The present invention relates to systems and methods for blood apheresis, and more particularly system and methods for collecting a plasma product.
Apheresis is a procedure in which individual blood components can be separated and collected from whole blood temporarily withdrawn from a subject. Typically, whole blood is withdrawn through a needle inserted into a vein of the subjects arm and into a cell separator, such as a centrifugal bowl. Once the whole blood is separated into its various components, one or more of the components (e.g., plasma) can be removed from the centrifugal bowl. The remaining components can be returned to the subject along with optional compensation fluid to make up for the volume of the removed component. The process of drawing and returning continues until the quantity of the desired component has been collected, at which point the process is stopped. A central feature of apheresis systems is that the processed but unwanted components are returned to the donor. Separated blood components may include, for example, a high density component such as red blood cells, an intermediate density component such as platelets or white blood cells, and a lower density component such as plasma.
Many jurisdictions have regulations regarding the amount of whole blood and/or blood components that can be removed from a donor. For example, the U.S. Food and Drug Administration (“the FDA”) sets both an upper limit on the volume of plasma that may be collected (e.g., 800 ml for an adult weighing more than 175 pounds) as well as an upper limit on the total collection volume (e.g., 880 ml for an adult weighing more than 175 pounds). Prior art plasma collection systems are unable to determine the total volume of plasma that has been collected (e.g., because the product collected is a mixture of plasma and anticoagulant) and, therefore collect based on the total collection volume, even if the total volume of plasma that has been collected is below the limit prescribed by the FDA.
In accordance with some embodiments of the present invention, a method for collecting plasma includes determining the weight and hematocrit of a donor, and inserting a venous-access device into the donor. Once the venous access device is inserted, the method may withdraw whole blood from the donor through the venous-access device and a draw line that is connected to a blood component separation device. The method may then introduce anticoagulant into the withdrawn whole blood through an anticoagulant line and separate, using the blood component separation device, the withdrawn whole blood into a plasma component and at least a second blood component. Once separated, the plasma component may be collected from the blood component separation device and into a plasma collection container. During processing, the method may calculate (1) a percentage of anticoagulant in the collected plasma component, and (2) a volume of pure plasma collected within the plasma collection container. The volume of pure plasma may be based, at least in part, on the calculated percentage of anticoagulant in the collected plasma component. The method may continue the process (e.g., withdrawing whole blood, introducing anticoagulant into the whole blood, separating the blood, collecting the plasma, and calculating the percentage of anticoagulant and volume of pure plasma) until a target volume of pure plasma is collected within the plasma collection container.
In some embodiments, the method may determine a change in volume within an anticoagulant container, and the calculated percentage of anticoagulant in the collected plasma may be based, at least in part, on the change in volume within the anticoagulant container. Additionally or alternatively, the method may determine a volume of anticoagulant introduced into the whole blood based on a number of rotations of an anticoagulant pump. In such embodiments, the calculated percentage of anticoagulant in the collected plasma may be based, at least in part, on the number of rotations of the anticoagulant pump. The method may also determine a volume of anticoagulant within the blood component separation device, and the calculated percentage of anticoagulant in the collected plasma may be based, at least in part, on the volume of anticoagulant within the blood component separation device.
In further embodiments, the method may monitor the volume and/or weight of the plasma component collected within the plasma collection container (e.g., using a weight sensor), and the calculated volume of pure plasma collected within the plasma collection device may be based, at least in part, on the monitored volume and/or weight of the collected plasma component. Additionally or alternatively, determining the hematocrit of the donor may include monitoring a volume of red blood cells collection within the blood separation device. In such embodiments, the determined hematocrit of the donor may be based, at least in part, on the monitored volume of red blood cells collected within the blood separation device and the volume of whole blood withdrawn from the donor.
The target volume of pure plasma may be based, at least in part, on the weight of the donor. The percentage of anticoagulant in the collected plasma component may include at least a portion of the anticoagulant introduced into the withdrawn blood and at least a portion of a volume of anticoagulant that is added to the system during a priming step. After collecting at least a portion of the target volume of pure plasma, the method may return the second blood component to the donor through a return line.
In accordance with additional embodiments, a system for collecting plasma includes a venous-access device for drawing whole blood from a subject and returning blood components to the subject, and a blood component separation device for separating the drawn blood into a plasma component and a second blood component. The blood component separation device has an outlet and is configured to send the plasma component to a plasma container. The system may also include a blood draw line fluidly connected to the venous-access device and an anticoagulant line connected to an anticoagulant source. The blood draw line transports drawn whole blood to the blood component separation device, and the flow through the blood draw line may be controlled by a blood draw pump. The anticoagulant line may introduce anticoagulant into the drawn whole blood.
