The present invention relates generally to the field of tissue treatment, and more specifically to a system and method for applying reduced pressure at a tissue site.
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. The treatment of wounds using reduced pressure is sometimes referred to in the medical community as “negative pressure tissue treatment,” “reduced pressure therapy,” or “vacuum therapy.” This type of treatment provides a number of benefits, including faster healing, and increased formulation of granulation tissue.
Reduced pressure treatment systems are often applied to large, highly exudating wounds present on patients undergoing acute or chronic care, as well as other severe wounds that are not readily susceptible to healing without application of reduced pressure. Low-severity wounds that are smaller in volume and produce less exudate have generally been treated using advanced dressings instead of reduced pressure treatment.
Currently, the use of reduced pressure treatment is not considered a viable or affordable option for low-severity wounds due to the manpower required to monitor and change system components, the requirement for trained medical personnel overseeing treatment, and the high cost of treatment. For example, the complexity of current reduced pressure treatment systems precludes a person with little or no specialized knowledge from administering such treatment to oneself or others. The size and power consumption characteristics of current reduced pressure treatment systems also limit the mobility of both the treatment system and the person to whom the treatment is being applied. Also, the high cost of current reduced pressure treatment systems can preclude the accessibility of such treatment systems to some users. Current reduced pressure treatment systems are also typically non-disposable after each treatment, and require electrical components or other powered devices in order to generate the reduced pressure used in treatment.
While reduced pressure could be applied to low-volume and low-exudating wounds using traditional reduced pressure treatment systems, a need exists for a more simple system that allows reduced pressure treatment to be administered without specialized medical training. A need further exists for a system that uses little power and is compact, allowing a user of the system to remain mobile and participate in normal day-to-day activities. Finally, a system is needed that is inexpensive so that the system can economically be used by a single patient and then disposed of following the end of treatment for that patient.
To alleviate the existing problems with reduced pressure treatment systems, the illustrative embodiments described herein are directed to a manually-actuated pump and method for applying reduced pressure at a tissue site. The manually-actuated pump includes at least one variable volume chamber that is manually compressible into a plurality of positions. The manually-actuated pump includes a fixed volume chamber in communication with the at least one variable volume chamber. The manually-actuated pump also includes a filter housing having a hydrophobic filter that prevents liquid from entering the at least one variable volume chamber. The fixed volume chamber is coupled to the at least one variable volume chamber via the filter housing. The filter housing is located in between the at least one variable volume chamber and the fixed volume chamber. The fixed volume chamber has reduced pressure that is applied to the tissue site in response to a movement of the at least one variable volume chamber from a compressed position in the plurality of positions to an uncompressed position in the plurality of positions.
The illustrative embodiments also provide a method for applying reduced pressure at a tissue site. The method compresses at least one variable volume chamber from an uncompressed position in a plurality of positions to a compressed position in the plurality of positions. The method, in response to expanding the at least one variable volume chamber from the compressed position to the uncompressed position, transfers reduced pressure from the at least one variable volume chamber to a fixed volume chamber via a filter housing having a hydrophobic filter that prevents liquid from entering the at least one variable volume chamber. The method applies the reduced pressure to the tissue site in response to transferring the reduced pressure from the at least one variable volume chamber to the fixed volume chamber. Other objects, features, and advantages of the invention will become apparent with reference to the drawings, detailed description, and claims that follow.
In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The illustrative embodiments described herein provide an apparatus and method for applying reduced pressure at a tissue site. Reduced pressure generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure of the location at which the patient is located. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be significantly less than the pressure normally associated with a complete vacuum. Consistent with this nomenclature, an increase in reduced pressure or vacuum pressure refers to a relative reduction of absolute pressure, while a decrease in reduced pressure or vacuum pressure refers to a relative increase of absolute pressure.
The manually-actuated pump includes at least one variable volume chamber that is manually compressible into a plurality of positions. The manually-actuated pump includes a fixed volume chamber in communication with the at least one variable volume chamber. The manually-actuated pump also includes a filter housing having a hydrophobic filter that prevents liquid from entering the at least one variable volume chamber. The fixed volume chamber is coupled to the at least one variable volume chamber via the filter housing. As used herein, the term “coupled” includes coupling via a separate object. For example, the fixed volume chamber may be coupled to the at least one variable volume chamber if both the fixed volume chamber and the at least one variable volume chamber are coupled to a third object, such as a filter housing. The term “coupled” also includes “directly coupled,” in which case the two objects touch each other in some way. The term “coupled” also encompasses two or more components that are continuous with one another by virtue of each of the components being formed from the same piece of material.
