Synthetic microspheres and methods of making same

Abstract
A synthetic microsphere having a low alkali metal oxide content and methods of forming the microsphere and its components are provided. The synthetic microsphere is substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The synthetic microsphere can be made from an agglomerate precursor that includes an aluminosilicate material, such as fly ash, a blowing agent such as sugar, carbon black, and silicon carbide, and a binding agent. The synthetic microsphere is produced when the precursor is fired at a pre-determined temperature profile so as to form either solid or hollow synthetic microspheres depending on the processing conditions and/or components used.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of this invention generally relate to synthetic microspheres and processes for manufacturing the microspheres. These embodiments have been developed primarily to provide a cost-effective alternative to commercially available cenospheres.


2. Description of the Related Art


Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.


Cenospheres are spherical inorganic hollow microparticles found in fly ash, which is typically produced as a by-product in coal-fired power stations. Cenospheres typically make up around 1%-2% of the fly ash and can be recovered or “harvested” from fly ash. These harvested cenospheres are widely available commercially. The composition, form, size, shape and density of cenospheres provide particular benefits in the formulation and manufacture of many low-density products.


One of the characterizing features of cenospheres is their exceptionally high chemical durability. This exceptionally high chemical durability is understood to be largely due to the very low content of alkali metal oxides, particularly sodium oxide, in their composition. Accordingly, low-density composites produced from harvested cenospheres usually have the desirable properties of high strength to weigh ratio and chemical inertness. Chemical inertness is especially important in Portland cement applications, where relative chemical inertness plays an important role in achieving highly durable cementitious products. Thus, harvested cenospheres have proven to be especially useful in building products and in general applications where they may come into contact with corrosive environments where high chemical durability is desirable.


Despite the known utility of harvested cenospheres, their widespread use has been limited to a large extent by their cost and availability. The recovery of cenospheres in large quantities from fly ash is a labor intensive and expensive process. Although it is possible to increase the recovery of cenospheres from fly ash by modifying the collection process, the cost of improved recovery does not make this economically viable.


It may also be possible to alter combustion conditions in power stations to increase the yield of cenospheres in fly ash. However, combustion conditions in power stations are optimized for coal-burning rather than cenosphere production. It is not economically viable to increase the yield of cenosphere production at the expense of coal-burning efficiency.


Several methods for producing synthetic microspheres have also been developed and are described in the prior art. Early methods for manufacturing hollow glass microspheres involved combining sodium silicate and borax with a suitable foaming agent, drying and crushing the mixture, adjusting the size of the crushed particles and subsequently firing the particles. However, these methods suffer from the use of expensive starting materials such as borax. Hence, the resulting microspheres are necessarily expensive. In addition, the product has poor chemical durability due to the presence of a relatively high percentage of sodium oxide in the resulting glass composition.


U.S. Pat. No. 3,752,685 describes a method of producing glass microspheres from Shirasu, a naturally occurring volcanic rock. Upon heating at 800 to 1000° C., finely divided Shirasu forms hollow glass microspheres. However, this method relies on the provision of Shirasu, which is not a widely available starting material.


U.S. Pat. No. 3,365,315 describes a method of producing glass microspheres from glass beads by heating in the presence of water vapor at a temperature of about 1200° C. This method requires the exclusive use of pre-formed amorphous glasses as the starting raw materials.


U.S. Pat. No. 2,978,340 describes a method of forming glass microspheres from discrete, solid particles consisting essentially of an alkali metal silicate. The microspheres are formed by heating the alkali metal silicate at a temperature in the range of 1000-2500° F. in the presence of a gasifying agent, such as urea or Na2CO3. Again, these alkali silicate microspheres suffer from poor chemical durability due to a high percentage of alkali metal oxides.


U.S. Pat. No. 2,676,892 describes a method of forming microspheres from a Macquoketa clay shale by heating particles of the shale to a temperature of 2500-3500° F. The resulting product undesirably has an open pore structure leading to a relatively high water absorption in an aqueous cementitious environment.


U.S. Patent Publication No. 2001/0043996 (equivalent of EP-A-1156021) describes a spray combustion process for forming hollow microspheres having a diameter of from 1 to 20 microns. However, this process is unsuitable for making hollow microspheres having a diameter similar to that of known cenospheres, which is typically about 200 microns. In spray combustion processes as described in the reference, rapid steam explosion ruptures larger particles thereby preventing formation of hollow microspheres greater than about 20 microns in diameter.


Hence, from the foregoing, it will be appreciated that there is a need for low-cost synthetic microspheres with properties similar to those of natural microspheres harvested from fly ash. There is also a need for synthetic microspheres with acceptable chemical durability suitable for incorporation into fiber cement compositions. To this end, there is a particular need for a low-cost, high yield process of producing synthetic microspheres from commonly available raw materials. It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.


SUMMARY OF THE INVENTION

Unless the text clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”.


As used herein, the term “synthetic hollow microsphere” or “synthetic microsphere” means a microsphere synthesized as a primary target product of a synthetic process. The term does not include harvested cenospheres which are merely a by-product of burning coal in coal-fired power stations.


Although the term “microsphere” is used throughout the specification, it will be appreciated that this term is intended to include any substantially spherical microparticle, including microparticles that are not true geometric spheres.


As used herein, the term “preparing an agglomerate precursor” means a synthetic preparation of an agglomerate precursor by combining the various constituents, for example, by a method described below.


As used herein, the term “primary component” means that this component is the major constituent of the agglomerate precursor, in the sense that the amount of primary component exceeds the amount of any other individual constituent.


In one aspect, the preferred embodiments of the present invention provide method of forming synthetic microspheres having an average particle diameter greater than about 30 microns. The method comprises providing an agglomerate precursor comprising at least one aluminosilicate component and at least one binding agent, wherein the precursor has an alkali metal oxide content of less than about 10 wt. % based on the weight of the precursor. The method further comprises firing the precursor at a pre-determined temperature profile sufficient to combine the aluminosilicate component and the binding agent so as to form a microsphere having a substantially spherical wall and an average particle diameter greater than about 30 microns. In certain preferred embodiments, the method also comprises providing a blowing agent to the precursor and activating the blowing agent during the firing step so as to release a blowing gas, thereby forming at least one substantially enclosed void in the precursor.


In one embodiment, the precursor is fired at a temperature range of between about 600 to 2500° C. for a period of about 0.05 to 20 seconds. In one embodiment, the firing step comprises firing the mixture at a temperature range of between about 600 to 2500° C. The firing step can be performed in a variety of different equipment including fluidized bed reactor, a vortex furnace, a heated vertical pipe, a fuel fired furnace, or the like. Preferably, a molten skin is formed around the precursor during the firing step so as to substantially trap the blowing agent inside the molten skin. The blowing agent can be activated during or after the formation of the molten skin. In another embodiment, the method further comprises drying the aluminosilicate component prior to the firing step. In yet another embodiment, the method further comprises rapidly cooling the mixture after the firing step.


In another aspect, the preferred embodiments of the present invention provide a method of manufacturing synthetic microspheres that substantially reduces rupturing of the agglomerates during the firing process. The method comprises providing an agglomerate precursor having a pre-determined amount of a primary component comprising aluminosilicate and a pre-determined amount of at least one pre-selected chemical, wherein the at least one pre-selected chemical is combined with the primary component to form a mixture. In one embodiment, the aluminosilicate in the primary component is selected from the group consisting of fly ash, balsatic rocks, and combinations thereof, and the blowing agent is selected from the group consisting of powdered coal, carbon black, sugar, and silicon carbide, and the binding agent is selected from the group consisting of alkali silicates, hydroxides, and combinations thereof.


The method further comprises drying the mixture to form the agglomerate precursor to a first moisture level and then firing the precursor to react the at least one chemical to form substantially spherical microspheres. Preferably, the precursor is dried to a moisture level of less than about 14 wt. %. In certain embodiments, the agglomerate are dried at a temperature of about 50° C. or 400° C. or prior to the firing step. Advantageously, the drying step is configured to remove moisture from the precursor so as to substantially reduce rupturing of the microspheres during the firing step.


From the foregoing, it will be appreciated that certain aspects of the preferred embodiments provide a method of forming a synthetic microsphere that is substantially chemically inert and dimensioned to be used as a substitute for natural harvested cenospheres. In particular, certain embodiments of the method are designed to form microspheres are configured with physical properties, such as particle size (diameter), aspect ratio and density, that are substantially the same as the cenospheres. These and other objects and advantages of the preferred embodiments of the present invention will become more apparent from the following description taken in conjunction with the following drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a phase equilibrium diagram for binary system Na2O—SiO2, the composition being expressed as a weight percentage of SiO2;



FIG. 2 is a schematic illustration of one preferred method of producing the agglomerate precursor of one embodiment of the present invention;



FIG. 3 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 1 (Sample 1);



FIG. 4 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 1 (Sample 2);



FIG. 5 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 1 (Sample 3);



FIG. 6 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 2 (Sample 4);



FIG. 7 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 2 (Sample 5);



FIG. 8 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 2 (Sample 6);



FIG. 9 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 3 (Sample 7);



FIG. 10 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 4 (Sample 12);



FIG. 11 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 4 (Sample 13);



FIG. 12 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 5;



FIG. 13 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 5;



FIG. 14 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 5;



FIG. 15 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 6;



FIG. 16 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 6;



FIG. 17 is a scanning electron micrograph of synthetic hollow microspheres obtained from Example 7.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made to the drawings wherein like numerals refer to like parts throughout. As described hereinbelow, the preferred embodiments of the present invention provide a chemically durable, synthetic microsphere having properties and characteristics similar to natural cenospheres harvested from fly ash. The preferred embodiments also provide a method for manufacturing the microspheres, including raw material composition and processing, and uses for the microspheres in various applications, including fiber cement products.


