The present invention generally relates to systems for monitoring and/or controlling a plurality of remote devices via a host computer connected to a wide area network (WAN), and more particularly relates to systems and methods for managing communication between the host computer and the plurality of remote devices.
There are a variety of systems for monitoring and/or controlling any of a number of systems and/or processes, such as, for example, manufacturing processes, inventory systems, emergency control systems, personal security systems, residential systems, and electric utility meters to name a few. In many of these “automated monitoring systems,” a host computer in communication with a wide area network monitors and/or controls a plurality of remote devices arranged within a geographical region. The plurality of remote devices typically use remote sensors and controllers to monitor and respond to various system parameters to reach desired results. A number of automated monitoring systems use computers or dedicated microprocessors in association with appropriate software to process system inputs, model system responses, and control actuators to implement corrections within a system.
Various schemes have been proposed to facilitate communication between the host computer and the remote devices within the system, including RF transmission, light transmission (including infra-red), and control signal modulation over the local power distribution network. For example, U.S. Pat. No. 4,697,166 to Warnagiris et al. describes a power-line carrier backbone for inter-element communications. As recognized in U.S. Pat. No. 5,471,190 to Zimmerman, there is a growing interest in home automation systems and products that facilitate such systems. One system, critically described in the Zimmerman patent, is the X-10 system. Recognizing that consumers will soon demand interoperability between household systems, appliances, and computing devices, the Electronics Industry Association (EIA) has adopted an industry standard, known as the Consumer Electronics Bus (CEBus). The CEBus is designed to provide reliable communications between suitably configured residential devices through a multi-transmission media approach within a single residence.
One problem with expanding the use of control systems technology to distributed systems is the cost associated with developing the local sensor-actuator infrastructure necessary to interconnect the various devices. A typical approach to implementing control system technology is to install a local network of hard-wired sensors and actuators along with a local controller. Not only is there expense associated with developing and installing appropriate sensors and actuators, but the added expense of connecting functional sensors and actuators with the local controller is also problematic. Another prohibitive cost is the expense associated with the installation and operational expense associated with programming the local controller.
Accordingly, an alternative solution for implementing a distributed control system suitable for monitoring and controlling remote devices that overcomes the shortcomings of the prior art is desired.
To achieve the advantages and novel features, an embodiment of the present invention is generally directed to a cost-effective automated monitoring system and method for monitoring and controlling a plurality of remote devices via a host computer connected to a communication network, such as a wide area network. The automated monitoring system may include one or more sensors to be read and/or actuators to be controlled, ultimately, through a remote applications server via a site controller. The remote applications server and the site controller may communicate via a communication network, such as a wide area network. The sensors and/or actuators are in communication with communication devices, which may be wireless, that transmit and/or receive encoded data and control signals to and from the site controller. Additional communication devices, such as wireless repeaters, may relay information between communication devices disposed in connection with the sensors and/or actuators and the site controller.
More specifically, the present invention is directed to a site controller adapted to be used in an automated monitoring system for monitoring and controlling a plurality of remote devices via a host computer connected to a first communication network. The site controller is configured for controlling communication with the host computer and a plurality of communication devices that define a second communication network associated with the plurality of remote devices. Briefly described, in one embodiment, the site controller comprises a transceiver configured to communicate with the plurality of communication devices via the second communication network; a network interface device configured to communicate with the host computer via the first communication network; and logic configured to: manage communication with each of the plurality of communication devices, via a first communication protocol, based on one or more communication paths for each of the plurality of communication devices, each communication path comprising one or more communication devices involved in the communication link between the transceiver and each of the plurality of communication devices; and manage communication with the host computer via a second communication protocol.
The present invention may also be viewed as providing a method for controlling communication with a host computer connected to a first communication network and a plurality of communication devices that define a second communication network associated with a plurality of remote devices that are to be monitored and controlled by the host computer. Briefly, one such method involves the steps of: determining a unique address for each of the plurality of communication devices by receiving an initialization message; determining with which of the plurality of communications devices that each of the plurality of communication devices has a communication link; based on the plurality of unique addresses and which of the plurality of communications devices each of the plurality of communication devices has a communication link with, determining one or more communication paths associated with each of the plurality of communication devices; managing communication with each of the plurality of communication devices, via a first communication protocol, based on one or more of the communication paths associated with each of the plurality of communication devices; and managing communication with the host computer via a second communication protocol.
Thus, the site controller according to the present invention minimizes cost and complexity by providing a site controller to maintain the bulk of the data needed by the user and by providing simplified and inexpensive communication devices to collect and communicate the data to the site controller. By simplifying the communication devices and maintaining data storage, data organization, etc., at the site controller, initial installation costs are reduced, and future expansions of the automated monitoring system are simple and inexpensive.