The filter housing is located in between the at least one variable volume chamber and the fixed volume chamber. The fixed volume chamber has reduced pressure that is applied to the tissue site in response to a movement of the at least one variable volume chamber from a compressed position in the plurality of positions to an uncompressed position in the plurality of positions.
Turning now to
Reduced pressure treatment system 100 includes pump 102. Pump 102 includes a variable volume chamber 110 and fixed volume chamber 115, which are coupled to one another via filter housing 120. Variable volume chamber 110 has a variable volume that is affected by the compression of compressible pump along axis 122. Variable volume chamber 110 may also be compressed along other axes.
Variable volume chamber 110 may be manually-actuated. That is, the compression of variable volume chamber 110 may be performed by any living organism. For example, variable volume chamber 110 may be manually pushed, squeezed, or otherwise compressed by a human hand, finger, or other limb. Variable volume chamber 110 may be any type of manually-actuated chamber. For example, variable volume chamber 110 may be a compressible bellows have corrugated side walls.
In one embodiment, variable volume chamber 110 is compressible into a plurality of positions, each of which may define a different volume for variable volume chamber 110. For example, variable volume chamber 110 may have a fully uncompressed position at which variable volume chamber 110 has the greatest volume. In this example, variable volume chamber 110 may also have a fully compressed position at which variable volume chamber 110 has the smallest volume. Variable volume chamber 110 may also have any position between the fully uncompressed position and the fully compressed position. Thus, the uncompressed and compressed positions may be any positions at or between the fully uncompressed position and the fully compressed position in which the uncompressed position has a greater volume than the compressed position.
Variable volume chamber 110 includes outlet valve 124. Outlet valve 124 permits the passage of gas, such as air, out of variable volume chamber 110. Outlet valve 124 also prevents gas from entering variable volume chamber 110. This, when the volume of variable volume chamber 110 is reduced due to the compression of compressible pump from an uncompressed position to a compressed position, gas is forced out of variable volume chamber 110. Outlet valve 124 may be any type of valve capable of permitting the passage of gas out of variable volume chamber 110 while preventing the passage of gas into variable volume chamber 110. A non-limiting example of valve 124 is an umbrella valve, duckbill valve, ball valve, diaphragm valve, and any type of one-way valve.
Although
Pump 102 also includes fixed volume chamber 115. Fixed volume chamber 115 is capable of containing any fluid, such as gases and liquids, as well as fluids that contain solids. For example, fixed volume chamber 115 may contain exudates from tissue site 105. In one example, fixed volume chamber 115 has a substantially fixed volume. Fixed volume chamber 115 may be made of any material capable of providing fixed volume chamber 115 with a substantially fixed volume, including metal, plastic, or hardened rubber.
Fixed volume chamber 115 includes side walls 125 and 127, which are coupled to end wall 130. Side walls 125 and 127 may be contiguously formed with an end wall 130 such that no joint exists between side walls 125 and 127 and end wall 130. In addition, side walls 125 and 127 may be welded, screwed, glued, bolted, air-lock sealed, or snapped onto end wall 130.
Fixed volume chamber 115 is coupled to variable volume chamber 110 by filter housing 120. Fixed volume chamber 115 and variable volume chamber 110 may be coupled to filter housing 120 in a variety of ways. For example, fixed volume chamber 115 or variable volume chamber 110 may be welded, screwed, glued, bolted, air-lock sealed, or snapped onto filter housing 120. Fixed volume chamber 115 or variable volume chamber 110 may also be part of the same material as filter housing 120, thereby eliminating the need for joints or seals between fixed volume chamber 115 and filter housing 120. In another example, variable volume chamber 110 may be sealed to filter housing 120 using an interlocking seal. Additional details regarding the coupling of filter housing 120 with fixed volume chamber 115 or variable volume chamber 110 are described below in
Filter housing 120 is capable of including one or more filters. In one embodiment, filter housing 120 includes a hydrophobic filter that prevents liquid from entering variable volume chamber 110 from fixed volume chamber 115. However, as described below, the hydrophobic filter permits the passage of air such that reduced pressure may be transferred from variable volume chamber 110 to fixed volume chamber 115. Filter housing 120 may also include an odor filter that restrains or prevents the transmission of odor from fixed volume chamber 115 to variable volume chamber 110. Additional details regarding the hydrophobic filter and odor filter will be provided in
Fixed volume chamber 115 is coupled to delivery tube 130 via inlet valve 140. Inlet valve 140 is located at inlet point 143. Inlet valve 140 permits the passage of fluid, such as exudate, into fixed volume chamber 115 at inlet point 143. Inlet valve 140 also restrains the passage of fluid out of fixed volume chamber 115 at inlet point 143. Inlet valve 140 may be any type of valve, such as an umbrella valve, duck bill valve, or a combination thereof.