Synthetic Microspheres


The synthetic microsphere as described herein generally comprises a substantially spherical outer wall and a substantially enclosed cavity or void defined by the wall, resembling the general configuration of harvested cenospheres. However, it will be appreciated that the synthetic microspheres of certain embodiments can be substantially solid. In certain preferred embodiments, the synthetic microsphere has one or more of the following characteristics, which are also generally characteristics of harvested cenospheres:

    • an aspect ratio of between about 0.8 and 1;
    • (i) a void volume of between about 30 and 95%, based on the total volume of the microsphere;
    • (ii) a wall thickness of between about 1 to 100 microns and/or 5 and 50% of the microsphere radius;
    • (iii) a composition comprising about 30 to 85% SiO2, about 2 to 45 wt. %, preferably about 6 to 40 wt. %, Al2O3, up to about 30 wt. % divalent metal oxides such as MgO, CaO, SrO, and BaO, about 4 to 10 wt. % monovalent metal oxides such as Na2O, K2O, and up to about 20 wt. % of other metal oxides, including metal oxides which exist in multiple oxidation states such as TiO2 and Fe2O3;
    • (iv) a silica to alumina ratio which is greater than about 1;
    • (v) an average diameter of between about 40 and 500 microns, more preferably between about 50 and 300 microns;
    • (vi) an outer wall thickness of between about 1 and 50 microns, preferably between about 1 and 30 microns, more preferably between about 2.5 and 20 microns;
    • (vii) a particle density of between about 0.1 and 20 g/cm3, more preferably between about 0.2 and 1.5 g/cm3, and more preferably between about 0.4 and 1 g/cm3; or
    • (viii) a bulk density of less than about 1.4 g/cm3, preferably less than about 1 g/cm3.


In one embodiment, the synthetic microsphere comprises an aluminosilicate material having an average particle diameter of between about 30 to 1000 microns and an alkali metal oxide content of less than about 10 wt. %, preferably between about 2 to 10 wt. %, based on the total weight of the microsphere. In one preferred embodiment, the total alkali metal oxide content is in the range of about 3 to 9 wt. %, more preferably about 4 to 8 wt. % based on the total weight of the microsphere. In some embodiments, the total alkali metal oxide content of the synthetic microsphere is in the range of about 4 to 6 wt. %, based on the total weight of the microsphere.


The synthetic microsphere may contain several alkali metal oxides, typically a combination of sodium oxide Na2O and potassium oxide K2O, which make up the total alkali metal content. The majority of the sodium oxide in the synthetic microspheres is typically derived from binding agents (e.g. sodium silicate) used in forming the microspheres as will be described in greater detail below. In one embodiment, the amount of sodium oxide in the synthetic microsphere is preferably in the range of about 2 to 10 wt. %, more preferably about 3 to 9 wt. %, more preferably about 4 to 8 wt. %, and more preferably about 4 to 7 wt. %, based on the total weight of the microsphere. The amount of potassium oxide in the synthetic hollow microspheres is preferably less than about 3 wt. %, more preferably less than about 2 wt. %, and more preferably less than about 1.5 wt. %, based on the total weight of the microsphere.


In certain embodiments, the synthetic microsphere further comprises one or more chemicals used to form the microspheres. For example, the make-up of the wall of the synthetic microsphere may include a binding agent that will be described in greater detail below. Moreover, the synthetic hollow microsphere may also comprise residual amounts of a blowing agent used to form the microsphere as will also be described in greater detail below.


The synthetic microspheres of the preferred embodiments have several advantages over microspheres known in the prior art. Firstly, the synthetic microspheres comprise an aluminosilicate material. Aluminosilicates are inexpensive and widely available throughout the world, for example from a large variety of rocks, clays and minerals and also from waste by-products, particularly bottom ash and fly ash. It is particularly advantageous that the synthetic microspheres can be prepared from fly ash. Secondly, the presence of only moderate quantities of alkali metal oxide provides the microspheres with acceptably high chemical durability and can be used in the same situations as known cenospheres. For example, synthetic microspheres according to preferred forms of the present invention can withstand highly caustic environments and harsh autoclaving conditions as typical of some fiber cement manufacturing processes. By contrast, synthetic microspheres produced according to methods known in the prior art generally contain high amounts of alkali metal oxides and thus have unacceptable low chemical durability.


Furthermore, an average particle diameter of between about 30 and 1000 microns for the synthetic microspheres of the preferred embodiments is advantageous. Particles of this size are known to be relatively safe is building and other materials. When very small particles (e.g. less than about 30 microns) are used in building and other materials, the risk of particulates entering the human respiratory system is greatly increased. This is highly undesirable since it is known that the entry of particulates into the respiratory system is responsible for many potentially fatal diseases, which have been well documented. The risk is increased when composite building materials incorporating the small particles are disturbed, for example, by cutting operations. Hence, the larger average particle diameter of the synthetic microspheres of the embodiments described herein permits the microspheres to be used safely in a range of applications.


As will be described in greater detail below, the synthetic hollow microsphere of certain preferred embodiments can be formed by first preparing an agglomerate precursor, wherein the agglomerate precursor comprises a primary component, a binding agent, and a blowing agent and then firing the precursor at a predetermined temperature profile sufficient to seal the surface of the precursor and activate the blowing agent thereby forming a synthetic hollow microsphere.


Agglomerate Precursor


In certain embodiments, the agglomerate precursor is generally a substantially solid agglomerate mixture comprising a primary component, a binding agent and a blowing agent. Preferably, the amount of primary component comprises about 40 wt. % or more based on the total weight of the agglomerate precursor, more preferably about 50 wt. % or more, more preferably about 70 wt. % or more, more preferably about 80 wt. % or more, and more preferably about 90 wt. % or more. Preferably, the amount of blowing agent comprises about 0.05 to 10 wt. %, based on the total weight of the agglomerate precursor, more preferably about 0.1 to 6 wt. %, more preferably about 0.2 to 4 wt. %. The exact amount of blowing agent will depend on the composition of the primary component, the type of blowing agent and the required density of the final microsphere.


The preferred ratio of primary component to blowing agent will vary, depending on the composition of each of the ingredients. Typically, the ratio of primary component to blowing agent is in the range of about 1000:1 to 10:1, more preferably about 700:1 to 15:1, and more preferably about 500:1 to 20:1.


Preferably, the agglomerate precursor has a water content of about 10 wt. % or less, more preferably about 5 wt. % or less, and more preferably about 3 wt. % or less. The agglomerate precursor is substantially dry, although a small amount of moisture may be present in the agglomerate precursor after a solution-based process for forming the precursor, which is to be described in greater detail below. A small amount of water may also help to bind particles in the agglomerate together, especially in cases where particles in the agglomerate precursor are water-reactive. In some embodiments, when the agglomerate precursor has greater than about 10 wt. % water, such as for example 14 wt. %., it was found that the agglomerate tend to burst into fines during the firing process.


Moreover, the agglomerate precursor preferably has a total alkali metal oxide content of 10 wt. % or less, and typically in the range of about 3 to 10 wt. %, about 4 to 10 wt. % or about 5 to 10 wt. %. A total alkali metal oxide content of about 10 wt. % or less is advantageous, because microspheres formed from such agglomerate precursors will still have acceptably high chemical durability suitable for most applications.


Preferably, the agglomerate is particulate, having an average agglomerate particle diameter in the range of about 10 to 1000 microns, more preferably about 30 to 1000 microns, more preferably about 40 to 500 microns, and more preferably about 50 to 300 microns.


Primary Component


In certain preferred embodiments, the primary component of the agglomerate precursor comprises a low alkali material. The “low alkali material” refers to a material having an alkali metal oxide content of about 10 wt. % or less, more preferably about 8 wt. % or less, and more preferably about 5 wt. % or less. However, in some embodiments, relative high alkali materials may still be included in the primary component. The relative high alkali materials may be combined with low alkali primary component(s) so that the resulting primary component still has a sufficiently low overall alkali metal oxide content. Accordingly, waste glass powders, such as soda lime glasses (sometimes referred to as cullet) having an alkali content of up to 15 wt. % may be included in the primary component. However, when combined with other low alkali primary component(s), the overall alkali concentration of the primary component should be about 10 wt. % or less.


Hitherto, it was believed that relatively large amounts of alkali metal oxides were required to act as a fluxing agent in forming glass microspheres from alkali metal silicates (see, for example, U.S. Pat. No. 3,365,315). However, the present inventors have found a method to form synthetic microspheres from commonly available sources of low alkali content aluminosilicate raw materials without the need for large quantities of additional alkali metal oxides. This will be described in greater detail below.


Aluminosilicate materials are well known to the person skilled in the art. Generally, these are materials having a large component (e.g., greater than about 50 wt. %, preferably greater than about 60 wt. %) of silica (SiO2) and alumina (Al2O3). The amounts of silica and alumina will vary depending on the source and may even vary within the same source. Fly ash, for example, will contain varying amounts of silica and alumina depending on the type of coal used and combustion conditions. However, the skilled person will readily understand those materials classed as “aluminosilicates”.


In one embodiment, the primary component of the precursor comprises at least one aluminosilicate material, preferably about 80 wt. % or more, or about 90 wt. % or more, based on the weight of the primary component. Typically, aluminosilicate materials for use in the embodiments of the present invention have a composition of about 30 to 85 wt. % SiO2; about 2 to 45 wt. % (preferably about 6 to 45 wt. %) Al2O3; up to about 30 wt. % (preferably up to about 15 wt. %) divalent metal oxides (e.g. MgO, CaO, SrO, BaO); up to about 10 wt. % monovalent metal oxides (e.g. Li2O, Na2O, K2O); and up to about 20 wt. % of other metal oxides, including metal oxides which exist in multiple oxidation states (e.g. TiO2, Fe2O3, etc.) Preferably, the mass ratio of silica (SiO2) to alumina (Al2O3) is greater than about 1 in the aluminosilicate materials used in certain embodiments of the present invention.


Methods of the present embodiments are not limited to any particular source of aluminosilicate material. However, the primary component preferably comprises at least one aluminosilicate material selected from fly ash (e.g. Type F fly ash, Type C fly ash, etc.), bottom ash, blast-furnace slag, paper ash, basaltic rock, andesitic rock, feldspars, aluminosilicate clays (e.g. kaolinite clay, illite clay, bedalite clay, betonite clay, china, fire clays, etc.) obsidian, diatomaceous earth, volcanic ash, volcanic rocks, silica sand, silica fume, bauxite, volcanic glasses, geopolymers and combinations thereof. More preferably, the primary component comprises fly ash and/or basaltic rock.


