The present invention relates to a system and method for association of a guiding aid with a patient tissue and, more particularly, to a system and method for associating at least one landmark with the patient tissue for assisting with attachment of a stock prosthetic implant to the patient tissue.
In the installation of a prosthetic shoulder joint into a patient's body, a glenoid component is implanted into the glenoid vault of the patient's scapula. An obverse surface of the glenoid component is configured for articulating contact with a humeral component carried by the patient's humerus. A reverse surface of the glenoid component is secured to the bone surface of the glenoid vault.
Because the shoulder prosthesis is normally provided to correct a congenital or acquired defect of the native shoulder joint, the glenoid vault often exhibits a pathologic, nonstandard anatomic configuration. A surgeon must compensate for such pathologic glenoid vault anatomy when implanting the glenoid component in striving to achieve a solid anchoring of the glenoid component into the glenoid vault. Detailed preoperative planning, using two- or three-dimensional internal images of the shoulder joint, often assists the surgeon in compensating for the patient's anatomical limitations. During the surgery, an elongated pin may be inserted into the surface of the patient's bone, at a predetermined trajectory and location, to act as a passive landmark or active guiding structure in carrying out the preoperatively planned implantation. This “guide pin” may remain as a portion of the implanted prosthetic joint or may be removed before the surgery is concluded. This type of pin-guided installation is common in any joint replacement procedure—indeed, in any type of surgical procedure in which a surgeon-placed fixed landmark is desirable.
In addition, and again in any type of surgical procedure, modern minimally invasive surgical techniques may dictate that only a small portion of the bone or other tissue surface being operated upon is visible to the surgeon. Depending upon the patient's particular anatomy, the surgeon may not be able to precisely determine the location of the exposed area relative to the remaining, obscured portions of the bone through mere visual observation. Again, a guide pin may be temporarily or permanently placed into the exposed bone surface to help orient the surgeon and thereby enhance the accuracy and efficiency of the surgical procedure.
A carefully placed guide pin or other landmark, regardless of the reason provided, will reduce the need for intraoperative imaging in most surgical procedures and should result in decreased operative time and increased positional accuracy, all of which are desirable in striving toward a positive patient outcome.
In an embodiment of the present invention, an apparatus for associating a plurality of landmarks with a patient tissue is described. The patient tissue includes a primary patient tissue area and an anatomically differentiated bordering secondary patient tissue area. The apparatus is at least partially customized responsive to preoperative imaging of the patient tissue. Means are provided for mating with the primary patient tissue area in a preselected relative orientation. Means are provided for fixing a first landmark to the primary patient tissue area in at least one of a predetermined marking location and a predetermined marking trajectory. Means are provided for fixing a second landmark to the secondary patient tissue area in at least one of a predetermined marking location and a predetermined marking trajectory.
In an embodiment of the present invention, an apparatus for associating a plurality of landmarks with a patient tissue is described. Each landmark is associated with the patient tissue in at least one of a predetermined marking location and a predetermined marking trajectory. The patient tissue includes a primary patient tissue area and an anatomically differentiated bordering secondary patient tissue area. The apparatus is at least partially customized responsive to preoperative imaging of the patient tissue. A base has a lower base surface contoured to mate with both the primary and secondary patient tissue areas in a preselected relative orientation. The lower base surface is spaced apart from an upper base surface by a base body. A plurality of base apertures extend between the upper and lower base surfaces through the base body. A plurality of guiding bosses protrude from the base. Each guiding boss has a guiding bore extending therethrough. Each guiding bore extends collinearly with a corresponding base aperture to permit insertion of a landmark through the apparatus. Each guiding bore and corresponding base aperture cooperatively define at least one of the predetermined marking location and the predetermined marking trajectory for the landmark. At least one landmark is guided by the apparatus into engagement with a marking location in the primary patient tissue area and at least one landmark is guided by the apparatus into engagement with a marking location in the secondary patient tissue area.
In an embodiment of the present invention, an apparatus for associating a plurality of landmarks with a patient tissue is described. Each landmark is associated with the patient tissue in at least one of a predetermined marking location and a predetermined marking trajectory. The patient tissue includes a primary patient tissue area and an anatomically differentiated bordering secondary patient tissue area. The apparatus is at least partially customized responsive to preoperative imaging of the patient tissue. A base has a lower base surface contoured to mate with the primary patient tissue area in a preselected relative orientation. The lower base surface is spaced apart from an upper base surface by a base body. A stem has longitudinally separated first and second stem ends. The first stem end is attached directly to the base and the stem extends upward from the base. At least one spacing arm is attached directly to the second stem end. Each spacing arm is longitudinally spaced from the base and has an arm guide aperture laterally spaced from the stem. The arm guide aperture is configured to guide placement of a landmark inserted at least partially therethrough in at least one of the predetermined marking location and the predetermined marking trajectory. The marking location is in the secondary patient tissue area.
In an embodiment of the present invention, a method of associating a plurality of landmarks with a patient tissue is described. Each landmark is associated with the patient tissue in at least one of a predetermined marking location and a predetermined marking trajectory. The patient tissue includes a primary patient tissue area and an anatomically differentiated bordering secondary patient tissue area. A landmark guide having a base at least partially customized responsive to preoperative imaging of the patient tissue is provided. The base has a lower base surface contoured to mate with the primary patient tissue area in a preselected relative orientation. The base of the landmark guide is mated with the primary patient tissue area in a preselected relative orientation. A first landmark is fixed to the primary patient tissue area in at least one of the predetermined marking location and the predetermined marking trajectory. A second landmark is fixed to the secondary patient tissue area in at least one of the predetermined marking location and the predetermined marking trajectory.
In an embodiment of the present invention, an apparatus for associating a plurality of landmarks with a patient tissue is described. Each landmark is associated with the patient tissue in at least one of a predetermined marking location and a predetermined marking trajectory. The removal of a predetermined amount of resection patient tissue and rearrangement of a remaining patient tissue is guided. The apparatus is at least partially customized responsive to preoperative imaging of the patient tissue. A first guide is configured to contact the resection patient tissue and the remaining patient tissue and to guide surgical contact with the patient tissue. A first guide base has a lower first guide base surface contoured to mate with both the resection and remaining patient tissues in a preselected relative orientation. The lower first guide base surface is spaced apart from an upper first guide base surface by a first guide base body. At least one first guide landmark guiding aperture extends between the upper and lower first guide base surfaces through the first guide base body to permit insertion of at least one landmark therethrough. A plurality of first guide cutting guide apertures extend between the upper and lower first guide base surfaces through the first guide base body to permit penetration of at least one cutting tool through the first guide. At least one of the first guide landmark guiding apertures defines at least one of the predetermined marking location and the predetermined marking trajectory for a first landmark and a plurality of the first guide cutting guide apertures each defines at least one cutting plane location and orientation for a cutting tool to make at least one resection cut into the patient tissue. The first guide is configured to cut the resection patient tissue for removal from the remaining patient tissue.