Inlet valve 124 may be located at the center of end wall 130. Although
Delivery tube 140 is any tube through which a fluid may flow. Delivery tube 135 may be made from any material, and may include one or more paths or lumens through which fluid may flow. For example, delivery tube 135 may include two lumens. In this example, one lumen may be used for the passage of exudate from tissue site 105 to fixed volume chamber 115. The other lumen may be used to deliver fluids, such as air, antibacterial agents, antiviral agents, cell-growth promotion agents, irrigation fluids, or other chemically active agents, to tissue site 105. The fluid source from which these deliverable fluids originate is not shown in
Delivery tube 135 may be fixedly attached to fixed volume chamber 115 at inlet point 143. Also, delivery tube 135 may be detachable from fixed volume chamber 115 at inlet point 143. For example, delivery tube 135 may be snapped onto fixed volume chamber 115. Additional details regarding the coupling the delivery tube 135 to fixed volume chamber 115 will be provided in
The opposite end of delivery tube 135 is coupled to a manifold 145. Manifold 145 may be a biocompatible, porous material that is capable of being placed in contact with tissue site 105 and distributing reduced pressure to the tissue site 105. Manifold 145 may be made from foam, gauze, felted mat, or any other material suited to a particular biological application. Manifold 145 may include a plurality of flow channels or pathways to facilitate distribution of reduced pressure or fluids to or from the tissue site.
In one embodiment, manifold 145 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels. The porous foam may be a polyurethane, open-cell, reticulated foam such as GranuFoam manufactured by Kinetic Concepts, Inc. of San Antonio, Tex. If an open-cell foam is used, the porosity may vary, but is preferably about 400 to 600 microns. The flow channels allow fluid communication throughout the portion of manifold 145 having open cells. The cells and flow channels may be uniform in shape and size, or may include patterned or random variations in shape and size. Variations in shape and size of the cells of manifold result in variations in the flow channels, and such characteristics may be used to alter the flow characteristics of fluid through manifold 145.
In one embodiment, manifold 145 may further include portions that include “closed cells.” These closed-cell portions of manifold 145 contain a plurality of cells, the majority of which are not fluidly connected to adjacent cells. Closed-cell portions may be selectively disposed in manifold 145 to prevent transmission of fluids through perimeter surfaces of manifold 145.
Manifold 145 may also be constructed from bioresorbable materials that do not have to be removed from a patient's body following use of reduced pressure treatment system 100. Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA). The polymeric blend may also include without limitation polycarbonates, polyfumarates, and capralactones. Manifold 145 may further serve as a scaffold for new cell-growth, or a scaffold material may be used in conjunction with manifold 145 to promote cell-growth. A scaffold is a substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth. Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials. In one example, the scaffold material has a high void-fraction (i.e. a high content of air).
Manifold 145 may be secured to tissue site 105 using sealing member 150. Sealing member 150 may be a cover that is used to secure manifold 145 at tissue site 105. While sealing member 150 may be impermeable or semi-permeable, in one example sealing member 150 is capable of maintaining a reduced pressure at tissue site 105 after installation of the sealing member 150 over manifold 145. Sealing member 150 may be a flexible drape or film made from a silicone based compound, acrylic, hydrogel or hydrogel-forming material, or any other biocompatible material that includes the impermeability or permeability characteristics desired for tissue site 105.