The aluminosilicate material may be either calcined or non-calcined. The term “calcined” means that the aluminosilicate material has been heated in air to a predetermined calcination temperature for a predetermined duration so as to either oxidize or pre-react certain component(s) of the aluminosilicate material. Calcination of the aluminosilicate material may be advantageous in certain embodiments of the present invention since the blowing (expansion) process of the microspheres can be sensitive to the redox state of multivalent oxide(s) present in the aluminosilicate material. Without wishing to be bound by theory, it is believed that activation of the blowing agent is influenced by the release of oxygen from the multivalent oxide(s) present in the aluminosilicate material (e.g., by redox reaction). As an example, a carbonaceous blowing agent may be oxidized to CO2 by ferric oxide (Fe2O3), which is in turn reduced to ferrous oxide (FeO). The release of CO2 from the blowing agent expands the microspheres. Hence, by pre-calcining the aluminosilicate material in air, the relative amount of ferric oxide is increased, which is then used as a source of oxygen for blowing agents to produce more gas, thereby lowering the density of the microspheres.


In addition, calcination can promote pre-reaction of oxide components and/or cause partial vitrification in the aluminosilicate material, which may be beneficial in the production of high quality synthetic microspheres.


Fly ash is a particularly preferred aluminosilicate primary component due to its low cost and availability. In one preferred form of the invention, the primary component comprises about 5 wt. % or more fly ash, and more preferably about 10 wt. % fly ash or more, based on the total amount of primary component. In another preferred form, the primary component comprises about 50 wt. % fly ash or more, more preferably about 70 wt. % fly ash or more, and more preferably about 90 wt. % fly ash or more, based on the total amount of primary component. In some embodiments of the present invention, the primary component may be substantially all fly ash. Fly ash may also be used in the form of a fly ash geopolymer, which is formed when fly ash is contacted with an aqueous solution of a metal hydroxide such as sodium hydroxide NaOH or potassium hydroxide KOH. Fly ash geopolymers are well known in the art.


In certain embodiments, at least one of the aluminosilicate material used preferably comprises an amorphous phase and is either partially or wholly amorphous. In general, a vitrified material is substantially amorphous.


In certain embodiments, at least one of the aluminosilicate material used preferably has an average primary particle diameter in the range of about 0.01 to 100 microns, more preferably about 0.01 to 100 microns, more preferably about 0.05 to 50 microns, more preferably about 0.1 to 25 microns, and more preferably about 0.2 to 10 microns. Preferred particle diameters may be achieved by appropriate grinding and classification. All types of grinding, milling, and overall size reduction techniques that are used in ceramic industry can be used in embodiments of the present invention. Without limiting to other methods of size reduction used for brittle solids, preferred methods according to embodiments of the present invention are ball milling (wet and dry), high energy centrifugal milling, jet milling, and attrition milling. If more than one aluminosilicate material is to be used, then the multitude of ingredients can be co-ground together. In one method of the present invention, the blowing agent and, optionally the binding agent as will be described in greater detail below, are added to the aluminosilicate material before the milling process. For example all the ingredients can be co-ground together (e.g. in a wet ball mill), which then substantially eliminates the aqueous mixing.


In an alternative embodiment of the present invention, the primary component may include waste material(s) and/or other glass-forming material(s) in addition to the at least one aluminosilicate material. Typical waste materials or other glass-forming material which may be used in this alternative embodiment include waste glasses (e.g. soda lime glasses, borosilicate glasses or other waste glasses), waste ceramics, kiln dust, waste fiber cement, concrete, incineration ash, or combinations thereof. The total amount of waste material and/or other glass-forming material may be up to about 50 wt. % (e.g. up to about 40 wt. %, up to about 30 wt. %, or up to about 20 wt. %), based on the weight of the primary component. As stated above, it is preferred that the total amount of alkali metal oxide in the primary component mixture of this type to still be less than about 10 wt. %.


Blowing Agent


The blowing agent used in embodiments of the present invention is a substance which, when heated, liberates a blowing gas by one or more of combustion, evaporation, sublimation, thermal decomposition, gasification or diffusion. The blowing gas may be, for example, CO2, CO, O2, H2O, N2, N2O, NO, NO2, SO2, SO3, or mixtures thereof. Preferably, the blowing gas comprises CO2 and/or CO.


Preferably, the blowing agent is selected from powdered coal, carbon black, activated carbon, graphite, carbonaceous polymeric organics, oils, carbohydrates (e.g. sugar, starch, etc.) PVA (polyvinyl alcohol), carbonates, carbides (e.g. silicon carbide, aluminum carbide, and boron carbide, etc.), sulfates, sulfides, nitrides (e.g. silicon nitride, boron nitride, aluminum nitride, etc.), nitrates, amines, polyols, glycols, glycerine or combinations thereof. Carbon black, powdered coal, sugar and silicon carbide are particularly preferred blowing agents.


Preferably, and particularly if the blowing agent is non-water soluble, the blowing agent has an average particle diameter in the range of about 0.01 to 10 microns, more preferably about 0.5 to 8 microns, and more preferably about 1 to 5 microns.


Binding Agent


In preferred embodiment, the agglomerate precursor comprises a binding agent (or binder). The primary function of the binding agent is to bind the particles in the agglomerate together. In some embodiments, the binding agent may act initially to bind particles of the agglomerate together during formation of the agglomerate precursor, and then act as a blowing agent during subsequent firing process.


In general, any chemical substance that is reactive and/or adheres with the aluminosilicate primary component can be used as the binding agent. The binding agent may be any commercially available material used as a binder in the ceramic industry. Preferably, the binding agent is selected from alkali metal silicates (e.g. sodium silicate), alkali metal aluminosilicate, alkali metal borates (e.g. sodium tetraborate), alkali or alkaline earth metal carbonates, alkali or alkaline earth metal nitrates, alkali or alkaline earth metal nitrites, boric acid, alkali or alkaline earth metal sulfates, alkali or alkaline earth metal phosphates, alkali or alkaline earth metal hydroxides (e.g. NaOH, KOH, or Ca(OH)2), carbohydrates (e.g. sugar, starch, etc.), colloidal silica, inorganic silicate cements, Portland cement, alumina cement, lime-based cement, phosphate-based cement, organic polymers (e.g. polyacrylates) or combinations thereof. In some cases, fly ash, such as ultrafine, Type C or Type F fly ash, can also act as a binding agent.


The binding agent and blowing agent are typically different from each other, although in some cases (e.g. sugar, starch, etc.) the same substance may have dual blowing/binding agent properties.


The term “binder” or “binding agent”, as used herein, includes all binding agents mentioned above, as well as the in situ reaction products of these binding agents with other components in the agglomerate. For example, an alkali metal hydroxide (e.g. NaOH) will react in situ with at least part of the aluminosilicate material to produce an alkali metal aluminosilicate. Sodium hydroxide may also form sodium carbonate when exposed to ambient air containing CO2, the rate of this process increasing at higher temperatures (e.g. 400° C.). The resulting sodium carbonate can react with the aluminosilicate material to form sodium aluminosilicate.


In certain preferred embodiments, the amount of binding agent is in the range of about 0.1 to 50 wt. % based on the total weight of the agglomerate precursor, more preferably about 0.5 to 40 wt. % and more preferably about 1 to 30 wt. %.


It has been unexpectedly found that the properties of the binder or binding agent, and in particular its melting point, affect the properties of the resulting microspheres. Without wishing to be bound by theory, it is understood by the present inventors that the binder is responsible for forming a molten skin around the agglomerate precursor during or prior to activation of the blowing agent in the firing step as will be described in greater detail below. Hence, in a preferred form of the present invention, the binding agent has a melting point which is lower than the melting point of the whole agglomerate precursor. Preferably, the binding agent has a melting point which is less than about 1200° C., more preferably less than about 1100° C., and more preferably less than about 1000° C. (e.g. 700 to 1000° C.).


It has also been unexpectedly found that the degree of crystallinity in the binder phase can have a pronounced effect on the formation kinetics of the molten skin. The degree of crystallinity at a given temperature may be readily determined from the phase diagram of oxides present in the mixture. For example, in a simple binary system of SiO2 and Na2O, there are three eutectic points, with the lowest one having a liquidus temperature of about 790° C. and a SiO2 to Na2O ratio of about 3. As sodium oxide concentration is increased, the liquidus temperature increases sharply, to about 1089° C. at a SiO2:Na2O ratio of about 1:1. This is illustrated in FIG. 1, which provides a phase diagram of SiO2—Na2O. Most other alkali metal oxides behave similarly to sodium oxide. For example, the K2O—SiO2 system has also several eutectic points, with the lowest at about 750° C. occurring at a SiO2 to K2O ratio of about 2.1. Similarly, Li2O has several eutectic points with one at 1028° C. and a ratio of about 4.5.


In standard glass technology, sodium oxide is known to be a strong fluxing agent. Its addition to silicate glasses lowers the melting point and viscosity of the glass. For example, in a typical soda lime glass composition, there is about 15 wt. % sodium oxide, which lowers the melting temperature of SiO2 from about 1700° C. to less than about 1400° C. However, in melting commercial glasses, enough time is given for the melt to reach the equilibrium concentration throughout the glass mass, normally in the order of hours or longer. Thus, in standard glass technology, sufficient sodium oxide and/or other fluxing agents are added so that the whole melt has the requisite viscosity-temperature characteristics.


However, without wishing to be bound by theory, it is understood by the present inventors that, under the fast reaction kinetics of firing (with a temperature increase as fast as 2000° C./second), one of the important requirements for rapid formation of a molten skin around the agglomerate precursor is rapid melting of the binder component. Hence, it is preferred that the binder (present as, for example, sodium silicate or sodium aluminosilicate) has a eutectic or near eutectic composition. Preferably, the binder is sodium silicate having a SiO2:Na2O ratio in the range of about 5:1 to about 1:1, more preferably about 4:1 to about 1.5:1, more preferably about 3.5:1 to about 2:1. It will be appreciated that other alkali metal oxides (e.g. Li2O and K2O) can have the same effect in the binder. However, Na2O is preferred due to its low cost.


