The present invention relates generally to microelectromechanical systems (MEMS), and, in particular embodiments, to a system and method for a multi-electrode MEMS device.
Transducers convert signals from one domain to another. For example, some sensors are transducers that convert physical signals into electrical signals. On the other hand, some transducers convert electrical signals into physical signals. A common type of sensor is a pressure sensor that converts pressure differences and/or pressure changes into electrical signals. Pressure sensors have numerous applications including, for example, atmospheric pressure sensing, altitude sensing, and weather monitoring. Another common type of sensor is a microphone that converts acoustic signals into electrical signals.
Microelectromechanical systems (MEMS) based transducers include a family of transducers produced using micromachining techniques. MEMS, such as a MEMS pressure sensor or a MEMS microphone, gather information from the environment by measuring the change of physical state in the transducer and transferring the signal to be processed by the electronics, which are connected to the MEMS sensor. MEMS devices may be manufactured using micromachining fabrication techniques similar to those used for integrated circuits.
MEMS devices may be designed to function as oscillators, resonators, accelerometers, gyroscopes, pressure sensors, microphones, microspeakers, and/or micro-mirrors, for example. Many MEMS devices use capacitive sensing techniques for transducing the physical phenomenon into electrical signals. In such applications, the capacitance change in the sensor is converted to a voltage signal using interface circuits.
Microphones and microspeakers may also be implemented as capacitive MEMS devices that include deflectable membranes and rigid backplates. For a microphone, an acoustic signal as a pressure difference causes the membrane to deflect. Generally, the deflection of the membrane causes a change in distance between the membrane and the backplate, thereby changing the capacitance. Thus, the microphone measures the acoustic signal and generates an electrical signal. For a microspeaker, an electrical signal is applied between the backplate and the membrane at a certain frequency. The electrical signal causes the membrane to oscillate at the frequency of the applied electrical signal, which changes the distance between the backplate and the membrane. As the membrane oscillates, the deflections of the membrane cause local pressure changes in the surrounding medium and produce acoustic signals, i.e., sound waves.
In MEMS microphones or microspeakers, as well as in other MEMS devices that include deflectable structures with applied voltages for sensing or actuation, pull-in or collapse is a common issue. If a voltage is applied to the backplate and the membrane, there is a risk of sticking as the membrane and the backplate move closer together during deflection. This sticking of the two plates is often referred to as pull-in or collapse and may cause device failure in some cases. Collapse generally occurs because the attractive force caused by a voltage difference between the membrane and the backplate may increase quickly as the distance between the membrane and the backplate decreases.
According to an embodiment, a MEMS transducer includes a stator, a rotor spaced apart from the stator, and a multi-electrode structure including electrodes with different polarities. The multi-electrode structure is formed on one of the rotor and the stator and is configured to generate a repulsive electrostatic force between the stator and the rotor. Other embodiments include corresponding systems and apparatus, each configured to perform corresponding embodiment methods.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
The making and using of various embodiments are discussed in detail below. It should be appreciated, however, that the various embodiments described herein are applicable in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use various embodiments, and should not be construed in a limited scope.
Description is made with respect to various embodiments in a specific context, namely microphone transducers, and more particularly, MEMS microphones and MEMS microspeakers. Some of the various embodiments described herein include MEMS transducer systems, MEMS microphone systems, dipole electrode MEMS transducers, multipole electrode MEMS transducers, and fabrications sequences for various multi-electrode MEMS device. In other embodiments, aspects may also be applied to other applications involving any type of transducer that includes a deflectable structure according to any fashion as known in the art.
According to various embodiments, MEMS microphones and MEMS microspeakers include multiple electrodes on the membrane, the backplate, or both. In such embodiments, separate electrodes are patterned on one or both of the capacitive plates of the MEMS acoustic transducer. The separate electrodes and the other capacitive plate, or other separate electrodes, are supplied with voltages in order to form an electrostatic field with a dipole or multipole pattern. In such fields, the membrane and backplate may be attracted for certain distances and repulsed for other distances. Thus, various embodiments include MEMS acoustic transducers capable of applying both attractive and repulsive electrostatic forces. Such embodiment MEMS acoustic transducers may operate with higher bias voltages and lower risk of collapse or pull-in, resulting in improved performance.
According to various embodiments, multiple types of multi-electrode structures are formed. Various MEMS acoustic transducers include single and double backplate MEMS microphones and MEMS microspeakers. In further embodiments, multi-electrode structures may be formed in other types of MEMS device that include deflectable structures, such as pressure sensors, gyroscopes, oscillators, actuators, and others, for example.
In various embodiments, MEMS transducer 102 may be a MEMS microphone. In other embodiments, MEMS transducer 102 may be a MEMS microspeaker. In some applications, MEMS transducer 102 may be a MEMS acoustic transducer that both senses and actuates acoustic signals. For example, MEMS transducer 102 may be a combination acoustic sensor and actuator for high frequency applications, such as ultrasound transducers. In some embodiments, capacitive MEMS microphones may include a membrane and backplate with smaller surface areas and separation distances than typically found in capacitive MEMS microspeakers.