In one embodiment, sealing member 150 is configured to provide a sealed connection with the tissue surrounding manifold 145 and tissue site 105. The sealed connection may be provided by an adhesive positioned along a perimeter of sealing member 150 or on any portion of sealing member 150 to secure sealing member 150 to manifold 145 or the tissue surrounding tissue site 105. The adhesive may be pre-positioned on sealing member 150 or may be sprayed or otherwise applied to sealing member 150 immediately prior to installing sealing member 150.
In some cases, sealing member 150 may not be required to seal tissue site 105. For example, tissue site 105 may be capable of being “self-sealed” to maintain reduced pressure. In the case of subcutaneous and deep tissue wounds, cavities, and fistulas, maintenance of reduced pressure at tissue site 105 may be possible without the use of sealing member 150. Since tissue often encases or surrounds these types of tissue sites, the tissue surrounding the tissue site acts effectively as a sealing member.
In one embodiment, delivery tube 135 is coupled to manifold 145 via connection member 155. Connection member 155 permits the passage of fluid from manifold 145 to delivery tube 135, and vice versa. For example, exudates collected from tissue site 105 using manifold 145 may enter delivery tube 135 via connection member 155. In another embodiment, reduced pressure treatment system 100 does not include connection member 155. In this embodiment, delivery tube 135 may be inserted directly into sealing member 150 such that an end of delivery tube 135 is adjacent to manifold 145.
Reduced pressure treatment system 100 may also include pressure feedback system 160. Pressure feedback system 160 may be operably associated with the other components of reduced pressure treatment system 100 to provide information to a user of reduced pressure treatment system 100 that indicates a relative or absolute amount of pressure that is being delivered to tissue site 105. Pressure feedback system 160 allows a user to accurately track the amount of reduced pressure that is being generated by reduced pressure treatment system 100. Non-limiting examples of pressure feedback systems include pop valves that activate when the reduced pressure rises above a selected value, low power electronic indicators powered by miniature cells, dial indicators that indicate specific pressure values that are being applied to the tissue site, deflection pop valves, polymers with various deflection characteristics, and films that move relative to one another to produce visual identifiers indicating the relative or absolute pressure values being generated by reduced pressure treatment system 100. An example of a film-based system may include a yellow film anchored to a first part of pump 102 that is capable of movement relative to a blue film anchored to a second part. When the first and second parts are moved relative to one another to apply a reduced pressure, the yellow and blue films overlap to create a green indicator. As the pressure increases and the films move away from one another, the loss of the green color indicates that the pressure has increased (i.e. more reduced pressure needs to be applied).
Also, although pressure feedback system 160 is shown as separate from the other components of reduced pressure treatment system 100, pressure feedback system 160 may form an integral part of any of the components of reduced pressure treatment system 100. Additional details regarding pressure feedback system 160 will be described in
A desiccant or absorptive material may be disposed within fixed volume chamber 115 to trap or control fluid once the fluid has been collected. In the absence of fixed volume chamber 115, a method for controlling exudate and other fluids may be employed in which the fluids, especially those that are water soluble, are allowed to evaporate from manifold 145.
In one embodiment, variable volume chamber 110 is moved from an uncompressed position to a compressed position, thereby decreasing the volume of variable volume chamber 110. As a result, gas is expelled from variable volume chamber 110 through outlet valve 124. Because gas cannot enter variable volume chamber 110 via outlet valve 124, gas cannot enter variable volume chamber 110 from surrounding space 165. Thus, as variable volume chamber 110 expands from the compressed position to the uncompressed position, gas is transferred from fixed volume chamber 115 to variable volume chamber 110. The movement of variable volume chamber 110 from a compressed position to an uncompressed position may be caused by any expansion force. In an illustrative example in which the side walls of variable volume chamber 110 are corrugated side walls, the expansion force may be caused by the tendency of the corrugations in the corrugated side walls to move away from one another and thereby return variable volume chamber 110 to the uncompressed position. The expansion force may also be caused by an independent biasing member, such as a spring or foam component, that is located within or without variable volume chamber 110. In another example, the resiliency of non-corrugated side walls of variable volume chamber 110 may be used to move variable volume chamber 110 to an uncompressed position.
Liquid, such as exudate, is prevented from being transferred from fixed volume chamber 115 to variable volume chamber 110 by a filter, such as a hydrophobic filter, in filter housing 120. Because fixed volume chamber 115 is sealed from surrounding space 165, a reduced pressure is generated in fixed volume chamber 115 as variable volume chamber 110 expands from the compressed position to the uncompressed position. This reduced pressure is than transferred to tissue site 105 via delivery tube 135 and manifold 145. This reduced pressure may be maintained at tissue site 105 using sealing member 150.