The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Having summarized the invention above, reference is now made in detail to the description of the invention as illustrated in the drawings. While the invention will be described in connection with these drawings, there is no intent to limit it to the embodiment or embodiments disclosed therein. On the contrary, the intent is to cover all alternatives, modifications and equivalents included within the spirit and scope of the invention as defined by the appended claims.
Each of the wireless communication devices in automated monitoring system 100 is preferably small in size and may be configured to transmit a relatively low-power signal, such as, for example a radio frequency (RF) signal. As a result, in some applications, the transmission range of a given RF communication device may be relatively limited. Of course, the transmitter power and range may be appropriately designed for the target operating environment. As will be appreciated from the description that follows, this relatively limited transmission range of the wireless communication devices is advantageous and a desirable characteristic of automated monitoring system 100. Although the wireless communication devices are depicted without a user interface such as a keypad, etc., in certain embodiments the wireless communication devices may be configured with user selectable pushbuttons, switches, an alphanumeric keypad, or any other type of user interface device suitably configured with software and/or firmware to accept operator input. Often the wireless communication device will be in communication with a sensor 140 or with a sensor/actuator 130, such as a smoke detector, a thermostat, a security system. etc., where user selectable inputs may not be needed.
As illustrated in
As illustrated in
As is further illustrated in
One or more site controllers 150 are configured and disposed to receive remote data transmissions from the various stand-alone wireless transceiver/repeaters 125, integrated wireless transmitters 145, or the integrated wireless transceivers 135. The site controllers 150 may be configured to analyze the transmissions received, convert the transmissions into TCP/IP format, and further communicate the remote data signal transmissions via WAN 120 to one or more applications servers 110 or other devices in communication with WAN 120. One of ordinary skill in the art will appreciate that additional site controllers 150 may function as either a back-up site controller in the event of a site controller failure or can function as a primary site controller to expand the potential size of coverage area 165 of automated monitoring system 100. When implemented as a back-up site controller 150, the second site controller 150 may function when the applications server 110 detects a site controller failure. Alternatively, the second site controller 150 may function to expand the capacity of automated monitoring system 100. A single site controller 150 may accommodate a predetermined number of wireless communication devices. While the number of wireless communication devices may vary based upon individual requirements, in one of a number of embodiments there may be approximately 500 wireless communication devices.
By way of example, a second site controller 150 may double the capacity of a single system. Although not shown, additional site controllers 150 may be added depending on the specific implementation of automated monitoring system 100. The number of wireless communication devices managed by a site controller 150 is limited only by technical constraints such as memory, storage space, etc. In addition, the site controller 150 may manage more addresses than devices as some wireless communication devices may have multiple functions such as sensing, repeating, etc. As stated above, automated monitoring system 100 includes an applications server 110 in communication with site controller 150 via WAN 120. Applications server 110 may host any of a variety of application specific software depending on the precise environment in which automated monitoring system 100 is employed. As further described below, the site controller 150 may receive, via WAN 120, information in the form of data and/or control signals from applications server 110, laptop computer 155, workstation 160, and any other device in communication with WAN 120 Site controller 150 may then communicate the data and/or control signals to remote sensor/actuators 130 and/or remote sensors 140. Automated monitoring system 100 may also comprise a database 115 associated with applications server 110. Database 115 may be configured to communicate with applications server 110 and record client specific data or to assist the applications server 110 in deciphering a particular data transmission from a particular sensor 140.
Depending upon the specific configuration of network interface device(s) 240, site controller 150 may communicate with any of a variety of types of wide area networks. For example, WAN 120 may be any type of communication network, or collection of communication networks, employing any network topology, transmission medium, or network protocol. WAN 120 may be any public or private packet-switched or other data network, including the Internet, circuit-switched networks, such as the public switched telephone network (PSTN), wireless networks, or any other desired communications infrastructure. One of ordinary skill in the art will appreciate that the information transmitted between the wireless communication and site controller 150 may be further integrated with various other data transmission protocols for transmission across telecommunications and computer networks other than the WAN 120 (
Referring again to
Thus, one look-up table 270 may be provided to associate identification information for each wireless communication device with a particular user. Another look-up table 270 may be used to identify the various function codes associated with the message protocol. For example, a look-up table 270 may include a unique code designating various functions such as test, temperature, smoke alarm active, security system breach, etc. One of ordinary skill in the art will appreciate that various function codes may be implemented depending on the specific implementation of automated monitoring system 100. In connection with lookup table(s) 270, memory 235 may also include one or more code segments that are executed by the CPU 230 and configured to control operation of the site controller 150. For example, a first data packet segment may be configured for accessing a first lookup table to determine the identity of the wireless communication device that transmitted the received message to the site controller 150. A second code segment may be configured for accessing a second look-up table to determine the proximate location of the wireless communication device that generated the received message. A third code segment may be provided to identify the content of the message transmitted (not shown). Namely, is it a fire alarm, a security alarm, an emergency request by a person, a temperature control setting, etc. In accordance with the present invention, additional, fewer, or different code segments may be provided to carry out various functional operations and data signal transfers.