It was unexpectedly found that when sodium silicate with an about 1:1 ratio of SiO2:Na2O was used as binder to formulate the agglomerate precursor, relatively dense microspheres with a particle density of about 1 g/cm3 resulted. However, sodium silicate binder with a SiO2:Na2O ratio of about 3:1 resulted in microspheres having a lower density of about 0.7 g/cm3. In both cases, the overall concentration of Na2O relative to the agglomerate was substantially the same. Under the principles of traditional glass-making technology, it would have been expected that there would be little or no difference in the final products when using the same amount of fluxing agent. However, the present inventors have found that using a eutectic or near eutectic composition in the binder, a molten skin is formed rapidly during firing, and low density microspheres result, irrespective of the total amount of fluxing agent in the agglomerate.


Equally unexpected, it was found that sodium hydroxide showed substantially the same trend. Sodium oxide, when used as a binder, reacts with silica present in aluminosilicate powders to form a compound of sodium silicate. As more sodium hydroxide is added, the ratio of silica to sodium oxide is lowered, resulting in binders with progressively higher melting temperatures.


Furthermore, the properties of the synthetic microspheres may also be dependent on the drying temperature of the agglomerate, and to some extent, the pressure. For example, a high drying temperature favors formation of sodium silicate having a lower SiO2:Na2O ratio, thereby giving a binder having a higher melting temperature. For example, about 5 wt. % of NaOH was found to be an appropriate amount of binder for forming low density microspheres when the agglomerate was dried at about 50° C. However, a substantially identical formulation resulted in higher density microspheres when the agglomerate was dried at about 400° C. It was surprisingly found that, when the agglomerate was dried at about 400° C., a lower concentration of NaOH (e.g. about 2-3 wt. %) was required to produce low density microspheres.


Traditionally, it was believed that a relatively high amount (e.g. 15 wt. %) of sodium oxide was necessary in glass-making technology to act as a fluxing agent. However, in certain embodiments of the present invention, it was surprisingly found that relatively high amounts of sodium oxide are actually less preferred.


The agglomerate precursor may also include surfactants, which assist in dispersion of the agglomerate precursor components into an aqueous solution or paste. The surfactants may be anionic, cationic or non-ionic surfactants.


As described the above, once the agglomerate precursor is formed, it is fired at a predetermined temperature profile sufficient to seal the surface of the precursor and activate the blowing agent.


Methods of Forming the Synthetic Microspheres


As described above, the synthetic microspheres of certain preferred embodiments can be formed by first combining the primary component with a binding agent and a blowing agent so as to form an agglomerate precursor in a manner to be described in greater detail below. For the formation of substantially solid microspheres, the blowing agent can be left out. The agglomerate precursor is then fired at a pre-determined temperature profile sufficient to activate the blowing agent to release a blowing gas, thereby forming a microsphere with at lease one substantially enclosed void. In embodiments for forming solid synthetic microspheres, the agglomerate precursor is fired at a pre-determined temperature profile that will adequately combine the primary component with the binding agent.


In certain preferred embodiments, the temperature profile used in the firing step substantially fuses the precursor into a melt, reduces the viscosity of the melt, seals the surface of the precursor and promotes expansive formation of gas within the melt to form bubbles. The temperature profile preferably should maintain the melt at a temperature and time sufficient to allow gas bubbles to coalesce and form a primary void. After foaming or formation of the primary void, the newly expanded particles are rapidly cooled, thus forming hollow glassy microspheres. In one embodiment, the temperature profile is preferably provided by a furnace having one or more temperature zones, such as a drop tube furnace, a vortex type furnace, a fluidized bed furnace or a fuel fired furnace, with upward or downward draft air streams. A fuel fired furnace used in certain preferred embodiments of the present invention includes furnace types in which agglomerated precursors are introduced directly into one or a multitude of combustion zones, to cause expansion or blowing of the particles. This is a preferred type of furnace, since the particles benefit by direct rapid heating to high temperatures, which is desirable. The heat source may be electric or provided by burning fossil fuels, such as natural gas or fuel oil. One preferred method of heating is by combustion of natural gas, since this is more economical than electric heating and cleaner than burning fuel oil.


Typically, the peak firing temperature in the firing step is in the range of about 600 to 2500° C., more preferably about 800 to 2000° C., more preferably about 1000 to 1500° C., and more preferably about 1100 to 1400° C. However, it will be appreciated that the requisite temperature profile will typically depend on the type of aluminosilicate primary component and blowing agent used. Preferably, the exposure time to the peak firing temperatures described above will be for a period of about 0.05 to 20 seconds, more preferably about 0.1 to 10 seconds.


Method of Forming Agglomerate Precursor


As described above, preferred embodiments of the present invention also provide methods of preparing an agglomerate precursor that is suitable for forming a synthetic hollow microsphere therefrom. FIG. 2 provides a schematic illustration of one preferred method 200 of forming the agglomerate precursor.


As shown in FIG. 2, the method 200 begins with Step 202, which comprises providing a primary component of a predetermined size. Preferably, the primary component comprises at least one aluminosilicate material. Preferably, the amount of primary component is greater than about 40 wt. % based on the total dry weight of the agglomerate precursor. Preferably, the amount of blowing agent is less than about 10 wt. % based on the total dry weight of the agglomerate precursor. Further preferred forms of the primary component and blowing agent are described above.


As shown in FIG. 2, the method 200 continues with Step 204, which comprises mixing the primary component with a blowing agent in water. In certain preferred embodiments, a binding agent is additionally mixed with the primary component and the blowing agent in Step 204. Preferably, the amount of binding agent is in the range of about 0.1 to 50 wt. %, based on the total dry weight of the agglomerate precursor. Further preferred forms of the binding agent are described above.


Other additives (e.g. surfactants) may also be added in the mixing Step 204, as appropriate. Surfactants may used to assist with mixing, suspending and dispersing the particles. Typically, Step 204 provides an aqueous dispersion or paste, which is dried in subsequent steps. Mixing can be performed by any conventional means, such that those used to blend ceramic powders. Examples of preferred mixing techniques include, but are not limited to, agitated tanks, ball mills, single and twin screw mixers, and attrition mills.


Subsequent to the mixing process in Step 204, the method 200 continues with Step 206, in which the mixture is dried. Drying may be performed at a temperature in the range of about 30 to 600° C. and may occur over a period of up to about 48 hours, depending on the drying technique employed. Any type of dryer customarily used in industry to dry slurries and pastes may be used. Drying may be performed in a batch process using, for example, a stationary dish or container. Alternatively, drying may be performed in a fluid bed dryer, rotary dryer, rotating tray dryer, spray dryer or flash dryer. Alternatively, drying may also be performed using a microwave oven. It will be readily appreciated that the optimum drying period will depend on the type of drying method employed.


When drying is performed in a stationary dish or container, it is preferred that the drying temperature is initially not set too high in order to avoid water in the mixture boiling violently and thus spewing solids out of the drying container. In this case, the drying temperature, at least initially, is preferably in the range of about 30 to 100° C., and more preferably about 40 to 80° C. to avoid initial, rapid boiling of water. However, after initial evaporation of water, the drying temperature may be increased to temperatures up to about 350° C., which completes the drying process more speedily.


As shown in FIG. 2, the method 200 of forming the agglomerate precursor further includes Step 208, which comprises comminuting the dried mixture from Step 206 to form agglomerate precursor particles of a predetermined particle diameter range. However, in some embodiments, the drying Step 206 and comminuting Step 208 may be performed in a single step. Preferably, the dried mixture is comminuted to provide agglomerate precursor particles having an average particle diameter in the range of about 10 to 1000 microns, more preferably about 30 to 1000 microns, more preferably about 40 to 500 microns, and more preferably about 50 to 300 microns. The particle diameter of the agglomerate precursor will affect the particle diameter of the resultant synthetic hollow microsphere, although the degree of correspondence will, of course, only be approximate.


It is preferred that preferred embodiments of the present invention provide synthetic hollow microspheres having a controlled particle diameter distribution. Accordingly, the comminuted agglomerate precursor may be classified to a predetermined particle diameter distribution. Alternatively, a controlled particle diameter distribution in the agglomerate precursor may be achieved by the use of spray dryer in the drying Step 206. Spray drying has the additional advantage of allowing a high throughput of material and fast drying times. Hence, in one preferred embodiment of the present invention, the drying Step 206 is performed using a spray dryer. Spray dryers are described in a number of standard textbooks (e.g. Industrial Drying Equipment, C. M. van't Land; Handbook of Industrial Drying 2nd Edition, Arun S. Mujumbar) and will be well known to the skilled person. The use of a spray dryer in the present invention has been found to substantially eliminate the need for any sizing/classification of the agglomerate precursor.


Preferably, the aqueous slurry feeding the spray dryer comprises about 20 to 90 wt. % solids, more preferably about 25 to 75 wt. % solids, and more preferably about 60 to 70 wt. % solids. In addition to the agglomerate ingredients described above, the slurry may contain further processing aids or additives to improve mixing, flowability or droplet formation in the spray dryer. Suitable additives are well known in the spray drying art. Examples of such additives are sulphonates, glycol ethers, hydrocarbons, cellulose ethers and the like. These may be contained in the aqueous slurry in an amount ranging from about 0 to 5 wt. %.


In the spray drying process, the aqueous slurry is typically pumped to an atomizer at a predetermined pressure and temperature to form slurry droplets. The atomizer may be, for example, an atomizer based on a rotating disc (centrifugal atomization), a pressure nozzle (hydraulic atomization), or a two-fluid pressure nozzle wherein the slurry is mixed with another fluid (pneumatic atomization). The atomizer may also be subjected to cyclic mechanical or sonic pulses. The atomization may be performed from the top or from the bottom of the dryer chamber. The hot drying gas may be injected into the dryer co-current or counter-current to the direction of the spraying.


The atomized droplets of slurry are dried in the spray dryer for a predetermined residence time. Typically, the residence time in the spray dryer is in the range of about 0.1 to 10 seconds, with relatively long residence times of greater than about 2 seconds being generally more preferred. Preferably, the inlet temperature in the spray dryer is in the range of about 300 to 600° C. and the outlet temperature is in the range of about 100 to 220° C.


Use of Synthetic Hollow Microspheres


The synthetic hollow microspheres according preferred embodiments of the present invention may be used in a wide variety of applications, for example, in filler applications, modifier applications, containment applications or substrate applications. The scope of applications is much greater than that of harvested cenospheres due to the low cost and consistent properties of synthetic microspheres.


