The present subject matter relates generally to gas turbine engines, and more particularly, to systems and methods for in-situ cleaning of gas turbine engine components using abrasive particles.
A gas turbine engine generally includes, in serial flow order, a compressor section, a combustion section, a turbine section and an exhaust section. In operation, air enters an inlet of the compressor section where one or more axial or centrifugal compressors progressively compress the air until it reaches the combustion section. Fuel is mixed with the compressed air and burned within the combustion section to provide combustion gases. The combustion gases are routed from the combustion section through a hot gas path defined within the turbine section and then exhausted from the turbine section via the exhaust section.
In particular configurations, the turbine section includes, in serial flow order, a high pressure (HP) turbine and a low pressure (LP) turbine. The HP turbine and the LP turbine each include various rotatable turbine components such as turbine rotor blades, rotor disks and retainers, and various stationary turbine components such as stator vanes or nozzles, turbine shrouds, and engine frames. The rotatable and stationary turbine components at least partially define the hot gas path through the turbine section. As the combustion gases flow through the hot gas path, thermal energy is transferred from the combustion gases to the rotatable and stationary turbine components.
A typical gas turbine engine includes very fine cooling passages that allow for higher gas temperatures in the combustor and/or the HP or LP turbines. During operation, particularly in environments that contain fine-scale dust (e.g. PM 10), environmental particulate accumulates on engine components and within the cooling passages of the engine. For example, dust (reacted or non-reacted), sand, or similar can build up on the flow path components and on the impingement cooled surfaces during turbine engine operation. In addition, particulate matter entrained in the air that enters the turbine engine and the cooling passages can contain sulphur-containing species that can corrode the components. Such accumulation can lead to reduced cooling effectiveness of the components and/or corrosive reaction with the metals and/or coatings of the engine components. Thus, particulate build-up can lead to premature distress and/or reduced engine life. Additionally, accumulations of environmental contaminants (e.g. dust-reacted and unreacted, sand, etc.) such as these can degrade aerodynamic performance of the high-pressure components and lower fuel efficiency of the engine through changes in airfoil morphology.
Accordingly, the present disclosure is directed to a system and method for cleaning engine components using abrasive particles that addresses the aforementioned issues. More specifically, the present disclosure is directed to a system and method for in-situ cleaning of engine components that utilizes abrasive microparticles that are particularly useful for cleaning internal cooling passages of the gas turbine engine.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present disclosure is directed to a method for in-situ (e.g. on-wing) cleaning one or more components of a gas turbine engine. The method includes injecting a dry cleaning medium into the gas turbine engine at one or more locations. The dry cleaning medium includes a plurality of abrasive microparticles. Thus, the method also includes circulating the dry cleaning medium through at least a portion of the gas turbine engine such that the abrasive microparticles abrade a surface of the one or more components so as to clean the surface. Further, the abrasive microparticles may be subsequently removed from the engine either through standard engine operation cooling airflow and/or via incineration such that the residual ash content meets the requirements for application to a fully assembled gas turbine on-wing.
In another aspect, the present disclosure is directed to a cleaning system for in-situ cleaning of one or more components of a gas turbine engine. The cleaning system includes a dry cleaning medium containing a plurality of abrasive microparticles. Each of the abrasive microparticles has a particle diameter size range of from about 10 microns to about 100 microns. Further, the cleaning system includes a delivery system configured to deliver the cleaning medium at one or more locations of the gas turbine engine so as to clean the one or more components thereof.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
Generally, the present disclosure is directed to cleaning systems and methods for in-situ (e.g. on-wing) cleaning one or more components of a gas turbine engine. The method includes injecting a dry cleaning medium into the gas turbine engine at one or more locations, wherein the dry cleaning medium includes a plurality of abrasive microparticles. Further, the abrasive microparticles may be suspended in air, water, and/or water-based detergent. Thus, the method also includes circulating the cleaning medium through at least a portion of the gas turbine engine such that the abrasive microparticles abrade a surface of the one or more components so as to clean the surface.
The present disclosure provides various advantages not present in the prior art. For example, gas turbine engines according to present disclosure can be cleaned on-wing, in-situ, and/or off-site with the engine maintained in the fully assembled condition. Further, the cleaning methods of the present disclosure provide simultaneous mechanical and chemical removal of particulate deposits in cooling passageways of gas turbine engines. In addition, the system and method of the present disclosure improves cleaning effectiveness and has significant implications for engine time on-wing durability. Moreover, the present invention provides an abrasive media cleaning and delivery system and a method for uniform circumferential cleaning of a turbine engine that does not necessarily require a subsequent rinse cycle.