For a better understanding of the invention, reference may be made to the accompanying drawings, in which:
The patient tissue is shown and described herein at least as a scapula or a pelvis and the prosthetic implant component is shown and described herein at least as a glenoid prosthetic shoulder component or an acetabular prosthetic hip component, but the patient tissue and corresponding prosthetic implant component could be any desired types such as, but not limited to, hip joints, shoulder joints, knee joints, ankle joints, phalangeal joints, metatarsal joints, spinal structures, long bones (e.g., fracture sites), or any other suitable patient tissue use environment for the present invention.
The glenoid fossa 102 is shown in greater detail in
A distinction is made herein between the primary and secondary patient tissue areas 108 and 110 because the present invention relates to the association of at least one landmark with at least one of the primary and secondary patient tissue areas. The term “landmark” is used herein to indicate any guiding aid which serves as a detectable indicator of a particular position on a “marked” substrate (here, the patient tissue). The landmarks discussed with respect to the present invention are presumed to be affixed or otherwise rigidly associated with a particular patient tissue so that a user can confidently maintain a sense of physical and/or visual orientation within the operative field. Suitable landmarks may include, but are not limited to, visual “written” marks (e.g., a thin layer of a substance left behind after contact with a crayon, surgical pen, or the like), other written marks outside the visual spectrum (e.g., a UV-fluorescent paint), guide pins, fasteners (e.g., screws, nails, staples, or the like), radioactive tags, bovie cautery burn marks, metallic or nonmetallic devices attached to the desired landmark site (e.g., a rivet, tack, or the like), or even modifications of the patient tissue itself (e.g., notches, inscribed lines, drill holes, or the like). Depiction of one type of landmark 114 in the Figures herein merely serves as an example and does not preclude the use of a different type of landmark, even in a similar use environment to those depicted, for a particular application of the present invention.
Three landmarks 114a, 114b, and 114c are shown in
Any landmark 114, regardless of type, will be located at a predetermined marking location with respect to the primary and/or secondary patient tissue areas 108 and 110. A three-dimensional landmark, like the marking pins shown as landmarks 114a and 114b in
It is contemplated that a landmark 114 will normally be rigidly affixed to a particular marking location on the primary or secondary patient tissue area 108 or 110 in order to serve as a reliable lodestar for the user. However, in certain situations, the marking location of the landmark 114 may move (as seen from an outside point of reference) after placement, of its own accord, by action of a user, or by action of the substrate patient tissue, and these situations do not pass out of the domain of the present invention merely by virtue of such intentional or unintentional post-placement landmark motion.
The marking location and marking trajectory of each landmark 114 are predetermined by a user before the landmark is associated with the patient tissue. This predetermination may occur intraoperatively, as the user is able to directly see the condition of the surgical site. However, it is contemplated that a predetermination of the desired marking location and desired marking trajectory for each landmark 114 could be accomplished preoperatively, with reference to preoperative imaging of the patient tissue. For example, a system similar to that of co-pending U.S. patent application Ser. No. 13/282,550, filed Oct. 27, 2011, titled “System of Preoperative Planning and Provision of Patient-Specific Surgical Aids” and claiming priority to U.S. Provisional Patent Application No. 61/408,392, filed Oct. 29, 2010 and titled “System of Preoperative Planning and Provision of Patient-Specific Surgical Aids”, the entire contents of both of which are incorporated herein by reference, or any suitable preoperative planning system could be used. In this manner, a user can create a patient tissue model for observation, manipulation, rehearsal, or any other pre-operative tasks.
The term “model” is used herein to indicate a replica or copy of a physical item, at any relative scale and represented in any medium, physical or virtual. The patient tissue model may be a total or partial model of a subject patient tissue, and may be created in any suitable manner. For example, and as presumed in the below description, the patient tissue model may be based upon computer tomography (“CT”) data imported into a computer aided drafting (“CAD”) system. Additionally or alternatively, the patient tissue model may be based upon digital or analog radiography, magnetic resonance imaging, or any other suitable imaging means. The patient tissue model will generally be displayed for the user to review and manipulate preoperatively, such as through the use of a computer or other graphical workstation interface.
Once the user is satisfied with her preoperative planning tasks, virtual landmarks may be virtually placed on the patient tissue model. In order to transfer those virtual landmarks to the physical world for intra-operative use, a patient-specific apparatus (shown in
The patient's name, identification number, surgeon's name, and/or any other desired identifier may be molded into, printed on, attached to, or otherwise associated with the guide 416 in a legible manner. The guide 416 may be made by any suitable method such as, but not limited to, selective laser sintering (“SLS”), fused deposition modeling (“FDM”), stereolithography (“SLA”), laminated object manufacturing (“LOM”), electron beam melting (“EBM”), 3-dimensional printing (“3DP”), contour milling, computer numeric control (“CNC”), other rapid prototyping methods, or any other desired manufacturing process.
The guide 416 assists the user by associating a plurality of landmarks 114 with patient tissue, each landmark being associated with the patient tissue in at least one of a predetermined marking location and a predetermined marking trajectory. As depicted in
The lower base surface 520 is spaced apart from an upper base surface 422 by a base body 424. A plurality of base apertures 526 extend between the upper and lower base surfaces 422 and 520 through the base body 424. The base apertures 526 are shown here as extending substantially longitudinally through the base body 424, but may have any desired orientation with respect to the base 418.
A plurality of guiding bosses 428 may protrude from the base 418 in certain configurations of the present invention. As shown in the Figures, the guiding bosses 428 protrude substantially longitudinally outward from the upper base surface 422, but the guiding bosses may have any desired orientation with respect to the base 418. Each guiding boss 428 has a guiding bore 428 extending therethrough. Each guiding bore 428 extends collinearly with a corresponding base aperture 526 to permit insertion of a landmark 114 through the guide 416. The term “insertion of a landmark through” is intended to encompass both a physical feeding of a three-dimensional landmark itself through the indicated structure for affixation to the underlying patient tissue (e.g., by penetration), as well as the temporary introduction of a marking device (e.g., a pen, bovie, rasp, other marking actuator or substance dispenser, or the like) through the indicated structure for affixation of a two-dimensional landmark 114 directly onto the patient tissue.
Each guiding bore 430 and corresponding base aperture 526 cooperatively defines at least one of the predetermined marking location and the predetermined marking trajectory (shown in
In
In
Implant stem 836, visible in cross-section in the coronal and transverse portions of
For example, a guide pin is displayed as a three-dimensional landmark 114 at the marking location 838a spaced apart from the glenoid implant 834 over the image of scapula 100 in
Optionally, the marking locations 838 may be chosen to comport to common landmark 114 placements to facilitate use of standard tools (not shown) with the guide 418. For example, two marking locations 838 may be provided to indicate a line bisecting the scapula 100 for that patient so that the user has a standardized reference line. In this example, then, generic surgical tools which use the scapula-bisecting line as a landmark in every patient will encounter a patient tissue which has been standardized, through use of personalized landmark 114 placements, to meet a universal expectation of the user. In other words, and more generally, the marking location 838 choices can be set for a particular patient tissue in order to compensate for any peculiarities of that patient tissue and accordingly provide the user with a surgical site that may be addressed using stock (i.e., not patient-specific) tools and/or techniques. This type of “universal registration” may be especially helpful in automation-assisted surgeries.