Additionally, the system may include a controller that controls the operation of the centrifuge bowl. The controller may also calculate (1) a percentage of anticoagulant in the collected plasma component, and (2) a volume of pure plasma collected within the plasma container. The volume of pure plasma may be based, at least in part, upon the percentage of anticoagulant in the collected plasma component. The controller may stop the blood draw pump when a target volume of pure plasma (e.g., based, at least in part, on the weight of the donor) is collected within the plasma container. In some embodiments, the percentage of anticoagulant in the collected plasma component may be based, at least in part, on the volume of anticoagulant added to the drawn whole blood and the subject's hematocrit.
The system may also include an anticoagulant source weight sensor that measures the weight of the anticoagulant source. The controller may monitor the change in volume within the anticoagulant container based on the measured weight of the anticoagulant source, and the calculated percentage of anticoagulant in the collected plasma may be based, at least in part, on the change in volume within the anticoagulant source. Additionally or alternatively, the controller may monitor the number of rotations of an anticoagulant pump to determine a volume of anticoagulant introduced into the whole blood. In such embodiments, the calculated percentage of anticoagulant in the collected plasma may be based, at least in part, on the number of rotations of the anticoagulant pump.
In some embodiments, the system may include an optical sensor located on the blood component separation device. The optical sensor may monitor the contents of the blood component separation device and determine if a volume of anticoagulant remains within the blood component separation device. The calculated percentage of anticoagulant in the collected plasma may be based, at least in part, on the volume of anticoagulant within the blood component separation device.
In additional embodiments, the system may also include a plasma container weight sensor that monitors a volume and/or weight of the plasma component collected within the plasma collection container. The calculated volume of pure plasma collected within the plasma collection container may be based, at least in part, on the monitored volume and/or weight of collected plasma component. The system may also have an optical sensor located on the blood component separation device. The optical sensor may monitor the volume of red blood cells collected within the blood separation device. The controller may then determine the subject's hematocrit based, at least in part, upon on the monitored volume of red blood cells collected within the blood separation device and the volume of whole blood withdrawn from the donor. The percentage of anticoagulant in the collected plasma component may include at least a portion of the anticoagulant introduced into the withdrawn blood and at least a portion of a volume of anticoagulant added to the system during a priming step.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Illustrative embodiments of the present invention provide blood processing systems and methods for collecting a target volume of pure plasma. The system and method calculate a percentage of anticoagulant collected within a plasma collection container (e.g., in addition to the plasma that is collected within the container) based on the amount of anticoagulant added to the system and the hematocrit of the donor. The system/method may then calculate the volume of pure plasma (e.g., plasma without anticoagulant) that has been collected within the container. Details of the illustrative embodiments are discussed below.
As shown in
To facilitate the connection and installation of a disposable set and to support the corresponding fluid containers, the system 100 may include an anticoagulant pole 150 on which the anticoagulant solution container 210 (
As discussed in greater detail below, apheresis systems 100 in accordance with embodiments of the present invention withdraw whole blood from a subject through a venous access device 206 (
To allow the user/technician to monitor the system operation and control/set the various parameters of the procedure, the system 100 may include a user interface 190 (e.g., a touch screen device) that displays the operation parameters, any alarm messages, and buttons which the user/technician may depress to control the various parameters. Additional components of the blood processing system 100 are discussed in greater detail below (e.g., in relation to the system operation).
In operation, the disposable collection set 200 (e.g., the inlet disposable set 200A and the outlet disposable set 200B) may be loaded onto/into the blood processing system 10 prior to blood processing. In particular, the blood/inlet line 218 is routed through the blood/first pump 232 and the anticoagulant line 225 from the anti-coagulant container 210 is routed through the anticoagulant/second pump 234. The centrifugation bowl 214 may then be securely loaded into the chuck 230. Once the bowl 214 is secured in place, the technician may install the outlet disposable set 200B. For example the technician may connect a bowl connector 300 to the outlet 224 of the bowl 214, install the plasma container 216 into the weight senor 195, run the saline line 223 through valve 135, and run the plasma/outlet line 222 through valve 130 and the line sensor 185. Once the disposable set 200 is installed and the anticoagulant and saline containers 210/217 are connected, the system 100 is ready to begin blood processing.