This process of moving variable volume chamber 110 from an uncompressed to a compressed position, and vice versa, in order to achieve a reduced pressure at tissue site 105 may be repeated. In particular, variable volume chamber 110 may undergo multiple compression/expansion cycles until fixed volume chamber 115 is filled with liquid, such as exudate, from tissue site 105. The multi-chamber configuration of pump 102, which includes variable volume chamber 110 and fixed volume chamber 115, permits compressible pump to be compressed regardless of the amount of liquid in fixed volume chamber 115. As a result, the desired pressure may be achieved during the compression/expansion cycles regardless of the amount of liquid in fixed volume chamber 115.
Turning now to
Pump 200 includes compressible bellows 210. Compressible bellows 210 is a non-limiting example of variable volume chamber 110 in
In addition, compressible bellows 210 may be composed of any material that allows the compression and expansion of compressible bellows 210. The expansion force provided by the corrugated side walls may depend on the material from which compressible bellows 210 is composed. Thus, the amount of pressure provided by compressible bellows 210 to a tissue site, such as tissue site 105 in
In one non-limiting example, compressible bellows 210 is composed of Shore 65 A. Shore 65 A may be capable of providing between 125 and 150 mm Hg of pressure. These levels of pressure may also be capable of being maintained for at least six hours. For higher pressures, harder materials, such as Shore 85 A, may be used. By varying the material from which compressible bellows 210 is composed, pressures of 250 mm Hg, as well as pressures above 400 mm Hg, may by achieved using compressible bellows 210.
Although compressible bellows 210 is shown to have a circular cross sectional shape, compressible bellows 210 may have any cross sectional shape. For example, the cross sectional shape of compressible bellows 210 may be an oval or polygon, such as a pentagon, hexagon, or octagon.
Compressible bellows 210 includes outlet valve 224. Outlet valve 224 is a non-limiting example of outlet valve 124 in
As indicated by dotted lines 228, compressible bellows 210 is coupled to filter housing 220. Compressible bellows 210 may be welded, screwed, glued, bolted, air-lock sealed, or snapped onto filter housing 220. Additional details regarding the coupling between compressible bellows 210 and filter housing 220 are described in
Filter housing 220 is a non-limiting example of filter housing 120 in
Odor filter 231 restrains or prevents the transmission of odor from fixed volume chamber 215 to compressible bellows 210. Such odor may be the result of exudate or other liquid contained in fixed volume chamber 215. In one embodiment, odor filter 231 is a carbon odor filter. In this embodiment, the carbon odor filter may include charcoal. Although
Filter housing 220 also includes hydrophobic filter 234, which is attached to filter housing 220 as indicated by dotted lines 238. Hydrophobic filter 234 may be screwed, glued, bolted, air-lock sealed, snapped onto, ultrasonically welded, or otherwise placed adjacent to filter housing 220. In one example, odor filter 231 is sandwiched between filter housing 220 and hydrophobic filter 234. In the example in which hydrophobic filter 234 is secured to filter housing 220, odor filter 231 may be secured as a result of being sandwiched between filter housing 220 and hydrophobic filter 234. Odor filter 231 and hydrophobic filter 234 may be coupled to a side of filter housing 220 that is nearer to fixed volume chamber 215, as shown in
Hydrophobic filter 234 prevents liquid, such as exudate, from entering compressible bellows 210. However, hydrophobic filter 234 allows the passage of gas, such as air, such that reduced pressure may be transferred from compressible bellows 210 and fixed volume chamber 215. Hydrophobic filter 234 may be composed from any of a variety of materials, such as expanded polytetrafluoroethene.
Pump 200 includes fixed volume chamber 215. Fixed volume chamber 215 is a non-limiting example of fixed volume chamber 115 in
Fixed volume chamber 215 includes inlet valve 240. Inlet valve 240 is a non-limiting example of inlet valve 140 in
Any liquid, such as exudate, may flow from a manifold, such as manifold 145 in
Any of a variety of valves may be used to achieve the functionality of inlet valve 240. In one embodiment, top portion 246 of inlet valve 240 is a duck bill valve. Inlet valve 240 may also be an umbrella valve, duckbill valve, ball valve, diaphragm valve, and any type of one-way valve.