In
Turning to
The third configuration of the guide 416, shown in
A fifth configuration of the guide 416 is shown in
Regardless of the specific configuration chosen for a particular patient, the guide 416 will generally be used relatively early in the surgical procedure. The guide 416 has a base 418 at least partially customized (e.g., custom-manufactured and/or custom-configured) responsive to preoperative imagining of the patient tissue. The base 418 of the guide 416 is mated with at least one of the primary and secondary patient tissue areas 108 and 110 in a preselected relative orientation. When the base 418 is mated with both the primary and secondary patient tissue areas 108 and 110, the mating may be concurrent for both those patient tissue areas.
At least one landmark 114 is guided by the guide 416 to a marking location 838 in the primary patient tissue area 108 and fixed to the primary patient tissue area 108 in at least one of a predetermined marking location 838 and an predetermined marking trajectory, such as by passing of the landmark 114 along a marking notch 1342 or through a base aperture 526 (optionally with the assistance of a guiding bore 430). Optionally, at least one additional landmark 114 may be guided by the guide 416 to a marking location 838 in the secondary patient tissue area 110 and fixed to the secondary patient tissue area 110 in at least one of a predetermined marking location 838 and an predetermined marking trajectory, such as by passing of the additional landmark along a marking notch 1342 or through a base aperture 526 (optionally with the assistance of a guiding bore 430).
Once the desired number of landmarks 114 are affixed to the primary and/or secondary patient tissue areas 108 and 110, the guide 416 is removed from the surgical site in any suitable manner, optionally with the assistance of a handling boss 1544. When at least one landmark 114 is a guide pin or other elongate three-dimensional structure, the guide pin may deflect, if needed, to allow the guide 416 to be lifted longitudinally off the protruding end guide pin. Alternately, the guide 416 may include at least one frangible portion to allow substantially laterally-oriented removal of the guide 416 from around the guide pin. As another example, the guide 416 could include one or more slots (not shown) to allow removal of the guide by sliding the guide sideways away from the guide pin.
Regardless of the manner in which the guide 416 is removed from the primary and secondary patient tissue areas 108 and 110, the landmark(s) 114 remain behind and the surgical site attains a configuration akin to that shown in
In accordance with the present invention,
The stem 1758 has longitudinally separated first and second stem ends 1764 and 1766, respectively. The first stem end 1764 is attached directly to the base 418′, either permanently or removably. The stem 1758 extends longitudinally upward from the base 418′ (substantially out of the plane of the paper, in
At least one spacing arm 1760 (two shown) is attached directly to the second stem end 1766, either permanently or removably. Each spacing arm 1760 is longitudinally spaced from the base 418′ and has an arm guide aperture 1768 laterally spaced from the stem 1758. The arm guide aperture 1768 is configured to guide placement of a landmark (not shown in this Figure) inserted at least partially therethrough at a predetermined landmark trajectory (represented by trajectory line 532′). The spacing arm(s) 1760 are shown in the Figures as extending orthogonally from the stem 1758 at the second stem end 1766, in order to place landmarks 114′ in the acetabular margin 1656 (the secondary patient tissue area 110′) as will be discussed below. The spacing arm(s) 1760 could extend at any suitable angle or position from the stem 1758, or could even be smoothly formed as a single integral piece with the stem. In the latter event, the second stem end 1766 may not be clearly delineated from the spacing arm(s) 1760.
The stem 1758 and spacing arm(s) 1760 could have any of a myriad of configurations, depending upon the application of the present invention. A spacing arm 1760 is used herein to indicate any structure which is located at some distance from base 418′ contacting a primary patient tissue area 108′, and the spacing arm includes structure which can guide a landmark 114′ to a secondary patient tissue area 110′. A stem 1758 is used herein to indicate any structure which extends between and connects the base 418′ and at least one spacing arm 1760.
The guide 416′ may be at least partially customized responsive to preoperative imaging of the patient tissue. For example, the lower base surface 520′ of the base 418′ could be at least partially configured through the use of computer tomography (“CT”) data of the patient tissue to have a longitudinally downward-protruding portion corresponding to the acetabular fossa 1656. Additionally or alternatively, the lower base surface 520′ could be at least partially configured through use of patient scans including digital or analog radiography, magnetic resonance imaging, or any other suitable imaging means. The patient tissue preoperative images are optionally displayed for review and manipulation before/during configuration of the lower base surface 520′, such as through the use of a computer or other graphical workstation interface described above with reference to the first embodiment of the present invention. The configuration of the lower base surface 520′ is described herein as being performed using three-dimensional images; however, one or more two-dimensional depictions of the patient tissue may also or instead be consulted during configuration of the lower base surface 520′ or any other preoperatively configured structure herein.
The lower base surface 520′ is configured to mate with a primary patient tissue surface 108′, as will be discussed below. In the described mating relationship, the lower base surface 520′ mates or nests into contact with the surface of the acetabulum 1652 to provide the base 418′ with at least one of location and stabilization assistance with respect to the patient tissue. Though the lower base surface 520′ is shown herein as covering a substantial portion of the acetabulum 1652, the lower base surface 520′ may contact any suitable portion of the primary patient tissue area 108′ sufficient to stabilize the guide 416′ in a desired manner.
At least a portion of the guidewire 2174 is insertable through the base guide aperture 1762′ and into the underlying acetabulum 1652′ when the guide 416′ is mated with the patient tissue in the preselected relative orientation. Similarly, at least a portion of each of the landmarks 114′ is insertable through the arm guide aperture 1768′ and into the underlying second patient tissue area 110′, shown here as being located just beyond an acetabular margin 1656′, when the guide 416′ is mated with the patient tissue in the preselected relative orientation.
A distal end 2176 of the landmark 114′ or guidewire 2174 is configured to remain inserted into the patient tissue when the guide 416′ is removed from the patient tissue. It is contemplated that the base guide aperture 1762′ and/or arm guide aperture 1768′ will be sized to pass over the respective landmark 114′ or guidewire 2174, leaving these guiding landmark structures in place such as in the configuration shown in
The guiding boss 428′ located on the central portion 2280 of the base body 424′ is noticeably longer than the other guiding bosses, and may serve several functions for the guide 416′. The guiding boss 428′ located on the central portion 2280 of the base body 424′ may guide a landmark 1114 through a guiding bore 430′ thereof; may guide a rasp, drill, or other tissue modification tool (not shown) therethrough, optionally providing a “stop” function to limit insertion of the tissue modification tool into the underlying patient tissue; and/or may serve as a handling boss for user manipulation by hand and/or with a handling tool.
The guide 416″ of the third embodiment of the present invention may be used both for associating a plurality of landmarks 114″ with a patient tissue in at least one of a predetermined marking location and a predetermined marking trajectory, and for guiding the removal of a predetermined amount of resection patient tissue and rearrangement of a remaining patient tissue, as will be described. One example of a potential use environment for the guide 416″ of the third embodiment is in conjunction with a surgical procedure to correct a congenital or acquired orthopedic malunion.