Once the lines 222/223 are in place and the technician has determined the donor's weight and/or hematocrit (if needed), the user/technician may insert the venous access device 206 into the donor's arm 208 (Step 420). Next, the controller 226 activates the two pumps 232, 234 and the motor 228. Operation of the two pumps 232, 234 causes whole blood to be drawn from the donor (step 425), anticoagulant from container 210 to be introduced into the drawn whole blood (step 430), and the now anticoagulated whole blood to be delivered to the inlet port 220 of the bowl 214.
It should be noted that the anticoagulant line 225 may also include a bacteria filter (not shown) that prevents any bacteria in the anticoagulant source 210, the anticoagulant, or the anticoagulant line 225 from entering the system 100 and/or the subject. Additionally, the anticoagulant line 225 may include an air detector 140 that detects the presence of air within the anticoagulant. The presence of air bubbles within any of the system 100 lines can be problematic for the operation the system 100 and may also be harmful to the subject if the air bubbles enter the blood stream. Therefore, the air detector may be connected to an interlock that stops the flow within the anticoagulant line 225 in the event that an air bubble is detected (e.g., by stopping the anticoagulant pump 234), thereby preventing the air bubbles from entering the subject.
As the anti-coagulated whole blood is withdrawn from the subject and contained within the blood component separation device 214, the blood component separation device 214 separates the whole blood into several blood components (Step 435). For example, the blood component separation device 214 may separate the whole blood into a first, second, third, and, perhaps, fourth blood component. More specifically, the blood component separation device 214 (and the centrifugal forces created by rotation of the separation device 214) can separate the whole blood into plasma, platelets, red blood cells (“RBC”), and, perhaps, white blood cells (“WBC”). The higher density component, i.e., RBC, is forced to the outer wall of the bowl 214 while the lower density plasma lies nearer the core. A buffy coat is formed between the plasma and the RBC. The buffy coat is made up of an inner layer of platelets, a transitional layer of platelets and WBC and an outer layer of WBC. The plasma is the component closest to the outlet port and is the first fluid component displaced from the bowl 214 via the outlet port 224 as additional anticoagulated whole blood enters the bowl 214 through the inlet port 220.
As shown in
Additionally, in some embodiments, the optical sensor 213 may be used to determine the hematocrit of the donor during processing. For example, as the bowl 214 fills with red blood cells and the optical sensor 213 detects the layer of red blood cells, the system 100 (e.g., the controller) can determine the volume of red blood cells within bowl 214 based on the location of the red blood cell layer and the fixed/known bowl volume. The system 100 may then calculate the donor hematocrit based on the volume of red blood cells within the bowl and the volume of whole blood that has been processed to that point.
Once the blood component separation device 214 has separated the blood into the various components, one or more of the components can be removed from the blood component separation device 214. For instance, the plasma may be removed to a plasma container 216 (e.g., a plasma bottle) through line 222 (Step 440). As noted above, some embodiments of the system 100 may include a weight sensor 195 (
In some embodiments, the system 100 may also include a line sensor 185 (mentioned above) that can determine the type of fluid (e.g., plasma, platelets, red blood cells etc.) exiting the blood component separation device 214. In particular, the line sensor 185 consists of an LED which emits light through the blood components leaving the bowl 214 and a photo detector which receives the light after it passes through the components. The amount of light received by the photo detector is correlated to the density of the fluid passing through the line. For example, if plasma is exiting the bowl 214, the line sensor 185 will be able to detect when the plasma exiting the bowl 214 becomes cloudy with platelets (e.g., the fluid existing the bowl 214 is changing from plasma to platelets). The system 100 may then use this information to either stop the removal of blood components from the bowl 214, stop drawing whole blood from the subject, or redirect the flow by, for example, closing one valve an opening another.
It is important to note that during processing, the osmolarity of the red blood cells prevents the anticoagulant introduced into the whole blood from entering/remaining with the red blood cells (e.g., within the bowl 214). Rather, the anticoagulant mixes with the plasma component. Therefore, the anticoagulant exits the bowl 214 with the plasma and is collected within collection container 216 along with the plasma. In other words, the weight of the product measured by the weight senor 195 is the weight of the plasma, as well as any anticoagulant that is mixed with the plasma—the weight provided by the weight sensor 195 is not the weight of pure plasma.
Additionally, whole blood contains a variable amount of plasma, as determined by the donor's hematocrit. The hematocrit for typical donors can vary from 38% to 54%, which means that for 100 ml of whole blood, the volume of plasma can vary from 36 to 62 ml. Furthermore, the amount of anticoagulant added to the withdrawn whole blood is fixed (e.g., it does not depend on the hematocrit of the donor), meaning that the percentage of anticoagulant in the collected plasma may vary from 9.7% to 12.7% for donor hematocrits between 38% to 54%, respectively. Therefore, not only does the volume measured by the weight sensor 195 include the volume of anticoagulant, that volume of anticoagulant may vary from donor to donor based on the hematocrit.