Referring now to the drawings,
The fan section 16 includes a rotatable, axial-flow fan rotor 38 that is surrounded by an annular fan casing 40. It will be appreciated that fan casing 40 is supported from the core engine 14 by a plurality of substantially radially-extending, circumferentially-spaced outlet guide vanes 42. In this way, the fan casing 40 encloses the fan rotor 38 and the fan rotor blades 44. The downstream section 46 of the fan casing 40 extends over an outer portion of the core engine 14 to define a secondary, or bypass, airflow conduit 48 that provides additional jet propulsive thrust.
From a flow standpoint, it will be appreciated that an initial airflow, represented by arrow 50, enters the gas turbine engine 10 through an inlet 52 to the fan casing 40. The airflow passes through the fan blades 44 and splits into a first air flow (represented by arrow 54) that moves through the conduit 48 and a second air flow (represented by arrow 56) which enters the booster 22.
The pressure of the second compressed airflow 56 is increased and enters the high pressure compressor 24, as represented by arrow 58. After mixing with fuel and being combusted in the combustor 26, the combustion products 60 exit the combustor 26 and flow through the first turbine 28. The combustion products 60 then flow through the second turbine 32 and exit the exhaust nozzle 36 to provide at least a portion of the thrust for the gas turbine engine 10.
Still referring to
The combustion chamber 62 is housed within the engine outer casing 18 and fuel is supplied into the combustion chamber 62 by one or more fuel nozzles 80. More specifically, liquid fuel is transported through one or more passageways or conduits within a stem of the fuel nozzle 80.
Referring now to
Thus, as shown at 102, the method 100 may include injecting a dry cleaning medium 84 into the gas turbine engine 10 at one or more locations. More specifically, the step of injecting the cleaning medium into the gas turbine engine 10 may include injecting the cleaning medium 84 into an inlet (e.g. inlet 20, 52 or 64) of the engine 10. Alternatively or in addition, as shown, the step of injecting the cleaning medium 84 into the gas turbine engine 10 may include injecting the cleaning medium 84 into one or more ports 82 of the engine 10. Further, the step of injecting the cleaning medium 84 into the gas turbine engine 10 may include injecting the cleaning medium 84 into an existing baffle plate system (not shown) of the gas turbine engine 10. Further, the cleaning medium 84 may be injected into the engine 10 using any suitable means. More specifically, in certain embodiments, the cleaning medium 84 may be injected into the engine 10 using automatic and/or manual devices configured to pour, funnel, or channel substances into the engine 10.
For example, referring now to
As used herein, “microparticles” generally refer to particles having a particle diameter of between about 0.1 microns or micrometers to about 100 microns. In certain embodiments, the plurality of microparticles may have particle diameter of from about 10 microns to about 100 microns. Below 10 microns, the particle momentum may not be sufficient to effectively remove dust in the engine 10 and could potentially accumulate within particular cooling circuits. Further, above 100 microns, the particles may not have sufficient velocity and therefore will not be able to effectively remove dust in the engine 10 and could potentially accumulate within particular cooling circuits. In other words, it is necessary for the particles to be larger than a sticking size and smaller than a critical size than can lead to plugging of the fine cooling circuits. Thus, the preferred particle size for cleaning both the flow path of the components and the cooling circuits of the turbine is typically from about 10 microns and to about 100 microns.
In addition, the cleaning medium 84 of the present disclosure may include any suitable abrasive particles now known or later developed in the art. For example, in one embodiment, the cleaning medium 84 may include organic particles such as nut shells (e.g. walnut shells), fruit pit stones (e.g. plum), and/or any other suitable organic material. The organic material has some cleaning advantages, including but not limited to ease of elimination from the engine 10 after cleaning. In additional embodiments, the cleaning medium 84 may also include non-organic particles such as e.g., alumina, silica (e.g. silicon carbide), diamond, or similar.
