ECG Feature Extraction,” 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Oct. 26, 2015, pp. 356-363. |
Goldsteen, Abigail, et al., “A Tool for Monitoring and Maintaining System Trustworthiness at Run Time,” REFSQ (2015), pp. 142-147. |
Hamadi, S., et al., “Fast Path Acceleration for Open vSwitch in Overlay Networks,” Global Information Infrastructure and Networking Symposium (GIIS), Montreal, QC, pp. 1-5, Sep. 15-19, 2014. |
Heckman, Sarah, et al., “On Establishing a Benchmark for Evaluating Static Analysis Alert Prioritization and Classification Techniques,” IEEE, 2008; 10 pages. |
Hewlett-Packard, “Effective use of reputation intelligence in a security operations center,” Jul. 2013, 6 pages. |
Hideshima, Yusuke, et al., “Starmine: A Visualization System for Cyber Attacks,” https://www.researchgate.net/publication/221536306, Feb. 2006, 9 pages. |
Huang, Hing-Jie, et al., “Clock Skew Based Node Identification in Wireless Sensor Networks,” IEEE, 2008, 5 pages. |
InternetPerils, Inc., “Control Your Internet Business Risk,” 2003-2015, https://www.internetperils.com. |
Ives, Herbert, E., et al., “An Experimental Study of the Rate of a Moving Atomic Clock,” Journal of the Optical Society of America, vol. 28, No. 7, Jul. 1938, pp. 215-226. |
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 1 of 2, 350 pages. |
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 2 of 2, 588 pages. |
Joseph, Dilip, et al., “Modeling Middleboxes,” IEEE Network, Sep./Oct. 2008, pp. 20-25. |
Kent, S., et al. “Security Architecture for the Internet Protocol,” Network Working Group, Nov. 1998, 67 pages. |
Kerrison, Adam, et al., “Four Steps to Faster, Better Application Dependency Mapping—Laying the Foundation for Effective Business Service Models,” BMCSoftware, 2011. |
Kim, Myung-Sup, et al. “A Flow-based Method for Abnormal Network Traffic Detection, ”IEEE, 2004, pp. 599-612. |
Kraemer, Brian, “Get to know your data center with CMDB,” TechTarget, Apr. 5, 2006, http://searchdatacenter.techtarget.com/news/118820/Get-to-know-your-data-center-with-CMDB. |
Lab SKU, “VMware Hands-on Labs—HOL-SDC-1301” Version: 20140321-160709, 2013; http://docs.hol.vmware.com/HOL-2013/holsdc-1301_html_en/ (part 1 of 2). |
Lab SKU, “VMware Hands-on Labs—HOL-SDC-1301” Version: 20140321-160709, 2013; http://docs.hol.vmware.com/HOL-2013/holsdc-1301_html_en/ (part 2 of 2). |
Lachance, Michael, “Dirty Little Secrets of Application Dependency Mapping,” Dec. 26, 2007. |
Landman, Yoav, et al., “Dependency Analyzer,” Feb. 14, 2008, http://ifrog.com/confluence/display/DA/Home. |
Lee, Sihyung, “Reducing Complexity of Large-Scale Network Configuration Management,” Ph.D. Dissertation, Carniege Mellon University, 2010. |
Li, Ang, et al., “Fast Anomaly Detection for Large Data Centers,” Global Telecommunications Conference (GLOBECOM 2010, Dec. 2010, 6 pages. |
Li, Bingbong, et al., “A Supervised Machine Learning Approach to Classify Host Roles on Line Using sFlow,” in Proceedings of the first edition workshop on High performance and programmable networking, 2013, ACM, New York, NY, USA, 53-60. |
Liu, Ting, et al., “Impala: A Middleware System for Managing Autonomic, Parallel Sensor Systems,” In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming(PPoPP '03), ACM, New York, NY, USA, Jun. 11-13, 2003, pp. 107-118. |
Lu, Zhonghai, et al., “Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks on Chip,” Design and Diagnostics of Electronic Circuits and Systems, pp. 1, 6, 16-18, Apr. 2008. |
Matteson, Ryan, “Depmap: Dependency Mapping of Applications Using Operating System Events: a Thesis,” Master's Thesis, California Polytechnic State University, Dec. 2010. |