As mentioned above, some embodiments of the present invention continue the blood processing/separation procedure until a target volume of pure plasma (e.g., plasma only—without the volume of any anticoagulant mixed with the plasma included in the target volume) is collected within the plasma collection container 216. To that end, some embodiments of the present invention may calculate the volume of pure plasma within the plasma collection container 216. For example, the technician or the system 100 (e.g., the controller) may calculate the percentage of anticoagulant within the collected plasma (Step 455) (e.g., the plasma contained within the plasma collection container 216) based on the amount of anticoagulant added/metered into the whole blood and the hematocrit of the donor. The technician and/or system can calculate the percentage of anticoagulant according to the following equation, where AC is the amount of anticoagulant added to the system 100. As noted above, because the osmolarity of the red blood cells prevents the anticoagulant from mixing with it, essentially all of the anticoagulant exits the bowl 214 and is collected within the plasma collection container 216 along with the plasma.
The amount of anticoagulant that is added to the system 100 can be determined in a number of ways. For example, the system 100 can base the amount of anticoagulant (e.g., the value of “AC” in the above equation) on the predetermined ratio of anticoagulant per unit of anticoagulated whole blood. In some embodiments, the value of “AC” may be the inverse of the predetermined ratio (e.g., “AC” would be 16 if the ratio of anticoagulant to anticoagulated whole blood was 1:16). Additionally or alternatively, the technician/system 100 can monitor the volume of anticoagulant added to the system. In such embodiments, the technician/system can monitor the volume of anticoagulant added to the system 100 based on the number of rotations of the anticoagulant pump (e.g., each rotation of the anticoagulant pump introduces a set volume of anticoagulant into the system 100) and/or based on the change in weight of the anticoagulant container 210 as measured by a weight sensor (discussed in greater detail below).
Once the technician/system 100 has calculated the percentage of anticoagulant within the plasma collection container 216, the technician/system 100 may then use this information to calculate the volume of pure plasma within the plasma collection container 216 (Step 465). For example, the technician/system 100 may determine the volume of anticoagulant within the container (based on the percentage of anticoagulant within the container 216) and subtract this volume from the total volume of fluid within the container 216 as measured by the weight sensor 195. The system 100 may continue to monitor the volume of pure plasma collected within the container 216 and continue processing whole blood (e.g., continue performing Steps 425, 430, 435, 440, 455, 460 and 465) until a target volume of pure plasma is collected within the plasma collection container 216 (Step 470) (e.g., 800 mL for an adult donor weighing more than 175 pounds or other limit prescribed by the FDA or similar governing body).
Once the system 100 has collected the target volume of pure plasma within the plasma collection container 216, the system 100 can return the remaining components (e.g., the components remaining within the bowl 214) to the subject (Step 475). For example, when all the plasma has been removed and the bowl 214 is full of RBCs (and any other blood component not collected), the controller 226 stops the draw of whole blood from the subject and reverses the direction of the blood/first pump 232 to draw the RBCs (and other components) from the bowl 214 directly back to the subject. Alternatively, if the system 100 is so equipped, the system may return the components to the subject via a dedicated return line.
In addition to the non-collected blood components (e.g., the components remaining in the bowl 214), the system 100 may also return saline to the patient/subject. The saline may be used as a compensation fluid to make up for the volume of the blood component (e.g., plasma) that was removed and collected, and is not being returned to the patient. To that end, during the return step (e.g., Step 475), the saline valve 135 may be opened to allow saline from the saline container 217 to flow through the saline line 223 and into the bowl 214 (via outlet 224), where it can be returned to the patient/donor with or after the remaining blood components.
It should be noted that some embodiments may perform some additional and optional steps to help determine the volume of pure plasma within the plasma collection container 216. For example, as mentioned above, some embodiments may monitor the change in weight of the anticoagulant container 210 (e.g., as measured by a weight sensor/load cell on the anticoagulant container 210) (step 445). This measurement provides an indication of the volume of anticoagulant that has been added to the system 100, and may be used help determine the percentage of anticoagulant within the plasma collection container 216. Additionally or alternatively, some embodiments may similarly, monitor the change in weight and/or volume of the plasma and anticoagulant collected within the plasma collection container 216 (e.g., via weight sensor 195) (step 450). This measurement may be used to calculate of the total volume of pure plasma collected within the plasma collection container 216 (e.g., to obtain the total weight from which to subtract the calculated volume of anticoagulant).
