System and method for coating an implantable medical device

Information

  • Patent Grant
  • 7563324
  • Patent Number
    7,563,324
  • Date Filed
    Monday, December 29, 2003
    21 years ago
  • Date Issued
    Tuesday, July 21, 2009
    15 years ago
Abstract
A system and method for coating an implantable medical device, such as a stent, are provided.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to a system for coating an implantable medical device, such as a stent, and a method of coating a device using the system.


2. Description of the Background


Blood vessel occlusions are commonly treated by mechanically enhancing blood flow in the affected vessels, such as by employing a tubular implantable medical device known as a stent. Stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Stents are capable of being compressed, so that they can be inserted through small lumens via catheters, and then expanded to a larger diameter once they are at the desired location.



FIG. 1 illustrates a conventional stent 10 formed from a plurality of structural elements including struts 12 and connecting elements 14. The plurality of struts 12 are radially expandable and interconnected by connecting elements 14 that are disposed between adjacent struts 12, leaving lateral openings or gaps 16 between adjacent struts 12. Struts 12 and connecting elements 14 define a tubular stent body having an outer, tissue-contacting surface and an inner surface.


Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. Local delivery of a therapeutic substance is a preferred method of treatment because the substance is concentrated at a specific site and thus smaller total levels of medication can be administered in comparison to systemic dosages that can produce adverse or even toxic side effects for the patient.


One method of medicating a stent involves the use of a polymeric carrier coated onto the surface of the stent. A composition including a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent by immersing the stent in the composition or by spraying the composition onto the stent. The solvent is allowed to evaporate, leaving on the stent surfaces a coating of the polymer and the therapeutic substance impregnated in the polymer.


As noted above, one of the methods of applying a drug composition to a stent involves spraying the composition onto the stent. The composition can be atomized to produce small droplets. Atomization is used because the droplet size can be made smaller than the size of the stent's structural elements, thus enabling a substantially conformal coating. However, there are potential shortcomings associated with a spray coating process. For instance, many of the drugs and polymers that are applied to stents are toxic when inhaled by humans. As the polymeric drug solutions are atomized, therefore, great care must be taken to avoid occupational exposure to the personnel conducting the process. Hoods, glove boxes, enclosures, and shrouds can be used to prevent toxic aerosol inhalation, but at a cost of decreased efficiency and increased expenditures on equipment. In light of these safety and manufacturing concerns, a stent coating method that avoids atomization of the coating can be advantageous.


Another disadvantage of a spray coating process is that the transfer efficiency can be comparatively low. Only droplets which fall onto the stent's structural elements are incorporated into the coating. If the spray pattern is larger than the stent, much of the spray can be wasted. Moreover, the stent's body can have a number of open spaces or gaps between the structural elements that allow the spray to pass through, and therefore be unused. The components of the coating compositions can be very expensive. For instance, many of the drugs applied to stents are small molecule agents or biologically derived substances such as peptides and gene therapy agents that are very costly. A stent coating method which transfers the coating solution in a more direct manner to the stent structure would therefore have a manufacturing cost advantage.


The dipping or spraying of the composition onto the stent can result in a complete coverage of all stent surfaces, i.e., both luminal (inner) and abluminal (outer) surfaces, with a coating. However, from a therapeutic standpoint, drugs need only be released from the abluminal stent surface, and possibly the sidewalls. Moreover, having a coating on the luminal surface of the stent can have a detrimental impact on the stent's deliverability as well as the coating's mechanical integrity. A polymeric coating can increase the coefficient of friction between the stent and the delivery balloon. Additionally, some polymers have a “sticky” or “tacky” consistency. If the polymeric material either increases the coefficient of friction or adherers to the catheter balloon, the effective release of the stent from the balloon after deflation can be compromised. Adhesive, polymeric stent coatings can also experience extensive balloon sheer damage post-deployment, which could result in a thrombogenic luminal stent surface. Accordingly, there is a need to eliminate or minimize the amount of coating that is applied to the inner surface of the stent. Reducing or eliminating the polymer from the stent luminal surface also means a reduction in total polymer load, which is a desirable goal for optimizing long-term biocompatibility of the device.


A method for preventing the composition from being applied to the inner surface of the stent is by placing the stent over a mandrel that fittingly mates within the inner diameter of the stent. A tubing can be inserted within the stent such that the outer surface of the tubing is in contact with the inner surface of the stent. A tubular mandrel that makes contact with the inner surface of the stent can cause coating defects in spraying and dipping application processes. A high degree of surface contact between the stent and the support apparatus can provide regions in which the sprayed or dipped liquid composition can flow, wick, and collect. As the solvent evaporates, the excess composition hardens to form excess coating at and around the contact points between the stent and the support apparatus. Upon the removal of the coated stent from the mandrel, the excess coating may stick to the mandrel, thereby removing some of the coating from the stent in the form of peels as shown in FIG. 2, or leaving bare areas as shown in FIG. 3. Alternatively, as illustrated in FIG. 4, the excess coating may stick to the stent, thereby leaving excess coating as clumps or pools on the struts or webbing between the struts. These types of defects can cause adverse biological responses after the coated stent is implanted into a biological lumen.


Accordingly, the present invention provides a system and method for coating an implantable medical device that addresses these concerns and others needs as are apparent to one having ordinary skill in the art.


SUMMARY OF THE INVENTION

In accordance with one aspect of the invention a system for coating an implantable medical device with a coating composition is provided, including a reservoir holding a coating composition, an applicator including a coating surface and a porous region in fluid communication with the coating composition in the reservoir, wherein the porous region is capable of conveying the coating composition from the reservoir to the coating surface, and a support element to support an implantable medical device in close proximity to or in contact with the coating surface of the applicator. In one embodiment, the applicator includes a tubular body. In another embodiment, the coating surface comprises a flat substrate on which the device can be placed. In yet another embodiment, the applicator is made from a ceramic or polymeric material.


In accordance with another aspect of the present invention, an applicator for coating an implantable medical device with a coating composition is provided, comprising a hollow tubular body having a bore configured to receive an implantable medical device; and a plurality of fibers disposed along the bore of the body, the fibers configured to receive a coating composition to apply the coating composition to the implantable medical device.


In accordance with a further aspect, a system for coating an implantable medical device with a coating composition is provided, including a reservoir holding a coating composition, and an applicator including a coating surface and a porous region in communication with the coating composition in the reservoir, wherein the porous region is capable of loading the coating surface with the coating composition from the reservoir by capillary action. In one embodiment, the system further comprises a support element to support an implantable medical device in close proximity to or in contact with the coating surface.


In accordance with yet another aspect, a method of coating an implantable medical device is provided, including positioning a part of an applicator in a reservoir having a coating composition, the applicator including a coating surface and a porous region capable of conveying the coating composition from the reservoir to the coating surface, allowing the coating composition to be conveyed to the coating surface, and transferring at least some of the coating composition from the coating surface onto an implantable medical device.


In accordance with another aspect of the invention, a method of coating an implantable medical device is provided, including exposing a portion of an applicator to a coating composition, the applicator including a coating surface, allowing a layer of the coating composition to be formed on the coating surface of the applicator by capillary action, and transferring at least some of the coating composition from the coating surface onto an implantable medical device.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates a conventional stent;



FIGS. 2, 3, and 4 are scanning electron microscope images of stent coatings with coating defects;



FIG. 5 illustrates a coating system for coating a stent in accordance with one embodiment of the present invention;



FIG. 6 is an illustration of capillary tubes partially filled by a liquid as a result of capillary action;



FIGS. 7A, 7B and 7C are top views of a coating surface of an applicator in accordance with different embodiments;



FIGS. 8A and 8B are illustrations of a region of a coating surface in accordance with different embodiments;



FIG. 9 is a perspective view of a support assembly for a stent to be used during a coating process;



FIGS. 10A, 10B, 11, 12A, 12B, 13A, 13B, 14A, 14B, 14C and 14D illustrate coating systems for coating a stent in accordance with various other embodiments of the present invention; and



FIGS. 15A, 15B, 16A and 16B illustrate coating systems for coating an inner surface of a stent in accordance with other embodiments of the present invention.





DETAILED DESCRIPTION
Implantable Medical Device

Herein is disclosed a method and system for coating an implantable medical device. The implantable medical device can be a tubular device, such as a stent. In the interests of brevity, a method and system for coating a stent including a polymeric coating are described herein. However, one of ordinary skill in the art will understand that other medical devices having therapeutic capabilities can be coated using the system and method of the present invention.


Examples of implantable medical devices for the present invention include self-expandable stents, balloon-expandable stents, stent-grafts, sheaths and grafts (e.g., aortic grafts). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy, stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. The device can also be made partially or completely from bioabsorbable or biostable polymers.


System and Method for Coating an Implantable Medical Device

A coating system can be used to coat a stent by loading an applicator with a coating composition and transferring the coating composition from the applicator onto a stent. The coating composition can be applied directly to the surface of the stent, or to a previously applied layer of a coating material. In one embodiment, referring to FIG. 5, a coating system 20 for coating a stent 22 is illustrated to include a composition feeder 24 and an applicator 26. Feeder 24 is used to deposit a coating composition 28 onto applicator 26 adjacent to a lip 30 that holds the deposited coating composition, essentially creating a reservoir at one end of applicator 26. Coating composition 28 can include a solvent and a polymer dissolved in the solvent. Coating composition 28 can optionally include an active agent.


Applicator 26 has a porous region 32 that extends through a portion of the body of applicator 26. Porous region 32 is capable of conveying coating composition 28 by capillary action from lip 30 along the length of applicator 26. Capillary action (also known as “wicking”) is the force resultant of adhesion, cohesion, and surface tension in liquids which are in contact with solids. For example, referring to FIG. 6, capillary action is the force which causes liquid 40 to be transported upward from a reservoir 42 into vertically oriented capillary tubes 44A, 44B, and 44C. Liquid 40 will rise to a stationary level, Z∞, which is established by the balance between capillary action and gravitational force. Z∞ can be determined by the following equation:










Z







=


2





γ





cos





θ


ρ





gr






(
1
)








where γ is the surface tension; θ is wetting angle of liquid 40; ρ is the density of liquid 40; g is the gravitational force; and r is the capillary radius. The flow through capillary tubes 44A, 44B and 44C, dh/dt, can be determined by the following equation:












h



t


=



γ





r





cos





θ


4

η





h


-


r





2





ρ





g


8

η







(
2
)








where γ is the surface tension; r is the capillary radius; θ is wetting angle of liquid 40; η is the viscosity of liquid 40; h is the height of liquid rise; ρ is the density of liquid 40; and g is the gravitational force.