Miller, N., et al., “Collecting network status information for network-aware applications,” Proceedings IEEE INFOCOM 2000. vol. 2, 2000, pp. 641-650. |
Natarajan, Arun, et al., “NSDMiner: Automated Discovery of Network Service Dependencies,” Institute of Electrical and Electronics Engineers INFOCOM, Feb. 2012, 9 pages. |
Navaz, A.S. Syed, et al., “Entropy based Anomaly Detection System to Prevent DDOS Attacks in Cloud,” International Journal of computer Applications (0975-8887), vol. 62, No. 15, Jan. 2013, pp. 42-47. |
Neverfail, “Neverfail IT Continuity Architect,” 2015, https://web.archive.org/web/20150908090456/http://www.neverfailgroup.com/products/it-continuity-architect. |
Nilsson, Dennis K., et al., “Key Management and Secure Software Updates in Wireless Process Control Environments,” In Proceedings of the First ACM Conference on Wireless Network Security (WiSec '08), ACM, New York, NY, USA, Mar. 31-Apr. 2, 2008, pp. 100-108. |
Nunnally, Troy, et al., “P3D: A Parallel 3D Coordinate Visualization for Advanced Network Scans,” IEEE 2013, Jun. 9-13, 2013, 6 pages. |
O'Donnell, Glenn, et al., “The CMDB Imperative: How to Realize the Dream and Avoid the Nightmares,” Prentice Hall, Feb. 19, 2009. |
Ohta, Kohei, et al., “Detection, Defense, and Tracking of Internet-Wide Illegal Access in a Distributed Manner,” 2000, pp. 1-16. |
Online Collins English Dictionary, 1 page (Year: 2018). |
Pathway Systems International Inc., “How Blueprints does Integration,” Apr. 15, 2014, 9 pages, http://pathwaysystems.com/company-blog/. |
Pathway Systems International Inc., “What is Blueprints?” 2010-2016, http://pathwaysystems.com/blueprints-about/. |
Popa, Lucian, et al., “Macroscope: End-Point Approach to Networked Application Dependency Discovery,” CoNEXT'09, Dec. 1-4, 2009, Rome, Italy, 12 pages. |
Prasad, K. Munivara, et al., “An Efficient Detection of Flooding Attacks to Internet Threat Monitors (ITM) using Entropy Variations under Low Traffic,” Computing Communication & Networking Technologies (ICCCNT '12), Jul. 26-28, 2012, 11 pages. |
Sachan, Mrinmaya, et al., “Solving Electrical Networks to incorporate Supervision in Random Walks,” May 13-17, 2013, pp. 109-110. |
Sammarco, Matteo, et al., “Trace Selection for Improved WLAN Monitoring,” Aug. 16, 2013, pp. 9-14. |
Shneiderman, Ben, et al., “Network Visualization by Semantic Substrates,” Visualization and Computer Graphics, vol. 12, No. 5, pp. 733,740, Sep.-Oct. 2006. |
Theodorakopoulos, George, et al., “On Trust Models and Trust Evaluation Metrics for Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications. vol. 24, Issue 2, Feb. 2006, pp. 318-328. |
Thomas, R., “Bogon Dotted Decimal List,” Version 7.0, Team Cymru NOC, Apr. 27, 2012, 5 pages. |
Voris, Jonathan, et al., “Bait and Snitch: Defending Computer Systems with Decoys,” Columbia University Libraries, Department of Computer Science, 2013, pp. 1-25. |
Wang, Ru, et al., “Learning directed acyclic graphs via bootstarp aggregating,” 2014, 47 pages, http://arxiv.org/abs/1406.2098. |
Wang, Yongjun, et al., “A Network Gene-Based Framework for Detecting Advanced Persistent Threats,” Nov. 2014, 7 pages. |
Witze, Alexandra, “Special relativity aces time trial, ‘Time dilation’ predicted by Einstein confirmed by lithium ion experiment,” Nature, Sep. 19, 2014, 3 pages. |
Woodberg, Brad, “Snippet from Juniper SRX Series” Jun. 17, 2013, 1 page, O'Reilly Media, Inc. |
Zatrochova, Zuzana, “Analysis and Testing of Distributed NoSQL Datastore Riak,” Spring, 2015, 76 pages. |
Zeng, Sai, et al., “Managing Risk in Multi-node Automation of Endpoint Management,” 2014 IEEE Network Operations and Management Symposium (NOMS), 2014, 6 pages. |
Zhang, Yue, et al., “CANTINA: A Content-Based Approach to Detecting Phishing Web Sites,” May 8-12, 2007, pp. 639-648. |