In various embodiments, ASIC 104 either generates the electrical signals for exciting MEMS transducer 102 or receives the electrical signals generated by MEMS transducer 102. ASIC 104 may also provide voltage bias or voltage drive signals to MEMS transducer 102 depending on various applications. In some embodiments, ASIC 104 includes an analog to digital converter (ADC) or a digital to analog converter (DAC). Processor 106 interfaces with ASIC 104 and generates drive signals or provides signal processing. Processor 106 may be a dedicated transducer processor, such as a CODEC for a MEMS microphone, or may be a general processor, such as a microprocessor.
In other embodiments, dipole electrode 114 may be arranged on the membrane and electrode 112 may be arranged on the backplate. Further, an additional backplate may be included with either configuration. In further embodiments, dipole electrode 114 and electrode 112 may be included in any type of MEMS device with movable structure that have applied voltages or include electrodes, for example.
According to various embodiments, both the membrane and the backplate may include dipole electrodes or, more generally, both the fixed structure and the deflectable structure of a MEMS device may include dipole electrodes.
According to various embodiments, each dipole electrode 126 is formed with a positive pole on a top surface of isolating plate 122 and a negative pole on a bottom surface of isolating plate 122. Isolating plate 122 may be an insulator in some embodiments. In alternative embodiments, isolating plate 122 may include a conductor, or conductors, with insulating layers formed on the top or bottom surfaces of the conductor, or conductors. In other embodiments, the positive pole of each dipole electrode 126 is formed on the bottom surface of isolating plate 122 and the negative pole of each dipole electrode 126 is formed on the top surface of isolating plate 122 (opposite as shown).
According to various embodiments, isolating plate 122 is the membrane of the MEMS acoustic transducer and conductive plate 124 is the backplate of the MEMS acoustic transducer in some embodiments. In other embodiments, isolating plate 122 is the backplate of the MEMS acoustic transducer and conductive plate 124 is the membrane of the MEMS acoustic transducer. In various embodiments, the membrane (either conductive plate 124 or isolating plate 122) may experience an attractive force for some separation distances and a repulsive force for other separation distances depending on the electric fields formed by conductive plate 124 and dipole electrodes 128.
According to various embodiments, isolating plate 122 and isolating plate 132 are insulators. In alternative embodiments, isolating plate 122 and isolating plate 132 may include conductors with isolating layers formed on the top or bottom surfaces of the conductors. In such embodiments, dipole electrodes 130 and dipole electrodes 134 may still be isolated from each other by isolating plate 122 and isolating plate 132, respectively. In various embodiments, dipole electrodes 130 and dipole electrodes 134 may be formed on either the top or bottom sides of isolating plate 122 and isolating plate 132, respectively. Each corresponding pair of dipoles from dipole electrodes 130 and dipole electrodes 134 may be referred to as a quadrupole, as described hereinabove in reference to
According to various embodiments, isolating plate 122 is the membrane of the MEMS acoustic transducer and isolating plate 132 is the backplate of the MEMS acoustic transducer. In other embodiments, isolating plate 122 is the backplate of the MEMS acoustic transducer and isolating plate 132 is the membrane of the MEMS acoustic transducer. In various embodiments, the membrane (either isolating plate 132 or isolating plate 122) may experience an attractive force for some separation distances and a repulsive force for other separation distances depending on the electric fields formed by dipole electrodes 130 and dipole electrodes 134.
According to various embodiments, electrodes 136 may be formed on a top surface or a bottom surface of isolating plate 122. Isolating plate 122 is the membrane of the MEMS acoustic transducer and conductive plate 124 is the backplate of the MEMS acoustic transducer in some embodiments. In other embodiments, isolating plate 122 is the backplate of the MEMS acoustic transducer and conductive plate 124 is the membrane of the MEMS acoustic transducer. In various embodiments, the membrane (either isolating plate 122 or conductive plate 124) may experience an attractive force for some separation distances and a repulsive force for other separation distances depending on the electric fields formed by electrodes 136 and conductive plate 124.
According to various embodiments, each dipole electrode 126 is formed with a positive pole on a top surface of isolating plate 122 and a negative pole on a bottom surface of isolating plate 122. Similarly, each dipole electrode 138 is formed with a positive pole on a bottom surface of isolating plate 132 and a negative pole on a top surface of isolating plate 132. Isolating plate 122 and isolating plate 132 may each be an insulator in some embodiments. In other embodiments, isolating plate 122 and isolating plate 132 may each be a conductor with insulating layers formed on the top and bottom surfaces. In alternative embodiments, the positive pole of each dipole electrode 126 is formed on the bottom surface of isolating plate 122 and the negative pole of each dipole electrode 126 is formed on the top surface of isolating plate 122 (opposite as shown), while the positive pole of each dipole electrode 138 is formed on the top surface of isolating plate 132 and the negative pole of each dipole electrode 138 is formed on the bottom surface of isolating plate 132 (opposite as shown).