As noted above, the body of applicator 26 includes porous region 32 to receive the coating composition. Porous region 32 is configured so that capillary action through the region can load a layer 34 of coating composition 28 on a coating surface 36 of applicator 26. Representative examples of the thickness of layer 34 include about 2.5 microns to about 1000 microns. In one embodiment, the thickness is about 25 microns to about 100 microns.


Once layer 34 is formed, stent 22 is rotated in a stationary position (i.e., rotated with no axial movement of stent 22 along applicator 26) or rolled along layer 34 (i.e., both rotational and axial movement of stent 22 along applicator 26) to transfer at least some of coating composition 28 to the outer surface of stent 22 or a coating pre-applied on stent 22. As shown in FIG. 5, the rotational motion of stent 22 is depicted by arrow 38. Rotational speed of stent 22 can be, for example, from about 1 rpm to about 50 rpm, more narrowly from about 1 rpm to about 20 rpm. In one embodiment, stent 22 is supported by a mandrel which is connected to a motor that provides rotational motion to stent 22 during the coating process.


In one embodiment, a portion of layer 34 is transferred to stent 22 while stent 22 is in a substantially horizontal position; in other words, while a longitudinal axis of stent 22 is parallel to or in the plane of the horizon. Coating stent 22 while in a horizontal position can be contrasted with a standard technique of dip coating a vertically positioned stent. When a stent is dip coated while in a vertical position, gravity causes some of the coating to gather at the lower portions of the stent, resulting in an uneven coating along the length of the stent. Coating a stent while in the horizontal position using the systems and methods of the present invention, on the other hand, can produce a more uniform coating along the length of the stent because gravity does not have as much influence on the coating composition after it is applied to the stent.


Porous region 32 of applicator 26 is an open pore system (i.e., a network of interconnected pores). Porous region 32 can have any suitable pattern on coating surface 36. Referring to FIG. 7A, which is a top view of coating surface 36, coating surface 36 can have a porous region 32A evenly distributed across the entire surface. Alternatively, referring to FIG. 7B, coating surface 36 can have a porous region 32B only disposed adjacent to the edges of coating surface 36. Coating surface 36 can also have a porous region 32C disposed only in the middle section of coating surface 36 (FIG. 7C). The patterns of porous regions 32B and 32C in FIGS. 7B and 7C, respectively, can be used to selectively apply a coating composition along the body of a stent. For example, if stent 22 is long enough to extend across substantially all of the width of coating surface 36 so that the ends of stent 22 are positioned across a portion of porous region 32B, then the pattern of porous region 32B of FIG. 7B will selectively apply the coating to the end regions of the stent as opposed to the middle segment. The pattern of porous region 32C of FIG. 7C, on the other hand, can be used to selectively coat the middle segment of stent 22.


Porous region 32 of applicator 26 can include pores having any suitable shape so that porous region 32 is capable of loading coating composition 28 by capillary action. In one embodiment, pores 50A can have irregular shapes, as illustrated by FIG. 8A. In another embodiment, referring to FIG. 8B, pores 50B of porous region 32 all have a uniform shape such as spherical or cylindrical shape (i.e., circular in a cross section). One advantage of using a porous substrate having pores with a uniform shape is that the porous substrate can act as a filter for the coating composition. For example, the porous substrate can filter out impurities that have particle sizes that are larger than the pores of the porous substrate. Also, if the coating composition includes drug particles, a porous region with uniform pores can trap and filter out those particles that are larger than the pore size.


Porous region 32 of applicator 26 can include pores having any suitable size and have any suitable porosity so that porous region is capable of transporting the coating composition by capillary action. In one embodiment, porous region 32 includes pores having an average pore radius of about 0.1 microns to about 1000 microns, more narrowly, about 0.25 microns to about 90 microns. In another embodiment, porous region 32 has a porosity of about 20% to about 60%, more narrowly, about 40% to about 45%. Porosity is the total volume of pores in the porous region divided by the total volume of the substrate in the porous region. The average pore radius and porosity can be provided by the manufacturer of the selected material, or alternatively can be determined by standard techniques such as mercury penetration porosimetry, or other techniques as described in Gregg et al., Adsorption, Surface Area, and Porosity, 2nd ed. (Academic, London, 1982).


Applicator 26 can be made of a porous material that is “non-stick,” having a low friction coefficient. The material should be resistant to solvents (e.g., organic solvents such as acetone) and heat, which may be directed onto applicator 26 during the coating process. In one embodiment, applicator 26 is made of a rigid material. A rigid material, as opposed to a pliable or malleable material, can advantageously provide a coating surface that can resist the pressure applied by stent 22 during the application process. This resistance allows for a more uniform coating layer to be transferred to stent 22. Representative examples of materials that can be used for applicator 26 include ceramic materials (such as a suitable brand available from Refractron Technologies Corp., Newark, N.Y.), and polymeric materials such as polyethylene (e.g., Tyvek®, available from DuPont, Wilmington, Del.), and polytetrafluoroethylene (PTFE) (e.g., Teflon®, available from DuPont, Wilmington, Del., or International Polymer Engineering, Inc., Tempe, Ariz.). Ceramic is an especially suitable material because ceramic can transport both aqueous and hydrophobic compositions and is highly resistant to heat and organic solvents.


In one embodiment, referring to FIG. 5, coating surface 36 is completely or substantially flat, and without any curvatures along the length or width of coating surface 36. By providing a flat coating surface 36, the thickness of the coating applied to stent 22 can be substantially uniform.


In some embodiments, applicator 26 can be capable of moving in a linear direction towards stent 22 as indicated by arrow 35 to deposit coating composition 28 on stent 22. Applicator 26 can be integrated with a plurality of rollers 37 to provide axial motion. Applicator 26 can be moved at about 1 mm/second to about 30 mm/second, for example about 6 mm/second. In one embodiment, the movement of applicator 26 will cause stent 22 to rotate by frictional force such that a motor for rotating stent 22 is not needed.


Feeder 24 can be any suitable apparatus configured to deposit coating composition 28 onto applicator 26. To realize greater process efficiency, coating composition 28 can be introduced into the process by means of individually metered, continuous mass flow streams through feeder 24. The flow rate of coating composition 28 from feeder 24 can be from about 0.2 mg/second to about 10 mg/second, for example about 5.0 mg/second.


As coating composition 28 is applied to stent 22, coating composition 28 should be in a substantially free-flowing or liquid form. The viscosity of coating composition 28 when applied onto stent 22 can be at about 10 centipoises at ambient temperature and pressure to about 100 centipoises at ambient temperature and pressure. The consistency of the coating composition can affect the capillary action process and how the composition is received by stent 22.


Stent 22 can be supported by a mandrel during the coating process. The mandrel can be used to position stent 22 in close proximity to or in contact with coating surface 36. The mandrel is configured to allow stent 22 to be rotated about a central longitudinal axis of stent 22 during the coating process. The mandrel can also be configured so that stent 22 can be rolled towards lip 30 (i.e., moved in a linear direction as shown by arrow 39). The mandrel can have any design that is suitable to support stent 22 during the coating process. Referring to FIG. 9, stent 22 can be integrated with a mandrel 60 that includes a spring-loaded plug 62 positioned at a distal end of a stem 64. Plug 62 can be circular in cross-section making contact with the inner surface of stent 22. Plug 62 can also have other shapes or designs so long as the intended function of plug 22 is performed. Plug 62 can have an almost equivalent diameter to the inner diameter of stent 22 as positioned on mandrel 60. By way of example, the outer diameter of the plug 62 can be from about 1 mm to about 8 mm.


Plug 62 can be made of materials that are rigid or semi-pliable. In some embodiments, the material can be a “non-stick” material having a low friction coefficient and should be resistant to solvents and heat, which may be directed onto plug 62 during the coating process. Stent 22 can rotate with respect to plug 62 or can be crimped tightly on plug 62 such that the rotation of plug 62 causes stent 22 to rotate. Representative examples of materials that can be used for plug 62 include polyurethanes, polyetheretherketone, polytetrafluoroethylene (e.g., Teflon®), Delrin™, Rulon™, Pebax™, Kynar™, Solef™, fluorinated ethylene-propylene copolymer, poly(vinylidene fluoride-co-chlorotrifluoroethylene), poly(vinyl fluoride), polyesters such as poly(ethylene terephthalate), nylon, stainless steel, titanium alloys, cobalt-chromium alloys, ceramics, metallic carbides, inorganic carbides, and nitrides.


Instead of plug 62, stent 22 can also be held by other support designs. For example, stent 22 can be supported by two plugs, one at each end of stent 22. The two plugs in this type of support apparatus could be connected by an internal mandrel. Alternatively, the two plugs could be unconnected having their relative orientation maintained by an external fixture. The two end plugs can be conical in shape, and therefore, contact stent 22 at contact points at the end struts.


In one embodiment, coating system 20 includes a temperature controller for heating or cooling coating composition 28. The temperature controller can be used to heat or cool coating composition 28 in order to produce and maintain a coating consistency that is suitable for depositing a coating on stent 22. Control over the temperature of coating composition 28 can be especially important for providing adequate conditions for the capillary action of the composition. For instance, the capillary action can be less effective as coating composition 28 becomes more viscous. The temperature controller can include any suitable apparatus for heating or cooling the coating composition, and can be in communication with any suitable component of coating system 20. In one embodiment, applicator 26 is in communication with the temperature controller so that the temperature controller can modify the temperature of coating composition 28 during the coating process. In another embodiment, mandrel 60 is in communication with the temperature controller so that the temperature controller can modify the temperature of stent 22 during the coating process.


Other embodiments of capillary action applicators will be described hereinafter. In some embodiments, these applicators can have the same property and characteristic as applicator 26. For example, these applicators can have the same porosity and be made from the same materials described above, e.g., ceramics. Referring to FIG. 10A, a coating system 70 including an applicator 72 and a reservoir 74 can be used to apply a layer of a composition to stent 22. Applicator 72 has a porous region 76 that extends at least from the bottom to the top or upper surface of applicator 72. A portion of applicator 72 is partially submerged in a coating composition 78 disposed in reservoir 74 so that at least a portion of porous region 76 of applicator 72 is in contact with coating composition 78. Capillary action through porous region 76 of applicator 72 causes coating composition 78 to be removed from (i.e., wicked from) reservoir 74 and transported through the body of applicator 72 until a layer 80 is formed on a coating surface 82 (i.e., the upper outer surface of applicator 72). Although FIGS. 10A and 10B illustrate an applicator 72 that has porous region 76 that extends through the entire body of applicator 72, porous region 76 can have pores selectively distributed in the body of applicator 72 (e.g., akin to coating surface 36 of FIGS. 7B and 7C) as long as porous region 76 is able to transport coating composition 78 from reservoir 74 to coating surface 82.