Sandholm, Thomas, et al.; “MapReduce Optimization Using Regulated Dynamic Prioritization”; ACM; 2009, pp. 299-310. |
Ananthanarayanan R., et al., “Photon: Fault-tolerant and Scalable Joining of Continuous Data Streams,” Proceedings of the ACM SIGMOD International Conference on Management of Data, New York, USA, Jun. 22-27, 2013, pp. 577-588. |
Aniszczyk C., “Distributed Systems Tracing with Zipkin,” Twitter Blog, Jun. 7, 2012, 3 Pages, [Retrieved on Jan. 26, 2021] Retrieved from URL: https://blog.twitter.com/engineering/en_us/a/2012/distributed-systems-tracing-with-zipkin.html. |
Ayers A., et al., “TraceBack: First Fault Diagnosis by Reconstruction of Distributed Control Flow,” Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation—PLDI '09, Jun. 12-15, 2005, vol. 40, No. 6, 13 pages. |
Baah G.K., et al.,“The Probabilistic Program Dependence Graph and Its Application to Fault Diagnosis,” IEEE Transactions on Software Engineering, IEEE Service Center, Los Alamitos, CA, US, Jul./Aug. 2010, vol. 36, No. 4, pp. 528-545, ISSN 0098-5589, XP011299543. |
Brahmi H.I., et al., “Improving Emergency Messages Transmission Delay in Road Monitoring Based WSNs,” 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC), 2013, 8 Pages, [Retrieved on Aug. 31, 2021]. |
Choi C.H., et al., “CSMonitor: A Visual Client/Server Monitor for CORBA-based Distributed Applications,” Proceedings of 1998 Asia Pacific Software Engineering Conference, Taipei, Taiwan, Los Alamitos, CA, USA, Dec. 2-4, 1998, 8 Pages, DOI:10.1109/APSEC.1998.733738, ISBN 978-0-8186-9183-6, XP010314829. |
Cisco Systems, Inc., “CCNA2 v3.1 Module 1 WANs and Routers,” Cisco.com, May 14, 2018, 26 pages. |
Cisco Systems, Inc., “CCNA2 v3.1 Module 2 Introduction to Routers,” Cisco.com, Jan. 18, 2018, 23 pages. |
Citirx, “AppFlow: Next-Generation Application Performance Monitoring,” Citirx.com, 2011, pp. 1-8. |
Diaz J.M., et al., “A Simple Closed-Form Approximation for the Packet Loss Rate of a TCP Connection Over Wireless inks,” IEEE Communications Letters, Sep. 2014, vol. 18, No. 9, 4 Pages. |
Extended European Search Report for European Application No. 19215055.5, dated Jan. 17, 2020, 9 Pages. |
Extended European Search Report for European Application No. 20165008.2, dated May 25, 2020, 6 pages. |
Extended European Search Report for European Application No. 21150804.9, dated May 6, 2021, 8 Pages. |
Extended European Search Report for European Application No. 21156151.9, dated May 25, 2021, 8 pages. |
Extended European Search Report for European Application No. 21190461.0, dated Mar. 1, 2022, 10 Pages. |
Github, “OpenTracing,” 10 pages, Retrieved on Jul. 5, 2023, from URL: https://github.com/opentracing/specification/blob/master/specification.md. |
Goins A., et al., “Diving Deep into Kubernetes Networking,” Rancher, Jan. 2019, 42 pages. |
Grove D., et al., “Call Graph Construction in Object-Oriented Languages,” ACM Object-oriented Programming, Systems, Languages, and Applications—OOPSLA '97 Conference Proceedings, Oct. 1997, 18 pages. |
Henke C., et al., “Evaluation of Header Field Entropy forHash-Based Packet Selection,” based on Search String from Google: “entropy header fields,” Obtained on: Nov. 12, 2019, Passive and Active Network Measurement—PAM, 2008, vol. 4979, pp. 82-91. |
Hogg S., “Not your Father's Flow Export Protocol (Part 2), What is AppFlow and how does it Differ From Other Flow Analysis Protocols?,” Core Networking, Mar. 19, 2014, 6 pages. |
Ihler A., et al., “Learning to Detect Events With Markov-Modulated Poisson Processes,” ACM Transactions on Knowledge Discovery From Data, Dec. 2007, vol. 1, No. 3, Article 13, pp. 13:1 to 13:23. |