According to various embodiments, isolating plate 122 is the membrane of the MEMS acoustic transducer and isolating plate 132 is the backplate of the MEMS acoustic transducer in some embodiments. In other embodiments, isolating plate 122 is the backplate of the MEMS acoustic transducer and isolating plate 132 is the membrane of the MEMS acoustic transducer. In various embodiments, the membrane (either isolating plate 132 or isolating plate 122) may experience an attractive force for some separation distances and a repulsive force for other separation distances depending on the electric fields formed by dipole electrodes 140 and dipole electrodes 128.
According to various embodiments, connection 158 couples first electrodes 154 to a first charge source and connection 160 couples second electrodes 156 to a second charge source. In such embodiments, adjacent electrodes of first electrodes 154 and second electrodes 156 form positive and negative poles of dipole electrodes. In one embodiment, as similarly illustrated in
In various embodiments, additional electrodes may be included beneath electrodes 162 or beneath isolation plate 152. In such embodiments, connection 166 is coupled to the additional electrodes. In one embodiment, as described hereinabove in reference to
According to various embodiments, as described in reference to
Top plate 171 and bottom plate 172 may be insulators with patterned electrodes 174 and 176, respectively. In other embodiments, top plate 171 and bottom plate 172 may be conductors with insulating layers formed on top or bottom surfaces of top plate 171 or bottom plate 172. Further, electrodes 174 and 176 may be formed on top or bottom surfaces of top plate 171 or bottom plate 172. In other embodiments, top plate 171 or bottom plate 172 may include any type of electrode configuration described hereinabove in reference to
In reference to
First electrodes 204 may be formed as a common conductive layer and patterned. First electrodes 204 are formed of polysilicon in one embodiment. First electrodes 204 are formed of metal in other embodiments. In such embodiments, first electrodes 204 are formed of aluminum, silver, or gold. In other embodiments, first electrodes 204 are formed of any conductor suitable for fabrication and operation with embodiment multi-electrode transducers, such as other metals or doped semiconductors.
Similar to first electrodes 204, second electrodes 206 may be formed as a common conductive layer and patterned. Second electrodes 206 are formed of polysilicon in one embodiment. Second electrodes 206 are formed of metal in other embodiments. In such embodiments, second electrodes 206 are formed of aluminum, silver, or gold. In other embodiments, second electrodes 206 are formed of any conductor suitable for fabrication and operation with embodiment multi-electrode transducers, such as other metals or doped semiconductors. In some other embodiments, electrodes, such as first electrode 204 or second electrode 206, may be included only on the top surface or only on the bottom surface of the supporting layer, such as insulating layer 202, instead of on both the top and bottom surfaces as shown.
Third electrodes 220 may be formed as a common conductive layer and patterned on top of electrode insulating layer 218. Third electrodes 220 are formed of polysilicon in one embodiment. Third electrodes 220 are formed of metal in other embodiments. In such embodiments, third electrodes 220 are formed of aluminum, silver, or gold. In other embodiments, third electrodes 220 are formed of any conductor suitable for fabrication and operation with embodiment multi-electrode transducers, such as other metals or doped semiconductors. In some embodiments, bottom insulating layer 214 may be omitted.
According to various embodiments, second electrical connections 210 and third electrical connections 224 form connections between the various electrodes, such as second electrodes 206 or third electrodes 220, and may form connections 164 or 166 as described hereinabove in reference to
Conductive layer 226 may be formed as a common conductive layer and patterned. Conductive layer 226 is formed of polysilicon in one embodiment. Conductive layer 226 is formed of metal in other embodiments. In such embodiments, conductive layer 226 is formed of aluminum, silver, or gold. In other embodiments, conductive layer 226 is formed of any conductor suitable for fabrication and operation with embodiment multi-electrode transducers, such as other metals or doped semiconductors.
Similar to conductive layer 226, conductive layer 230 may be formed as a common conductive layer and patterned. Conductive layer 230 is formed of polysilicon in one embodiment. Conductive layer 230 is formed of metal in other embodiments. In such embodiments, conductive layer 230 is formed of aluminum, silver, or gold. In other embodiments, conductive layer 230 is formed of any conductor suitable for fabrication and operation with embodiment multi-electrode transducers, such as other metals or doped semiconductors.
Insulating layer 228 is formed as a layer and patterned between conductive layer 226 and conductive layer 230. Insulating layer 228 is formed of silicon nitride or silicon dioxide. In further embodiments, insulating layer 228 may be formed of any type of oxide or nitride. Insulating layer 228 may be formed of any type of insulator suitable for fabrication and operation with embodiment multi-electrode transducers, such as a polymer in alternative embodiments.
In various embodiments as described hereinabove in reference to
In various embodiments, membrane 240 is formed of conductive layer 244, insulating layer 246, and conductive layer 248. In various embodiments, insulating layer 246 is formed of silicon nitride or silicon dioxide. In further embodiments, insulating layer 246 may be formed of any type of oxide or nitride. Insulating layer 246 may be any type of insulator suitable for fabrication and operation with embodiment multi-electrode transducers, such as a polymer in alternative embodiments.