Synthetic microspheres according to the present invention may be used as fillers in composite materials, where they impart properties of cost reduction, weight reduction, improved processing, performance enhancement, improved machinability and/or improved workability. More specifically, the synthetic microspheres may be used as fillers in polymers (including thermoset, thermoplastic, and inorganic geopolymers), inorganic cementitious materials (including material comprising Portland cement, lime cement, alumina-based cements, plaster, phosphate-based cements, magnesia-based cements and other hydraulically settable binders), concrete systems (including precise concrete structures, tilt up concrete panels, columns, suspended concrete structures etc.), putties (e.g. for void filling and patching applications), wood composites (including particleboards, fibreboards, wood/polymer composites and other composite wood structures), clays, and ceramics. One particularly preferred use of the microspheres according to the present invention is in fiber cement building products.


The synthetic microspheres may also be used as modifiers in combination with other materials. By appropriate selection of size and geometry, the microspheres may be combined with certain materials to provide unique characteristics, such as increased film thickness, improved distribution, improved flowability etc. Typical modifier applications include light reflecting applications (e.g. highway markers and signs), industrial explosives, blast energy absorbing structures (e.g. for absorbing the energy of bombs and explosives), paints and powder coating applications, grinding and blasting applications, earth drilling applications (e.g. cements for oil well drilling), adhesive formulations and acoustic or thermal insulating applications.


The synthetic microspheres may also be used to contain and/or store other materials. Typical containment applications include medical and medicinal applications (e.g. microcontainers for drugs), micro-containment for radioactive or toxic materials, and micro-containment for gases and liquids.


The synthetic microspheres may also be used in to provide specific surface activities in various applications where surface reactions are used (i.e. substrate applications). Surface activities may be further improved by subjecting the synthetic microspheres to secondary treatments, such as metal or ceramic coating, acid leaching etc. Typical substrate applications include ion exchange applications (for removing contaminants from a fluid), catalytic applications (in which the surface of the microsphere is treated to serve as a catalyst in synthetic, conversion or decomposition reactions), filtration (where contaminants are removed from gas or liquid streams), conductive fillers or RF shielding fillers for polymer composites, and medical imaging.


In one embodiment, the synthetic microspheres of preferred embodiments of the present invention are incorporated in a building material. The synthetic microspheres can be incorporated in a composite building material as an additive, low density filler, and/or the like. In one embodiment, the synthetic hollow microspheres are incorporated in a cementitious material. Due in large part to the low alkali metal oxide content (e.g. less than 10 wt. %) of the synthetic microspheres, the microspheres are substantially chemically inert when in contact with the caustic cementitious material.


The synthetic microspheres of preferred embodiments can be incorporated in a building material formulation comprising a hydraulic binder, one or more fibers (e.g. cellulose fibers) Advantageously, the synthetic microspheres can serve as a substitute for harvested cenospheres in all applications because of the synthetic microspheres have substantially the same properties as the cenospheres.


However, in certain embodiments, the synthetic microspheres can be manufactured with properties that are superior to that of harvested cenospheres. For example, in some embodiments, the average aspect ratio of the synthetic microspheres is closer to 1 than the average aspect ratio of natural cenospheres, thus providing a microsphere that is more spherical. Moreover, in some embodiments, the average standard deviation of the wall thickness of the synthetic hollow microspheres is less than that of cenospheres, which provides a product with a more uniform appearance. These improved properties are achieved through controlling the processing conditions and raw material in manufacturing the microspheres.


The following examples illustrate some preferred methods of making the synthetic hollow microspheres of preferred embodiments of the present invention.


EXAMPLE 1

This example illustrates a method of making synthetic microspheres from formulations comprising fly ash, sodium silicate, and sugar.


Three samples were made by mixing a type F fly ash (ground to an average size of about 5.4 microns) with a commercial grade sodium silicate solution (SiO2/Na2O is about 3.22, about 40% solid content), a commercial grade sugar, and water. The amounts of ingredients are given in Table 1. The composition of fly ash is given in Table 2. The mixtures were blended into homogeneous slurry, poured into a flat dish and allowed to solidify at room temperature for about 5 minutes.


The resulting products were further dried at about 50° C. for about 20 hours, after which they were ground and sieved to obtain powders within a size range of about 106 to 180 microns. In the next step, for each sample, the powders were fed into a vertical heated tube furnace at an approximate feed rate of about 0.14 grams/min. The gas flow inside the tube furnace was about 1 liter of air plus 3 liters of nitrogen per minute. The constant temperature zone of the furnace was adjusted to provide residence times from less than a second to approximately a few seconds at the peak firing temperatures. The foamed microspheres were collected on a funnel shaped collecting device covered with a fine mesh screen positioned at the bottom part of the furnace. A mild suction was applied to the end of funnel to aid in collecting the microspheres. The products were characterized for particle density (e.g. apparent density), percent of water flotation, and approximate particle diameter distribution. The results for various firing temperatures and residence times are summarized in Table 3. FIGS. 3 to 5 show the cross sections of the products.













TABLE 1







Sodium silicate




Sample No.
Fly ash
solution
Sugar
Water







1
 93.1
58.0
3.6
 7.0


2
104.8
29.1
3.6
19.2


3
108.0
21.0
3.6
21.0





All masses are in grams

























TABLE 2





LOI
SiO2
Al2O3
Fe2O3
CaO
MgO
SO3
Na2O
K2O
TiO2
Mn2O3
P2O5
Total







0.39
50.63
21.14
7.62
12.39
3.61
0.66
0.63
1.27
1.30
0.17
0.14
99.95





All amounts are in percentage of weight


















TABLE 3







Residence
Apparent

Size of


Sample
Temperature
time
density
Water
microspheres


No.
(degree C)
(second)
(g/cm3)
float (%)
(micron)







1
1300
0.6–1.1
0.64
81
100–275


1
1300
0.8–1.5
0.78


2
1300
0.6–1.1
0.87
55
110–240


3
1300
0.6–1.1
1.05

 75–225









EXAMPLE 2

This example illustrates a method of making synthetic microspheres from formulations comprising fly ash, sodium silicate, and carbon black.


Three samples were made by mixing a type F fly ash (ground to an average size of about 5.4 microns) with a commercial grade sodium silicate solution SiO2/Na2O is about 3.22, about 40% solid content), a commercial grade carbon black, and water. The amounts of ingredients are given in Table 4. The composition of fly ash is given in Table 2. Each mixture was blended into homogeneous slurry, poured into a flat dish and allowed to solidify at room temperature for about 5 minutes. The resulting products were further dried at about 50° C. for about 20 hours, after which they were ground and sieved to obtain powders within a size range of 106 to 180 microns. In the next step, for each sample, the powders were fed into a vertical heated tube furnace at an approximate feed rate of about 0.14 grams/min. The gas flow inside the tube furnace is about 1 liter of air plus 3 liters of nitrogen per minute. The constant temperature zone of the furnace was adjusted to provide residence times from less than a second to approximately a few seconds at the peak firing temperatures. The foamed microspheres were collected on a funnel shaped collecting device covered with a fine mesh screen positioned at the bottom part of the furnace. A mild suction was applied to the end of funnel to aid in collecting the microspheres. The products were characterized for particle density (e.g. apparent density), percent of water floatation, and approximate particle diameter distribution. The results for various firing temperatures and residence times are summarized in Table 5. FIGS. 6 to 8 show the cross sections of the products.













TABLE 4







Sodium silicate




Sample No.
Fly ash
solution
Carbon black
Water







4
 95.0
59.0
1.2
 7.1


5
100.8
45.0
1.2
18.4


6
106.8
30.0
1.2
30.1





All masses are in grams


















TABLE 5







Residence
Apparent

Size of


Sample
Temperature
time
density
Water
microspheres


No.
(degree C)
(second)
(g/cm3)
float (%)
(micron)







4
1300
0.6–1.1
0.87
70
100–275


5
1300
0.6–1.1
0.75
71
100–275


6
1300
0.6–1.1
0.86
67
110–260









EXAMPLE 3

This example illustrates a method of making synthetic microspheres form formulations comprising fly ash, sodium hydroxide, and carbon black.


Three samples were made by mixing a type F fly ash (ground to an average size of about 5.4 microns) with a commercial grade solid sodium hydroxide (flakes), a commercial grade carbon black, and water. The amounts of ingredients are given in Table 6. The composition of fly ash is given in Table 2. Each mixture was blended into homogeneous slurry, poured into a flat dish and allowed to solidify at room temperature for about 5 minutes. The resulting products were further dried at about 50° C. for about 20 hours, after which it was ground and sieved to obtain powders within a size range of about 106 to 180 microns. In the next step, the powders were fed into a vertical heated tube furnace at an approximate feed rate of about 0.14 grams/min. The gas flow inside the tube furnace is about 1 liter of air plus 3 liters of nitrogen per minute. The constant temperature zone of the furnace was adjusted to provide residence times from less than a second to approximately few seconds at the peak firing temperatures. The foamed microspheres were collected on a funnel shaped collecting device covered with a fine mesh screen positioned at the bottom part of the furnace. A mild suction was applied to the end of funnel to aid in collecting the microspheres. The products were characterized for particle density (e.g. apparent density), percent of water floatation, and approximate particle diameter distribution. The results are summarized in Table 7. FIG. 9 shows the cross section of the product obtained from Sample 7.













TABLE 6





Sample No.
Fly ash
Sodium hydroxide
Carbon black
Water







7
112.8
6.0
1.2
39.5


8
116.4
2.4
1.2
46.6


9
117.6
1.2
1.2
47.0





All masses are in grams


















TABLE 7







Residence
Apparent

Size of


Sample
Temperature
time
density
Water
microspheres


No.
(degree C)
(second)
(g/cm3)
float (%)
(micron)







7
1300
0.6–1.1
0.65
77
85–290


8
1300
0.6–1.1
0.76


9
1300
0.6–1.1
0.78
66









EXAMPLE 4

This example illustrates a method to make synthetic microspheres form formulations consisting of fly ash, basalt, sodium hydroxide, and carbon black.