The power supply 210 may be one of the following: AC power supply, AC power supply with rechargeable battery as a back up solar cells, battery, etc. The power supply provides appropriate DC voltage levels to microcontroller 230. The AC power supply may operate from an external, commonly-provided outside AC power line. The battery may be a lead acid gel battery or other appropriate battery for the prevailing environmental and other conditions that could be considered by those of ordinary skill in the art. The battery may maintain the site controller 150 fully operational for a predetermined time period. This time period may be varied based upon the individual site and system criteria as would be obvious to one of ordinary skill in the art. The battery may also be supplied with a recharger that can recharge the battery to full capacity within a predetermined time period. The charging time may be varied based upon individual site and system criteria as would be obvious to one of ordinary skill in the art. The microcontroller 230 may monitor the battery on a periodic basis and report the battery condition to the applications server 110.
In addition, the power supply 210 may accommodate AC voltages between approximately 95–135 V. It would be obvious to one of ordinary skill in the art to modify this supplied voltage range depending upon individual designs. For example, the supplied voltage range may be varied to accommodate any of a variety of standard supply voltages. Furthermore, the power supply 210 may maintain the temperature of site controller 150 within an acceptable working range, such as approximately 5° C. above the ambient temperature. The operating temperature of the site controller 150 depends upon individual system and environmental conditions. Therefore, it would be obvious to one of ordinary skill in the art to maintain the system at an appropriate operating temperature. This can be accomplished by distributing and/or removing the heat from the power supply 210, adding a heater or various cooling devices, etc. as known by one of ordinary skill in the art.
The on-site input port 215 may be configured to enable an on-site technician to communicate with the microcontroller 230. By way of example, the on-site input port 215 may be a serial port, a USB port, etc. as would be known to one of ordinary skill in the art. The technician may communicate with the on-site input port 215 via any of a variety of computing devices, such as a laptop, personal digital assistant (PDA), or any other computing device. The on-site input port 215 may be used for initial programming updates and other functions as necessary. In addition to on-site programming via the on-site input port 215, the site controller 150 may be reprogrammed via the applications server 110 (
The transceiver 225 may be a TR1000 hybrid transceiver, which is well-suited for short range, wireless data applications where robust operation, small size, low power consumption, and low-cost are desired. All of the critical wireless functions may be contained within the single hybrid chip to simplify circuit design and accelerate the design process. The receiver section of the TR1000 may preferably be sensitive and stable. A wide dynamic range log detector may be employed, in combination with digital automatic gain control (AGC) to provide robust performance in the presence of channel noise or interference. Two stages of surface acoustic wave (SAW) filtering may provide excellent receiver out-of-band rejection. The transmitter may be configured for both on-off keyed (OOK) and amplitude-shift key (ASK) modulation. The transmitter may be configured for employing SAW filtering to suppress output harmonics in compliance with FCC and other regulations. One of ordinary skill in the art will appreciate that transceiver 225 may be configured in a variety of ways. For example, transceiver 225 may include other 900 MHz transceivers, as well as transceivers at other frequencies. In addition, infrared, ultrasonic, and other types of transceivers may be employed, consistent with the scope of the present invention.
The antenna 220 radiates the signal transmitted by the transceiver 225 to the various wireless communication devices located within coverage area 165. A specific antenna type may be selected based on the frequency at which the signal is to be transmitted. In addition, the antenna 220 may be adjustably oriented as required to maximize both transmission and signal characteristics. Non-limiting examples of antenna types that may be used by the site controller 150 include dipoles, spiral, logarithmic, etc.
The site controller 150 may also be equipped to operate in a wide range of temperatures and humidity levels to provide a consistently operating system. In addition, the site controller 150 may be protected from static discharges and direct contact discharges, such as lightening strikes. To provide consistent operation, the site controller 150 may be shielded to avoid interference from a wide range of electric field and AC line noise.
Significantly, the site controller 150 may communicate with all of the wireless communication devices. Of further significance, the data monitoring and control devices need not be disposed in a permanent location as long as they remain within signal range of a repeating wireless communication device that is within signal range of a site controller 150 that is interconnected through one or more communication networks to the applications server 110. Of still further significance, the automated monitoring system 100, as illustrated in
In one embodiment of automated monitoring system 100, an applications server 110 (
Reference is now made to
As further illustrated in
As stated above, communication between site controller 150 and sensors/actuators 130 and sensors 140 is accomplished using an open data packet protocol in accordance with the present invention. Because the wireless communication devices are geographically arranged such that their respective antenna patterns overlap to create a coverage area 165, site controller 150 may communicate with each sensor/actuator 130 and each sensor 140 via any of a plurality of possible communication paths. Each of the communication paths are defined by one or more wireless communication devices involved in the communication between site controller 150 and the target sensor/actuator 130 and/or sensor 140. For instance, site controller 150 may communicate with a specific sensor/actuator 130 via a plurality of distinct communication paths. By way of example, one of the plurality of possible communication paths may consist of a wireless connection from site controller 150 to a wireless communication device associated with the specific sensor/actuator 130. Another possible communication path may consist of a wireless connection from site controller 150 to an intermediate wireless communication device and then to the wireless communication device associated with the specific sensor/actuator 130. Further communication paths may include multiple intermediate wireless communication devices in the wireless connection between site controller 150 and the wireless communication device associated with the specific sensor/actuator 130. In this manner, site controller 150 may communicate with sensors/actuators 130 and/or sensors 140 that are located a greater distance from the site controller 150 by having messages repeated by successive wireless communication devices along one of the communication paths.