Some embodiments may also (optionally) monitor the volume of anticoagulant remaining in the bowl 214 (step 460) (e.g., anticoagulant that did not mix with the plasma and/or otherwise remained in the bowl). For example, the system 100 may utilize the optical sensor on the bowl 214 to determine whether any anticoagulant remains within the bowl 214. If it does, the method 400/system 100 may modify the calculation of the amount of pure plasma collected within the plasma collection container (e.g., either increase the calculated amount or decreased the calculated amount), based on the volume of anticoagulant remaining within the bowl 214.
Various embodiment of the present invention provide numerous benefits over prior art plasma collection systems. In particular, as noted above, prior art plasmapheresis devices end plasma collection based on a total volume of anticoagulated plasma (e.g., pure plasma plus the added anticoagulant). Although this is the easiest method because it requires only that the product collection container be weighed, the amount of true product—the pure plasma—is dependent on the donor's hematocrit. In other words, prior art systems will collect more plasma from low hematocrit donors than from high hematocrit donors because of the variation of the percentage of anticoagulant in the product. Various embodiments of the present invention address the issues of prior art systems by collecting a standard volume (e.g., a target volume) of pure plasma from each donor. As noted above, embodiments of the present invention accomplish this by using knowledge of the donor's hematocrit and the amount of anticoagulant collected within the plasma collection container 216 (e.g., by counting pump rotations and/or using scale/weight sensors, etc.) to determine the percentage of anticoagulant in the product. Additionally, by stopping the plasma collection process based on a volume of pure plasma collected, embodiments of the present invention are able to collect a greater volume of plasma as compared to prior art systems that stop based on a plasma/anticoagulant mixture.
It is also important to note that, although the various embodiments discussed above are in relation to a blood processing system that collects plasma, the features discussed herein may be applied to any type of blood processing system. For example, the features described herein may be implemented on blood processing systems that collect and/or process red blood cells, platelets and/or white blood cells.
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.
This patent application is a continuation of and claims priority from U.S. application Ser. No. 17/205,374, filed Mar. 18, 2021, entitled “System and Method for Collecting Plasma,”, and naming Michael Ragusa as inventor, the disclosure of which is incorporated herein, in its entirety by reference. U.S. application Ser. No. 17/205,374, in turn, is a continuation of and claims priority from U.S. application Ser. No. 16/866,078, filed May 4, 2020, entitled “System and Method for Collecting Plasma,” now U.S. Pat. No. 10,980,926, and naming Michael Ragusa as inventor, the disclosure of which is incorporated herein, in its entirety by reference. U.S. application Ser. No. 16/866,078, in turn, is a continuation of and claims priority from U.S. application Ser. No. 15/608,183, filed May 30, 2017, entitled “System and Method for Collecting Plasma,” now U.S. Pat. No. 10,758,652, and naming Michael Ragusa as inventor, the disclosure of which is incorporated herein, in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