The guide 416″ of
As shown in
More specifically, the guide 416″ is configured to cut the resection patient tissue 108″ for removal from the remaining patient tissue 110″. The resection patient tissue 108″ is shaded in the Figures, and the cutting plane locations and orientations are chosen to correspond to the borders of the resection patient tissue. Because the resection patient tissue 108″ in the Figures is located intermediate two areas of remaining patient tissue 110″, at least two cutting plane locations and orientations are needed to excise the resection patient tissue 108″. If there were no remaining patient tissue 110″ to one side (e.g., the topmost side in the orientation of
Optionally, and as shown in
Once the resection patient tissue 108″ has been cut and removed from the remaining patient tissue 110″, the remaining patient tissue can be rearranged to correct two dimensions of deformity. From the deformed position of
If there still remains a third degree of deformity, such as rotation about the superior-inferior axis 2786, to be corrected, then an optional guide 416″ having a second configuration may be provided as shown in
At least one of the base apertures 526″ of the guide 416″ of the second configuration defines at least one of the predetermined marking location and the predetermined marking trajectory for a landmark 114a″, 114b″. For example, and as shown in the front view of
Namely, one portion of the remaining patient tissue 110′ can be rotated about the superior-inferior axis 2786 (e.g., as indicated by rotation arrow 2888). Because the resection patient tissue 108″ was fairly recently removed, an excision seam 2790 (visible in
Due to preoperative planning of the desired third-dimension rotation and embodiment of that planning in the guide 416″ of
It is contemplated that the landmarks 114a″ and 114b″ will each be substantially rigidly held within its respective upper and lower portions 2792 and 2784 of the remaining patient tissue 110″, so as not to introduce an unwanted amount of inaccuracy into the rotation procedure. However, one of the upper and lower portions 2792 and 2794 might be configured to move with respect to the guide 416″, with the respective landmark 114a″ or 114b″ precessing therein, during the rotation procedure.
Optionally, at least one base aperture 526 of the guide 416″ of the second configuration may also or instead define a location and/or trajectory for insertion of a fastener (not shown) into the remaining patient tissue 110″. Accordingly, the guide 416″ may be configured to guide the placement of at least one fastener to retain the remaining patient tissue in a desired final arrangement.
The guide 416″ of the second configuration might also or instead include at least one cutting guide aperture 2582 to permit penetration of a cutting tool 2584 through the guide 416″. In this instance, the guide 416″ would be configured to define at least one cutting plane location and orientation for a cutting tool 2584 to make at least one secondary cut into the remaining patient tissue 110″, the secondary cut being configured to assist with the correction of the third dimension of deformity.
The guiding boss 428′ located on the central portion 2280 of the base body 424′ in the guides 416′ of
The guides 416′ of
In
In
In
In
In
An prosthetic implant is used as an example herein. However, it is contemplated that the disclosed guide 416 may be used additionally or alternatively with an instrument, such as that disclosed in co-pending U.S. patent application Ser. No. 13/282,528, filed Oct. 27, 2011, titled “System and Method for Assisting with Arrangement of a Stock Instrument with Respect to a Patient Tissue” and claiming priority to U.S. Provisional Patent Application No. 61/408,376, filed Oct. 29, 2010 and titled “System and Method for Assisting with Arrangement of a Stock Instrument with Respect to a Patient Tissue”, the entire contents of both of which are incorporated herein by reference.
While aspects of the present invention have been particularly shown and described with reference to the preferred embodiment above, it will be understood by those of ordinary skill in the art that various additional embodiments may be contemplated without departing from the spirit and scope of the present invention. For example, the specific methods described above for using the guides 416 are merely illustrative; one of ordinary skill in the art could readily determine any number of tools, sequences of steps, or other means/options for placing the above-described apparatus, or components thereof, into positions substantively similar to those shown and described herein. Any of the described structures and components could be integrally formed as a single piece or made up of separate sub-components, with either of these formations involving any suitable stock or bespoke components and/or any suitable material or combinations of materials; however, the chosen material(s) should be biocompatible for most applications of the present invention. The mating relationships formed between the described structures need not keep the entirety of each of the “mating” surfaces in direct contact with each other but could include spacers or holdaways for partial direct contact, a liner or other intermediate member for indirect contact, or could even be approximated with intervening space remaining therebetween and no contact. Though certain components described herein are shown as having specific geometric shapes, all structures of the present invention may have any suitable shapes, sizes, configurations, relative relationships, cross-sectional areas, or any other physical characteristics as desirable for a particular application of the present invention. An adhesive (such as, but not limited to, bone cement) could be used in conjunction with the system and method described herein. The guide 416 may include a plurality of structures cooperatively forming the base body and temporarily or permanently attached together in such a manner as to permit relative motion (e.g., pivoting, sliding, or any other motion) therebetween. Any structures or features described with reference to one embodiment or configuration of the present invention could be provided, singly or in combination with other structures or features, to any other embodiment or configuration, as it would be impractical to describe each of the embodiments and configurations discussed herein as having all of the options discussed with respect to all of the other embodiments and configurations. A device or method incorporating any of these features should be understood to fall under the scope of the present invention as determined based upon the claims below and any equivalents thereof.
Other aspects, objects, and advantages of the present invention can be obtained from a study of the drawings, the disclosure, and the appended claims.