The “to” address 400 indicates the intended recipient of the packet. This address can be scalable from one to six bytes based upon the size and complexity of the system. By way of example, the “to” address 400 can indicate a general message to all wireless communication devices, to only the stand-alone wireless communication devices, or to an individual integrated wireless communication device. In a six byte “to” address, the first byte indicates the type of the wireless communication device—to all wireless communication devices, to some wireless communication devices, or to a specific wireless communication device. The second byte can be the identification base, and bytes three through six can be used for the unique address of the wireless communication device (either stand-alone or integrated). The “to” address 400 is scalable from one byte to six bytes depending upon the intended recipient(s).
The “from” address 410 may be the six-byte unique address associated with the device from which the transmission originated. The “from” address 410 may be the address of the site controller 150 when the site controller 150 requests data, or this can be the address of one of the wireless communication devices responding to a request for information from the site controller 150.
The packet number 420, the packet maximum 430, and the packet length 440 may be used to concatenate messages that are greater than a predetermined byte length. The packet maximum 430 indicates the number of packets in the message The packet number 420 may be used to indicate a packet sequence number for a multiple-packet message.
The message number 450 may originally be assigned by the site controller 150 Messages originating from the site controller 150 may be assigned an even number, while responses to the site controller 150 may be the original message number plus one, thereby rendering the responding message with an odd number. For example, the site controller 150 may increment the message number 450 by two for each new originating message. This enables the site controller to coordinate the incoming responses to the appropriate command message.
The command number 460 may designate a specific data request from the receiving device as necessary. One of ordinary skill in the art will appreciate that, depending on the specific implementation of automated monitoring system 100, the types of commands may differ. In one embodiment, there may be two types of commands: device specific and not device specific. Device specific commands may control a specific device, such as a data request or a change in current actuator settings. Commands that are not device specific may include, but are not limited to, a ping, an acknowledgement, a non-acknowledgement, downstream repeat, upstream repeat, read status, emergency message, and a request for general data to name a few. General data may include a software version number, the number of power failures, the number of resets, etc.
The data field 470 may contain data as requested by a specific command. The requested data may be any value. By way of example, test data may preferably be encoded in ASCII (American Standard Code for Information Interchange) or other known encoding systems as known in the art. The data field 470 of a single packet may be scalable up to a predetermined byte length. When the requested data exceeds the predetermined byte length, the integrated wireless communication device may divide the data into an appropriate number of sections and concatenate the series of packets for one message using the packet identifiers as discussed above.
The checksum fields 480 and 490 are used to detect errors in transmissions. In one embodiment, any error can be detected via cyclic redundancy check sum methodology. This methodology divides the message as a large binary number by the generating polynomial (in this case, CRC-16). The remainder of this division is then sent with the message as the checksum. The receiver then calculates a checksum using the same methodology and compares the two checksums. If the checksums do not match, the packet or message will be ignored. While this error detection methodology is preferred, one of ordinary skill in the art will appreciate that various other error detection methodologies may be implemented.
As stated above, automated monitoring system 100 may employ wireless and/or wired communication technologies for communication between site controller 150 and the wireless communication devices. In one embodiment, communication between site controller 150 and the wireless communication devices within coverage area 165 may be implemented using a wireless link having a basic rate of 4,800 bits per second (bps) and a data rate of 2400 bps. All the data may be encoded in the Manchester format such that a high to low transition at the bit center point represents a logic zero and a low to high transition represents a logic one. One of ordinary skill in the art will appreciate that other signal formats may be used as desired. By way of example, a quadature phase shift encoding method may be used, thereby enabling the site controller 150 to communicate via hexadecimal instead of binary. The site controller 150 may use any predetermined RF transmission method to transmit the messages. In one embodiment, a transmission frequency of approximately 916.5 MHz may be employed, although one of ordinary skill in the art will appreciate that any other frequency may be desirable. Alternatively, the transmission can be on a predetermined range of frequencies such as with spread spectrum technology. Furthermore, the message may be modulated using any technique, such as on-off keying, frequency modulation (FM), or any other modulation technique.