Liquid flow into fixed volume chamber 215 is caused by the reduced pressure in fixed volume chamber 215. The reduced pressure in fixed volume chamber 215 is caused by the reduced pressure transferred from compressible bellows 210 to fixed volume chamber 215. As compressible bellows 210 is moved from a compressed position to an uncompressed position, gas is transferred from fixed volume chamber 215 to compressible bellows 210. As a result, reduced pressure is transferred to fixed volume chamber 215 from compressible bellows 210 in response to a movement of compressible bellows 210 from a compressed position to an uncompressed position. As compressible bellows 210 is moved from an uncompressed position to a compressed position, gas moves out of compressible bellows 210 via outlet valve 224. Such compression/expansion cycles may be repeated to apply a desired amount of reduced pressure to a tissue site, such as tissue site 105 in
Turning now to
As compressible bellows 300 is compressed from uncompressed position 305 to compressed position 310, the gas in compressible bellows 300 is expelled through outlet valve 324, which is a non-limiting example of outlet valve 224 in
As compressible bellows 300 expands from compressed position 310 to uncompressed position 305, gas does not enter compressible bellows 300 via outlet valve 324 because outlet valve 324 allows air only to exit compressible bellows 300. Instead, gas enters bellows pump from a fixed volume chamber, such as fixed volume chamber 215 in
The expansion force necessary to expand compressible bellows 300 is provided by an expansion or biasing force. The material from which compressible bellows 300 is composed is elastically deformed when compressible bellows 300 is in compressed position 310. Elastic properties of the material from which compressible bellows 300 is composed biases the corrugations included on compressible bellows 300 to move away from one another such that compressible bellows 300 expands to uncompressed position 305. As compressible bellows 300 expands, the sealed nature of the variable volume chamber results in a reduced pressure being created within the variable volume chamber. The reduced pressure may then be transmitted through a hydrophobic filter to a fixed volume chamber, which, in turn, transmits the reduced pressure to a tissue site.
Turning now to
As indicated by arrows 443, gas, such as air, is permitted to flow though hydrophobic filter 434 and odor filter 431, via gap 445. However, hydrophobic filter 434 prevents liquid, such as exudate, from passing through gap 445. Also, odor filter 431 prevents odor from passing through gap 445.
Turning now to
Turning now to
Turning now to
Gas, such as air, flows out of compressible bellows 710 as indicated by arrows 740. In particular, gas flows out of compressible bellows 710 through gaps 741 and then pass through the space between outlet valve flaps 742 and 743 and end wall 730. However, because flaps 742 and 743 are only opened by the flow of gas out of compressible bellows 710, gas cannot enter compressible bellows 710 through outlet valve 724. In
Turning now to
Turning now to
Turning now to
In this embodiment, compressible bellows 1010 may also have protrusion 1040, which fits into indentation 1045 of filter housing 1020. The fitting of protrusion 1040 into indentation 1045 helps to maintain a snap fit between compressible bellows 1010 and filter housing 1020.
Turning now to
Upon compression of compressible bellows 1110 from an uncompressed position to a compressed position, gas attempts to flow out of compressible bellows 1110 through gap 1127 as indicated by arrow 1129. The gas encounters flap 1125, which includes rib 1135. The strength of rib 1135, which may depend on the thickness or material of rib 1135, determines the amount of force that must be exerted by the gas in order to bend flap 1125 such that air can escape compressible bellows 1110. Thus, the strength of rib 1335 also determines the amount of pressure that is created by compressible bellows 1110, and which is ultimately transferred to a tissue site, such as tissue site 105 in
Turning now to
Turning now to
Turning now to
The cross sectional shape of compressible bellows 1410 is an oval. In particular, compressible bellows 1410 has an elongated middle portion 1412 and rounded end portions 1414. The cross sectional shape of compressible bellows 1410 allows compressible bellows 1410 to fit into top casing portion 1402. The cross sectional shape of compressible bellows 1410 may vary depending on the shape of the casing for the reduced pressure treatment system.