This application claims priority from U.S. Provisional Application No. 61/408,359, filed Oct. 29, 2010, the subject matter of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4841975 | Woolson | Jun 1989 | A |
5030219 | Matsen et al. | Jul 1991 | A |
5098383 | Hemmy et al. | Mar 1992 | A |
5490854 | Fisher et al. | Feb 1996 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769856 | Dong et al. | Jun 1998 | A |
5871018 | Delp et al. | Feb 1999 | A |
5916219 | Matsuno et al. | Jun 1999 | A |
6327491 | Franklin et al. | Dec 2001 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6712856 | Carignan et al. | Mar 2004 | B1 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
7194120 | Wicker et al. | Mar 2007 | B2 |
7357057 | Chiang | Apr 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7510557 | Bonutti | Mar 2009 | B1 |
7534263 | Burdulis | May 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7717956 | Lang | May 2010 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7806896 | Bonutti | Oct 2010 | B1 |
7806897 | Bonutti | Oct 2010 | B1 |
7967868 | White et al. | Jun 2011 | B2 |
7981158 | Fitz et al. | Jul 2011 | B2 |
8062302 | Lang et al. | Nov 2011 | B2 |
8066708 | Lang et al. | Nov 2011 | B2 |
8070752 | Metzger et al. | Dec 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8083745 | Lang et al. | Dec 2011 | B2 |
8092465 | Metzger et al. | Jan 2012 | B2 |
8094900 | Steines et al. | Jan 2012 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
8122582 | Burdulis, Jr. et al. | Feb 2012 | B2 |
8133234 | Meridew et al. | Mar 2012 | B2 |
8160345 | Pavlovskaia et al. | Apr 2012 | B2 |
8175683 | Roose | May 2012 | B2 |
8221430 | Park et al. | Jul 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8241293 | Stone et al. | Aug 2012 | B2 |
8282646 | Schoenefeld et al. | Oct 2012 | B2 |
8298237 | Schoenefeld et al. | Oct 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8337507 | Lang et al. | Dec 2012 | B2 |
8343218 | Lang et al. | Jan 2013 | B2 |
8366771 | Burdulis et al. | Feb 2013 | B2 |
8377129 | Fitz et al. | Feb 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8460304 | Fitz et al. | Jun 2013 | B2 |
8480754 | Bojarski et al. | Jul 2013 | B2 |
8500740 | Bojarski et al. | Aug 2013 | B2 |
8529568 | Bouadi | Sep 2013 | B2 |
8529630 | Bojarski | Sep 2013 | B2 |
8545569 | Fitz et al. | Oct 2013 | B2 |
8551099 | Lang | Oct 2013 | B2 |
8551102 | Fitz et al. | Oct 2013 | B2 |
8551103 | Fitz et al. | Oct 2013 | B2 |
8551169 | Fitz et al. | Oct 2013 | B2 |
8556906 | Fitz et al. | Oct 2013 | B2 |
8556907 | Fitz et al. | Oct 2013 | B2 |
8556971 | Lang | Oct 2013 | B2 |
8556983 | Bojarski et al. | Oct 2013 | B2 |
8561278 | Fitz et al. | Oct 2013 | B2 |
8562611 | Fitz et al. | Oct 2013 | B2 |
8562618 | Fitz et al. | Oct 2013 | B2 |
8568479 | Fitz et al. | Oct 2013 | B2 |
8568480 | Fitz et al. | Oct 2013 | B2 |
8585708 | Fitz et al. | Nov 2013 | B2 |
8617172 | Fitz et al. | Dec 2013 | B2 |
8617242 | Philipp | Dec 2013 | B2 |
8623026 | Wong et al. | Jan 2014 | B2 |
8634617 | Tsougarakis et al. | Jan 2014 | B2 |
8638998 | Steines et al. | Jan 2014 | B2 |
8641716 | Fitz et al. | Feb 2014 | B2 |
8657827 | Fitz et al. | Feb 2014 | B2 |
8682052 | Fitz et al. | Mar 2014 | B2 |
20030055502 | Lang et al. | Mar 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040147927 | Tsougarakis et al. | Jul 2004 | A1 |
20040153079 | Tsougarakis et al. | Aug 2004 | A1 |
20040204644 | Tsougarakis et al. | Oct 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040236424 | Berez et al. | Nov 2004 | A1 |
20050107799 | Graf | May 2005 | A1 |
20050148843 | Roose | Jul 2005 | A1 |
20050234461 | Burdulis et al. | Oct 2005 | A1 |
20050267584 | Burdulis et al. | Dec 2005 | A1 |
20060079963 | Hansen | Apr 2006 | A1 |
20060111722 | Bouadi | May 2006 | A1 |
20070083266 | Lang | Apr 2007 | A1 |
20070100462 | Lang et al. | May 2007 | A1 |
20070156171 | Lang et al. | Jul 2007 | A1 |
20070157783 | Chiang | Jul 2007 | A1 |
20070173815 | Murase | Jul 2007 | A1 |
20070198022 | Lang et al. | Aug 2007 | A1 |
20070226986 | Park et al. | Oct 2007 | A1 |
20070233141 | Park et al. | Oct 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070250169 | Lang | Oct 2007 | A1 |
20070288030 | Metzger et al. | Dec 2007 | A1 |
20080114370 | Schoenefeld | May 2008 | A1 |
20080147072 | Park et al. | Jun 2008 | A1 |
20080161815 | Schoenefeld et al. | Jul 2008 | A1 |
20080195216 | Philipp | Aug 2008 | A1 |
20080215059 | Carignan et al. | Sep 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20080269906 | Iannotti et al. | Oct 2008 | A1 |
20080275452 | Lang et al. | Nov 2008 | A1 |
20080281328 | Lang et al. | Nov 2008 | A1 |
20080281329 | Fitz et al. | Nov 2008 | A1 |
20080281426 | Fitz et al. | Nov 2008 | A1 |
20080287954 | Kunz et al. | Nov 2008 | A1 |
20080319491 | Schoenefeld | Dec 2008 | A1 |
20090018546 | Daley | Jan 2009 | A1 |
20090024131 | Metzgu et al. | Jan 2009 | A1 |
20090088753 | Aram et al. | Apr 2009 | A1 |
20090088754 | Aker et al. | Apr 2009 | A1 |
20090088755 | Aker et al. | Apr 2009 | A1 |
20090088758 | Bennett | Apr 2009 | A1 |
20090088759 | Aram et al. | Apr 2009 | A1 |
20090088760 | Aram et al. | Apr 2009 | A1 |
20090088761 | Roose et al. | Apr 2009 | A1 |
20090088763 | Aram | Apr 2009 | A1 |
20090093816 | Roose et al. | Apr 2009 | A1 |
20090099567 | Zajac | Apr 2009 | A1 |