While the message indicates the specific byte length for each section, only the order of the specific information within the message is constant. The byte position number in individual transmissions may vary because of the scalability of “to” address 400, command number 460, and the scalability of data field 470.
The message may further include a preface and a postscript (not shown). The preface and postscripts need not be part of the message body, but rather provide synchronization and frame each packet of the message. The packet may begin with the preface and end with the postscript. The preface may be, for example, a series of twenty-four logic ones followed by two bit times of high voltage with no transition. The first byte of the packet may then follow immediately. The postscript may be, for example, a transition of the transmit data line from a high voltage to a low voltage. It may be less desirable to not leave the transmit data line high after the message is sent. Furthermore, one of ordinary skill in the art will appreciate that the preface and postscript may be modified in a number of ways.
Having described the general message structure for the open data packet protocol of the present invention, reference is directed to
The second message 602 illustrates how the first message 600 may be sent to a stand-alone wireless communication device. In this manner, emergency message “FF” from a central server with address “00123456578” is first sent to stand-alone wireless device “FO.” The second message 602, further contains additional command data “A000123456” that may be used by the wireless communication device to identify further wireless communication devices to send the signal through on the way to the destination device.
The third message 604 illustrates how the open data packet protocol of the present invention may be used to “ping” a remote wireless communication device in order to determine the status of the wireless communication device. In this manner, source unit “E112345678” originates a ping request by sending command “08” to a transceiver identified as “A012345678.” The response to the ping request may be as simple as reversing the “to address” and the “from address” of the command such that a healthy wireless communication device may send a ping message back to the originating device. Automated monitoring system 100 may be configured to expect a return ping within a specific time period. Operators of automated monitoring system 100 may use the delay between the ping request and the ping response to model system loads and to determine if specific system parameters might be adequately monitored and controlled with the expected feedback transmission delay.
Further information regarding the structure and operation of the data packet protocol implemented in automated monitoring system 100 may be found in commonly assigned U.S. Patent Application “System and Method for Interconnecting Remote Devices in an Automated Monitoring System,” (Ser. No. 09/925,445) which is hereby incorporated in its entirety by reference.
Referring again to
In addition to orchestrating communications with the wireless communication devices, the site controller 150 maintains current databases of information regarding the automated monitoring system 100, such as, for example, the function of the wireless communication devices, the unique address for each of the wireless communication devices, and current data contained in response messages. One of ordinary skill in the art will appreciate that site controller 150 may contain information related to any of a variety of other aspects of automated monitoring system 100.
As stated above, the site controller 150 also controls communications with the applications server 110. When communicating with the applications server 110, the site controller 150 receives requests for information, commands, etc. and sends the appropriate response. The applications server 110 maintains the requested information and/or commands in such a way that a user can access the information via a remote desktop 155, remote laptop 160, or any other device configured for communication with WAN 120.
Furthermore, the site controller 150 may be configured to maintain a database of the wireless communication devices and their unique addresses. The unique addresses may be assigned such that the site controller 150 may easily send messages to one wireless communication device, a group of wireless communication devices, or all of the wireless communication devices.
Using the site controller 150 as a communications master and maintaining individual device information at the site controller 150 enables the wireless communication devices to be simplified. The simplification of the wireless communication devices has two main advantages: (1) simplifying the construction of the wireless communication device and (2) decreasing cost. The wireless communication device may be simplified because of a reduced need for large memory and/or storage devices. As well-known in the art, memory and storage devices increase in cost as they increase in size. Therefore, decreasing the size of the memory and/or storage reduces the construction and operating costs of the wireless communication devices.
The site controller 150 sends messages to the wireless communication devices using the open data packet protocol described above. Initially, the site controller 150 maps all of the wireless communication devices so as to “learn” all the unique addresses and the necessary communication paths. To do this mapping, the site controller 150 issues a command to document the down-stream addresses and the upstream addresses for each communication path associated with a wireless communication device. The site controller 150 logs the response data from the wireless communication devices into the appropriate databases. Messages from the site controller 150 travel downstream to the intended wireless communication device(s). Messages from the wireless communication devices(s) travel upstream to the site controller 150. When mapping the communication paths for each of the wireless communication devices, the site controller 150 “learns” the unique address of each wireless communication device, the addresses of each wireless communication device that can directly and reliably communicate with each transceiver/repeater(s) 125 in a downstream path, the unique address of each transceiver/repeater(s) 125 in a downstream path, the upstream addresses for the wireless communication device, and the downstream addresses for the wireless communication device.
When sending command messages, the site controller 150 expects an acknowledgement to each command. A command is considered to be not acknowledged when either the site controller 150 fails to receive a positive acknowledgement from the addressed wireless communication device within a first time period, fails to detect the re-transmission of the command message by a transceiver/repeater 125 within a second time period, or receives a negative acknowledgement from a transceiver/repeater 125 in the communication path of the wireless communication device. If the site controller 150 receives a negative acknowledgement, the site controller 150 can then log the failed message and retransmit the message. This re-transmission can occur a predetermined number of times. It should be noted the first time period may be longer than the second time period. In the above cases, the first time period is long enough to ensure receipt of the preamble of the response message when there are multiple transceiver/repeater(s) 125 in the communications path. The second time period is long enough to either receive the preamble of the response message (if no repeaters are in the communications path) or to hear the preamble of the command message being re-transmitted by the first transceiver/repeater 125 in the communication path of the wireless communication device.