About 94 grams of a type F fly ash and basalt co-ground to an average size of about 1 micron were mixed with about 5 grams of solid sodium hydroxide (flakes), about 1 gram of a commercial grade carbon black, and about 38 ml of water. Several samples were made by changing the proportions of basalt to fly ash as shown in Table 8. The compositions of fly ash and basalt are given in Tables 2 and 9 respectively. Each mixture was blended into an homogeneous slurry, poured into a flat dish and allowed to solidify at room temperature for about 5 minutes. The resulting product was further dried at about 50° C. for about 20 hours, after which it was ground and sieved to obtain powders within a size range of about 106 to 180 microns. In the next step, the powders were fed into a vertical heated tube furnace at an approximate feed rate of about 0.14 grams/min. The gas flow inside the tube furnace is about 1 liter of air plus 3 liters of nitrogen per minute. The constant temperature zone of the furnace was adjusted to provide residence times from less than a second to approximately few seconds at the peak firing temperatures. The foamed microspheres were collected on a funnel shaped collecting device covered with a fine mesh screen positioned at the bottom part of the furnace. A mild suction was applied to the end of funnel to aid in collecting the microspheres. The products were characterized for particle density (e.g. apparent density), percent of water floatation, and approximate particle diameter distribution. The results are summarized in Table 10. FIGS. 10 and 11 show the cross section of the products of Samples 12 and 13 respectively.














TABLE 8








Sodium
Carbon



Sample No.
Fly ash
Basalt
hydroxide
black
Water







10
75.2
18.8
5.0
1.0
38.0


11
56.4
37.6
5.0
1.0
38.0


12
37.6
56.4
5.0
1.0
38.0


13
18.8
75.2
5.0
1.0
38.0





All masses are in grams

























TABLE 9





LOI
SiO2
Al2O3
Fe2O3
CaO
MgO
SO3
Na2O
K2O
TiO2
Mn2O3
P2O5
Total







0
46.13
15.81
9.50
9.50
9.60
0
2.78
1.53
2.38
0.25
0.59
98.07





All amounts are in percentage of weight


















TABLE 10







Residence
Apparent

Size of


Sample
Temperature
time
density
Water
microspheres


No.
(degree C)
(second)
(g/cm3)
float (%)
(micron)







10
1300
0.8–1.5
0.76
62



11
1300
0.8–1.5
0.77
63


12
1300
0.8–1.5
0.76
65
100–250


13
1300
0.8–1.5
1.00
44
100–225









EXAMPLE 5

This example illustrates a method to make synthetic microspheres form a ion comprising basalt, sodium hydroxide, and silicon carbide.


About 93.5 grams of basalt ground to an average size of about 1 micron ed with about 5 grams of a commercial grade solid sodium hydroxide (flakes), about ms of a commercial grade silicon carbide, and about 37.4 ml of water. The composition of basalt is given in table 9. The mixture was blended into homogeneous slurry, poured into a flat dish and allowed to solidify at room temperature for about 5 minutes. The resulting product was further dried at about 50° C. for about 20 hours, after which it was ground and sieved to obtain powders within a size range of about 106 to 180 microns. In the next step, the powders were fed into a vertical heated tube furnace at an approximate feed rate of about 0.14 grams/min. The gas flow inside the tube furnace is about 1 liter of air plus 3 liters of nitrogen per minute. The constant temperature zone of the furnace was adjusted to provide residence times from less than a second to approximately few seconds at the peak firing temperatures. The foamed microspheres were collected on a funnel shaped collecting device covered with a fine mesh screen positioned at the bottom part of the furnace. A mild suction was applied to the end of funnel to aid in collecting the microspheres. The products were characterized for particle density (e.g. apparent density), percent of water floatation, and approximate particle diameter distribution. The results for various firing temperatures and residence times are summarized in Table 11. FIGS. 12-14 show the cross section of the products.













TABLE 11






Residence
Apparent
Water
Size of


Temperature
time
density
float
microspheres


(degree C)
(second)
(g/cm3)
(%)
(micron)







1300
0.6–1.1
0.61




1250
0.6–1.1
0.56
86
130–260


1200
0.6–1.1
0.59

85–195


1150
0.6–1.1
1.21

105–240









EXAMPLE 6

This example illustrates a method to make synthetic microspheres form a formulation comprising fly ash, sodium hydroxide, and silicon carbide.


About 93.5 grams of a type F fly ash ground to an average size of about 1.3 microns was mixed with about 5 grams of solid sodium hydroxide (flakes), about 1.5 grams of a commercial grade silicon carbide, and about 37.4 ml of water. The composition of the fly ash is given in Table 12A. The mixture was blended into a homogeneous slurry, poured into a flat dish and allowed to solidify at room temperature for about 5 minutes. The resulting product was further dried at about 50° C. for about 20 hours, after which it was ground and sieved to obtain powders within a size range of about 106 to 180 microns. In the next step, the powders were fed into a vertical heated tube furnace at an approximate feed rate of about 0.14 grams/min. The gas flow inside the tube furnace was about 1 liter of air plus 3 liters of nitrogen per minute. The constant temperature zone of the furnace was adjusted to provide residence times from less than a second to approximately a few seconds at the peak firing temperatures. The foamed microspheres were collected on a funnel shaped collecting device covered with a fine mesh screen positioned at the bottom part of the furnace. A mild suction was applied to the end of the funnel to aid in collecting the microspheres. The products were characterized for particle density (e.g. apparent density), percent of water floatation, and approximate particle diameter distribution. The results for various firing temperatures and residence times are summarized in Table 12. FIGS. 15 and 16 show the cross section of the products.





















TABLE 12





LOI
SiO2
Al2O3
Fe2O3
CaO
MgO
SO3
Na2O
K2O
TiO2
Mn2O3
P2O5
Total







0.40
61.53
17.91
4.72
7.30
2.91
0.40
2.16
1.39
0.86
0.08
0.28
99.94





All amounts are in percentage of weight

















TABLE 12









Size of


Temperature
Residence
Apparent
Water
microspheres


(degree C.)
time (second)
density (g/cm3)
float (%)
(micron)







1400
0.6–1.1
0.52
83



1300
0.6–1.1
0.49
96
130–280


1250
0.6–1.1
0.58

105–220









EXAMPLE 7

This example illustrates a method to make synthetic microspheres form a formulation comprising fly ash, sodium hydroxide, silicon carbide as a primary blowing agent and carbon black a secondary blowing agent.


About 93.8 grams of a type F fly ash ground to an average size of about 1.3 microns was mixed with about 5 grams of solid sodium hydroxide (flakes), about 0.2 grams of a commercial grade silicon carbide, about 1 gram of commercial grade carbon black, and about 37.5 ml of water. The composition of the fly ash is given in Table 2. The mixture was blended into a homogeneous slurry, poured into a flat dish and allowed to solidify at room temperature for about 5 minutes. The resulting product was further dried at about 50° C. for about 20 hours, after which it was ground and sieved to obtain powders within a size range of about 106 to 180 microns. In the next step, the powders were fed into a vertical heated tube furnace at an approximate feed rate of about 0.14 grams/min. The gas flow inside the tube furnace was about 1 liter of air plus 3 liters of nitrogen per minute. The constant temperature zone of the furnace was adjusted to provide residence times from less than a second to approximately a few seconds at the peak firing temperatures. The foamed microspheres were collected on a funnel shaped collecting device covered with a fine mesh screen positioned at the bottom part of the furnace. A mild suction was applied to the end of the funnel to aid in collecting the microspheres. The products were characterized for particle density (e.g. apparent density), percent of water floatation, and approximate particle diameter distribution. The result is summarized in Table 12C. FIG. 17 shows the cross section of the product.













TABLE 12









Size of


Temperature
Residence
Apparent
Water
microspheres


(degree C.)
time (second)
density (g/cm3)
float (%)
(micron)







1300
0.6–1.1
0.65
82
105–220









EXAMPLE 8

The compositions (percentage of weight) of synthetic microspheres (“A” and “B”) according to one preferred embodiment of the present invention were compared with a sample of commercially available harvested cenospheres. The results are shown in Table 13.














TABLE 13







Major
Harvested
Synthetic
Synthetic



Oxides
Cenosphere
Microsphere “A”
Microsphere “B”









SiO2
62.5 
58.9 
65.8 



Al2O3
25.2 
17.1 
12.8 



Fe2O3
3.7
4.5
3.3



CaO
1.1
7.0
5.2



MgO
1.7
2.8
2.0



Na2O
1.1
5.2
6.8



K2O
1.9
1.3
1.0



SO3
0.5
0.4
0.3



Others
2.3
2.8
2.8










EXAMPLE 9

This example shows typical spray drying conditions used to produce agglomerate precursors in certain preferred embodiments of the present invention.


Dryer: Bowen Engineering, Inc. No 1 Ceramic Dryer fitted with a two-fluid nozzle type 59-BS


Air nozzle pressure: about 20 psi


Cyclone vacuum: about 4.5


Inlet/Outlet temperature: about 550° C./120° C.


Chamber vacuum: about 1.6


Slurry solids: about 50%


Agglomerate precursors produced using these spray drying conditions had a suitable average particle diameter and particle diameter distribution for forming synthetic hollow microspheres therefrom.


It will be appreciated that embodiments of the present invention have been described by way of example only and the modifications of detail within the scope of the invention will be readily apparent to those skilled in the art.


One preferred method of the present invention advantageously provides a means for producing microspheres in high yield from widely available and inexpensive starting materials, such as fly ash, natural rocks and minerals. Hence, the method, in its preferred forms, reduces the overall cost of producing microspheres, and consequently increases the scope for their use, especially in the building industry where the use of presently available cenospheres is relatively limited due to their prohibitive cost and low availability. Hitherto, it was not believed that hollow microspheres could be formed synthetically from waste aluminosilicate materials, such as fly ash.


A further advantage of one embodiment of the present invention, in its preferred form, is that the microspheres produced may be tailor-made to suit a particular purpose. For example, the size, density and composition of the microspheres may be modified, as required, by modifying the relative amounts of ingredients and/or the temperature profile/exposure time during formation.


Still a further advantage of one embodiment of the present invention, in its preferred form, is that the microspheres produced have acceptably high chemical durability and can withstand, for example, a highly caustic environment of pH about 12-14 for up to about 48 hours. Thus, microspheres produced according to one preferred embodiment of the present invention can withstand aqueous cementitious environments, such as Portland cement paste.