20090110498 | Park | Apr 2009 | A1 |
20090131941 | Park et al. | May 2009 | A1 |
20090131942 | Aker et al. | May 2009 | A1 |
20090138020 | Park et al. | May 2009 | A1 |
20090157083 | Park et al. | Jun 2009 | A1 |
20090163922 | Meridew et al. | Jun 2009 | A1 |
20090222014 | Bojarski et al. | Sep 2009 | A1 |
20090222016 | Park et al. | Sep 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090226068 | Fitz et al. | Sep 2009 | A1 |
20090228113 | Lang et al. | Sep 2009 | A1 |
20090254093 | White et al. | Oct 2009 | A1 |
20090270868 | Park et al. | Oct 2009 | A1 |
20090276045 | Lang | Nov 2009 | A1 |
20090306676 | Lang et al. | Dec 2009 | A1 |
20090307893 | Burdulis, Jr. et al. | Dec 2009 | A1 |
20090312805 | Lang et al. | Dec 2009 | A1 |
20100023015 | Park | Jan 2010 | A1 |
20100042105 | Park et al. | Feb 2010 | A1 |
20100049195 | Park et al. | Feb 2010 | A1 |
20100054572 | Tsougarakis et al. | Mar 2010 | A1 |
20100082035 | Keefer | Apr 2010 | A1 |
20100087829 | Metzger et al. | Apr 2010 | A1 |
20100152741 | Park et al. | Jun 2010 | A1 |
20100152782 | Stone et al. | Jun 2010 | A1 |
20100160917 | Fitz et al. | Jun 2010 | A1 |
20100168754 | Fitz et al. | Jul 2010 | A1 |
20100174376 | Lang | Jul 2010 | A1 |
20100185202 | Lester et al. | Jul 2010 | A1 |
20100191244 | White et al. | Jul 2010 | A1 |
20100212138 | Carroll et al. | Aug 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100217338 | Carroll et al. | Aug 2010 | A1 |
20100228257 | Bonutti | Sep 2010 | A1 |
20100234849 | Bouadi | Sep 2010 | A1 |
20100256479 | Park et al. | Oct 2010 | A1 |
20100262150 | Lian | Oct 2010 | A1 |
20100274253 | Ure | Oct 2010 | A1 |
20100274534 | Steines et al. | Oct 2010 | A1 |
20100281678 | Burdulis, Jr. et al. | Nov 2010 | A1 |
20100286700 | Snider et al. | Nov 2010 | A1 |
20100298894 | Bojarski et al. | Nov 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20100303317 | Tsougarakis et al. | Dec 2010 | A1 |
20100303324 | Lang et al. | Dec 2010 | A1 |
20100305573 | Fitz et al. | Dec 2010 | A1 |
20100305574 | Fitz et al. | Dec 2010 | A1 |
20100305708 | Lang et al. | Dec 2010 | A1 |
20100305907 | Fitz et al. | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20110015636 | Katrana et al. | Jan 2011 | A1 |
20110015637 | De Smedt et al. | Jan 2011 | A1 |
20110015639 | Metzger et al. | Jan 2011 | A1 |
20110029088 | Rauscher et al. | Feb 2011 | A1 |
20110029091 | Bojarski et al. | Feb 2011 | A1 |
20110029093 | Bojarski et al. | Feb 2011 | A1 |
20110040168 | Arnaud et al. | Feb 2011 | A1 |
20110054478 | Vanasse et al. | Mar 2011 | A1 |
20110060341 | Angibaud et al. | Mar 2011 | A1 |
20110066193 | Lang et al. | Mar 2011 | A1 |
20110066245 | Lang et al. | Mar 2011 | A1 |
20110071533 | Metzger et al. | Mar 2011 | A1 |
20110071581 | Lang et al. | Mar 2011 | A1 |
20110071645 | Bojarski et al. | Mar 2011 | A1 |
20110071802 | Bojarski et al. | Mar 2011 | A1 |
20110087332 | Bojarski et al. | Apr 2011 | A1 |
20110092977 | Salehi et al. | Apr 2011 | A1 |
20110093108 | Ashby et al. | Apr 2011 | A1 |
20110106093 | Romano et al. | May 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110160736 | Meridew et al. | Jun 2011 | A1 |
20110160867 | Meridew et al. | Jun 2011 | A1 |
20110166578 | Stone et al. | Jul 2011 | A1 |
20110172672 | Dubeau et al. | Jul 2011 | A1 |
20110184419 | Meridew et al. | Jul 2011 | A1 |
20110190775 | Ure | Aug 2011 | A1 |
20110196377 | Hodorek et al. | Aug 2011 | A1 |
20110213368 | Fitz et al. | Sep 2011 | A1 |
20110213373 | Fitz et al. | Sep 2011 | A1 |
20110213374 | Fitz et al. | Sep 2011 | A1 |
20110213376 | Maxson et al. | Sep 2011 | A1 |
20110213377 | Lang et al. | Sep 2011 | A1 |
20110213427 | Fitz et al. | Sep 2011 | A1 |
20110213428 | Fitz et al. | Sep 2011 | A1 |
20110213429 | Lang et al. | Sep 2011 | A1 |
20110213430 | Lang et al. | Sep 2011 | A1 |
20110213431 | Fitz et al. | Sep 2011 | A1 |
20110214279 | Park et al. | Sep 2011 | A1 |
20110218539 | Fitz et al. | Sep 2011 | A1 |
20110218545 | Catanzarite et al. | Sep 2011 | A1 |
20110218584 | Fitz et al. | Sep 2011 | A1 |
20110224674 | White et al. | Sep 2011 | A1 |
20110230888 | Lang et al. | Sep 2011 | A1 |
20110238073 | Lang et al. | Sep 2011 | A1 |
20110245835 | Dodds et al. | Oct 2011 | A1 |
20110266265 | Lang | Nov 2011 | A1 |
20110295329 | Fitz et al. | Dec 2011 | A1 |
20110295378 | Bojarski et al. | Dec 2011 | A1 |
20110313423 | Lang et al. | Dec 2011 | A1 |
20110313424 | Bono et al. | Dec 2011 | A1 |
20110319897 | Lang et al. | Dec 2011 | A1 |
20110319900 | Lang et al. | Dec 2011 | A1 |
20120010711 | Antonyshyn et al. | Jan 2012 | A1 |
20120029520 | Lang et al. | Feb 2012 | A1 |
20120041445 | Roose et al. | Feb 2012 | A1 |
20120041446 | Wong et al. | Feb 2012 | A1 |
20120065640 | Metzger et al. | Mar 2012 | A1 |
20120066892 | Lang et al. | Mar 2012 | A1 |
20120071881 | Lang et al. | Mar 2012 | A1 |
20120071882 | Lang et al. | Mar 2012 | A1 |
20120071883 | Lang et al. | Mar 2012 | A1 |
20120072185 | Lang et al. | Mar 2012 | A1 |
20120078254 | Ashby et al. | Mar 2012 | A1 |
20120078258 | Lo | Mar 2012 | A1 |
20120078259 | Meridew | Mar 2012 | A1 |
20120093377 | Tsougarakis et al. | Apr 2012 | A1 |
20120101503 | Lang et al. | Apr 2012 | A1 |
20120109138 | Meridew et al. | May 2012 | A1 |
20120116203 | Vancraen et al. | May 2012 | A1 |
20120116562 | Agnihotri et al. | May 2012 | A1 |
20120123422 | Agnihotri et al. | May 2012 | A1 |