After initializing and during normal operation, the site controller 150 may poll each of the remote sensor/actuators according to a predetermined schedule. During this process, the site controller 150 requests the current operating status of each of the sensors/actuators 135. The status of a sensor/actuator device 135 depends upon the type of device. For example, a smoke detector's status may be operational/non-operational. In contrast, a utility meter's status may be the utility usage that has occurred since the last polling. A thermostat's status response may be the actual temperature and the desired temperature. The information sent in response to a status poll may vary depending upon the particular configuration of the sensor/actuator 135. This information is maintained by the site controller 150 and may be sent to the applications server 110 upon request. The predetermined schedule has flexibility based upon the number of failed attempts and any emergency messages. To poll the device, the site controller 150 sends a “read status” message. The command message is considered complete upon receipt of the response message. The command message is considered failed upon receipt of a negative acknowledgement. After a negative acknowledgement, the site controller 150 retries the command six more times and logs all failed attempts.
To facilitate communications with the applications server 110, the site controller 150 may maintain database files of information. The site controller 150 may maintain communication databases that store the device failures, as discussed above, and that store the emergency messages. These database stored logs can contain the unique address of the wireless communication device, a code representing a present condition, and a date/time stamp. Any failures to communicate with the applications server 110 are also logged into the appropriate database. These databases may have a predetermined size and may be forwarded to the applications server 110 when the databases are a specific percentage full or upon request by the applications server 110. Once forwarded to and acknowledged by the applications server 110, the entries in the communications databases are deleted. One of ordinary skill in the art will appreciate that the contents, size, and scheduling of database entries may be varied in a variety of ways.
After mapping the wireless communication devices, the site controller 150 develops and maintains a database that includes the unique address for each wireless communication device, the number of transceiver/repeaters 125 in the downstream path, the address of each transceiver/repeater 125 in the downstream path, the upstream addresses, and the downstream addresses. The site controller 150 does not necessarily respond to the messages from wireless communication device s not listed in this database.
In addition to mapping the wireless communication devices, the site controller 150 may update the device database via the applications server 110. This update may add/delete wireless communication devices from the automated monitoring system 100, change the communications path of any or all of the wireless communication devices, or change the unique addresses of any or all of the wireless communication devices. Upon request of the applications server 110, the site controller 150 may transmit the device database to the applications server 110.
It should be noted that the databases enumerated above are merely exemplary, and other databases may be included as would be obvious to one of ordinary skill in the art.
The “normal” operating procedure described above is continued unless the site controller 150 receives an emergency message from a wireless communication device. The emergency message is transmitted unsolicited. The emergency message can be received by the site controller 150 either directly, via a repeater, or via a plurality of repeaters. Upon receipt of an emergency message, the site controller 150 immediately notifies the applications server 110 of the emergency message. In addition, the site controller 150 suspends the above polling for a predetermined time period. This suspension insures the receipt of any additional emergency messages. After the time period expires with no additional messages, the site controller 150 resumes polling.
To facilitate communications between the applications server 110 and the site controller 150, the site controller 110 maintains a database of contact information. By way of example, if the site controller 150 communicates via a network interface device 240, the site controller 150 can maintain a database of telephone numbers and IP addresses of the applications server 110.
During normal communications, the applications server 110 sends response messages. As stated above, one of ordinary skill in the art will appreciate that the applications server 110 and the site controller 150 may communicate via TCP/IP protocol or any other protocol. Exemplary requests include a “get file” request of the database and a “put file” request, which sends a file to the site controller 150.
Normal communications between the site controller 150 and the applications server 110 may also be interrupted by an emergency message. The emergency message originates at the site controller 150 and may include an emergency message from a remote device, a “file too large” message, and a site controller status change message to name a few. In the case of safety and security system devices such as smoke detectors, glass break alarms, etc., the site controller 150 may immediately generate an emergency message to the applications server 110 in the event a safety/security device fails to respond to a poll message.
One of ordinary skill in the art will appreciate that what has been described herein is a very top-level illustration of a system constructed in accordance with the automated monitoring system 100 of the present invention. In accordance with the invention, a variety of remote devices, such as utility meter devices, personal security devices, household devices and appliances, and other remote devices employing a sensor and/or an actuator, may be monitored and/or controlled from a remote location via a computing device connected to WAN 120. The data and command transmissions may be transmitted and received by the site controller 150 connected to WAN 120. Site controller 150 is further in communication with the wireless communication devices within coverage area 165. The data and command transmissions may be relayed via the various wireless communication devices defining the communication path until they reach a designated destination or the site controller 150.