In addition, the particles of the cleaning medium 84 may have varying particle sizes. For example, in certain embodiments, the abrasive microparticles may include a first set of microparticles having a median or average particle diameter within a first, smaller micron range and a second set of microparticles having a median particle diameter within a second, larger micron range. More specifically, as used herein, a “micron range” generally encompasses a particle diameter size range measured in micrometers and less than 100 microns. For example, in certain embodiments, the first set of microparticles may have a median particle diameter equal to or less than 20 microns, whereas the second set of microparticles may have a median particle diameter equal to or greater than 20 microns. More specifically, the first micron range may be equal to or less than 10 microns, whereas the second micron range may be equal to or greater than 30 microns, or more preferably equal to or greater than 40 microns. Thus, a median of the second micron range may be larger than a median or average of the first micron range.
Accordingly, as shown at 104 of
In additional embodiments, the step of circulating the cleaning medium 84 through at least a portion of the gas turbine engine 10 may include motoring or running the engine 10 during injection of the cleaning medium 84 so as to circulate the particles through the gas turbine engine 10 via airflow. Alternatively, the step of circulating the cleaning medium 84 through at least a portion of the gas turbine engine 10 may include utilizing one or more external pressure sources to provide airflow that circulates the particles through the gas turbine engine 10. For example, in certain embodiments, the external pressure sources 96 (
Referring now to
Thus, as shown, in certain embodiments, the method 100 may also include creating a cleaning mixture 99 by mixing the plurality of abrasive microparticles and a liquid 98, e.g. such as water or water-based detergent. In such embodiments, the step of circulating the cleaning medium 84 through at least a portion of the gas turbine engine 10 may include circulating the cleaning mixture 99 through the gas turbine engine 10 via a pump. As such, for certain components, air can be used for injecting the abrasive particles, e.g. via fan, whereas in other components such as shrouds, combustors, and nozzles, water may be used as the medium for delivery of the abrasive particles.
More specifically, in certain embodiments, cleaning of the engine 10 may be performed by spraying the abrasive media at the component that has a dust layer on it. For example, the abrasive medium may be sprayed through the baffle plate system that is used in the engine for impingement cooling. In another example, the abrasive medium may be sprayed through a borescope injection port while rotating the core of the compressor, so as to impinge upon the compressor airfoils.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2651887 | Graham | Sep 1953 | A |
2948092 | Fuller | Aug 1960 | A |
3084076 | Loucks | Apr 1963 | A |
3400017 | Huebner, Jr. | Sep 1968 | A |
4548617 | Miyatani | Oct 1985 | A |
4834912 | Hodgens, II | May 1989 | A |
5107674 | Wibbelsman et al. | Apr 1992 | A |
5232514 | Van Sciver | Aug 1993 | A |
5316587 | Yam et al. | May 1994 | A |
5758486 | Fetescu | Jun 1998 | A |
7412741 | Roney et al. | Aug 2008 | B2 |
8505201 | DeMichael | Aug 2013 | B2 |
8820046 | Ross et al. | Sep 2014 | B2 |
8834649 | Gebhardt | Sep 2014 | B2 |
20030102011 | Smith | Jun 2003 | A1 |
20050091963 | Li | May 2005 | A1 |
20060243308 | Asplund | Nov 2006 | A1 |
20070000528 | Asplund | Jan 2007 | A1 |
20100043438 | Barber | Feb 2010 | A1 |
20120273012 | Wilson | Nov 2012 | A1 |
20130174869 | Rosing | Jul 2013 | A1 |
20130199040 | Dudeck | Aug 2013 | A1 |
20130311060 | Smith | Nov 2013 | A1 |
20140066349 | Hughes | Mar 2014 | A1 |
20150083165 | Moliere | Mar 2015 | A1 |
20150159122 | Tibbetts | Jun 2015 | A1 |
20150300263 | Sokolov | Oct 2015 | A1 |
20160024438 | Tibbetts | Jan 2016 | A1 |
20170191376 | Eriksen | Jul 2017 | A1 |
20170204739 | Rawson et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
103314186 | Nov 2015 | CN |
2157957 | May 1973 | DE |
789 930 | Jan 1958 | GB |
829 921 | Mar 1960 | GB |
829921 | Mar 1960 | GB |
Entry |
---|
Extended European Search Report and Opinion issued in connection with corresponding EP Application No. 17158162.2 dated Jul. 4, 2017. |
Machine Translation of the First Office action and Search issued in connection with corresponding CN Application No. 201710116874.7 dated Oct. 9, 2018. |
Number | Date | Country | |
---|---|---|---|
20170254218 A1 | Sep 2017 | US |