20120123423 | Fryman | May 2012 | A1 |
20120130382 | Iannotti et al. | May 2012 | A1 |
20120130687 | Otto et al. | May 2012 | A1 |
20120141034 | Iannotti et al. | Jun 2012 | A1 |
20120143197 | Lang et al. | Jun 2012 | A1 |
20120151730 | Fitz et al. | Jun 2012 | A1 |
20120158001 | Burdulis, Jr. et al. | Jun 2012 | A1 |
20120165820 | De Smedt et al. | Jun 2012 | A1 |
20120172884 | Zheng et al. | Jul 2012 | A1 |
20120191205 | Bojarski et al. | Jul 2012 | A1 |
20120191420 | Bojarski et al. | Jul 2012 | A1 |
20120192401 | Pavlovskaia et al. | Aug 2012 | A1 |
20120197260 | Fitz et al. | Aug 2012 | A1 |
20120197408 | Lang et al. | Aug 2012 | A1 |
20120201440 | Steines et al. | Aug 2012 | A1 |
20120209276 | Schuster | Aug 2012 | A1 |
20120209394 | Bojarski et al. | Aug 2012 | A1 |
20120215226 | Bonutti | Aug 2012 | A1 |
20120221008 | Carroll et al. | Aug 2012 | A1 |
20120226283 | Meridew et al. | Sep 2012 | A1 |
20120232669 | Bojarski et al. | Sep 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120232671 | Bojarski | Sep 2012 | A1 |
20120239045 | Li | Sep 2012 | A1 |
20120245647 | Kunz et al. | Sep 2012 | A1 |
20120245699 | Lang et al. | Sep 2012 | A1 |
20120265208 | Smith | Oct 2012 | A1 |
20120271366 | Katrana et al. | Oct 2012 | A1 |
20120276509 | Iannotti et al. | Nov 2012 | A1 |
20120277751 | Catanzarite et al. | Nov 2012 | A1 |
20120289966 | Fitz et al. | Nov 2012 | A1 |
20120296337 | Fitz et al. | Nov 2012 | A1 |
20130018379 | Fitz et al. | Jan 2013 | A1 |
20130018380 | Fitz et al. | Jan 2013 | A1 |
20130018464 | Fitz et al. | Jan 2013 | A1 |
20130023884 | Fitz et al. | Jan 2013 | A1 |
20130024000 | Bojarski et al. | Jan 2013 | A1 |
20130030419 | Fitz et al. | Jan 2013 | A1 |
20130030441 | Fitz et al. | Jan 2013 | A1 |
20130079781 | Fitz et al. | Mar 2013 | A1 |
20130079876 | Fitz et al. | Mar 2013 | A1 |
20130081247 | Fitz et al. | Apr 2013 | A1 |
20130096562 | Fitz et al. | Apr 2013 | A1 |
20130103363 | Lang et al. | Apr 2013 | A1 |
20130110471 | Lang et al. | May 2013 | A1 |
20130123792 | Fitz et al. | May 2013 | A1 |
20130184713 | Bojarski et al. | Jul 2013 | A1 |
20130197870 | Steines et al. | Aug 2013 | A1 |
20130211409 | Burdulis, Jr. et al. | Aug 2013 | A1 |
20130211410 | Landes et al. | Aug 2013 | A1 |
20130211531 | Steines et al. | Aug 2013 | A1 |
20130245803 | Lang | Sep 2013 | A1 |
20130253522 | Bojarski et al. | Sep 2013 | A1 |
20130289570 | Chao | Oct 2013 | A1 |
20130296874 | Chao | Nov 2013 | A1 |
20130297031 | Hafez | Nov 2013 | A1 |
20130317511 | Bojarski et al. | Nov 2013 | A1 |
20130331850 | Bojarski et al. | Dec 2013 | A1 |
20140005792 | Lang et al. | Jan 2014 | A1 |
20140029814 | Fitz et al. | Jan 2014 | A1 |
20140031826 | Bojarski et al. | Jan 2014 | A1 |
20140039631 | Bojarski et al. | Feb 2014 | A1 |
20140058396 | Fitz et al. | Feb 2014 | A1 |
20140058397 | Fitz et al. | Feb 2014 | A1 |
20140066935 | Fitz et al. | Mar 2014 | A1 |
20140066936 | Fitz et al. | Mar 2014 | A1 |
20140074441 | Fitz et al. | Mar 2014 | A1 |
20140086780 | Miller et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2004293091 | Jun 2005 | AU |
2004293104 | Jun 2005 | AU |
2005309692 | Jun 2006 | AU |
2005311558 | Jun 2006 | AU |
2002310193 | Mar 2007 | AU |
2006297137 | Apr 2007 | AU |
2002310193 | May 2007 | AU |
2007202573 | Jun 2007 | AU |
2007212033 | Aug 2007 | AU |
2007-226924 | Sep 2007 | AU |
2009221773 | Sep 2009 | AU |
2009246474 | Nov 2009 | AU |
2010201200 | Apr 2010 | AU |
2011203237 | Jul 2011 | AU |
2010217903 | Sep 2011 | AU |
2010236263 | Nov 2011 | AU |
2010264466 | Feb 2012 | AU |
2010289706 | Mar 2012 | AU |
2010315099 | May 2012 | AU |
2010327987 | Jun 2012 | AU |
2011203237 | Oct 2012 | AU |
2012216829 | Oct 2012 | AU |
2012217654 | Oct 2013 | AU |
2007212033 | Jan 2014 | AU |
2014200073 | Jan 2014 | AU |
2012289973 | Mar 2014 | AU |
2012296556 | Mar 2014 | AU |
2501041 | Apr 2004 | CA |
2505371 | May 2004 | CA |
2505419 | Jun 2004 | CA |
2506849 | Jun 2004 | CA |
2546958 | Jun 2005 | CA |
2546965 | Jun 2005 | CA |
2804883 | Jun 2005 | CA |
2588907 | Jun 2006 | CA |
2590534 | Jun 2006 | CA |
2623834 | Apr 2007 | CA |
2641241 | Aug 2007 | CA |
2646288 | Sep 2007 | CA |
2717760 | Sep 2009 | CA |
2765499 | Dec 2010 | CA |
2771573 | Mar 2011 | CA |
2779283 | May 2011 | CA |
2782137 | Jun 2011 | CA |
2546965 | Mar 2013 | CA |
1728976 | Feb 2006 | CN |
1729483 | Feb 2006 | CN |
1729484 | Feb 2006 | CN |
1913844 | Feb 2007 | CN |
101111197 | Jan 2008 | CN |
101384230 | Mar 2009 | CN |
101442960 | May 2009 | CN |
100502808 | Jun 2009 | CN |
102006841 | Apr 2011 | CN |
102125448 | Jul 2011 | CN |
102405032 | Apr 2012 | CN |
102448394 | May 2012 | CN |
101420911 | Jul 2012 | CN |
102599960 | Jul 2012 | CN |
1913844 | Sep 2012 | CN |
102711670 | Oct 2012 | CN |
102724934 | Oct 2012 | CN |
102805677 | Dec 2012 | CN |
1729483 | Oct 2013 | CN |
103476363 | Dec 2013 | CN |
60336002 D1 | Mar 2011 | DE |
50239674 D1 | May 2011 | DE |
602004032166 D1 | May 2011 | DE |
602005027391 D1 | May 2011 | DE |
0 558 789 | Sep 1993 | EP |
1555962 | Jul 2005 | EP |
1558181 | Aug 2005 | EP |
1567985 | Aug 2005 | EP |
1575460 | Sep 2005 | EP |
1 639 949 | Mar 2006 | EP |
1686930 | Aug 2006 | EP |
1686931 | Aug 2006 | EP |
1389980 | Apr 2007 | EP |
1814491 | Aug 2007 | EP |
1833387 | Sep 2007 | EP |
1686930 | Oct 2007 | EP |
1686931 | Jan 2008 | EP |