It will be further appreciated that automated monitoring system 100 in accordance with the present invention may be used in a variety of environments. In one embodiment, automated monitoring system 100 may be employed to monitor and record utility usage by residential and industrial customers, to transfer vehicle diagnostics from an automobile via a wireless transceiver integrated with the vehicle diagnostics bus to a local transceiver that further transmits the vehicle information through a local gateway onto a WAN, to monitor and control all irrigation system, to automate a parking facility, to monitor and control a residential security system, etc, which are described in more detail in the commonly assigned U.S. patent application Ser. No. 09/704,150, and entitled, “System and Method for Monitoring and Controlling Residential Devices,”, now U.S. Pat. No. 6,891,838, issued May 10, 2005.
Automated monitoring system 100 may be adapted to monitor and apply control signals in an unlimited number of applications. By way of example only, the wireless communication devices may be adapted for use with any associated device, such as, for example, pay type publicly located telephones, cable television set top boxes, utility meters, and residential appliances and/or devices to enable a remote controllable home automation and security system.
In a geographic area appropriately networked with permanently located stand-alone transceivers 125, personal transceivers (not shown) may be used to monitor and control personnel access and egress from specific rooms or portions thereof within a controlled facility. Personal transceivers may further be configured to transfer personal information to public emergency response personnel, to transfer personal billing information to vending machines, or to monitor individuals within an assisted living community.
Wireless communication devices using the open data packet protocol of the present invention may be integrated to monitor and control a host of industrial and business applications as well. By way of example only, building automation systems, fire control systems, alarm systems, industrial trash compactors, and building elevators may be monitored and controlled. In addition, courier drop boxes, time clock systems, automated teller machines, self-service copy machines, and other self-service devices may be monitored and controlled as appropriate. By way of further example, a number of environment variables that require monitoring may be integrated with automated monitoring system 100 to permit remote monitoring and control. For instance, light levels in the area adjacent to automated teller machines must meet minimum federal standards. Also, the water volume transferred by water treatment plant pumps, smokestack emissions from a coal burning power plant, or a coke fueled steel plant oven may be remotely monitored.
The wireless communication devices using the open data packet protocol of the present invention may be further integrated with a voice-band transceiver having multiple function buttons. As a result, when a person presses, for example, the emergency button on his/her transmitter, medical personnel, staff members, or others may respond by communicating via two-way radio with the party in distress. In this regard, each transceiver may be equipped with a microphone and a speaker that would allow a person to communicate information such as their present emergency situation, their specific location, etc.
As an example,
The foregoing description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. For example, it should be appreciated that, in some implementations, the transceiver unique address is not necessary to identify the location of the transceiver. Indeed, in implementations where the transceiver is permanently integrated into an alarm sensor other stationary device within a system, then the applications server 110 and/or the site controller 150 may be configured to identify the transmitter location by the transmitter unique address alone. It will be appreciated that, in embodiments that do not utilize wireless transceiver/repeaters 125, the wireless transmitters 145 and/or wireless transceivers 135 may be configured to transmit at a higher power level, in order to effectively communicate with the site controller 150.
The embodiment or embodiments discussed were chosen and described to illustrate the principles of the invention and its practical application to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly and legally entitled.