International Search Report and Written Opinion for International Application No. PCT/US2016/035348, dated Jul. 27, 2016, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/035349, dated Jul. 27, 2016, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/035350, dated Aug. 17, 2016, 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/035351, dated Aug. 10, 2016, 15 pages. |
Juels A., “RFID Security and Privacy: A Research Survey,” Feb. 2006, IEEE Journal on Selected Areas in Communications, vol. 24, No. 2, pp. 381-394. |
Kalyanasundaram B., et al., “Using Mobile Data Collectors to Federate Clusters of Disjoint Sensor Network Segments,” IEEE, International Conference on Communications, Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 2013, pp. 1496-1500. |
Kubernetes Blog, “Borg: The Predecessor to Kubernetes,” Apr. 23, 2015, 2 pages, Retrieved from URL: https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes/. |
Kubernetes IO, “Kubernetes Components,” Aug. 28, 2020, 4 pages, Retrieved from URL: https://kubernetes.io/docs/concepts/overview/components/. |
Kubernetes IO, “Nodes,” Jan. 12, 2021, 6 pages, Retrieved from URL: https://kubernetes.io/docs/concepts/architecture/nodes/. |
Kubemetes IO, “Pods,” Jan. 12, 2021, 5 pages, Retrieved from URL: https://kubernetes.io.docs/concepts/workloads/pods/pod/. |
Kubernetes IO, “What is Kubernetes?,” Oct. 22, 2020, 3 pages, Retrieved from URL: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. |
Merriam-Webster, “Definition of Database,” Merriam-Webster Dictionary, 2018, 4 Pages. |
Moe J., et al., “Understanding Distributed Systems via Execution Trace Data,” Proceedings of the 9th International Workshop on Program Comprehension, Toronto, Canada, May 12-13, 2001, 8 Pages. |
Nagarajan R., et al., “Approximation Techniques for Computing Packet Loss in Finite-buffered Voice Multiplexers,” EEE Journal on Selected Areas in Communications, Apr. 1991, vol. 9, No. 3, pp. 368-377. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2016/035348, dated Dec. 14, 2017, 7 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2016/035349, dated Dec. 14, 2017, 7 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2016/035350, dated Dec. 14, 2017, 11 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2016/035351, dated Dec. 14, 2017, 11 pages. |
Opentracing IO, “The OpenTracing Semantic Specification,” 8 pages, Retrieved on Jul. 5, 2023, from URL: https://opentracing.io/docs/. |
Sardella A., “Securing Service Provider Networks: Protecting Infrastructure and Managing Customer Security,” Juniper Networks, Inc., White Paper, Dec. 2006, pp. 1-19. |
Senel F., et al., “Optimized Interconnection of Disjoint Wireless Sensor Network Segments Using K Mobile Data Collectors,” IEEE International Conference on Communications (ICC), Jun. 2012, pp. 497-501. |
Sherri S., et al., “A Chipset Level Network Backdoor: Bypassing Host-Based Firewall & IDS,” ACM 2009, pp. 125-134. |
Sigelman B.H., et al., “Dapper, A Large-Scale Distributed Systems Tracing Infrastracture,” Google Technical Report dapper-2010-1, Apr. 2010, 14 Pages, Retrieved from the Internet: URL: https://research.google/pubs/pub36356/. |
Templeton S.J., et al., “Detecting Spoofed Packets,” IEEE, Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX'03), 2003, pp. 1-12. |
Zhang D., et al., “Packet Loss Measurement and Control for VPN based Services,” Proceedings of IEEE Instrumentation and Measurement Technology Conference, May 17-19, 2005, vol. 3, 5 Pages. |
Number | Date | Country | |
---|---|---|---|
20200304390 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62171899 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15157300 | May 2016 | US |
Child | 16893854 | US |