1025059 | Hatton et al. | Apr 1912 | A |
1611725 | Degerth et al. | Dec 1926 | A |
2087778 | Nelin | Jul 1937 | A |
2661150 | Abbott, Jr. | Dec 1953 | A |
2750107 | More | Jun 1956 | A |
2792172 | Tait | May 1957 | A |
3096283 | Hein | Jul 1963 | A |
3145713 | Latham, Jr. | Aug 1964 | A |
3239136 | Hein | Mar 1966 | A |
3244362 | Hein | Apr 1966 | A |
3244363 | Hein | Apr 1966 | A |
3409213 | Latham, Jr. | Nov 1968 | A |
3456875 | Hein | Jul 1969 | A |
3489145 | Judson et al. | Jan 1970 | A |
3565330 | Latham, Jr. | Feb 1971 | A |
3655058 | Novak | Apr 1972 | A |
3737096 | Jones et al. | Jun 1973 | A |
3774840 | Boatright | Nov 1973 | A |
3987961 | Sinn et al. | Oct 1976 | A |
4007871 | Jones et al. | Feb 1977 | A |
4010894 | Kellogg et al. | Mar 1977 | A |
4014497 | Spiewok et al. | Mar 1977 | A |
4040965 | Kohlheb | Aug 1977 | A |
4056224 | Lolachi | Nov 1977 | A |
4082217 | Westberg | Apr 1978 | A |
4086924 | Latham, Jr. | May 1978 | A |
4140268 | Lacour | Feb 1979 | A |
4142670 | Ishimaru et al. | Mar 1979 | A |
4151844 | Cullis et al. | May 1979 | A |
4197847 | Djerassi | Apr 1980 | A |
4285464 | Latham, Jr. | Aug 1981 | A |
4300717 | Latham, Jr. | Nov 1981 | A |
4303193 | Latham, Jr. | Dec 1981 | A |
4321921 | Laszczower | Mar 1982 | A |
4387848 | Kellogg et al. | Jun 1983 | A |
4425114 | Schoendorfer et al. | Jan 1984 | A |
4430072 | Kellogg et al. | Feb 1984 | A |
4447221 | Mulzet | May 1984 | A |
4457747 | Tu | Jul 1984 | A |
4464167 | Schoendorfer et al. | Aug 1984 | A |
4466888 | Verkaart | Aug 1984 | A |
4482342 | Lueptow et al. | Nov 1984 | A |
4490135 | Troutner | Dec 1984 | A |
4530691 | Brown | Jul 1985 | A |
4534863 | Bacon et al. | Aug 1985 | A |
4643714 | Brose | Feb 1987 | A |
4647279 | Mulzet et al. | Mar 1987 | A |
4655742 | Vantard | Apr 1987 | A |
4680025 | Kruger et al. | Jul 1987 | A |
4684361 | Feldman et al. | Aug 1987 | A |
4692136 | Feldman et al. | Sep 1987 | A |
4708712 | Mulzet | Nov 1987 | A |
4713176 | Schoendorfer et al. | Dec 1987 | A |
4734089 | Cullis | Mar 1988 | A |
4740202 | Stacey et al. | Apr 1988 | A |
4740313 | Schoendorfer et al. | Apr 1988 | A |
4755300 | Fischel et al. | Jul 1988 | A |
4767396 | Powers | Aug 1988 | A |
4795419 | Yawn et al. | Jan 1989 | A |
4795448 | Stacey et al. | Jan 1989 | A |
4806247 | Schoendorfer et al. | Feb 1989 | A |
4806252 | Brown et al. | Feb 1989 | A |
4808307 | Fischel et al. | Feb 1989 | A |
4850995 | Tie et al. | Jul 1989 | A |
4869812 | Schoendorfer et al. | Sep 1989 | A |
4871462 | Fischel et al. | Oct 1989 | A |
4876013 | Shmidt et al. | Oct 1989 | A |
4889524 | Fell et al. | Dec 1989 | A |
4911833 | Schoendorfer et al. | Mar 1990 | A |
4934995 | Cullis | Jun 1990 | A |
4940543 | Brown et al. | Jul 1990 | A |
4943273 | Pages | Jul 1990 | A |
4968295 | Neumann | Nov 1990 | A |
4983156 | Knelson | Jan 1991 | A |
4983158 | Headley | Jan 1991 | A |
4985153 | Kuroda et al. | Jan 1991 | A |
4994188 | Prince | Feb 1991 | A |
5039401 | Columbus et al. | Aug 1991 | A |
5045048 | Kaleskas et al. | Sep 1991 | A |
5098372 | Jonsson | Mar 1992 | A |
5098373 | Polaschegg | Mar 1992 | A |
5100372 | Headley | Mar 1992 | A |
5100564 | Pall et al. | Mar 1992 | A |
5112298 | Prince et al. | May 1992 | A |
5114396 | Unger et al. | May 1992 | A |
5135667 | Schoendorfer | Aug 1992 | A |
5141486 | Antwiler | Aug 1992 | A |
5147290 | Jonsson | Sep 1992 | A |
5154716 | Bauman et al. | Oct 1992 | A |