Compressible bellows 1410 couples to filter housing 1420, which is a non-limiting example of filter housing 220 in
Odor filter 1431 and hydrophobic filter 1434, which are non-limiting examples of odor filter 231 and hydrophobic filter 234 in
Top casing portion 1402 and bottom casing portion 1404 may be composed of any material. For example, top casing portion 1402 and bottom casing portion 1404 may be composed of materials that are suitable to protect the inner components of reduced pressure treatment system 1400. Non-limiting examples of the material from which top casing portion 1402 and bottom casing portion 1404 may be composed include plastic, metal, or rubber.
Turning now to
The use of two compressible bellows 1510 and 1512 allows the reduced pressure treatment system in which compressible bellows 1510 and 1512 are employed to continue functioning in the event that one of the compressible bellows leaks or otherwise fails. The use of compressible bellows 1510 and 1512 may also improve manufacturing efficiency in the construction of a reduced pressure treatment system. For example, the manufacture of compressible bellows 1510 and 1512 having a circular cross-section may be easier than the manufacture of a single compressible bellows having an elongated cross section that allows the single compressible bellows to fit inside top casing portion 1402.
Turning now to
Reduced pressure treatment system 1600 also includes visual indicators 1608. Visual indicators 1608 indicate to a user an amount of reduced pressure to be delivered to a tissue site, such as tissue site 105 in
Reduced pressure treatment system also includes end cap 1612. End cap 1512 fits onto bottom casing portion 1604 and may be coupled to delivery tube 1635, which is a non-limiting example of delivery tube 135 in
Turning now to
Turning now to
Turning now to
The process compresses a variable volume chamber having a variable volume from an uncompressed position to a compressed position (step 1905). The process determines whether the compressed position yields a threshold level of reduced pressure as indicated by an indicator, such as visual indicators 1608 in
If the process determines that the compressed position yields a threshold level of reduced pressure as indicated by an indicator, the process may then expand the variable volume chamber from the compressed position to the uncompressed position (step 1920). The process transfers reduced pressure from the variable volume chamber to a fixed volume chamber (step 1925). The process may then transfer the reduced pressure to a tissue site via a manifold and delivery tube (step 1930).
The flowcharts and block diagrams in the different depicted embodiments illustrate the architecture, functionality, and operation of some possible implementations of the apparatus and methods. In some alternative implementations, the function or functions noted in the block may occur out of the order noted in the figures. For example, in some cases, two blocks shown in succession may be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
The illustrative embodiments described herein separate the chambers in which exudates and other liquids are collected from the reduced-pressure-generating chamber. Thus, the compressible pumps are capable of being re-charged (i.e. the flexible bellows can be re-depressed) even when liquids are present in the fixed volume chamber. When the fixed volume chamber becomes completely full of exudate or other liquids, the fixed volume chamber may then be emptied before additional reduced pressure may be applied by the compressible pump. Also, the illustrative embodiments, unlike traditional manually-activated systems, are capable of delivering a measured and consistent amount of pressure to a tissue site during a particular reduced pressure treatment cycle. The illustrative embodiments are further capable of consistently repeating the targeted pressure each time the compressible pump is recharged. These pressure delivery capabilities exist regardless of the orientation or location of the fixed volume chamber.