A portion of layer 80 can then be transferred to stent 22 by rolling stent 22 along coating surface 82. Stent 22 can be supported by a mandrel and positioned so that stent 22 is in close proximity to or in contact with coating surface 82 as stent 22 is rolled along coating surface 82. A motor can be used to drive stent 22 along coating surface 82.


The viscosity of coating composition 78 in reservoir 74 can be at about 10 centipoises to about 100 centipoises at ambient temperature and pressure. Coating system 70 can include a temperature controller to control the viscosity of coating composition 78. Any suitable component of coating system 70 can be in communication with the temperature controller, such as the mandrel supporting stent 22, applicator 72 and/or reservoir 74.


By positioning applicator 72 in reservoir 74, there can be a continuous loading process. In other words, each time after a portion of coating composition 78 is transferred from coating surface 82 to stent 22, capillary action loads coating surface 82. In one embodiment, applicator 72 is movable within reservoir 74 so that as coating composition 78 is removed from reservoir 74, applicator 72 is lowered into reservoir 74. By allowing applicator 72 to be lowered into reservoir 74 during the coating process, applicator 72 can maintain contact with coating composition 78 disposed in reservoir 74. Applicator 72 can be lowered during the coating process or the rolling of stent 22. Alternatively, applicator 72 can be lowered between coating applications. Stent 22 can be rotated at least one full cycle followed by lowering of applicator 72. In some embodiments, an amount of composition can be applied to stent 22, followed by drying of the composition or removal of the solvents, followed by lowering of applicator 72 and re-application of the composition. In another embodiment, coating system 70 includes a feeder or pump (not shown) that is configured to deliver coating composition 78 into reservoir 74 as coating composition 78 is transferred onto one or more stents. The feeder or pump can be used to maintain a sufficient level of coating composition 78 within reservoir 74. Reservoir 74 can also include a composition level indicator that is capable of measuring the level of coating composition 78, and indicating when the level is too low. Such a level indicator can be in communication with the feeder or pump in order to automate the process.


The loading of coating surface 82 can be enhanced by application of a pressure. A vacuum apparatus can be used to drawn composition 78 to coating surface 82. For example, FIG. 10A can be a closed chamber such that the top region of the chamber, opposing reservoir 74, is in communication with a vacuum system. Alternatively, reservoir 74 can be pressurized to encourage coating composition 78 to be conveyed from reservoir 74 to coating surface 82. In one embodiment, a gas such as filtered air or an inert gas (e.g., nitrogen) is pumped into reservoir 74 to increase the pressure of reservoir 78.


In another embodiment of the present invention, referring to FIG. 11, a coating system 90 including an applicator 92 and a reservoir 94 can be used to apply a layer of composition to stent 22. Applicator 92 includes a first section 96 and a second section 98. Each of the first and second sections 96 and 98 has a porous region 100 disposed along the body of first and second sections 96 and 98 for transporting a coating composition 102 from reservoir 94 to a coating surface 106. First section 96 can act as the primary conveyer of coating composition 102 from reservoir 94. Additionally, first section 96 can be sized or otherwise configured so that first section 96 does not extend across or cover the entire reservoir 94. As best illustrated by FIG. 11, an open space between coating composition 102 and the bottom of second section 96 is therefore provided. By having a first section 96 that does not extend across the entire reservoir 94, less coating composition is necessary to load porous region 100. Also, by configuring applicator 92 to produce an open space, a gas can be more easily delivered to reservoir 94 via the open space, and the increased pressure can be more uniformly delivered to composition 102.


Second section 98, on the other hand, can be sized or otherwise configured so that second section 98 provides a wide platform for coating stents. For example, as shown in FIG. 11, second section 98 can have a length (and width) that is sufficiently longer than reservoir 94 so as to be able to accommodate any number of stents. A sealant can be applied to the area where reservoir 94 and second section 98 contact each other. By sealing this area, if a gas is delivered to reservoir 94, the gas can more effectively increase the pressure of reservoir 94.


The respective porous regions of first and second sections 96 and 98 can have the same or different porosity and average pore radii. In one embodiment, porous regions 100 of first and second sections 96 and 98 have substantially the same porosity, but porous region 100 of first section 96 has pores with a lesser average pore radius than the pores of porous region 100 of second section 98. Smaller pores of first section 96 can convey coating composition 102 from reservoir 94 to a greater height at a faster rate. Then, the larger pores of second section 98 can provide for an ultra-thin layer of coating composition 102 along coating surface 106.


First section 96 of applicator 92 is partially submerged in coating composition 102 disposed in reservoir 94 so that at least a portion of porous region 100 of first section 96 is in contact with coating composition 102. As first section 96 remains partially submerged, capillary action along porous region 100 of first section 96 causes coating composition 102 to be removed from reservoir 94 and into the body of first section 96. After a sufficient loading time, coating composition 102 is transported to second section 98 by capillary action, and ultimately a layer 104 is formed on coating surface 106. Stent 22 can be supported by a mandrel so that stent 22 is in close proximity to or in contact with coating surface 106. Coating composition 102 can then be transferred to stent 22 by rolling stent 22 along coating surface 106 after layer 104 has been loaded with coating composition 102. First and second sections 96 and 98 can be connected in any way that does not interfere with the capillary action process. For example, first and second sections 96 and 98 can be connected with a “tongue and groove” configuration.


In another embodiment of the present invention, referring to FIGS. 12A and 12B, a coating system 110 including an applicator 112 and a reservoir 114 can be used to apply a layer of a coating composition stent 22. Applicator 112 can include a first section 116 and a second section 118. First and second sections 116 and 118 have a porous region 120 disposed in the body of each section for transporting the composition from reservoir 114 by capillary action. First section 116 of applicator 112 is partially submerged in a coating composition 122 disposed in reservoir 114 so that at least a portion of porous region 120 of first section 116 is in contact with coating composition 122. As first section 116 remains partially submerged, capillary action along porous region 120 of first section 116 causes coating composition 122 to be removed from reservoir 114 and into the body of first section 116. Second section 118 can be configured as a tubular substrate, having a hollow, longitudinal bore. The inner bore of the tube can have a radius of curvature that is about equal to a radius of curvature of stent 22. Coating composition 122 is transferred from reservoir 114 to first section 116, and then to second section 118 by capillary action. A layer 124 of coating composition 122 is then formed on a coating surface 126 (i.e., the inner surface of second section 118).


Coating composition 122 deposited on coating surface 126 can be transferred to stent 22 by inserting stent 22 into the bore of second section 118, and then removing stent 22 from the bore. During insertion and/or removal of stent 22, the outer surface of stent 22 should be in close proximity or in contact with coating surface 126 so that coating composition 122 is transferred to stent 22. Stent 22 can be inserted and removed from the same side of the bore to deposit the coating composition. Alternatively, as shown in FIG. 12A, one or more stents 22A and 22B can be supported by a mandrel 128 that is inserted and taken through the entire length of the bore (e.g., in a linear direction as shown by arrow 125). Stents 22A and 22B can be positioned at a distance from each other as they are taken through the bore in order to give applicator 112 a chance to reload coating surface 126 before the next stent 22 in the series reaches coating surface 126. Furthermore, in order to provide a more uniform coating on stent 22, stent 22 can be rotated while positioned within the bore of second section 118 as shown by arrow 127. In order to transfer the composition from second section 118 to stent 22, the diameter of the bore of second section 118 should be only be slightly greater than the diameter of stent 22. By way of example, the inner diameter of the bore of second section 118 can be from about 0.1 mm to about 0.01 mm larger than the outer diameter of stent 22, for example, 0.01 mm larger. Since stent 22 is radially expandable, when referring to the diameter of stent 22, the measurement is the diameter of stent 22 during the coating process.


As above, a portion of layer 124 can be transferred to stent 22 while stent 22 is in a substantially horizontal position; in other words, while a longitudinal axis of stent 22 is parallel to or in the plane of the horizon. Coating stent 22 while in the horizontal position can produce a uniform coating along the length of stent 22 because gravity does not have as much influence on the coating composition after it is applied to the stent.


In another embodiment of the present invention, an applicator having a body shaped like a tube or a half-tube can be inserted into a reservoir while in a completely or substantially vertical position in order to load the applicator with a coating composition. Referring to FIGS. 13A and 13B, a coating system 130 can include an applicator 132 and a reservoir 134. Applicator 132 includes a porous region 137 and is configured as a half-tube. Applicator 132 is partially submerged in a coating composition 136 disposed in reservoir 134 so that at least a portion of porous region 137 is in contact with a coating composition 136. As applicator 132 remains partially submerged, capillary action through porous region 137 of applicator 132 causes coating composition 134 to be removed from reservoir 134 into the body of applicator 132, and eventually to deposit a layer 135 of coating composition 136 on coating surface 138.


Coating composition 136 deposited on coating surface 138 can be transferred to stent 22 by inserting stent 22 into the half-bore of applicator 132, and then removing stent 22 up and down as shown by arrows 140 and 142. Stent 22 can be supported by mandrel 60 during the insertion and removal. Stent 22 can be inserted up to any suitable distance into the half-bore. To enhance coating uniformity, stent 22 can be rotated while in the half-bore as shown by arrow 146.


As with other embodiments of the present invention, applicator 132 can be positioned in a horizontal orientation so that a portion of layer 135 can be transferred to stent 22 while stent 22 is in a substantially horizontal position. For example, applicator 132 can replace second section 118 of applicator 112 of FIG. 12A. In such a configuration, coating surface 138 of applicator 132 could be oriented to face away from reservoir 134.


In another embodiment of the present invention, referring to FIGS. 14A-14D, a coating system 150 includes an applicator 152 and a reservoir 154. Coating system 150 can be used to apply a layer of composition to the outer surface of stent 22. Applicator 152 includes a tubular shell 156 that houses a plurality of absorbent fibers 158. Tubular shell 156 is pliable and can be compressed by applying sufficient radial force as shown by arrows 160. Tubular shell 156 can be made of any suitable material that is pliable, such as but not limited to elastic polymeric materials such as rubber, or plastic foam such as polyethylene foam.