5174894 | Ohsawa et al. | Dec 1992 | A |
5194145 | Schoendorfer | Mar 1993 | A |
5217426 | Bacehowski et al. | Jun 1993 | A |
5217427 | Cullis | Jun 1993 | A |
5234403 | Yoda et al. | Aug 1993 | A |
5254248 | Nakamura | Oct 1993 | A |
5273517 | Barone et al. | Dec 1993 | A |
5277701 | Christie et al. | Jan 1994 | A |
5298016 | Gordon | Mar 1994 | A |
5298171 | Biesel | Mar 1994 | A |
5300060 | Nelson | Apr 1994 | A |
5316540 | McMannis et al. | May 1994 | A |
5318511 | Riquier et al. | Jun 1994 | A |
5318512 | Neumann | Jun 1994 | A |
5348533 | Papillon et al. | Sep 1994 | A |
5368542 | McMannis et al. | Nov 1994 | A |
5368555 | Sussman et al. | Nov 1994 | A |
5386734 | Pusinelli | Feb 1995 | A |
5387174 | Rochat | Feb 1995 | A |
5387187 | Fell et al. | Feb 1995 | A |
5403272 | Deniega et al. | Apr 1995 | A |
5405308 | Headley et al. | Apr 1995 | A |
5417650 | Gordon | May 1995 | A |
5431814 | Jorgensen | Jul 1995 | A |
5437598 | Antwiler | Aug 1995 | A |
5437624 | Langley | Aug 1995 | A |
5462667 | Wollinsky et al. | Oct 1995 | A |
5470483 | Bene et al. | Nov 1995 | A |
5484396 | Naficy | Jan 1996 | A |
5494592 | Latham, Jr. et al. | Feb 1996 | A |
5505685 | Antwiler | Apr 1996 | A |
5514070 | Pages | May 1996 | A |
5543062 | Nishimura | Aug 1996 | A |
5551941 | Howell | Sep 1996 | A |
5585007 | Antanavich et al. | Dec 1996 | A |
5607579 | Latham, Jr. et al. | Mar 1997 | A |
5649903 | Deniega et al. | Jul 1997 | A |
5651766 | Kingsley et al. | Jul 1997 | A |
5656163 | Brown | Aug 1997 | A |
5665061 | Antwiler | Sep 1997 | A |
5681273 | Brown | Oct 1997 | A |
5712798 | Langley et al. | Jan 1998 | A |
5728060 | Kingsley et al. | Mar 1998 | A |
5733253 | Headley et al. | Mar 1998 | A |
5733446 | Holm | Mar 1998 | A |
5733545 | Hood, III | Mar 1998 | A |
5738792 | Schoendorfer | Apr 1998 | A |
5762791 | Deniega et al. | Jun 1998 | A |
5779660 | Kingsley et al. | Jul 1998 | A |
5783085 | Fischel | Jul 1998 | A |
5792351 | Wehrle et al. | Aug 1998 | A |
5849203 | Brown et al. | Dec 1998 | A |
5882289 | Sakota et al. | Mar 1999 | A |
5906589 | Gordon et al. | May 1999 | A |
5919125 | Berch | Jul 1999 | A |
5964724 | Rivera et al. | Oct 1999 | A |
5970432 | Ishimoto et al. | Oct 1999 | A |
5980760 | Min et al. | Nov 1999 | A |
6007725 | Brown | Dec 1999 | A |
6059979 | Brown | May 2000 | A |
6200287 | Keller et al. | Mar 2001 | B1 |
6207063 | Brown | Mar 2001 | B1 |
6234989 | Brierton et al. | May 2001 | B1 |
6296602 | Headley | Oct 2001 | B1 |
6464624 | Pages | Oct 2002 | B2 |
6497676 | Childers et al. | Dec 2002 | B1 |
6558307 | Headley | May 2003 | B2 |
6623443 | Polaschegg | Sep 2003 | B1 |
6743192 | Sakota et al. | Jun 2004 | B1 |
7115205 | Robinson et al. | Oct 2006 | B2 |
7186231 | Takagi et al. | Mar 2007 | B2 |
7270645 | Langley et al. | Sep 2007 | B2 |
7704454 | Langley et al. | Apr 2010 | B1 |
8075468 | Min et al. | Dec 2011 | B2 |
8454548 | Ohashi et al. | Jun 2013 | B2 |
8628489 | Pages et al. | Jan 2014 | B2 |
8702637 | Pages et al. | Apr 2014 | B2 |
8759094 | Ranby | Jun 2014 | B2 |
9283316 | Flexman | Mar 2016 | B2 |
10758652 | Ragusa | Sep 2020 | B2 |
10792416 | Ragusa | Oct 2020 | B2 |
10980926 | Ragusa | Apr 2021 | B2 |
10980934 | Ragusa | Apr 2021 | B2 |
20010000185 | Keller et al. | Apr 2001 | A1 |
20010027156 | Egozy et al. | Oct 2001 | A1 |
20020043492 | Bischof | Apr 2002 | A1 |
20020062100 | Pierce et al. | May 2002 | A1 |
20020120227 | Childers et al. | Aug 2002 | A1 |
20030055375 | Holst et al. | Mar 2003 | A1 |
20030066807 | Suzuki | Apr 2003 | A1 |