Conductive layer 244 and conductive layer 248 may be formed as conductive layers on the top and bottom surfaces of insulating layer 246, respectively. Further, conductive layer 244 and conductive layer 248 are patterned to form dipole electrodes 250 and electrical connections 252. Conductive layer 244 and conductive layer 248 are formed of polysilicon in one embodiment. Conductive layer 244 and conductive layer 248 are formed of metal in other embodiments. In such embodiments, conductive layer 244 and conductive layer 248 are formed of aluminum, silver, or gold. In other embodiments, conductive layer 244 and conductive layer 248 are formed of any conductor suitable for fabrication and operation with embodiment multi-electrode transducers, such as other metals or doped semiconductors.
In various embodiments, backplate 238 and membrane 240 are supported by structural layer 236, which is formed of an insulating material. Structural layer 236 is formed of tetraethyl orthosilicate (TEOS) oxide in one embodiment. In other embodiments, structural layer 236 may be formed of oxides or nitrides. In alternative embodiments, structural layer 236 is formed of a polymer. Isolation 234 is formed between substrate 232 and structural layer 236. Isolation 234 is a nitride, such as silicon nitride, in some embodiments. In other embodiments, isolation 234 is any type of insulating etch resistant material. For example, substrate 232 may undergo a backside etch through the whole substrate where isolation 234 is used as an etch stop. In such embodiments, isolation 234 is a material that is selectively etched much slower than the material of substrate 232.
According to various embodiments, substrate 232 is silicon. Substrate 232 may also be any type of semiconductor. In further embodiments, substrate 232 may be a polymer substrate or a laminate substrate.
In various embodiments, backplate 238 is formed of conductive layer 242 and includes perforations 241. Backplate 238 may be a rigid backplate structure that remains substantially un-deflected while membrane 240 deflects in relation to acoustic signals. In various embodiments, backplate 238 has a greater thickness than membrane 240. Conductive layer 242 is polysilicon in some embodiments. In other embodiments, conductive layer 242 is any type of semiconductor, such as doped semiconductor layer. In still further embodiments, conductive layer 242 is formed of a metal, such as aluminum, silver, gold, or platinum, for example.
According to various embodiments, metallization 254 is formed in a via in structural layer 236 and forms an electrical contact with conductive layer 248. Similarly, metallization 256 is formed in a via in structural layer 236 and forms an electrical contact with conductive layer 244, metallization 258 is formed in a via in structural layer 236 and forms an electrical contact with conductive layer 242, and metallization is formed in a via in structural layer 236 and forms an electrical contact with substrate 232. Metallization 254, metallization 256, metallization 258, and metallization 260 are formed of aluminum in some embodiments. In other embodiments, metallization 254, metallization 256, metallization 258, and metallization 260 are formed of any type of metal suitable for the fabrication process and other materials used in MEMS acoustic transducer 231a.
In various embodiments, dipole electrodes 250 operate with backplate 238 as described hereinabove in reference to
Membrane 240 is depicted at a cross-section showing electrical connections 252, as similarly described hereinabove in reference to
In various embodiments, MEMS acoustic transducer 231a is a MEMS microphone. In other embodiments, MEMS acoustic transducer 231a is a MEMS microspeaker. In such embodiments, the size of the membrane and the separation distance between backplate 238 and membrane 240 may be larger for the MEMS microspeaker than for the MEMS microphone.
In various embodiments, membrane 240 is formed of conductive layer 262. Conductive layer 262 is polysilicon in some embodiments. In other embodiments, conductive layer 262 is any type of semiconductor, such as doped semiconductor layer. In still further embodiments, conductive layer 262 is formed of a metal, such as aluminum, silver, gold, or platinum, for example.
According to various embodiments, backplate 238 includes a five layer semiconductor stack including conductive layer 264, insulating layer 266, conductive layer 268, insulating layer 270, and conductive layer 272. Backplate 238 includes perforations 241. In various embodiments, dipole electrodes 250 are formed from conductive layer 264 and interconnected with electrical connections 252, which are also formed from conductive layer 264.
In various embodiments, conductive layer 268 is polysilicon in some embodiments. In other embodiments, conductive layer 268 is any type of semiconductor, such as doped semiconductor layer. In still further embodiments, conductive layer 268 is formed of a metal, such as aluminum, silver, gold, or platinum, for example. In various embodiments, conductive layer 268, insulating layer 266, and insulating layer 270 are combined into a single insulating layer with a similar combination of layers as membrane 240, for example.
In various embodiments, insulating layer 266 and insulating layer 270 are formed on the top surface and bottom surface of conductive layer 268, respectively. Insulating layer 266 and insulating layer 270 are formed of silicon nitride or silicon dioxide. In further embodiments, insulating layer 266 and insulating layer 270 may be formed of any type of oxide or nitride. Insulating layer 266 and insulating layer 270 may be any type of insulator suitable for fabrication and operation with embodiment multi-electrode transducers, such as a polymer in alternative embodiments.
Conductive layer 264 and conductive layer 272 may be formed as conductive layers on the top and bottom surfaces of insulating layer 266 and insulating layer 270, respectively. Further, conductive layer 264 and conductive layer 272 are patterned to form dipole electrodes 250 and electrical connections 252. Conductive layer 264 and conductive layer 272 are formed of polysilicon in one embodiment. Conductive layer 264 and conductive layer 272 are formed of metal in other embodiments. In such embodiments, conductive layer 264 and conductive layer 272 are formed of aluminum, silver, or gold. In other embodiments, conductive layer 264 and conductive layer 272 are formed of any conductor suitable for fabrication and operation with embodiment multi-electrode transducers, such as other metals or doped semiconductors.