Fibers 158 can have any suitable configuration that allows fibers 158 to transport a coating composition by capillary action and transfer the coating composition to stent 22. Fibers 158 can be configured to have one absorbent filament, or, as shown in FIGS. 14C and 14D, fibers 158 can be configured to include a network of filaments or capillaries 162. If fiber 158 has multiple filaments, the total flow through each fiber is given by the sum of individual flows of each capillary 162 in each fiber. Capillaries 162 can be distributed along the length of fibers 158 in a parallel fashion, or can be woven or braided with each other.


Fibers 158 can be formed of any suitable material that is able to transport a coating composition by capillary action, and otherwise function as disclosed herein. The material used to make fibers 158 should be sufficiently elastic so that fibers 158 do not fracture or otherwise fail when tubular shell 156 is collapsed or compressed as further described below. Furthermore, the material selected for fibers 158 should be compatible with the components of the coating composition, such as the solvent used in the coating composition. Examples of materials that can be used to construct fibers 158 include those materials disclosed in U.S. Pat. No. 5,972,505, among others. Representative examples of materials include carbon; cotton; polyolefins such as polypropylene and polyethylene; polyesters such as poly(ethylene terephthalate); nylon, such as nylon 66 or nylon 6; cellulose esters such as cellulose triacetate or cellulose diacetate; binary blends of cellulose esters with aliphatic polyesters or aliphatic-aromatic copolyesters as well as ternary blends of cellulose esters with aliphatic polyester/polyacrylates, aliphatic polyesters/polyvinyl acetates/aliphatic polyesters/polyvinyl alcohol, aliphatic polyesters/polyvinyl chloride, aliphatic polyesters/polycarbonate, aliphatic polyesters/polyvinyl acetate-polyethylene copolymer, aliphatic polyesters/cellulose ethers, aliphatic polyesters/nylon, aliphatic-aromatic copolyesters/polyacrylates/aliphatic-aromatic copolyesters/polyvinyl acetates, aliphatic-aromatic copolyesters/polyvinyl alcohol, aliphatic-aromatic copolyesters/polyvinyl chloride, aliphatic-aromatic copolyesters/polycarbonate, aliphatic-aromatic copolyesters/polyvinyl acetate-polyethylene copolymer, or aliphatic-aromatic copolyesters/cellulose ethers, and aliphatic-aromatic copolyesters/nylon.


Fibers 158 can be formed by any suitable method. For example, by the methods described in U.S. Pat. No. 5,972,505 and Neimark et al., Hierarchical Pore Structure and Wetting Properties of Single-Wall Carbon Nanotube Fibers, Nano Letters, 3(3):419-23 (2003).


In operating coating system 150, fibers 158 can be partially submerged in a coating composition disposed in reservoir 154. As fibers 158 remain partially submerged, capillary action along the length of fibers 158 causes the coating composition to be removed from reservoir 154 into fibers 158. Coating composition 159 can be transferred to stent 22 by inserting stent 22 into tubular shell 156 and compressing tubular shell 156 so that fibers 158 transfer coating composition 159 to the outer surface of stent 22. Stent 22 can be inserted up to any suitable distance into tubular shell 156. If stent 22 is to be coated along the entire length of stent 22, stent 22 should be completely inserted into tubular shell 156. After stent 22 has been inserted at the selected distance, tubular shell 156 should be compressed to a sufficient radius so that fibers 158 are in close proximity or in contact with the outer surface of stent 22. To enhance coating uniformity, fibers 158 can be sized and/or positioned so that there are few or no gaps 164 between fibers 158 and the stent surface. Additionally, stent 22 can be rotated while fibers 158 are compressed against the stent surface to enhance coating uniformity.


In another embodiment, a system is provided for coating an inner surface of stent 22. Coating just the inner surface can be advantageous for the delivery of therapeutic agents to the blood system to prevent thrombosis or promote rapid reendothelialization. For instance, certain drugs may effectively treat cardiovascular injuries when carried away by the blood flow to an area adjacent to the site of stent implantation. These drugs, for example, may be used to treat “edge restenosis.” Referring to FIGS. 15A and 15B, a coating system 170 can include an applicator 172 and a reservoir 174. Applicator 172 includes a porous region 173 and has a cylindrical shape. Applicator 172 has porous region 173 disposed in the body of applicator 172 for transporting the composition from reservoir 174. Applicator 172 is partially submerged in a coating composition 176 disposed in reservoir 174 so that at least a portion of porous region 173 is in contact with coating composition 176. As applicator 172 remains partially submerged, capillary action through porous region 173 of applicator 172 causes coating composition 176 to be removed from reservoir 174 into the body of applicator 172, and eventually to form a layer 175 on the outer surface of applicator 172.


Stent 22, in turn, can be supported in a tube 178. Tube 178 should have an inner diameter that allows tube 178 to grip and mask a portion of the outer diameter of stent 22. Applicator 172 can be sized to provide an effective circumference to deliver a coating composition to the inner surface of stent 22. By way of example, the outer diameter of applicator 172 can be about 0.1 mm to about 0.01 mm, for example, 0.01 mm less than the inner diameter of stent 22. In one embodiment, applicator 172 and/or tube 178 are in communication with a temperature controller.


Referring to FIGS. 16A and 16B, a coating system 180 is provided for coating the inner surface of a stent 22 including an applicator 182 and a reservoir 184 for holding a coating composition 186. Applicator 182 includes a porous region disposed through the body of applicator 182. Applicator 182 is integrated with a grip 188 that is substantially free from pores so that applicator 182 can be handled without contacting wet composition. Stent 22, in turn, can be supported in a tube 190. The outer surface of applicator 182 can be coated with a wet coating by capillary action before contacting the inner surface of stent 22. Applicator 182 can then be rolled around the inner circumference of stent 22. As with the above described embodiments, coating system 180 can include a temperature controller for heating or cooling coating composition 186 during the coating process.


Multiple repetitions for applying the coating composition can be performed using the system and method of the present invention. As noted above, selective components of the coating systems as described herein can be disposed in a pressure chamber so that the pressure can be altered at any time during the coating process. The amount of composition applied by each repetition can be about 1 microgram/cm2 (of stent surface) to about 100 milligrams/cm2, for example about 100 micrograms/cm2 per application. Each repetition can be followed by removal of a significant amount of the solvent(s). Depending on the volatility of the particular solvent employed, the solvent can evaporate essentially upon contact with the stent. Alternatively, removal of the solvent can be induced by baking the stent in an oven at a mild temperature (e.g., 60° C.) for a suitable duration of time (e.g., 2-4 hours) or by the application of warm air. The application of warm air between each repetition-prevents coating defects and minimizes interaction between the active agent and the solvent. The temperature of the warm air can be from about 30° C. to about 60° C., more narrowly from about 40° C. to about 50° C. The flow rate of the warm air can be from about 20 cubic feet/minute (CFM) (0.57 cubic meters/minute (CMM)) to about 80 CFM (2.27 CMM), more narrowly about 30 CFM (0.85 CMM) to about 40 CFM (1.13 CMM). The warm air can be applied for about 3 seconds to about 60 seconds, more narrowly for about 10 seconds to about 20 seconds. By way of example, warm air applications can be performed at a temperature of about 50° C., at a flow rate of about 40 CFM, and for about 10 seconds.


Any suitable number of repetitions of applying the composition followed by removing the solvent(s) can be performed to form a coating of a desired thickness or weight. The coating process as described herein can be used to form a coating on the stent having a thickness of about 0.1 microns to about 100 microns, more narrowly, about 0.5 micron to about 20 microns.


Operations such as wiping, centrifugation, or other web clearing acts can also be performed to achieve a more uniform coating. Briefly, wiping refers to the physical removal of excess coating from the surface of the stent; and centrifugation refers to rapid rotation of the stent about an axis of rotation. The excess coating can also be vacuumed off of the surface of the stent.


The stent can be at least partially preexpanded prior to the application of the composition. For example, the stent can be radially expanded about 20% to about 60%, more narrowly about 27% to about 55%—the measurement being taken from the stent's inner diameter at an expanded position as compared to the inner diameter at the unexpanded position. The expansion of the stent, for increasing the interspace between the stent struts during the application of the composition, can further prevent “cob web” formation between the stent struts.


Coating Composition

As noted above, the coating composition can include a solvent and a polymer dissolved in the solvent, and optionally an active agent. Representative examples of polymers that can be used to coat a medical device in accordance with the present invention include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL); poly(hydroxyvalerate); poly(lactic acid) including poly(L-lactic acid), poly(D-lactic acid) and poly(D,L-lactic acid), and copolymers thereof such as poly(lactide-co-glycolide); polycaprolactone; poly(hydroxybutyrate); poly(hydroxybutyrate-co-valerate); polydioxanone; polyorthoester; polyanhydride; poly(glycolic acid); poly(glycolic acid-co-trimethylene carbonate); polyphosphoester; polyphosphoester urethane; poly(amino acids); cyanoacrylates; poly(trimethylene carbonate); poly(iminocarbonate); copoly(ether-esters) (e.g., PEO/PLA); polyalkylene oxalates; polyphosphazenes; biomolecules, such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid; polyurethanes; silicones; polyesters; polyolefins; polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers; vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride, polyvinylidene chloride poly(vinylidene fluoride-co-hexafluoropropene), and poly(vinylidene fluoride-co-chlorotrifluoroethylene); polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; polyurethanes; rayon; rayon-triacetate; cellulose; cellulose acetate; cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose.


“Solvent” is defined as a liquid substance or composition that is compatible with the polymer and is capable of dissolving the polymer at the concentration desired in the composition. Examples of solvents include, but are not limited to, dimethylsulfoxide, chloroform, acetone, water (buffered saline), xylene, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, isopropanol admixed with water, N-methyl pyrrolidinone, toluene, and combinations thereof.


The active agent can be for inhibiting the activity of vascular smooth muscle cells. More specifically, the active agent can be aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells for the inhibition of restenosis. The active agent can also include any substance capable of exerting a therapeutic or prophylactic effect for the subject. For example, the agent can be for enhancing wound healing in a vascular site or improving the structural and elastic properties of the vascular site.


By using the system and method of the present invention, the same active agent can be applied to the inner and outer surfaces of stent 22. Alternatively, different active agents can be applied to the two surfaces. For example, the outer surface of stent 22 can be coated with a drug that is capable of treating restenosis. The inner surface of stent 22, on the other hand, can be coated with an angiogenic drug.


Examples of agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or Cosmegeng available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The active agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g., Taxol® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g., Taxotere®, from Aventis S.A., Frankfurt, Germany), methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g., Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g., Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g., Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is pemirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, dexamethasone and rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (known as everolimus, available from Novartis), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.