This application is a continuation of U.S. patent application Ser. No. 14/683,412, filed Apr. 10, 2015, which is a continuation of U.S. patent application Ser. No. 13/973,535, filed Aug. 22, 2013, now U.S. Pat. No. 9,028,458, which claims the benefit of U.S. patent application Ser. No. 12/069,262, filed Feb. 8, 2008, now U.S. Pat. No. 8,535,283, which claims the benefit of the U.S. Provisional Application No. 60/900,555, filed Feb. 9, 2007, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3084691 | Stoner | Apr 1963 | A |
3367332 | Groves | Feb 1968 | A |
3376868 | Mondiadis | Apr 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3742952 | Magers et al. | Jul 1973 | A |
3774611 | Tussey et al. | Nov 1973 | A |
3779243 | Tussey et al. | Dec 1973 | A |
3826254 | Mellor | Jul 1974 | A |
3875941 | Adair | Apr 1975 | A |
3911920 | Susinn | Oct 1975 | A |
3983872 | Nehring | Oct 1976 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4098434 | Uhlig | Jul 1978 | A |
4132332 | Wassilieff | Jan 1979 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4141361 | Snyder | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4278089 | Huck et al. | Jul 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4372297 | Perlin | Feb 1983 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4460354 | Weilbacher et al. | Jul 1984 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4529402 | Weilbacher et al. | Jul 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4578060 | Huck et al. | Mar 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4642088 | Gunter | Feb 1987 | A |
4643719 | Garth et al. | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664652 | Weilbacher | May 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4798583 | Beck et al. | Jan 1989 | A |
4826494 | Richmond et al. | May 1989 | A |
4828546 | McNeil et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4903726 | Martin et al. | Feb 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4981474 | Bopp et al. | Jan 1991 | A |
4985019 | Michelson | Jan 1991 | A |
5019059 | Goldberg et al. | May 1991 | A |
5024653 | Kohnke | Jun 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5102404 | Goldberg et al. | Apr 1992 | A |
5112323 | Winkler et al. | May 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5226877 | Epstein | Jul 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5304129 | Forgach | Apr 1994 | A |
5318548 | Filshie | Jun 1994 | A |
5342329 | Croquevielle | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carlon | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5542939 | Onodera et al. | Aug 1996 | A |
5549584 | Gross | Aug 1996 | A |
5554011 | Bales et al. | Sep 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5592948 | Gatten | Jan 1997 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5645540 | Henniges et al. | Jul 1997 | A |
5714696 | Yeamans | Feb 1998 | A |
5718355 | Garby et al. | Feb 1998 | A |
5819990 | Cimentepe et al. | Oct 1998 | A |
5827246 | Bowen | Oct 1998 | A |
5830198 | Henniges et al. | Nov 1998 | A |
6024120 | Yam et al. | Feb 2000 | A |
6024731 | Seddon et al. | Feb 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6261276 | Reitsma | Jul 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6485007 | Duelli | Nov 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6626891 | Ohmstede | Sep 2003 | B2 |
6648862 | Watson | Nov 2003 | B2 |
6656149 | Ladd | Dec 2003 | B2 |
6745765 | Kullik et al. | Jun 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7846141 | Weston | Dec 2010 | B2 |
8007257 | Heaton et al. | Aug 2011 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8216198 | Heagle et al. | Jul 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8551060 | Schuessler et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8679081 | Heagle et al. | Mar 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9198801 | Weston | Dec 2015 | B2 |
9211365 | Weston | Dec 2015 | B2 |
9289542 | Blott et al. | Mar 2016 | B2 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030040687 | Boynton et al. | Feb 2003 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20050004534 | Lockwood et al. | Jan 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050087556 | Signorini | Apr 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050197639 | Mombrinie | Sep 2005 | A1 |
20050222544 | Weston | Oct 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20060025727 | Boehringer et al. | Feb 2006 | A1 |
20060216171 | Hernandez | Sep 2006 | A1 |
20060229586 | Faries | Oct 2006 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070214692 | Ferrara | Sep 2007 | A1 |
20140163491 | Schuessler et al. | Jun 2014 | A1 |
20150080788 | Blott et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2005436 | Jun 1990 | CA |
2142728 | Sep 1993 | CN |
1571682 | Jan 2005 | CN |
2745582 | Dec 2005 | CN |
2829771 | Oct 2006 | CN |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Jul 2000 | EP |
1163907 | Oct 1958 | FR |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
S59-19144 | Feb 1984 | JP |
60050296 | Mar 1985 | JP |
4129536 | Aug 2008 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
94020041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
2006114648 | Nov 2006 | WO |
2007013064 | Feb 2007 | WO |
2007133618 | Nov 2007 | WO |
2009135171 | Nov 2009 | WO |
Entry |
---|
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (copy and certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Nound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,”Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
Supplementary European Search Report for corresponding application EP08725369, dated Jun. 12, 2014. |
PCT International Search Report for International Application No. PCT/US2008/001727 dated Jun. 30, 2008. |
NPD 1000 Negative Pressure Wound Therapy System, Kalypto Medical, pp. 1-4. |
International Search Report and Written Opinion dated Sep. 11, 2009; PCT Application No. PCT.US2009/042598. |
Number | Date | Country | |
---|---|---|---|
20180228946 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
60900555 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12069262 | Feb 2008 | US |
Child | 13973535 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14683412 | Apr 2015 | US |
Child | 15896800 | US | |
Parent | 13973535 | Aug 2013 | US |
Child | 14683412 | US |