Backplate 238 is depicted at a cross-section showing electrical connections 252, as similarly described hereinabove in reference to
Metallization 253, metallization 255, metallization 257, and metallization 259 may be formed as described hereinabove in reference to metallization 254, metallization 256, metallization 258, and metallization 260 in
In various embodiments, membrane 240 includes insulating layer 246, conductive layer 248, insulating layer 274, and conductive layer 276. Insulating layer 246 and conductive layer 248 are formed as described hereinabove in reference to
Conductive layer 248 and conductive layer 276 are patterned to form dipole electrodes 250 and electrical connections 252. Conductive layer 276 is formed of polysilicon in one embodiment. Conductive layer 276 is formed of metal in other embodiments. In such embodiments, conductive layer 276 is formed of aluminum, silver, or gold. In other embodiments, conductive layer 276 is formed of any conductor suitable for fabrication and operation with embodiment multi-electrode transducers, such as other metals or doped semiconductors.
Metallization 278 may be formed as described hereinabove in reference to metallization 254, metallization 256, metallization 258, and metallization 260 in
Membrane 240 is depicted at a cross-section showing electrical connections 252, as similarly described hereinabove in reference to
In order to improve clarity,
Backplate 238 and backplate 239 are illustrated with identical numerals for identification of the various structures and layers. Thus, the description provided hereinabove of the various structures and layers in reference to backplate 238 also applies to the commonly numbered layers and structures of backplate 239. However, one of ordinary skill in the art will recognize that the various layers, for example, of backplate 238 and backplate 239 are not the same layer and may be formed and patterned separately in various embodiments.
In order to improve clarity,
Membrane 240 is illustrated with identical numerals for identification of the various structures and layers. Thus, the description provided hereinabove of the various structures and layers in reference to membrane 240 also applies to the commonly numbered layers and structures. Similarly, backplate 238 is illustrated with identical numerals for identification of the various structures and layers, where insulating layer 280 replaces insulating layer 266, conductive layer 268, and insulating layer 270. In various embodiments, insulating layer 280 may include any of the features of insulating layer 246 or insulating layer 266 and insulating layer 270, as described hereinabove. In particular embodiments, insulating layer 280 is thicker than insulating layer 246. For the other elements of backplate 238, the description provided hereinabove of the various structures and layers in reference to backplate 238 also applies to the commonly numbered layers and structures.
The embodiments described in reference to
In various embodiments, step 308 includes forming and patterning a structural material, such as TEOS oxide. Forming and patterning in step 308 is performed in order to provide spacing for a membrane. The structural layer may be patterned in order to form anti-stiction bumps for the membrane. In addition, the structural layer formed in step 308 may include multiple depositions and a planarization step, such as a chemical mechanical polish (CMP). Step 310 includes forming the membrane layer and patterning the membrane. The membrane layer may be formed of polysilicon, for example. In other embodiments, the membrane layer may be formed of other conductive materials, such as a doped semiconductor or a metal, for example. In various embodiments, the membrane may be formed and patterned according to any of the embodiments described hereinabove in reference to
In various embodiments, step 312 includes forming and patterning additional structural material, such as TEOS oxide. Similar to step 308, the structural material may be formed and patterned in step 312 to space a second backplate from the membrane and provide anti-stiction bumps in the second backplate. Step 314 includes forming and patterning the layers of the second backplate. In some embodiments, forming and patterning in step 314 includes deposition of layers and photolithographic patterning, for example. In various embodiments, the second backplate may be omitted. In other embodiments where the second backplate is not omitted, the second backplate may be formed and patterned according to any of the embodiments described hereinabove in reference to
Following step 314, step 316 includes forming and patterning additional structural material in various embodiments. The structural material may be TEOS oxide. In some embodiments, the structural material is deposited as a sacrificial material or a masking material for subsequent etch or patterning steps. Step 318 includes forming and patterning contact pads. Forming and patterning the contact pads in step 318 may include etching contact holes in the existing layers to provide openings to the second backplate, membrane, first backplate, and substrate, as well as openings to the conductive layers formed as part of the first backplate, membrane, or second backplate to implement various electrodes or dipole electrodes as described hereinabove in reference to the other figures. After forming the openings to each respective structure or layer, the contact pads may be formed by depositing a conductive material, such as a metal, in the openings and patterning the conductive material to form separate contact pads. The metal may be aluminum, silver, or gold in various embodiments. Alternatively, the metallization may include a conductive paste, for example, or other metals, such as copper.
In various embodiments, step 320 includes performing a backside etch, such as a Bosch etch. The backside etch forms a cavity in the substrate that may be coupled to a sound port for the fabricated microphone or may form a reference cavity. Step 322 includes performing a release etch to remove the structural materials protecting and securing the first backplate, membrane, and second backplate. Following the release etch in step 322, the membrane may be free to move in some embodiments.