EXAMPLES

Some embodiments of the present invention are illustrated by the following Examples. The Examples are being given by way of illustration only and not by way of limitation. The parameters and data are not be construed to unduly limit the scope of the embodiments of the invention.


Example 1

A 18 mm Vision stent (available from Guidant Corporation) was placed over a solid mandrel to fully support the stent along the length of the stent. A coating composition was prepared. The coating composition included 3% (w/w) poly(lactic acid) and 97% acetone (w/w). The coating composition was transferred to a stainless steel cell to be used as a reservoir. A two inch diameter porous ceramic disk with an average pore radius of 6 μm (available from Refractron Technologies Corp., Newark, N.Y.) was partially submerged in the coating composition held by the reservoir. A thin, wet film of the coating composition was quickly formed on the upper surface of the disk. The mounted stent was rolled over the upper surface of the ceramic disk by hand at one revolution per second to transfer a portion of the film to the outer surface of the stent. The stent was weighed after the application, and it was determined that about 25 μg to about 30 μg of coating composition had been applied to the stent.


Example 2

A 18 mm Vision stent (available from Guidant Corporation) was placed over a solid mandrel to fully support the stent along the length of the stent. The coating composition of Example 1 was transferred to a stainless steel cell to be used as a reservoir. A two inch porous ceramic disk with an average pore radius of 6 μm (available from Refractron Technologies Corp., Newark, N.Y.) was partially submerged in the coating composition held by the reservoir. A thin, wet film of the coating composition was quickly formed on the upper surface of the disk. The mounted stent was rolled over the upper surface of the ceramic disk by hand to transfer a portion of the film to the outer surface of the stent. The rolling process was repeated for three additional times. The stent was weighed after the application, and it was determined that about 75 μg of coating composition had been applied to the stent.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A system for coating an implantable medical device with a coating composition, comprising: a reservoir holding a coating composition;an applicator including a coating surface and a porous region in fluid communication with the coating composition in the reservoir, wherein the porous region is capable of conveying the coating composition from the reservoir to the coating surface, the applicator further including: a first section having a porous region disposed in the coating composition in the reservoir, anda second section having a porous region in fluid communication with the porous region of the first section, the second section being disposed over the first section so as to provide a sealed space between the second section and the coating composition in the reservoir, wherein the second section includes the coating surface to coat the implantable medical device;a support element to support an implantable medical device in close proximity to or in contact with the coating surface of the applicator;a temperature controller in communication with the applicator, the support element or the reservoir for heating or cooling the coating composition; anda pressurizing device in communication with the applicator or the reservoir for enhancing the conveyance of the coating composition from the reservoir to the coating surface wherein the pressurizing device is in fluid communication with the sealed space.
  • 2. The system of claim 1, wherein the applicator comprises a hollow tubular body having a bore, the bore being configured to received the device.
  • 3. The system of claim 1, wherein the applicator comprises a half-tubular body configured to receive the device.
  • 4. The system of claim 1, wherein the coating surface comprises a completely or substantially flat substrate on which the device can be placed.
  • 5. The system of claim 1, wherein the at least one of the porous regions comprises pores having an average pore radius of about 0.1 microns to about 1000 microns.
  • 6. The system of claim 1, wherein at least one of the porous regions has a porosity of about 20% to about 60%.
  • 7. The system of claim 1, additionally including an apparatus to rotate the support element.
  • 8. The system of claim 1, wherein the applicator is movable in a linear direction.
  • 9. The system of claim 1, wherein the device is a stent.
  • 10. The system of claim 1, wherein the applicator is made from a ceramic or polymeric material.
  • 11. The system of claim 1, wherein the applicator is made from a rigid material such that the coating surface does not comply when the device contacts the coating surface.
  • 12. The system of claim 1, wherein the second section of the applicator comprises a hollow tubular body having a longitudinal bore configured to receive the implantable medical device.
  • 13. The system of claim 1, wherein the porous region of the first section has an average pore size smaller than the average pore size of the porous region of the second section.
  • 14. The system of claim 1, wherein the applicator has a uniform pore pattern.
  • 15. The system of claim 1, wherein the applicator includes a network of interconnected pores.
  • 16. The system of claim 1, wherein the applicator includes pores that are sized such that particles within the coating composition that exceed a predetermined size are not capable of being conveyed to the coating surface.
  • 17. A system for coating an implantable medical device with a coating composition, comprising: a reservoir of coating composition;an applicator in fluid communication with the reservoir, the applicator including a porous coating portion having a coating surface, and a porous portion for conveying coating composition from the reservoir to the coating portion, wherein a length and/or width of the coating portion is substantially greater than a length and/or width of the porous portion; anda support element to support an implantable medical device in close proximity to or in contact with the coating surface of the applicator;wherein the reservoir has walls and the walls, the porous portion and the coating portion form a closed space containing at least a portion of the coating composition contained in the reservoir, further including:a pressure device in fluid communication with the space and configured for regulating the coating composition conveyed to the coating surface by regulating the pressure in the space.
  • 18. The system of claim 17, wherein the coating surface is horizontally disposed above the reservoir.
  • 19. The system of claim 17, wherein a portion of the applicator is partially submerged in the reservoir.
  • 20. The system of claim 17, wherein a surface of the coating portion facing the coating composition contained in the space is sealed.
  • 21. The system of claim 17, wherein the coating portion includes a coating surface formed by a horizontally disposed cylinder.
  • 22. The system of claim 17, wherein the coating portion has a first average pore size and the porous portion has a second average pore size that is smaller than the first average pore size.
  • 23. A system for coating an implantable medical device with a coating composition, comprising: a reservoir holding a coating composition;an applicator including a coating surface and a porous region in fluid communication with the coating composition in the reservoir, wherein the porous region is capable of conveying the coating composition from the reservoir to the coating surface;a support element to support an implantable medical device in close proximity to or in contact with the coating surface of the applicator; anda pressure apparatus configured to supply a gas to, and being in fluid communication with the coating composition so as to enhance the loading of the coating surface.
  • 24. The system of claim 23, further including the reservoir, coating composition and/or applicator forming a closed space and the pressure apparatus draws a vacuum in the closed space.
  • 25. The system of claim 23, wherein the pressure apparatus supplies a gas to the coating composition to enhance the loading of the coating surface.
US Referenced Citations (934)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
2647017 Coulliette Jul 1953 A
2701559 Cooper Feb 1955 A
3288728 Gorham Nov 1966 A
3687135 Stroganov et al. Aug 1972 A
3773737 Goodman et al. Nov 1973 A
3839743 Schwarcz Oct 1974 A
3849514 Gray, Jr. et al. Nov 1974 A
3900632 Robinson Aug 1975 A
4075045 Rideout Feb 1978 A
4104410 Malecki Aug 1978 A
4110497 Hoel Aug 1978 A
4132357 Blackinton Jan 1979 A
4164524 Ward et al. Aug 1979 A
4226243 Shalaby et al. Oct 1980 A
4321711 Mano Mar 1982 A
4323071 Simpson et al. Apr 1982 A
4329383 Joh May 1982 A
4338942 Fogarty Jul 1982 A
4343931 Barrows Aug 1982 A
4346028 Griffith Aug 1982 A
4439185 Lundquist Mar 1984 A
4489670 Mosser et al. Dec 1984 A
4516972 Samson et al. May 1985 A
4529792 Barrows Jul 1985 A
4538622 Samson et al. Sep 1985 A
4554929 Samson et al. Nov 1985 A
4573470 Samson et al. Mar 1986 A
4596574 Urist Jun 1986 A
4599085 Riess et al. Jul 1986 A
4608984 Fogarty Sep 1986 A
4611051 Hayes et al. Sep 1986 A
4612009 Drobnik et al. Sep 1986 A
4616593 Kawamura et al. Oct 1986 A
4616652 Simpson Oct 1986 A
4629563 Wrasidlo Dec 1986 A
4633873 Dumican et al. Jan 1987 A
4638805 Powell Jan 1987 A
4656083 Hoffman et al. Apr 1987 A
4656242 Swan et al. Apr 1987 A
4699611 Bowden Oct 1987 A