1928359 | Jun 2008 | EP |
1951136 | Aug 2008 | EP |
1981409 | Oct 2008 | EP |
1996121 | Dec 2008 | EP |
2114312 | Nov 2009 | EP |
2124764 | Dec 2009 | EP |
1928359 | Oct 2010 | EP |
2259753 | Dec 2010 | EP |
2265199 | Dec 2010 | EP |
1555962 | Feb 2011 | EP |
2292188 | Mar 2011 | EP |
2292189 | Mar 2011 | EP |
1389980 | Apr 2011 | EP |
1686930 | Apr 2011 | EP |
1833387 | Apr 2011 | EP |
2303193 | Apr 2011 | EP |
2316357 | May 2011 | EP |
2324799 | May 2011 | EP |
2335654 | Jun 2011 | EP |
2403434 | Jan 2012 | EP |
2405865 | Jan 2012 | EP |
2419035 | Feb 2012 | EP |
2265199 | Mar 2012 | EP |
2303193 | Mar 2012 | EP |
2259753 | Apr 2012 | EP |
2292188 | May 2012 | EP |
2292189 | May 2012 | EP |
2445451 | May 2012 | EP |
2470126 | Jul 2012 | EP |
2496183 | Sep 2012 | EP |
2509539 | Oct 2012 | EP |
2512381 | Oct 2012 | EP |
2324799 | Jan 2013 | EP |
2419035 | Jan 2013 | EP |
2445451 | Mar 2013 | EP |
2403434 | Apr 2013 | EP |
2591756 | May 2013 | EP |
2496183 | Dec 2013 | EP |
2512381 | Dec 2013 | EP |
2649951 | Dec 2013 | EP |
2649951 | Dec 2013 | EP |
2671520 | Dec 2013 | EP |
2671521 | Dec 2013 | EP |
2671522 | Dec 2013 | EP |
2114312 | Jan 2014 | EP |
2710967 | Mar 2014 | EP |
2484042 | Mar 2012 | GB |
2489884 | Oct 2012 | GB |
201213674 | Oct 2012 | GB |
2484042 | Mar 2014 | GB |
1059882 | Aug 2011 | HK |
1072710 | Aug 2011 | HK |
1087324 | Nov 2011 | HK |
1104776 | Nov 2011 | HK |
2006510403 | Mar 2006 | JP |
2007514470 | Jun 2007 | JP |
2011519713 | Jul 2011 | JP |
2011224384 | Nov 2011 | JP |
2012091033 | May 2012 | JP |
2012176318 | Sep 2012 | JP |
5053515 | Oct 2012 | JP |
2012187415 | Oct 2012 | JP |
2012523897 | Oct 2012 | JP |
5074036 | Nov 2012 | JP |
2012531265 | Dec 2012 | JP |
2013503007 | Jan 2013 | JP |
5148284 | Feb 2013 | JP |
5198069 | May 2013 | JP |
2014000425 | Jan 2014 | JP |
20050072500 | Jul 2005 | KR |
20050084024 | Aug 2005 | KR |
20120090997 | Aug 2012 | KR |
20120102576 | Sep 2012 | KR |
2012007140 | Jan 2013 | MX |
597261 | Nov 2013 | NZ |
173840 | Sep 2011 | SG |
175229 | Nov 2011 | SG |
176833 | Jan 2012 | SG |
178836 | Apr 2012 | SG |
193484 | Oct 2013 | SG |
200509870 | Mar 2005 | TW |
1231755 | May 2005 | TW |
200800123 | Jan 2008 | TW |
1330075 | Sep 2011 | TW |
0001316 | Jan 2000 | WO |
WO-0170142 | Sep 2001 | WO |
2004049981 | Jun 2004 | WO |
2004051301 | Jun 2004 | WO |
2005051239 | Jun 2005 | WO |
2005051240 | Jun 2005 | WO |
2006058057 | Jun 2006 | WO |
2006060795 | Jun 2006 | WO |
2006058057 | Jul 2006 | WO |
2007041375 | Apr 2007 | WO |
2007062103 | May 2007 | WO |
2007092841 | Aug 2007 | WO |
2007109641 | Sep 2007 | WO |
2007092841 | Nov 2007 | WO |
2007109641 | Dec 2007 | WO |
2008101090 | Aug 2008 | WO |
2008112996 | Sep 2008 | WO |
2008101090 | Nov 2008 | WO |
2008157412 | Dec 2008 | WO |
2007041375 | Apr 2009 | WO |
2008157412 | Apr 2009 | WO |
2009058319 | May 2009 | WO |
2009111626 | Sep 2009 | WO |
2009111639 | Sep 2009 | WO |
2009111656 | Sep 2009 | WO |
2009140294 | Nov 2009 | WO |
2009111626 | Jan 2010 | WO |
2010099231 | Sep 2010 | WO |
2010099353 | Sep 2010 | WO |
2010121147 | Oct 2010 | WO |
2010099231 | Nov 2010 | WO |
2011028624 | Mar 2011 | WO |
2011056995 | May 2011 | WO |
2011072235 | Jun 2011 | WO |
2011075697 | Jun 2011 | WO |
2011056995 | Sep 2011 | WO |
2011075697 | Oct 2011 | WO |
2011072235 | Dec 2011 | WO |
2012112694 | Aug 2012 | WO |
2012112694 | Aug 2012 | WO |
2012112698 | Aug 2012 | WO |
2012112701 | Aug 2012 | WO |
2012112702 | Aug 2012 | WO |
2012112694 | Jan 2013 | WO |
2012112701 | Jan 2013 | WO |
2012112702 | Jan 2013 | WO |
2013020026 | Feb 2013 | WO |
2013025814 | Feb 2013 | WO |
2012112698 | Mar 2013 | WO |
2013056036 | Apr 2013 | WO |
2013119790 | Aug 2013 | WO |
2013119865 | Aug 2013 | WO |
2013131066 | Sep 2013 | WO |
2013152341 | Oct 2013 | WO |
2013155500 | Oct 2013 | WO |
2013155501 | Oct 2013 | WO |
2014008444 | Jan 2014 | WO |
2014035991 | Mar 2014 | WO |
2014047514 | Mar 2014 | WO |
Entry |
---|
Murase et al., “Three-Dimensional Corrective Osteotomy of Malunited Fractures of the Upper Extremity with Use of a Computer Simulation System”, J Bone Joint Surg Am., 90:.2375-2389 (2008). |
Oka et al., “Accuracy of Corrective Osteotomy Using a Custom-Designed Device Based on a Novel Computer Simulation System”, J Orthop Sci, 16:85-92 (2011). |
U.S. Barsoum U.S. Appl. No. 13/178,324, filed Jul. 7, 2011, entitled “Method and Apparatus for Providing a Relative Location Indication During a Surgical Procedure”. |
U.S. Iannotti et al., U.S. Appl. No. 61/408,324, filed Oct. 29, 2010, entitled “System and Method for Assisting with Attachment of a Stock Implant to a Patient Issue”. |
U.S. Iannotti et al., U.S. Appl. No. 61/408,376, filed Oct. 29, 2010, entitled “System and Method for Assisting with Arrangement of a Stock Instrument with Respect to a Patient Tissue”. |
U.S. Iannotti et al., U.S. Appl. No. 61/408,392, filed Oct. 29, 2010, entitled “System of Preoperative Planning and Provision of Patient-Specific Surgical Aids”. |
Taylor et al, “Computer-Integrated Surgery, Technology and Clinical Applications”, The MIT Press, Cambridge, MA, London, UK, pp. 451-463. |
Hofmann et al, “Natural-Knee II System”, Intermedics Orthopedics, Austin, TX, 1995. |
Number | Date | Country | |
---|---|---|---|
20120143267 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61408359 | Oct 2010 | US |