BACKGROUND OF THE INVENTION
1. Field of the Invention
The field of the invention is wireless smartcard security; more particularly, the present invention provides improved contactless security-oriented wireless smartcards, passports and other wireless electronic credentials.
2. Related Art
To date, the Inventor was unable to find directly comparable or analogous products or patents related to the present invention.
NECESSITY OF THE INVENTION
Smartcard use is becoming widespread, as worldwide adoption of smartcard technology accelerates. Given the exponential increase in smartcard usage, it is well known that security concerns and security incidents are also on the rise. Similarly, wireless (“contactless”) smartcards, passports, and other wireless credential devices are considered by some to be a risky technology, especially given the increasing incidence of fraud, identity theft, employee theft, unwanted electronic intrusion, etc.
Security challenges of “contactless” technology are summed up by cryptanalysis expert Bruce Schneier (founder/CTO of Counterpane Internet Security, Inc.), to wit:
- “ . . . [Contactless] RFID chips are like smart cards, but they can be read from a distance. A receiving device can “talk” to the chip remotely, without any need for physical contact, and get whatever information is on it. Passport officials envision being able to download the information on the chip simply by bringing it within a few centimeters of a reader. Unfortunately, RFID chips can be read by any reader, not just the ones at passport control . . . anyone carrying around an RFID passport is broadcasting his identity. Think about what that means for a minute. It means that a passport holder is continuously broadcasting his name, nationality, age, address, and whatever else is on the RFID chip. It means anyone with a reader can learn that information, without a passport holder's knowledge or consent. It means that pickpockets, kidnappers, and terrorists can easily, surreptitiously, pick Americans out of a crowd. It's a clear threat to both privacy and personal safety. The administration claims that the chips can only be read from a few centimeters away, so there's no potential for abuse. This is a spectacularly naive claim. All wireless protocols can work at much longer ranges than specified. In tests, RFID chips have been read by receivers 20 meters away. Improvements in technology are inevitable.” Source: http://www.schneier.com/crypto-gram-0410.html#3
OBJECTS OF THE INVENTION
Accordingly, it is one primary object of the present invention, to provide a pushbutton-enabled contactless smartcard apparatus, which only allows wireless data transmission when a pushbutton switch is held closed.
It is a related primary object, to provide methods for improving wireless electronic smartcard and chip card security.
It is another related primary object, to provide systems for improving wireless smartcard and chip card security.
SUMMARY OF THE INVENTION
This invention requires that the cardholder press a button on a proximity card in order to enable the card to transmit a response. Since RF or IR identification devices can be read at times and places where the bearer does not intend them to be read, and since the presence of encrypted data in the response from the device can have the undesired effect of confirming the importance of the bearer, there is a need to prevent any transmission, from the card until the bearer enables it.
This invention discloses two embodiments of the solution, antenna loop enabling and processor enabling, although the claims will disclose other possible embodiments. The discussion, below, describes an identification card, although this invention could be implemented for other identifying devices, such as electronic passports and other electronic credential devices.
BRIEF DESCRIPTION OF THE FIGURES AND REFERENCE NUMERALS
Figures
FIG. 1—Activating a contactless smartcard so that it can perform radio functions
FIG. 2—Finger pressing a button to close an antenna circuit
FIG. 3—Proximity card with embedded pressure-sensing switch in antenna circuit
FIG. 4—Detail of embedded pressure-sensing switch in the antenna circuit
FIG. 5—Proximity card with pressure-sensing switch connected to processor
FIG. 6—Detail of pressure-sensing switch connected to the processor
FIG. 7—Combination contact card and switch-enabled contactless card
REFERENCE NUMERALS
2—Finger pressing a button to enable wireless transceiver
4—Processor performing contactless smartcard function
6—Mechanical or electronic switch to sense finger presence
8—Loop antenna or IR transceiver to receive and transmit and receive signals
10—Plastic card body
12—Spring-like support under the button/switch
14—Mounting surface for the processor chip with antenna loop connections
16—Radio frequency or Infrared link between the contactless card and a reader
18—Reader for contactless cards
20—Smartcard processor and contacts
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 illustrates a proximity card reader 18, which emits a radio frequency signal to a proximity card 10 and awaits a response from the card. Also in FIG. 1, finger 2 is pressing on a switch 6, embedded in card 10 to enable transmission. In either embodiment, the user must press the button when the card is to be used in order for the card to respond to external RF signals. If button switch 6 is not pressed, then the card remains passive and does not reveal the presence of the cardholder. The means by which this is accomplished is different for the two illustrative embodiments described below.
Antenna Loop Enabling
FIG. 2 describes a normally-open dome or membrane switch 6 that is commonly used in thin calculators and other thin electronic devices. This switch could also be an electronic capacitive or electrostatic switching device, well known to the art to detect the presence of a fingertip without mechanical contacts. It can also be a biometric authenticating activator for a smartcard which enables the card only when the enrolled fingerprint is presented to the on-card sensor as taught in Lofberg U.S. Pat. No. 4,582,985. When the switch is held pressed, for example, the conductive switch membrane embedded in the card will close the circuit in the antenna 8 so that the proximity card can receive signals from the reader. When the finger is not pressing on the button, elastic stop 12 returns the switch to the open position, disabling the antenna loop.
FIG. 3 is a diagram of the electrical circuit within the body of proximity card 10 and the components are expanded in FIG. 4 for clarity. A typical RF transceiver and processor chip 4 is shown on a mounting surface 14. In this embodiment, the processor, mounting component and antenna loop can use existing parts, modified only by soldering switch 6 into the loop. This enables the enabling switch to be introduced into existing proximity card designs.
Processor Enabling
FIG. 5 (and detail FIG. 6) describe the second embodiment in which the switch 6 is sensed by an input port on processor (and RF or IR transceiver) chip 4 which is programmed to wait for switch closure before transmitting data using antenna loop 8. The advantage of this embodiment is that the momentary switch needs only to be pressed once when the card is within the RF field in the active vicinity of the reader in order to enable processor 4 to transmit. The processor program will remember that it has been enabled from a momentary switch 6 closure until the card is removed from the RF field. When RF-derived power has been lost, the processor no longer retains memory of the activation and, therefore, subsequent card use will require another button push. In case the card is exposed to an RF field for an extended period of time, the processor can be programmed to timeout after a pre-established interval and thereby disable transmission.
FIG. 7 illustrates the use of this invention to enhance proximity card security on “combination” (hybrid) contact and contactless cards. The contactless features on this combination card will benefit from the additional security of the present invention.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereunto without departing from broader spirit and scope of the invention as set forth in the appended claims. For example, various techniques can be used to implement the disclosed invention. Also, the specific logic presented to accomplish tasks within the present invention may be modified without departing from the scope of the invention. Many such changes or modifications will be readily apparent to one of ordinary skill in the art. The specification and drawings are, accordingly, to be regarded in an illustrative sense, the invention being limited only by the provided claims.