4702252 Brooks et al. Oct 1987 A
4718907 Karwoski et al. Jan 1988 A
4722335 Vilasi Feb 1988 A
4723549 Wholey et al. Feb 1988 A
4732152 Wallstén et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4740207 Kreamer Apr 1988 A
4743252 Martin, Jr. et al. May 1988 A
4748982 Horzewski et al. Jun 1988 A
4768507 Fischell et al. Sep 1988 A
4774039 Wrasidlo Sep 1988 A
4776337 Palmaz Oct 1988 A
4800882 Gianturco Jan 1989 A
4816339 Tu et al. Mar 1989 A
4818559 Hama et al. Apr 1989 A
4828561 Woodroof May 1989 A
4850999 Planck Jul 1989 A
4865870 Hu et al. Sep 1989 A
4871542 Vilhardt Oct 1989 A
4877030 Beck et al. Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4879135 Greco et al. Nov 1989 A
4880683 Stow Nov 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4902289 Yannas Feb 1990 A
4906423 Frisch Mar 1990 A
4931287 Bae et al. Jun 1990 A
4932353 Kawata et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4943346 Mattelin Jul 1990 A
4950227 Savin et al. Aug 1990 A
4955899 Della Corna et al. Sep 1990 A
4967606 Wells et al. Nov 1990 A
4976615 Kravitz Dec 1990 A
4977901 Ofstead Dec 1990 A
4988356 Crittenden et al. Jan 1991 A
4994033 Shockey et al. Feb 1991 A
4994298 Yasuda Feb 1991 A
4994560 Kruper, Jr. et al. Feb 1991 A
5015505 Cetnar May 1991 A
5019090 Pinchuk May 1991 A
5019096 Fox, Jr. et al. May 1991 A
5028597 Kodama et al. Jul 1991 A
5037392 Hillstead Aug 1991 A
5037427 Harada et al. Aug 1991 A
5040548 Yock Aug 1991 A
5047050 Arpesani Sep 1991 A
5049132 Shaffer et al. Sep 1991 A
5053048 Pinchuk Oct 1991 A
5059166 Fischell Oct 1991 A
5059169 Zilber Oct 1991 A
5059211 Stack et al. Oct 1991 A
5062829 Pryor et al. Nov 1991 A
5064435 Porter Nov 1991 A
5078720 Burton et al. Jan 1992 A
5081394 Morishita et al. Jan 1992 A
5084065 Weldon et al. Jan 1992 A
5085629 Goldberg et al. Feb 1992 A
5087244 Wolinsky et al. Feb 1992 A
5087394 Keith Feb 1992 A
5100429 Sinofsky et al. Mar 1992 A
5100992 Cohn et al. Mar 1992 A
5102402 Dror et al. Apr 1992 A
5104410 Chowdhary Apr 1992 A
5108416 Ryan et al. Apr 1992 A
5108417 Sawyer Apr 1992 A
5108755 Daniels et al. Apr 1992 A
5112457 Marchant May 1992 A
5116318 Hillstead May 1992 A
5116365 Hillstead May 1992 A
5123917 Lee Jun 1992 A
5127362 Iwatsu et al. Jul 1992 A
5133742 Pinchuk Jul 1992 A
5134192 Feijen et al. Jul 1992 A
5136968 Sarada et al. Aug 1992 A
5147370 McNamara et al. Sep 1992 A
5156623 Hakamatsuka et al. Oct 1992 A
5156911 Stewart Oct 1992 A
5158548 Lau et al. Oct 1992 A
5163951 Pinchuk et al. Nov 1992 A
5163952 Froix Nov 1992 A
5163958 Pinchuk Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5167614 Tessmann et al. Dec 1992 A
5171445 Zepf Dec 1992 A
5176638 Don Michael Jan 1993 A
5188734 Zepf Feb 1993 A
5192311 King et al. Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5205822 Johnson et al. Apr 1993 A
5213561 Weinstein et al. May 1993 A
5213576 Abiuso et al. May 1993 A
5219980 Swidler Jun 1993 A
5222971 Willard et al. Jun 1993 A
5225750 Higuchi et al. Jul 1993 A
5226889 Sheiban Jul 1993 A
5226913 Pinchuk Jul 1993 A
5229045 Soldani Jul 1993 A
5229172 Cahalan et al. Jul 1993 A
5232444 Just et al. Aug 1993 A
5234456 Silvestrini Aug 1993 A
5234457 Andersen Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5242399 Lau et al. Sep 1993 A
5254089 Wang Oct 1993 A
5254091 Aliahmad et al. Oct 1993 A
5258020 Froix Nov 1993 A
5258419 Rolando et al. Nov 1993 A
5269802 Garber Dec 1993 A
5272012 Opolski Dec 1993 A
5278200 Coury et al. Jan 1994 A
5279594 Jackson Jan 1994 A
5282823 Schwartz et al. Feb 1994 A
5282860 Matsuno et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5289831 Bosley Mar 1994 A
5290271 Jernberg Mar 1994 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5304200 Spaulding Apr 1994 A
5306250 March et al. Apr 1994 A
5306286 Stack et al. Apr 1994 A
5306294 Winston et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5308641 Cahalan et al. May 1994 A
5314472 Fontaine May 1994 A
5318531 Leone Jun 1994 A
5328471 Slepian Jul 1994 A
5330500 Song Jul 1994 A
5330768 Park et al. Jul 1994 A
5336518 Narayanan et al. Aug 1994 A
5342283 Good Aug 1994 A
5342348 Kaplan Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342621 Eury Aug 1994 A
5344426 Lau et al. Sep 1994 A
5344455 Keogh et al. Sep 1994 A
5350800 Verhoeven et al. Sep 1994 A
5356433 Rowland et al. Oct 1994 A
5360401 Turnland et al. Nov 1994 A
5360443 Barone et al. Nov 1994 A
5364354 Walker et al. Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5368560 Rambo et al. Nov 1994 A
5370684 Vallana et al. Dec 1994 A
5380299 Fearnot et al. Jan 1995 A
5383925 Schmitt Jan 1995 A
5383927 DeGoicoechea et al. Jan 1995 A
5385580 Schmitt Jan 1995 A
5387450 Stewart Feb 1995 A
5389106 Tower Feb 1995 A
5399666 Ford Mar 1995 A
5405472 Leone Apr 1995 A
5409495 Osborn Apr 1995 A
5411466 Hess May 1995 A
5411477 Saab May 1995 A
5412035 Schmitt et al. May 1995 A
5415938 Cahalan et al. May 1995 A
5417981 Endo et al. May 1995 A
5423849 Engelson et al. Jun 1995 A
5423885 Williams Jun 1995 A
5429618 Keogh Jul 1995 A
5441515 Khosravi et al. Aug 1995 A
5443458 Eury et al. Aug 1995 A
5443496 Schwartz et al. Aug 1995 A
5443500 Sigwart Aug 1995 A
5445646 Euteneuer et al. Aug 1995 A
5447724 Helmus et al. Sep 1995 A
5451233 Yock Sep 1995 A
5455040 Marchant Oct 1995 A
5456661 Narciso, Jr. Oct 1995 A
5456713 Chuter Oct 1995 A
5458615 Klemm et al. Oct 1995 A
5460610 Don Michael Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464450 Buscemi et al. Nov 1995 A
5464650 Berg et al. Nov 1995 A
5470313 Crocker et al. Nov 1995 A
5470603 Staniforth et al. Nov 1995 A
5476476 Hillstead Dec 1995 A
5476509 Keogh et al. Dec 1995 A
5485496 Lee et al. Jan 1996 A
5496346 Horzewski et al. Mar 1996 A
5500013 Buscemi et al. Mar 1996 A
5501227 Yock Mar 1996 A
5502158 Sinclair et al. Mar 1996 A
5507768 Lau et al. Apr 1996 A
5511726 Greenspan et al. Apr 1996 A
5514154 Lau et al. May 1996 A
5514379 Weissleder et al. May 1996 A
5516560 Harayama et al. May 1996 A
5516881 Lee et al. May 1996 A
5527337 Stack et al. Jun 1996 A
5537729 Kolobow Jul 1996 A
5538493 Gerken et al. Jul 1996 A
5545209 Roberts et al. Aug 1996 A
5545408 Trigg et al. Aug 1996 A
5551954 Buscemi et al. Sep 1996 A
5554120 Chen et al. Sep 1996 A
5554182 Dinh et al. Sep 1996 A
5556413 Lam Sep 1996 A
5558642 Schweich, Jr. et al. Sep 1996 A
5562728 Lazarus et al. Oct 1996 A
5569463 Helmus et al. Oct 1996 A
5571135 Fraser et al. Nov 1996 A
5571166 Dinh et al. Nov 1996 A
5571567 Shah Nov 1996 A
5578046 Liu et al. Nov 1996 A
5578073 Haimovich et al. Nov 1996 A
5584877 Miyake et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5591199 Porter et al. Jan 1997 A
5591224 Schwartz et al. Jan 1997 A
5591227 Dinh et al. Jan 1997 A
5591607 Gryaznov et al. Jan 1997 A
5593403 Buscemi Jan 1997 A
5593434 Williams Jan 1997 A
5595722 Grainger et al. Jan 1997 A
5599301 Jacobs et al. Feb 1997 A
5599307 Bacher et al. Feb 1997 A
5599352 Dinh et al. Feb 1997 A
5599922 Gryaznov et al. Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607442 Fischell et al. Mar 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5611775 Machold et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5618298 Simon Apr 1997 A
5618299 Khosravi et al. Apr 1997 A
5620420 Kriesel Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5628755 Heller et al. May 1997 A
5628781 Williams et al. May 1997 A
5628785 Schwartz et al. May 1997 A
5628786 Banas et al. May 1997 A
5629077 Turnlund et al. May 1997 A
5631135 Gryaznov et al. May 1997 A
5632771 Boatman et al. May 1997 A
5632840 Campbell May 1997 A
5637113 Tartaglia et al. Jun 1997 A
5644020 Timmermann et al. Jul 1997 A
5645559 Hachtman et al. Jul 1997 A
5649951 Davidson Jul 1997 A
5649977 Campbell Jul 1997 A
5653691 Rupp et al. Aug 1997 A
5656080 Staniforth et al. Aug 1997 A
5656082 Takatsuki et al. Aug 1997 A
5658995 Kohn et al. Aug 1997 A
5667523 Bynon et al. Sep 1997 A
5667767 Greff et al. Sep 1997 A
5667796 Otten Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5693085 Buirge et al. Dec 1997 A
5693376 Fetherston et al. Dec 1997 A
5695498 Tower Dec 1997 A
5695810 Dubin et al. Dec 1997 A
5697967 Dinh et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5702818 Cahalan et al. Dec 1997 A
5707385 Williams Jan 1998 A
5711763 Nonami et al. Jan 1998 A
5711812 Chapek et al. Jan 1998 A
5711958 Cohn et al. Jan 1998 A
5713949 Jayaraman Feb 1998 A
5716981 Hunter et al. Feb 1998 A
5718726 Amon et al. Feb 1998 A
5720726 Marcadis et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5722984 Fischell et al. Mar 1998 A
5723219 Kolluri et al. Mar 1998 A
5725549 Lam Mar 1998 A
5726297 Gryaznov et al. Mar 1998 A
5728068 Leone et al. Mar 1998 A
5728751 Patnaik Mar 1998 A
5730698 Fischell et al. Mar 1998 A
5733326 Tomonto et al. Mar 1998 A
5733327 Igaki et al. Mar 1998 A
5733330 Cox Mar 1998 A
5733564 Lehtinen Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5741554 Tisone Apr 1998 A
5741881 Patnaik Apr 1998 A
5746745 Abele et al. May 1998 A
5746998 Torchilin et al. May 1998 A
5756457 Wang et al. May 1998 A
5756476 Epstein et al. May 1998 A
5759205 Valentini Jun 1998 A
5759474 Rupp et al. Jun 1998 A
5765682 Bley et al. Jun 1998 A
5766204 Porter et al. Jun 1998 A
5766239 Cox Jun 1998 A
5766710 Turnlund et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5769884 Solovay Jun 1998 A
5770609 Grainger et al. Jun 1998 A
5772864 Møller et al. Jun 1998 A
5776184 Tuch Jul 1998 A
5780807 Saunders Jul 1998 A
5782742 Crocker et al. Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788626 Thompson Aug 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5800516 Fine et al. Sep 1998 A
5804318 Pinchuk et al. Sep 1998 A
5807244 Barot Sep 1998 A
5810871 Tuckey et al. Sep 1998 A
5810873 Morales Sep 1998 A