Moreover, in most cases, fiber cement products are cured for up to 24 hours in an autoclave that is maintained at temperatures as high as 250° C. Microspheres produced according to one preferred embodiment of the present invention lose minimal amount of mass to dissolution, such as by leaching of silica, retain their shape, and continue to have high mechanical strength in fiber cement products, even after exposure to harsh autoclaving conditions.


Although the foregoing descriptions of certain preferred embodiments of the present invention have shown, described and pointed out some fundamental novel features of the invention, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated as well as the uses thereof, may be made by those skilled in the art, without departing from the spirit of the invention. Consequently, the scope of the present invention should not be limited to the foregoing discussions.

Claims
  • 1. A method of forming synthetic microspheres, comprising: providing a solid agglomerate precursor, wherein the agglomerate precursor comprises at least one aluminosilicate material and at least one binding agent, wherein the agglomerate precursor includes a solid agglomeration of at least one aluminosilicate material and at least one binding agent, wherein the agglomerate precursor has an alkali metal oxide content of less than about 10 wt. % based on the weight of the precursor; andfiring the precursor at a pre-determined temperature profile sufficient to combine the aluminosilicate material with the binding agent so as to form a microsphere having a substantially spherical wall, a substantial void volume and an average particle diameter greater than 30 microns.
  • 2. The method of claim 1, wherein the firing step comprises firing the precursor at a temperature range of between about 600 to 2500 ° C.
  • 3. The method of claim 2, wherein the firing step further comprises firing the precursor for a period of about 0.05 to 20 seconds.
  • 4. The method of claim 1, wherein the firing step is performed in a fluidized bed reactor.
  • 5. The method of claim 1, wherein the firing step is performed in a vortex furnace.
  • 6. The method of claim 1, wherein the firing step is performed in a heated vertical pipe.
  • 7. The method of claim 1, wherein the firing step is performed in a fuel fired furnace.
  • 8. The method of claim 1, further comprising providing a blowing agent and activating the blowing agent during the firing step so as to release a blowing gas, thereby forming at least one substantially enclosed void in the precursor.
  • 9. The method of claim 8, wherein the firing step comprises forming a molten skin around the precursor.
  • 10. The method of claim 9, wherein the blowing agent is activated during the formation of the molten skin.
  • 11. The method of claim 9, wherein the blowing agent is activated after the formation of the molten skin.
  • 12. The method of claim 9, wherein the blowing gas is substantially trapped inside the molten skin.
  • 13. The method of claim 1, wherein the agglomerate precursor has a water content of about 10 wt. % or less.
  • 14. A method of manufacturing synthetic microspheres, comprising: providing a solid agglomerate precursor comprising a pre-determined amount of at least one primary component comprising an aluminosilicate and a pre-determined amount of at least one pre-selected chemical, wherein the at least one pre-selected chemical is combined with the primary component to form a mixture as an aqueous solution or paste and wherein the agglomerate precursor has an alkali metal oxide content of less than 10 wt. % based on the weight of the precursor;drying the mixture at a temperature below 80 degrees Centigrade to form the agglomerate precursor to a first moisture level, the agglomerate precursor including at least one primary component bound to at least one pre-selected chemical; andfiring the agglomerate precursor so as to react the at least one pre-selected chemical to form substantially spherical microspheres having a substantial void volume and an average diameter greater than 30 microns.
  • 15. The method of claim 14, wherein the at least one pre-selected chemical comprises a binding agent.
  • 16. The method of claim 15, wherein the at least one pre-selected chemical further comprises a blowing agent, wherein the blowing agent, when reacted in the firing step, releases an amount of blowing gas, wherein the blowing gas expands the precursor thereby forming a plurality of microspheres with one or more substantially enclosed voids therein.
  • 17. The method of claim 16, wherein the aluminosilicate in the primary component in selected from the group consisting of fly ash, basaltic rocks and combinations thereof, wherein the blowing agent is selected from the group consisting of powdered coal, carbon black, sugar, and silicon carbide, wherein the binding agent is selected from the group consisting of alkali silicates, hydroxides, and combinations thereof.
  • 18. The method of claim 16, wherein the blowing gas is selected from the group consisting of CO2, CO, O2, N2, N2O, NO, SO2, H2O, and mixtures thereof.
  • 19. The method of claim 14, wherein the firing step comprises firing the mixture at a temperature range of between about 600 to 2500 ° C.
  • 20. The method of claim 14, further comprising rapidly cooling the synthetic microspheres after the firing step.
  • 21. The method of claim 14, wherein drying comprises drying the precursor to a moisture level of less than about 14 wt. %.
  • 22. The method of claim 14, wherein the drying step further comprises drying the agglomerate at a temperature of about 350 to 400 ° C. prior to the firing step.
  • 23. The method of claim 14, wherein the drying step comprises drying the agglomerate at a temperature of about 50 ° C. prior to the firing step.
  • 24. The method of claim 14, wherein the drying step is configured to remove moisture from the precursor so as to substantially reduce rupturing of the agglomerates during the firing step.
  • 25. A method of forming synthetic microspheres, comprising: providing a solid agglomerate precursor, wherein the agglomerate precursor comprises a primary component with at least one aluminosilicate material of a pre-selected particle size, a blowing agent configured to release a gas when activated and a binding agent, wherein the agglomerate precursor is formed by: mixing the primary component, blowing agent and optionally binding agent in water into an aqueous solution or paste that forms a substantially homogenous mixture; anddrying the mixture to form the agglomerate precursor, the agglomerate precursor comprising bound particles; andfiring the precursor at a predetermined temperature and a predetermined period of time to activate the blowing agent to release gas, wherein the temperature is greater than 800 degrees Centigrade and the time is 20 seconds or less, thereby forming microspheres with an internal void and an alkali metal oxide content of less than about 10 wt. %.
  • 26. A method of forming synthetic microspheres, comprising: providing an agglomerate precursor, wherein the agglomerate precursor comprises at least one aluminosilicate material and at least one binding agent, wherein the agglomerate precursor is substantially dry with a water content of less than 3 wt. %, wherein the agglomerate precursor has an alkali metal oxide content of less than about 10 wt. % based on the weight of the precursor; andfiring the precursor at a pre-determined temperature profile sufficient to combine the aluminosilicate material with the binding agent so as to form a microsphere having a substantially spherical wall, a substantial void volume and an average particle diameter greater than 30 microns.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/405,790, filed on Aug. 23, 2002, and U.S. Provisional Application No. 60/471,400, filed on May 16, 2003, which are hereby incorporated by reference in their entirety.