As described hereinabove, fabrication sequence 300 may be modified in specific embodiments to include only a single backplate and membrane. Those of skill in the art will readily appreciate that numerous modifications may be made to the general fabrication sequence described hereinabove in order to provide various benefits and modifications known to those of skill in the art while still including various embodiments of the present invention. In some embodiments, fabrication sequence 300 may be implemented to form a MEMS microspeaker or a MEMS microphone, for example, or a pressure sensor in other embodiments. In still other embodiments, fabrication sequence 300 may be implemented to form any type of MEMS transducer including embodiment electrode structures as described herein.
Following step 332, step 334 includes patterning the first layer to form patterned electrodes. In such embodiments, the patterning of step 334 may include a lithographic process including applying a photoresist, patterning the photoresist using a mask for exposure and a developer solution, and etching the first layer according to the patterned photoresist. In various embodiments, step 334 may include photolithography, electron beam lithography, ion beam or lithography. In still further embodiments, step 334 may include x-ray lithography, mechanical imprint patterning, or microscale (or nanoscale) printing techniques. Still further approaches for patterning the first layer may be used in some embodiments, as will be readily appreciated by those of skill in the art. In step 334, the first layer may be patterned to form concentric circles, as described hereinabove in reference to
In some embodiments, the first layer may also include electrical connections as described hereinabove in reference to first electrical connections 208 in
Before step 336, an additional step of depositing or forming a sacrificial layer and performing a planarization step on the sacrificial layer and the first layer may be included. For example, a chemical mechanical polish (CMP) may be applied to the sacrificial layer and the first layer. In various embodiments, step 336 includes depositing or forming a second layer on the patterned first layer. The second layer is an insulating layer.
In some embodiments, the second layer is a nitride, such as silicon nitride. In other embodiments, the second layer is an oxide, such as silicon oxide. The second layer may be another type of suitable dielectric or insulator in further embodiments. In an alternative embodiment, the second layer may be formed of a polymer. In one embodiment, the second layer may be a TEOS oxide. In various embodiments, the second layer may be deposited or formed using any of the methods known to those of skill in the art to be compatible with the material selected for deposition or formation, such as CVD, PVD, or thermal oxidation for example.
Step 338 includes patterning the second layer. Patterning the second layer may be performed using any of the techniques described in reference to step 334. The second layer may be patterned to form a membrane or a backplate in some embodiments. For example, the second layer may be patterned to form a circular membrane. In embodiments where fabrication sequence 330 is used to form a backplate for a MEMS acoustic transducer, the second layer may also be patterned to form perforations. Similarly, in other embodiments involving other structures for other types of transducers, the second layer may be patterned according to the specific type of transducer.
Following step 338, step 340 includes depositing or forming a third layer on top of the second layer. The third layer is a conductive layer that may be formed using any of the techniques or materials described in reference to step 332.
Step 342 includes patterning the third layer to form patterned electrodes and electrical connections. Patterning the third layer may be performed using any of the techniques described in reference to step 334. In step 342, the third layer may be patterned to form concentric circles, or other patterns, as described hereinabove in reference to
In various embodiments, fabrication sequence 330 may be used to form a backplate or a membrane. In some embodiments, either the first layer or the third layer may be omitted. For examples, in embodiments for forming multi-electrode plates or structures as described hereinabove in reference to
Following step 352, step 354 includes patterning the first layer to form patterned electrodes and electrical connections. Patterning the first layer in step 354 may be performed using any of the techniques described hereinabove in reference to step 334 in
Before step 356, an additional step of depositing or forming a sacrificial layer and performing a planarization step on the sacrificial layer and the first layer may be included. For example, a chemical mechanical polish (CMP) may be applied to the sacrificial layer and the first layer. In various embodiments, step 356 includes depositing or forming a second layer on the patterned first layer. The second layer in step 356 is an insulating layer that may be formed using any of the techniques or materials described hereinabove in reference to step 336 in
Following step 358, step 360 includes depositing or forming a third layer on top of the second layer. The third layer in step 360 is a conductive layer that may be formed using any of the techniques or materials described hereinabove in reference to step 332 in
In various embodiments, step 364 includes depositing or forming a fourth layer on top of the third layer. The fourth layer in step 364 is an insulating layer that may be formed using any of the techniques or materials described hereinabove in reference to step 336 in
According to various embodiments, the second layer, the third layer, and the fourth layer may together form a backplate or a membrane for a MEMS acoustic transducer. Thus, the second layer, the third layer, and the fourth layer may be patterned to form a membrane or a backplate in such embodiments. For example, the second layer, the third layer, and the fourth layer may be patterned, in each separate patterning step or together in a single patterning step, to form a circular membrane. In embodiments where fabrication sequence 350 is used to form a backplate for a MEMS acoustic transducer, the second layer, the third layer, and the fourth layer may also be patterned to form perforations. Similarly, in other embodiments involving other structures for other types of transducers, the second layer, the third layer, and the fourth layer may be patterned according to the specific type of transducer.