5811151 Hendriks et al. Sep 1998 A
5811447 Kunz et al. Sep 1998 A
5820917 Tuch Oct 1998 A
5823996 Sparks Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5826586 Mishra et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5830179 Mikus et al. Nov 1998 A
5830217 Ryan Nov 1998 A
5830461 Billiar Nov 1998 A
5830879 Isner Nov 1998 A
5833644 Zadno-Azizi et al. Nov 1998 A
5833651 Donovan et al. Nov 1998 A
5833659 Kranys Nov 1998 A
5834582 Sinclair et al. Nov 1998 A
5836962 Gianotti Nov 1998 A
5836965 Jendersee et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5837835 Gryaznov et al. Nov 1998 A
5840009 Fischell et al. Nov 1998 A
5840083 Braach-Maksvytis Nov 1998 A
5843033 Ropiak Dec 1998 A
5843119 Shulewitz Dec 1998 A
5843172 Yan Dec 1998 A
5846247 Unsworth et al. Dec 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5853408 Muni Dec 1998 A
5854207 Lee et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5855598 Pinchuk Jan 1999 A
5855612 Ohthuki et al. Jan 1999 A
5855618 Patnaik et al. Jan 1999 A
5857998 Barry Jan 1999 A
5858556 Eckert et al. Jan 1999 A
5858746 Hubbell et al. Jan 1999 A
5858990 Walsh Jan 1999 A
5860954 Ropiak Jan 1999 A
5865814 Tuch Feb 1999 A
5866113 Hendriks et al. Feb 1999 A
5868781 Killion Feb 1999 A
5869127 Zhong Feb 1999 A
5871436 Eury Feb 1999 A
5871437 Alt Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5874101 Zhong et al. Feb 1999 A
5874109 Ducheyne et al. Feb 1999 A
5874165 Drumheller Feb 1999 A
5874355 Huang et al. Feb 1999 A
5876426 Kume et al. Mar 1999 A
5876433 Lunn Mar 1999 A
5876743 Ibsen et al. Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5877263 Patnaik et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5883011 Lin et al. Mar 1999 A
5888533 Dunn Mar 1999 A
5891192 Murayama et al. Apr 1999 A
5893840 Hull et al. Apr 1999 A
5893852 Morales Apr 1999 A
5895407 Jayaraman Apr 1999 A
5897911 Loeffler Apr 1999 A
5897955 Drumheller Apr 1999 A
5898178 Bunker Apr 1999 A
5902631 Wang et al. May 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5906759 Richter May 1999 A
5910564 Gruning et al. Jun 1999 A
5914182 Drumheller Jun 1999 A
5914387 Roby et al. Jun 1999 A
5916234 Lam Jun 1999 A
5916870 Lee et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5921416 Uchara Jul 1999 A
5922005 Richter et al. Jul 1999 A
5922393 Jayaraman Jul 1999 A
5925552 Keogh et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5928916 Keogh Jul 1999 A
5932299 Katoot Aug 1999 A
5935135 Bramfitt et al. Aug 1999 A
5942209 Leavitt et al. Aug 1999 A
5947993 Morales Sep 1999 A
5948018 Dereume et al. Sep 1999 A
5948428 Lee et al. Sep 1999 A
5951881 Rogers et al. Sep 1999 A
5954744 Phan et al. Sep 1999 A
5955509 Webber et al. Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5965720 Gryaznov et al. Oct 1999 A
5968091 Pinchuk et al. Oct 1999 A
5968092 Buscemi et al. Oct 1999 A
5969422 Ting et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5972029 Fuisz Oct 1999 A
5972505 Phillips et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
5976182 Cox Nov 1999 A
5980564 Stinson Nov 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5981568 Kunz et al. Nov 1999 A
5984449 Tajika et al. Nov 1999 A
5986169 Gjunter Nov 1999 A
5997468 Wolff et al. Dec 1999 A
5997517 Whitbourne Dec 1999 A
6010445 Armini et al. Jan 2000 A
6010530 Goicoechea Jan 2000 A
6010573 Bowlin Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6013099 Dinh et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6019789 Dinh et al. Feb 2000 A
6024918 Hendriks et al. Feb 2000 A
6027510 Alt Feb 2000 A
6027526 Limon et al. Feb 2000 A
6030371 Pursley Feb 2000 A
6033582 Lee et al. Mar 2000 A
6033719 Keogh Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042606 Frantzen Mar 2000 A
6042875 Ding et al. Mar 2000 A
6045899 Wang et al. Apr 2000 A
6048964 Lee et al. Apr 2000 A
6051021 Frid Apr 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056906 Werneth et al. May 2000 A
6056993 Leidner et al. May 2000 A
6059752 Segal May 2000 A
6059810 Brown et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6063092 Shin May 2000 A
6066156 Yan May 2000 A
6071266 Kelley Jun 2000 A
6071305 Brown et al. Jun 2000 A
6074659 Kunz et al. Jun 2000 A
6080099 Slater et al. Jun 2000 A
6080177 Igaki et al. Jun 2000 A
6080190 Schwartz Jun 2000 A
6080488 Hostettler et al. Jun 2000 A
6083258 Yadav Jul 2000 A
6086610 Duerig et al. Jul 2000 A
6090330 Gawa et al. Jul 2000 A
6093199 Brown et al. Jul 2000 A
6093463 Thakrar Jul 2000 A
6096070 Ragheb et al. Aug 2000 A
6096525 Patnaik Aug 2000 A
6099455 Columbo et al. Aug 2000 A
6099559 Nolting Aug 2000 A
6099561 Alt Aug 2000 A
6099562 Ding et al. Aug 2000 A
6103230 Billiar et al. Aug 2000 A
6106454 Berg et al. Aug 2000 A
6106530 Harada Aug 2000 A
6106889 Beavers et al. Aug 2000 A
6107416 Patnaik et al. Aug 2000 A
6110180 Foreman et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6117479 Hogan et al. Sep 2000 A
6117979 Hendriks et al. Sep 2000 A
6120477 Campbell et al. Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120535 McDonald et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120847 Yang et al. Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6123712 Di Caprio et al. Sep 2000 A
6125523 Brown et al. Oct 2000 A
6126686 Badylak et al. Oct 2000 A
6127173 Eckstein et al. Oct 2000 A
6129761 Hubbell Oct 2000 A
6129928 Sarangapani et al. Oct 2000 A
6132809 Hynes et al. Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6140127 Sprague Oct 2000 A
6140431 Kinker et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6143370 Panagiotou et al. Nov 2000 A
6149574 Trauthen et al. Nov 2000 A
6150630 Perry et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
4776337 Palmaz Dec 2000 A
6156373 Zhong et al. Dec 2000 A
6159227 Di Caprio et al. Dec 2000 A
6159229 Jendersee et al. Dec 2000 A
6159951 Karpeisky et al. Dec 2000 A
6159978 Myers et al. Dec 2000 A
6160084 Langer et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6166130 Rhee et al. Dec 2000 A
6168617 Blaeser et al. Jan 2001 B1
6168619 Dinh et al. Jan 2001 B1
6169170 Gryaznov et al. Jan 2001 B1
6171609 Kunz Jan 2001 B1
6172167 Stapert et al. Jan 2001 B1
6174316 Tuckey et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6183505 Mohn, Jr. et al. Feb 2001 B1
6187045 Fehring et al. Feb 2001 B1
6193727 Foreman et al. Feb 2001 B1
6203551 Wu Mar 2001 B1
6209621 Treacy Apr 2001 B1
6210715 Starling et al. Apr 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214115 Taylor et al. Apr 2001 B1
6214407 Laube et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6217586 Mackenzie Apr 2001 B1
6217721 Xu et al. Apr 2001 B1
6224626 Steinke May 2001 B1
6224675 Prentice et al. May 2001 B1
6224894 Jamiolkowski et al. May 2001 B1
6228845 Donovan et al. May 2001 B1
6231590 Slaikeu et al. May 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6242041 Katoot et al. Jun 2001 B1
6245076 Yan Jun 2001 B1
6245099 Edwin et al. Jun 2001 B1
6245103 Stinson Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6248344 Ylanen et al. Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6251142 Bernacca et al. Jun 2001 B1
6253443 Johnson Jul 2001 B1
6254632 Wu et al. Jul 2001 B1
6258099 Mareiro et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6273850 Gambale Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6277110 Morales Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6279368 Escano et al. Aug 2001 B1
6281262 Shikinami Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6284333 Wang et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6293966 Frantzen Sep 2001 B1
6294836 Paranjpe et al. Sep 2001 B1
6296603 Turnlund et al. Oct 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6303901 Perry et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6312459 Huang et al. Nov 2001 B1
6319520 Wuthrich et al. Nov 2001 B1
6322588 Ogle et al. Nov 2001 B1
6322847 Zhong et al. Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6331313 Wong et al. Dec 2001 B1
4733665 Palmaz Jan 2002 C2
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6362099 Gandikota et al. Mar 2002 B1
6364903 Tseng et al. Apr 2002 B2
6375458 Moorleghem et al. Apr 2002 B1
6375826 Wang et al. Apr 2002 B1
6379379 Wang Apr 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387118 Hanson May 2002 B1
6387121 Alt May 2002 B1
6387379 Goldberg et al. May 2002 B1
6388043 Langer et al. May 2002 B1
6395325 Hedge et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6406738 Hogan et al. Jun 2002 B1
6409761 Jang Jun 2002 B1
6413272 Igaki Jul 2002 B1
6419692 Yang et al. Jul 2002 B1
6420189 Lopatin Jul 2002 B1
6423092 Datta et al. Jul 2002 B2
6436816 Lee et al. Aug 2002 B1
6444567 Besser et al. Sep 2002 B1
6447835 Wang et al. Sep 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6454738 Tran et al. Sep 2002 B1
6455424 McTeer et al. Sep 2002 B1
6461632 Gogolewski Oct 2002 B1
6462284 Hashimoto Oct 2002 B1
6464720 Boatman et al. Oct 2002 B2
6468906 Chan et al. Oct 2002 B1
6479565 Stanley Nov 2002 B1
6481262 Ching et al. Nov 2002 B2
6482834 Spada et al. Nov 2002 B2
6485512 Cheng Nov 2002 B1
6488701 Nolting et al. Dec 2002 B1
6488773 Ehrhardt et al. Dec 2002 B1
6491666 Santini, Jr. et al. Dec 2002 B1
6492615 Flanagan Dec 2002 B1
6494862 Ray et al. Dec 2002 B1
6494908 Huxel et al. Dec 2002 B1
6495156 Wenz et al. Dec 2002 B2
6495200 Chan et al. Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6504307 Malik et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6510722 Ching et al. Jan 2003 B1
6511748 Barrows Jan 2003 B1
6517888 Weber Feb 2003 B1
6517889 Jayaraman Feb 2003 B1
6521284 Parsons et al. Feb 2003 B1
6524232 Tang et al. Feb 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6537589 Chae et al. Mar 2003 B1