US Referenced Citations (220)
Number Name Date Kind
1819093 Hardinge Aug 1931 A
2619776 Potters Dec 1952 A
2676892 McLaughlin Apr 1954 A
2746735 Bradford May 1956 A
2762619 Booth Sep 1956 A
2782018 Bradford Feb 1957 A
2797201 Veatch et al. Jun 1957 A
2838881 Plumat Jun 1958 A
2945326 Wood Jul 1960 A
2947115 Wood Aug 1960 A
2978339 Veatch et al. Apr 1961 A
2978340 Veatch et al. Apr 1961 A
3010177 Thompson et al. Nov 1961 A
3081179 Charvat et al. Mar 1963 A
3150947 Bland Sep 1964 A
3215505 Schmalfeld et al. Nov 1965 A
3256105 Alford Jun 1966 A
3279905 Wood et al. Oct 1966 A
3293014 Callender et al. Dec 1966 A
3297411 Dear Jan 1967 A
3321414 Vieli May 1967 A
3341314 Vukasovich et al. Sep 1967 A
3348956 Ekdahl Oct 1967 A
3365315 Beck et al. Jan 1968 A
3495961 Lange Feb 1970 A
3560185 Nylander Feb 1971 A
3560186 Nylander Feb 1971 A
3736162 Chvalovsky et al. May 1973 A
3752685 Honda et al. Aug 1973 A
3782985 Gebhardt Jan 1974 A
3838998 Matthews et al. Oct 1974 A
3873475 Pechacek et al. Mar 1975 A
3877918 Cerbo Apr 1975 A
3887386 Majumdar et al. Jun 1975 A
3888957 Netting Jun 1975 A
3904377 Honda et al. Sep 1975 A
3904424 Aoki et al. Sep 1975 A
3909283 Warnke Sep 1975 A
3924901 Phillips Dec 1975 A
3954390 Akhundov et al. May 1976 A
4002482 Coenen et al. Jan 1977 A
4046548 Wood et al. Sep 1977 A
4057908 Mirliss et al. Nov 1977 A
4059423 De Vos Nov 1977 A
4102773 Green et al. Jul 1978 A
4111713 Beck Sep 1978 A
4133854 Hendricks Jan 1979 A
4153439 Tomic et al. May 1979 A
4161389 Staffin et al. Jul 1979 A
4205992 Mogensen et al. Jun 1980 A
4217335 Sasaki et al. Aug 1980 A
4226841 Komeya et al. Oct 1980 A
4234344 Tinsley et al. Nov 1980 A
4235753 Brown et al. Nov 1980 A
4235836 Wassell et al. Nov 1980 A
4243421 Kume et al. Jan 1981 A
4252193 Powers et al. Feb 1981 A
4292206 Barnes, Jr. et al. Sep 1981 A
4303732 Torobin Dec 1981 A
4304604 Daerr et al. Dec 1981 A
4305758 Powers et al. Dec 1981 A
4307142 Blitstein et al. Dec 1981 A
4330634 Rodaway May 1982 A
4332618 Ballard Jun 1982 A
4336338 Downs et al. Jun 1982 A
4340407 Anderson et al. Jul 1982 A
4347155 Jenkins Aug 1982 A
4362566 Hinterwaldner Dec 1982 A
4363878 Yamamoto et al. Dec 1982 A
4370166 Powers et al. Jan 1983 A
4394346 Morooka Jul 1983 A
4411847 Netting et al. Oct 1983 A
4430108 Hojaji Feb 1984 A
4448599 Mackenzie et al. May 1984 A
4475936 Aston et al. Oct 1984 A
4487620 Neusy et al. Dec 1984 A
4501830 Miller et al. Feb 1985 A
4504320 Rizer et al. Mar 1985 A
4512736 Wader et al. Apr 1985 A
4519777 Akhtyamov et al. May 1985 A
4538530 Whitman Sep 1985 A
4540629 Sands et al. Sep 1985 A
4595662 Mochida et al. Jun 1986 A
4602962 Fehlmann Jul 1986 A
4621024 Wright Nov 1986 A
4623390 Delmonico Nov 1986 A
4624798 Gindrup et al. Nov 1986 A
4629413 Michelson et al. Dec 1986 A
4637990 Torobin Jan 1987 A
4643753 Braun Feb 1987 A
4652433 Ashworth et al. Mar 1987 A
4652535 Mackenzie et al. Mar 1987 A
4657810 Douden Apr 1987 A
4661137 Garnier et al. Apr 1987 A
4677022 Dejaiffe Jun 1987 A
4687752 Peters Aug 1987 A
4749398 Braun Jun 1988 A
4751202 Toussaint et al. Jun 1988 A
4751203 Toussaint et al. Jun 1988 A
4752061 Dalton et al. Jun 1988 A
4767726 Marshall Aug 1988 A
4769189 Douden Sep 1988 A
4784839 Bachelard et al. Nov 1988 A
4818289 Mantymaki et al. Apr 1989 A
4818290 Tuovinen et al. Apr 1989 A
4819289 Gibbs Apr 1989 A
4826788 Dennert et al. May 1989 A
4830989 Trivedi et al. May 1989 A
4837069 Bescup et al. Jun 1989 A
4851203 Bachelard et al. Jul 1989 A
4867931 Cochran, Jr. Sep 1989 A
4871495 Helferich Oct 1989 A
4882302 Horiuchi et al. Nov 1989 A
4888057 Nguyen et al. Dec 1989 A
4894081 Neusy et al. Jan 1990 A
4904292 Neusy et al. Feb 1990 A
4928479 Shekleton et al. May 1990 A
4937210 Jones et al. Jun 1990 A
4946811 Tuovinen et al. Aug 1990 A
4981666 Yamada et al. Jan 1991 A
4983550 Goetz et al. Jan 1991 A
5002696 White Mar 1991 A
5022897 Balcar et al. Jun 1991 A
5064784 Saito et al. Nov 1991 A
5069702 Block et al. Dec 1991 A
5077241 Moh et al. Dec 1991 A
5096858 Das Chaklader et al. Mar 1992 A
5117770 Hassinen et al. Jun 1992 A
5128114 Schwartz Jul 1992 A
5143534 Kilner et al. Sep 1992 A
5154596 Schwartz et al. Oct 1992 A
5164003 Bosco et al. Nov 1992 A
5164345 Rice et al. Nov 1992 A
5176732 Block et al. Jan 1993 A
5190737 Weimer et al. Mar 1993 A
5194334 Uerdingen et al. Mar 1993 A
5217928 Goetz et al. Jun 1993 A
5253991 Yokota et al. Oct 1993 A
5256180 Garnier et al. Oct 1993 A
5292690 Kawachi et al. Mar 1994 A
5349118 Davidovits Sep 1994 A
5384345 Naton Jan 1995 A
5407983 Naton Apr 1995 A
5443603 Kirkendall Aug 1995 A
5455212 Das Chaklader et al. Oct 1995 A
5458973 Jeffs Oct 1995 A
5525556 Dunmead et al. Jun 1996 A
5534348 Miller et al. Jul 1996 A
5558822 Gitman et al. Sep 1996 A
5559170 Castle Sep 1996 A
5580907 Savin Dec 1996 A
5591684 Kawachi et al. Jan 1997 A
5601789 Ruhl et al. Feb 1997 A
5609833 Ruhl et al. Mar 1997 A
5611833 Brahmbhatt et al. Mar 1997 A
5611883 Tompkins et al. Mar 1997 A
5618173 Ruhl et al. Apr 1997 A
5655853 Wormser Aug 1997 A
5658656 Whitney et al. Aug 1997 A
5676536 Ruhl et al. Oct 1997 A
5676563 Kondo et al. Oct 1997 A
5743393 Webb et al. Apr 1998 A
5849055 Aria et al. Dec 1998 A
5858083 Stav et al. Jan 1999 A
5883029 Castle Mar 1999 A
5895768 Speit Apr 1999 A
5899256 Rohatgi May 1999 A
5925449 Davidovits Jul 1999 A
5932347 Rapp et al. Aug 1999 A
5935699 Barber Aug 1999 A
5967211 Lucas et al. Oct 1999 A
6027330 Lifshits Feb 2000 A
6034155 Espeland et al. Mar 2000 A
6048593 Espeland et al. Apr 2000 A
6077327 Hamayoshi et al. Jun 2000 A
6105888 Goehner et al. Aug 2000 A
6171651 Brown Jan 2001 B1
6207077 Burnell-Jones Mar 2001 B1
6214309 Shaw et al. Apr 2001 B1
6254845 Ohashi et al. Jul 2001 B1
6254981 Castle Jul 2001 B1
6258456 Meyer Jul 2001 B1
6360563 Gerhardt et al. Mar 2002 B1
6367288 Lindner et al. Apr 2002 B1
6387302 Konya et al. May 2002 B1
6444162 Anshits et al. Sep 2002 B1
6461988 Budd et al. Oct 2002 B2
6486084 Oda et al. Nov 2002 B2
6506819 Shukla et al. Jan 2003 B1
6531222 Tanaka et al. Mar 2003 B1
6551567 Konya et al. Apr 2003 B2
6572697 Gleeson et al. Jun 2003 B2
6582819 McDaniel et al. Jun 2003 B2
6620487 Tonyan et al. Sep 2003 B1
6626991 Drochon et al. Sep 2003 B1
6630417 Kawai et al. Oct 2003 B2
6648961 Brothers et al. Nov 2003 B2
6656265 Garnier et al. Dec 2003 B1
6660078 Brothers et al. Dec 2003 B2
6689286 Wilde et al. Feb 2004 B2
6811603 Brothers et al. Nov 2004 B2
6814798 Vijn et al. Nov 2004 B2
6969422 Mazany et al. Nov 2005 B2
7112549 Yoshitomi et al. Sep 2006 B2
7651563 Datta et al. Jan 2010 B2
7666505 Datta et al. Feb 2010 B2
20010043996 Yamada et al. Nov 2001 A1
20020004111 Matsubara et al. Jan 2002 A1
20020025436 Meyer et al. Feb 2002 A1
20030100434 Yoshitomi et al. May 2003 A1
20030177955 Vijn et al. Sep 2003 A1
20040079260 Datta et al. Apr 2004 A1
20040080063 Datta et al. Apr 2004 A1
20040081827 Datta Apr 2004 A1
20040262801 Hojaji et al. Dec 2004 A1
20050011412 Vijn et al. Jan 2005 A1
20080095692 Pham Apr 2008 A1
20080096018 Zhang et al. Apr 2008 A1
20090076196 Hojaji Mar 2009 A1
20090156385 Biscan et al. Jun 2009 A1
Foreign Referenced Citations (92)
Number Date Country
1040859 Oct 1978 CA
3213521 Jun 1983 DE
3314796 Oct 1984 DE
3908172 Sep 1990 DE
19962137 Jun 2001 DE
0033133 Aug 1981 EP
0036275 Sep 1981 EP
0102092 Mar 1984 EP
0159046 Oct 1985 EP
0159173 Oct 1985 EP
0242872 Oct 1987 EP
0247817 Dec 1987 EP
0430995 Jun 1991 EP
0593779 Apr 1994 EP
0601594 Jun 1994 EP
0 359 362 Apr 1995 EP
0717675 Jun 1996 EP
0931778 Jul 1999 EP
0999232 May 2000 EP
0 801 037 Aug 2000 EP
1 156 021 Nov 2001 EP
1 160 212 Dec 2001 EP
1172341 Jan 2002 EP
0891954 Apr 2004 EP
1891984 Feb 2008 EP
2671072 Jul 1992 FR
413294 Jul 1934 GB
682432 Nov 1952 GB
0740145 Nov 1955 GB
743866 Jan 1956 GB
744070 Feb 1956 GB
752345 Jul 1956 GB
896910 May 1962 GB
1062410 Mar 1967 GB
1066768 Apr 1967 GB
1 448 320 Sep 1976 GB
1493202 Nov 1977 GB
1493203 Nov 1977 GB
1515521 Jun 1978 GB
1532922 Nov 1978 GB
2019386 Oct 1979 GB
2025928 Jan 1980 GB
1584175 Feb 1981 GB
2248834 Apr 1992 GB
2256867 Dec 1992 GB
2330138 Apr 1999 GB
21071968 Jan 1943 JP
1924781990 Jul 1990 JP
404104945 Apr 1992 JP
2467261993 Sep 1993 JP
07024299 Jan 1995 JP
07292846 Nov 1995 JP
07315869 Dec 1995 JP
08169779 Jul 1996 JP
09020526 Jan 1997 JP
09067174 Mar 1997 JP
09077543 Mar 1997 JP
9124327 May 1997 JP
09255383 Sep 1997 JP
10095648 Apr 1998 JP
956481998 Apr 1998 JP
10152356 Sep 1998 JP
11116299 Apr 1999 JP
3351461990 Dec 1999 JP
2000119050 Apr 2000 JP
2000143307 May 2000 JP
2000302498 Oct 2000 JP
2001163647 Jun 2001 JP
2001240439 Sep 2001 JP
2002003248 Jan 2002 JP
2002037645 Feb 2002 JP
2002037680 Feb 2002 JP
2002231865 Aug 2002 JP
550642003 Feb 2003 JP
200373756 Mar 2003 JP
2039019 Jul 1995 RU
WO-8203386 Oct 1982 WO
WO-8301947 Jun 1983 WO
WO-8500361 Jan 1985 WO
WO-8502394 Jun 1985 WO
WO-8700827 Feb 1987 WO
WO-9002102 Mar 1990 WO
WO-9210440 Jun 1992 WO
WO-9507177 Mar 1995 WO
WO 9607538 Mar 1996 WO
WO 9803284 Jan 1998 WO
WO 9829353 Jul 1998 WO
WO 0172863 Oct 2001 WO
WO 2004101137 Jan 2004 WO
WO 2004018090 Mar 2004 WO
WO-2006091929 Aug 2006 WO
WO-2007067774 Jun 2007 WO
Related Publications (1)
Number Date Country
20040080063 A1 Apr 2004 US
Provisional Applications (2)
Number Date Country
60405790 Aug 2002 US
60471400 May 2003 US