Step 368 includes depositing or forming a fifth layer on top of the fourth layer. The fifth layer is a conductive layer that may be formed using any of the techniques or materials described hereinabove in reference to step 332 in
In various embodiments, fabrication sequence 350 may be used to form a backplate or a membrane. In some embodiments, either the first and second layers or the fourth and fifth layers may be omitted. For examples, in embodiments for forming multi-electrode plates or structures as described hereinabove in reference to
Following step 374, step 376 includes depositing or forming a second layer on top of the first layer. The second layer in step 376 is a conductive layer that may be formed using any of the techniques or materials described hereinabove in reference to step 332 in
In various embodiments, step 380 includes depositing or forming a third layer on top of the second layer. The third layer in step 380 is an insulating layer that may be formed using any of the techniques or materials described hereinabove in reference to step 336 in
According to various embodiments, the first layer, the second layer, and the third layer may together form a backplate or a membrane for a MEMS acoustic transducer. Thus, the first layer, the second layer, and the third layer may be patterned to form a membrane or a backplate in such embodiments. For example, the first layer, the second layer, and the third layer may be patterned, in each separate patterning step or together in a single patterning step, to form a circular membrane. In embodiments where fabrication sequence 370 is used to form a backplate for a MEMS acoustic transducer, the first layer, the second layer, and the third layer may also be patterned to form perforations. Similarly, in other embodiments involving other structures for other types of transducers, the first layer, the second layer, and the third layer may be patterned according to the specific type of transducer.
In various embodiments, step 384 includes depositing or forming a fourth layer on top of the third layer. The fourth layer is a conductive layer that may be formed using any of the techniques or materials described hereinabove in reference to step 332 in
In some embodiments, the fourth layer may also include electrical connections as described hereinabove in reference to second electrical connections 210 in
Before step 388, an additional step of depositing or forming a sacrificial layer and performing a planarization step on the sacrificial layer and the fourth layer may be included. For example, a CMP may be applied to the sacrificial layer and the fourth layer. In various embodiments, step 388 includes depositing or forming a fifth layer on the patterned fourth layer. The fifth layer in step 388 is an insulating layer that may be formed using any of the techniques or materials described hereinabove in reference to step 336 in
Before step 392, as before step 388, an additional step of depositing or forming a sacrificial layer and performing a planarization step on the sacrificial layer and the fifth layer may be included. For example, a CMP may be applied to the sacrificial layer and the fifth layer. Step 392 includes depositing or forming a sixth layer on top of the fifth layer. The sixth layer is a conductive layer that may be formed using any of the techniques or materials described hereinabove in reference to step 332 in
Following step 392, step 394 includes patterning the sixth layer to form patterned electrodes on top of the patterned electrodes of step 386 and the insulation of step 390. Step 394 may also include forming patterned electrical connections. Patterning the sixth layer in step 394 may be performed using any of the techniques described hereinabove in reference to step 334 in
In some embodiments, the sixth layer may also include electrical connections as described hereinabove in reference to third electrical connections 224 in
In other embodiments, the patterned electrodes formed in step 394 may not be placed on top of the patterned electrodes of step 386. Instead, step 394 includes patterning the electrodes in, for example, concentric circles offset from the concentric circles of the patterned electrodes of step 386. For example, step 386 and step 394 may together include patterning electrodes as described hereinabove in reference to
In various embodiments, fabrication sequence 370 may be used to form a backplate or a membrane. In some embodiments, the first layer may be omitted. For examples, in embodiments for forming multi-electrode plates or structures as described hereinabove in reference to
In particular embodiments, fabrication sequence 370 includes forming patterned dipole electrodes on a top surface, i.e., as layers four, five, and six, as described hereinabove in reference to
In further particular embodiments, fabrication sequence 370 may be modified to form structures as described hereinabove in reference to
In other embodiments, structure variations and material alternatives are envisioned for fabrication sequence 330, fabrication sequence 350, and fabrication sequence 370. In some alternative embodiments, a backplate or membrane may be formed of any number of layers, conductive or insulating. For example, in some embodiments, the backplate or membrane may include layers of metals, semiconductors, or dielectrics. A dielectric layer may be used to separate a conductive sensing layer from electrodes. In some embodiments, the backplate or membrane may be formed of silicon on insulator (SOI) or metal and dielectric layers.
According to an embodiment, a MEMS transducer includes a stator, a rotor spaced apart from the stator, and a multi-electrode structure including electrodes with different polarities. The multi-electrode structure is formed on one of the rotor and the stator and is configured to generate a repulsive electrostatic force between the stator and the rotor. Other embodiments include corresponding systems and apparatus, each configured to perform corresponding embodiment methods.
Implementations may include one or more of the following features. In various embodiments, the stator includes a backplate, the rotor includes a membrane, and the MEMS transducer is a MEMS microphone or a MEMS microspeaker. In some embodiments, the multi-electrode structure includes a first plurality of dipole electrodes. In other embodiments, the rotor includes the first plurality of dipole electrodes and the stator includes a conductive layer. In further embodiments, the stator includes the first plurality of dipole electrodes and the rotor includes a conductive layer. In specific embodiments, the stator includes the first plurality of dipole electrodes and the rotor includes a second plurality of dipole electrodes.