6539607 Fehring et al. Apr 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6540777 Stenzel Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6554758 Turnlund et al. Apr 2003 B2
6554854 Flanagan Apr 2003 B1
6555059 Myrick et al. Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6562136 Chappa et al. May 2003 B1
6565599 Hong et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6569191 Hogan May 2003 B1
6569193 Cox et al. May 2003 B1
6572644 Moein Jun 2003 B1
6572672 Yadav et al. Jun 2003 B2
6574851 Mirizzi Jun 2003 B1
6582417 Ledesma et al. Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6592617 Thompson Jul 2003 B2
6596296 Nelson et al. Jul 2003 B1
6605114 Yan et al. Aug 2003 B1
6605154 Villareal Aug 2003 B1
6605874 Leu et al. Aug 2003 B2
6610087 Zarbatany et al. Aug 2003 B1
6613072 Lau et al. Sep 2003 B2
6616765 Hossainy et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6626939 Burnside et al. Sep 2003 B1
6635269 Jennissen Oct 2003 B1
6635964 Maex et al. Oct 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6645243 Vallana et al. Nov 2003 B2
6645547 Shekalim et al. Nov 2003 B1
6656162 Santini, Jr. et al. Dec 2003 B2
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6664187 Ngo et al. Dec 2003 B1
6664335 Krishnan Dec 2003 B2
6666214 Canham Dec 2003 B2
6666880 Chiu et al. Dec 2003 B1
6667049 Janas et al. Dec 2003 B2
6669723 Killion et al. Dec 2003 B2
6669980 Hansen Dec 2003 B2
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6676697 Richter Jan 2004 B1
6676700 Jacobs et al. Jan 2004 B1
6679980 Andreacchi Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6689375 Wahlig et al. Feb 2004 B1
6695920 Pacetti et al. Feb 2004 B1
6703307 Lopatin et al. Mar 2004 B2
6706013 Bhat et al. Mar 2004 B1
6706273 Roessler Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6719934 Stinson Apr 2004 B2
6719989 Matsushima et al. Apr 2004 B1
6720402 Langer et al. Apr 2004 B2
6723120 Yan Apr 2004 B2
6733768 Hossainy et al. May 2004 B2
6739033 Hijlkema et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6746773 Llanos et al. Jun 2004 B2
6749626 Bhat et al. Jun 2004 B1
6752826 Holloway et al. Jun 2004 B2
6753007 Haggard et al. Jun 2004 B2
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6774278 Ragheb et al. Aug 2004 B1
6776792 Yan et al. Aug 2004 B1
6783793 Hossainy et al. Aug 2004 B1
6818063 Kerrigan Nov 2004 B1
6846323 Yip et al. Jan 2005 B2
6860946 Hossainy et al. Mar 2005 B2
6861088 Weber et al. Mar 2005 B2
6865810 Stinson Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6878160 Gilligan et al. Apr 2005 B2
6887270 Miller et al. May 2005 B2
6887485 Fitzhugh et al. May 2005 B2
6890546 Mollison et al. May 2005 B2
6899731 Li et al. May 2005 B2
6971813 Shekalim et al. Dec 2005 B2
7056591 Pacetti et al. Jun 2006 B1
7198675 Fox et al. Apr 2007 B2
7220816 Pacetti et al. May 2007 B2
7258891 Pacetti Aug 2007 B2
7323210 Castro et al. Jan 2008 B2
7338557 Chen et al. Mar 2008 B1
20010007083 Roorda Jul 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010016753 Caprio et al. Aug 2001 A1
20010018469 Chen et al. Aug 2001 A1
20010020011 Mathiowitz et al. Sep 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010051608 Mathiowitz et al. Dec 2001 A1
20020002399 Huxel et al. Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020004101 Ding et al. Jan 2002 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020032414 Ragheb et al. Mar 2002 A1
20020032434 Chudzik et al. Mar 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020062148 Hart May 2002 A1
20020065553 Weber May 2002 A1
20020071822 Uhrich Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020094440 Llanos et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020116050 Kocur Aug 2002 A1
20020120326 Michal Aug 2002 A1
20020138133 Lenz et al. Sep 2002 A1
20020142039 Claude Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020161114 Gunatillake et al. Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020187632 Marsh Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030003221 Zhong et al. Jan 2003 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031780 Chudzik et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030033001 Igaki Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040712 Ray et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030054090 Hansen Mar 2003 A1
20030055482 Schwager et al. Mar 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030088307 Shulze et al. May 2003 A1
20030093107 Parsonage et al. May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030100865 Santini, Jr. et al. May 2003 A1
20030105518 Dutta Jun 2003 A1
20030105530 Pirhonen Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030113445 Martin Jun 2003 A1
20030138487 Hogan et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030171053 Sanders Sep 2003 A1
20030185964 Weber et al. Oct 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030196596 Nishi et al. Oct 2003 A1
20030203617 Lane et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030208259 Penhasi Nov 2003 A1
20030209835 Chun et al. Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20030215564 Heller et al. Nov 2003 A1
20030226833 Shapovalov et al. Dec 2003 A1
20030236565 DiMatteo et al. Dec 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040093077 White et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098095 Burnside et al. May 2004 A1
20040098117 Hossainy et al. May 2004 A1
20040111149 Stinson Jun 2004 A1
20040127970 Saunders Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040167610 Fleming, III Aug 2004 A1
20040213893 Boulais Oct 2004 A1
20050038497 Neuendorf et al. Feb 2005 A1
20050043786 Chu et al. Feb 2005 A1
20050049694 Neary Mar 2005 A1
20050054774 Kangas Mar 2005 A1
20050055044 Kangas Mar 2005 A1
20050060020 Jenson Mar 2005 A1
20050064088 Fredrickson Mar 2005 A1
20050065501 Wallace Mar 2005 A1
20050065545 Wallace Mar 2005 A1
20050065593 Chu et al. Mar 2005 A1
20050074406 Couvillon, Jr. et al. Apr 2005 A1
20050074544 Pacetti et al. Apr 2005 A1
20050074545 Thomas Apr 2005 A1
20050079274 Palasis et al. Apr 2005 A1
20050137381 Pacetti Jun 2005 A1
Foreign Referenced Citations (172)
Number Date Country
2 008 312 Jul 1990 CA
2 007 648 Apr 1991 CA
1 322 628 Oct 1993 CA
1 336 319 Jul 1995 CA
1 338 303 May 1996 CA
042 24 401 Jan 1994 DE
044 07 079 Sep 1994 DE
197 31 021 Jan 1999 DE
199 16 086 Oct 1999 DE
198 56 983 Dec 1999 DE
0 108 171 May 1984 EP
0 144 534 Jun 1985 EP
0 301 856 Feb 1989 EP
0 380 668 Apr 1989 EP
0 351 314 Jan 1990 EP
0 364 787 Apr 1990 EP
0 396 429 Nov 1990 EP
0 397 500 Nov 1990 EP
0 464 755 Jan 1992 EP
0 493 788 Jul 1992 EP
0 526 606 Sep 1992 EP
0 514 406 Nov 1992 EP
0 517 075 Dec 1992 EP
0 540 290 May 1993 EP
0 553 960 Aug 1993 EP
0 554 082 Aug 1993 EP
0 565 251 Oct 1993 EP
0 578 998 Jan 1994 EP
0 604 022 Jun 1994 EP
0 621 017 Oct 1994 EP
0 623 354 Nov 1994 EP
0 627 226 Dec 1994 EP
0 649 637 Apr 1995 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 701 803 Mar 1996 EP
0 709 068 May 1996 EP
0 716 836 Jun 1996 EP
0 732 087 Sep 1996 EP
0 832 618 Sep 1996 EP
0 756 853 Feb 1997 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 834 293 Apr 1998 EP
0 850 604 Jul 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 972 498 Jan 2000 EP
0 974 315 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 034 752 Sep 2000 EP
1 075 838 Feb 2001 EP
1 103 234 May 2001 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
0 869 847 Mar 2003 EP
0 941 072 Jan 2004 EP
2 753 907 Apr 1998 FR
2 247 696 Mar 1992 GB
2 316 086 Jan 2000 GB
2 316 342 Jan 2000 GB
2 333 975 Jan 2000 GB
2 336 551 Jan 2000 GB
2 356 586 May 2001 GB
2 356 587 May 2001 GB
2 333 474 Jun 2001 GB
2 334 685 Jun 2001 GB
2 356 585 Jul 2001 GB
2 374 302 Aug 2001 GB
2 370 243 Jun 2002 GB
2 384 199 Jul 2003 GB
SHO49-48336 Dec 1974 JP
SHO54-18310 Jul 1979 JP
SHO60-28504 Jul 1985 JP
21199867 May 1994 JP
HEI8-33718 Feb 1996 JP
HEI10-151190 Jun 1998 JP
2919971 Jul 1999 JP
2001-190687 Jul 2001 JP
0872531 Oct 1981 SU
0876663 Oct 1981 SU
0905228 Feb 1982 SU
0790725 Feb 1983 SU
1016314 May 1983 SU
0811750 Sep 1983 SU
1293518 Feb 1987 SU
1477423 May 1989 SU
WO 8903232 Apr 1989 WO
WO 9001969 Mar 1990 WO
WO 9004982 May 1990 WO
WO 9006094 Jun 1990 WO
WO 9111176 Aug 1991 WO
WO 9112846 Sep 1991 WO
WO 9117744 Nov 1991 WO
WO 9117789 Nov 1991 WO
WO 9210218 Jun 1992 WO
WO 9306792 Apr 1993 WO
WO 9409760 May 1994 WO
WO 9421196 Sep 1994 WO
WO 9510989 Apr 1995 WO
WO 9511817 May 1995 WO
WO 9524929 Sep 1995 WO
WO 9529647 Nov 1995 WO
WO 9533422 Dec 1995 WO
WO 9628115 Sep 1996 WO
WO 9635516 Nov 1996 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9804415 Feb 1998 WO
WO 9807390 Feb 1998 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9820863 May 1998 WO
WO 9823228 Jun 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9903515 Jan 1999 WO
WO 9916386 Apr 1999 WO
WO 9938546 Aug 1999 WO
WO 9942147 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117459 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0143727 Jun 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0152772 Jul 2001 WO
WO 0157144 Aug 2001 WO
WO 0174414 Oct 2001 WO
WO 0191918 Dec 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 0247731 Jun 2002 WO
WO 0249771 Jun 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02087550 Nov 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03007918 Jan 2003 WO
WO 03007919 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03061841 Jul 2003 WO
WO 03072084 Sep 2003 WO
WO 03072086 Sep 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 2004000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
WO 2004017947 Mar 2004 WO
WO 2004017976 Mar 2004 WO
WO 2004023985 Mar 2004 WO
WO 2004024339 Mar 2004 WO