20030125881 | Ryan | Jul 2003 | A1 |
20030175150 | Grimm | Sep 2003 | A1 |
20040186409 | Cavalcanti et al. | Sep 2004 | A1 |
20050131334 | Langley et al. | Jun 2005 | A1 |
20050209522 | Tadokoro et al. | Sep 2005 | A1 |
20050235733 | Holst et al. | Oct 2005 | A1 |
20060058167 | Ragusa et al. | Mar 2006 | A1 |
20060155236 | Gara et al. | Jul 2006 | A1 |
20060226086 | Robinson et al. | Oct 2006 | A1 |
20070112289 | Cavalcanti et al. | May 2007 | A1 |
20080146993 | Krishna | Jun 2008 | A1 |
20090215602 | Min et al. | Aug 2009 | A1 |
20120175313 | Barry, Jr. et al. | Jul 2012 | A1 |
20140039373 | Ragusa et al. | Feb 2014 | A1 |
20140100507 | Flexman | Apr 2014 | A1 |
20140356851 | Pages et al. | Dec 2014 | A1 |
20180344910 | Ragusa | Dec 2018 | A1 |
20210205509 | Ragusa | Jul 2021 | A1 |
20210205526 | Ragusa | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
2735985 | Oct 2005 | CN |
103354755 | Oct 2013 | CN |
69434848 | Apr 2007 | DE |
0128683 | Dec 1984 | EP |
0171749 | Feb 1986 | EP |
0208061 | Jan 1987 | EP |
257755 | Mar 1988 | EP |
0578086 | Jan 1994 | EP |
619145 | Oct 1994 | EP |
0654277 | May 1995 | EP |
664159 | Jul 1995 | EP |
799645 | Oct 1997 | EP |
0885619 | Dec 1998 | EP |
1057534 | Dec 2000 | EP |
1128887 | Sep 2001 | EP |
1295619 | Mar 2003 | EP |
1374927 | Jan 2004 | EP |
2258898 | Aug 1975 | FR |
2047110 | Nov 1980 | GB |
S59-006952 | Jan 1984 | JP |
S59-069166 | Apr 1984 | JP |
H02-052665 | Feb 1990 | JP |
H03-131268 | Jun 1991 | JP |
H07-075746 | Mar 1995 | JP |
H08-131539 | May 1996 | JP |
H09-192215 | Jul 1997 | JP |
2002-282352 | Oct 2002 | JP |
2002-291872 | Oct 2002 | JP |
2003-516175 | May 2003 | JP |
2008-506424 | Mar 2008 | JP |
2252788 | May 2005 | RU |
2601449 | Nov 2016 | RU |
660718 | May 1979 | SU |
762982 | Sep 1980 | SU |
1146098 | Mar 1985 | SU |
198502561 | Jun 1985 | WO |
199000059 | Jan 1990 | WO |
199007383 | Jul 1990 | WO |
199406535 | Mar 1994 | WO |
199611747 | Apr 1996 | WO |
199633023 | Oct 1996 | WO |
200205059 | Jan 2002 | WO |
2007041716 | Apr 2007 | WO |
2012091720 | Jul 2012 | WO |
2019084278 | May 2019 | WO |
Entry |
---|
Haemonetics Nomogram—Male, 2 pages, May 1990. |
Lemmens et al., Estimating blood volume in obese and morbidly obese patients. Obes Surg. Jun. 2006;16(6):773-6. |
Nadler et al., Prediction of blood volume in normal human adults. Surgery. Feb. 1962;51(2):224-32. |
Winters, Complications of donor apheresis. J Clin Apher. Jul. 2006;21(2):132-41. |
International Search Report and Written Opinion for Application No. PCT/US2018/033826, dated Aug. 3, 2018, 10 pages. |
International Search Report and Written Opinion for Application No. PCT/US2018/057528, dated Jan. 7, 2019, 17 pages. |
U.S. Appl. No. 15/608,183, filed May 30, 2017, U.S. Pat. No. 10,758,652, Issued. |
U.S. Appl. No. 16/866,078, filed May 4, 2020, U.S. Pat. No. 10,980,926, Issued. |
U.S. Appl. No. 17/205,374, filed Mar. 18, 2021, Publication No. 2021-0205509, Published. |
U.S. Appl. No. 15/793,339, filed Oct. 25, 2017, U.S. Pat. No. 10,792,416, Issued. |
U.S. Appl. No. 16/931,333, filed Jul. 16, 2020, U.S. Pat. No. 10,980,934, Issued. |
U.S. Appl. No. 17/205,400, filed Mar. 18, 2021, Publication No. 2021-0205526, Published. |
Number | Date | Country | |
---|---|---|---|
20230001059 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17205374 | Mar 2021 | US |
Child | 17943410 | US | |
Parent | 16866078 | May 2020 | US |
Child | 17205374 | US | |
Parent | 15608183 | May 2017 | US |
Child | 16866078 | US |