In various embodiments, each dipole electrode of the first plurality of dipole electrodes includes a positive pole and a negative pole formed on a same surface of the rotor or the stator. In some embodiments, for each dipole electrode of the first plurality of dipole electrodes, the positive pole and the negative pole are separated by an insulating layer and formed as a layered stack on the same surface of the rotor or the stator. In further embodiments, for each dipole electrode of the first plurality of dipole electrodes, the positive pole and the negative pole are formed spaced apart on the same surface of the rotor or the stator.
In various embodiments, the first plurality of dipole electrodes is formed as concentric electrodes with alternative positive and negative poles. In some embodiments, each dipole electrode of the first plurality of dipole electrodes includes a positive pole formed on a first surface and a negative pole formed on a second surface, where the first surface is an opposite surface of the second surface and both the first surface and the second surface are on either the rotor or the stator. In further embodiments, the MEMS transducer further includes an insulating layer formed between the first surface and the second surface. In still further embodiments, the MEMS transducer further includes a conductive layer formed with insulating layers formed between the first surface and the conductive layer and between the second surface and the conductive layer. In such embodiments, the first plurality of dipole electrodes may be formed as concentric electrodes on the first surface and on the second surface. The multi-electrode structure may include a first discontinuous electrode formed of a conductive layer on a first surface of the rotor or the stator, where the first discontinuous electrode includes a plurality of first concentric electrode portions coupled to a first electrode connection and including a break in each electrode portion of the plurality of first concentric electrode portions.
In particular embodiments, the multi-electrode structure further includes a second discontinuous electrode formed of the conductive layer on the first surface, where the second discontinuous electrode includes a plurality of second concentric electrode portions coupled to a second electrode connection and includes a break in each electrode portion of the plurality of second concentric electrode portions. In such embodiments, the first concentric electrode portions and the second concentric electrode portions are arranged in alternating concentric structures such that each first concentric electrode portion of the first concentric electrode portions is adjacent a second concentric electrode portion of the second concentric electrode portions.
According to an embodiment, a MEMS device with a deflectable structure includes a first structure and a second structure, where the first structure is spaced apart from the second structure and the first structure and the second structure are configured to vary a distance between portions of the first structure and the second structure during deflections of the deflectable structure. In such embodiments, the first structure includes a first electrode configured to have a first charge polarity and a second electrode configured to have a second charge polarity, where the second charge polarity is different from the first charge polarity. The second structure includes a third electrode configured to have the first charge polarity. Other embodiments include corresponding systems and apparatus, each configured to perform corresponding embodiment methods.
Implementations may include one or more of the following features. In various embodiments, the first structure includes the deflectable structure and the second structure includes a rigid structure. In some embodiments, the MEMS device is an acoustic transducer, the deflectable structure includes a deflectable membrane, and the rigid structure includes a rigid perforated backplate. In further embodiments, the first structure includes a rigid structure and the second structure includes the deflectable structure. In particular embodiments, the MEMS device is an acoustic transducer, the rigid structure includes a rigid perforated backplate, and the deflectable structure includes a deflectable membrane.
According to an embodiment, a method of forming a MEMS device includes forming a first structure, forming a structural layer in contact with the first structure around a circumference of the first structure, and forming a second structure. The first structure includes a dipole electrode including a first electrode and a second electrode. The second structure includes a third electrode. In such embodiments, the structural layer is in contact with the second structure around a circumference of the second structure and the first structure is spaced apart from the second structure by the structural layer. Other embodiments include corresponding systems and apparatus, each configured to perform corresponding embodiment methods.
Implementations may include one or more of the following features. In various embodiments, forming the first structure includes forming a first structural layer, forming a plurality of first electrodes on a top surface of the first structural layer, and forming a plurality of second electrodes on a bottom surface of the first structural layer. In some embodiments, forming the first structural layer includes forming a first insulating layer. Forming the first structural layer may include forming a first conducting layer, forming a first insulating layer on a top surface of the first conducting layer, and forming a second insulating layer on a bottom surface of the first conducting layer.
In various embodiments, forming the first structure includes forming a first structural layer, forming a plurality of first electrodes on a first surface of the first structural layer, and forming a plurality of second electrodes on the first surface of the first structural layer. In some embodiments, forming the first structural layer includes forming a first conducting layer and forming a first insulating layer between the first conducting layer and both the plurality of first electrodes and the plurality of second electrodes. In particular embodiments, the plurality of first electrodes and the plurality of second electrodes are formed on and in contact with first insulating layer. The plurality of second electrodes may be formed overlying the plurality of first electrodes, and forming the first structure may further include forming a second insulating layer between the plurality of first electrodes and the plurality of second electrodes.
According to various embodiments described herein, an advantage may include MEMS transducers having movable electrodes with low risk of collapse, i.e., pull-in, for the electrodes due to embodiment multi-electrode configurations described herein.
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This is a divisional application of U.S. application Ser. No. 14/818,007, entitled “System and Method for a Multi-Electrode MEMS Device,” filed on Aug. 4, 2015 which application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14818007 | Aug 2015 | US |
Child | 15981714 | US |