This application is a continuation-in-part of the following U.S. utility patent applications: U.S. patent application Ser. No. 09/271,517, filed Mar. 18, 1999, and entitled, “System For Monitoring Conditions in a Residential Living Community,”, now abandoned; U.S. patent application Ser. No. 09/439,059, filed Nov. 12, 1999, and entitled, “System and Method for Monitoring and Controlling Remote Devices”, now U.S. Pat. No. 6,437,692, issued Aug. 20, 2002; U.S. patent application Ser. No. 09/812,809, filed Mar. 20, 2001, and entitled, “System and Method for Monitoring the Light Level in a Lighted Area”, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 09/412,895, filed Oct. 5, 1999, and entitled, “System For Monitoring the Light Level Around and ATM,” now U.S. Pat. No. 6,218,953, issued Apr. 17, 2001. Each of the identified U.S. patent applications is incorporated herein by reference in its entirety. This application also claims the benefit of U.S. Provisional Application Ser. No. 60/223,943, filed Aug. 9, 2000, and entitled “Design Specifications for a Site Controller” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3665475 | Gram | May 1972 | A |
3705385 | Batz | Dec 1972 | A |
3723876 | Seaborn, Jr. | Mar 1973 | A |
3742142 | Martin | Jun 1973 | A |
3848231 | Wooten | Nov 1974 | A |
3892848 | Constable | Jul 1975 | A |
3906460 | Halpern | Sep 1975 | A |
3914692 | Seaborn, Jr. | Oct 1975 | A |
3922492 | Lumsden | Nov 1975 | A |
3925763 | Wadwhani et al. | Dec 1975 | A |
4025315 | Mazelli | May 1977 | A |
4056684 | Lindstrom | Nov 1977 | A |
4058672 | Crager et al. | Nov 1977 | A |
4083003 | Haemmig | Apr 1978 | A |
4120452 | Kimura et al. | Oct 1978 | A |
4124839 | Cohen | Nov 1978 | A |
4135181 | Bogacki et al. | Jan 1979 | A |
4204195 | Bogacki | May 1980 | A |
4213119 | Ward et al. | Jul 1980 | A |
4277837 | Stuckert | Jul 1981 | A |
4278975 | Kimura et al. | Jul 1981 | A |
4354181 | Spletzer | Oct 1982 | A |
4396910 | Enemark et al. | Aug 1983 | A |
4396915 | Farnsworth et al. | Aug 1983 | A |
4417450 | Morgan, Jr. et al. | Nov 1983 | A |
4436957 | Mazza | Mar 1984 | A |
4446454 | Pyle | May 1984 | A |
4446458 | Cook | May 1984 | A |
4454414 | Benton | Jun 1984 | A |
4468656 | Clifford et al. | Aug 1984 | A |
4488152 | Arnason et al. | Dec 1984 | A |
4495496 | Miller, III | Jan 1985 | A |
4551719 | Carlin et al. | Nov 1985 | A |
4611198 | Levinson et al. | Sep 1986 | A |
4621263 | Takenaka et al. | Nov 1986 | A |
4630035 | Stahl et al. | Dec 1986 | A |
4631357 | Grunig | Dec 1986 | A |
4670739 | Kelly, Jr. | Jun 1987 | A |
4692761 | Robinton | Sep 1987 | A |
4707852 | Jahr et al. | Nov 1987 | A |
4731810 | Watkins | Mar 1988 | A |
4742296 | Petr et al. | May 1988 | A |
4757185 | Onishi | Jul 1988 | A |
4788721 | Krishnan et al. | Nov 1988 | A |
4800543 | Lyndon-James et al. | Jan 1989 | A |
4825457 | Lebowitz | Apr 1989 | A |
4829561 | Matheny | May 1989 | A |
4849815 | Streck | Jul 1989 | A |
4851654 | Nitta | Jul 1989 | A |
4856046 | Streck et al. | Aug 1989 | A |
4857912 | Everett, Jr. et al. | Aug 1989 | A |
4875231 | Hara et al. | Oct 1989 | A |
4884123 | Morris et al. | Nov 1989 | A |
4897644 | Hirano | Jan 1990 | A |
4906828 | Halpern | Mar 1990 | A |
4908769 | Vaughan et al. | Mar 1990 | A |
4918690 | Markkula, Jr. et al. | Apr 1990 | A |
4918995 | Pearman et al. | Apr 1990 | A |
4928299 | Tansky et al. | May 1990 | A |
4939726 | Flammer et al. | Jul 1990 | A |
4940976 | Gastouniotis et al. | Jul 1990 | A |
4949077 | Mbuthia | Aug 1990 | A |
4952928 | Carroll et al. | Aug 1990 | A |
4962496 | Vercellotti et al. | Oct 1990 | A |
4967366 | Kaehler | Oct 1990 | A |
4968970 | LaPorte | Nov 1990 | A |
4968978 | Stolarczyk | Nov 1990 | A |
4972504 | Daniel, Jr. et al. | Nov 1990 | A |
4973957 | Shimizu et al. | Nov 1990 | A |
4973970 | Reeser | Nov 1990 | A |
4977612 | Wilson | Dec 1990 | A |
4980907 | Raith et al. | Dec 1990 | A |
4989230 | Gillig et al. | Jan 1991 | A |
4991008 | Nama | Feb 1991 | A |
4993059 | Smith et al. | Feb 1991 | A |
4998095 | Shields | Mar 1991 | A |
4999607 | Evans | Mar 1991 | A |
5007052 | Flammer | Apr 1991 | A |
5032833 | Laporte | Jul 1991 | A |
5038372 | Elms et al. | Aug 1991 | A |
5055851 | Sheffer | Oct 1991 | A |
5057814 | Onan et al. | Oct 1991 | A |
5061997 | Rea et al. | Oct 1991 | A |
5079768 | Flammer | Jan 1992 | A |
5086391 | Chambers | Feb 1992 | A |
5091713 | Horne et al. | Feb 1992 | A |
5111199 | Tomoda et al. | May 1992 | A |
5113183 | Mizuno et al. | May 1992 | A |
5113184 | Katayama | May 1992 | A |
5115224 | Kostusiak et al. | May 1992 | A |
5115433 | Baran et al. | May 1992 | A |
5124624 | de Vries et al. | Jun 1992 | A |
5128855 | Hilber et al. | Jul 1992 | A |
5130519 | Bush et al. | Jul 1992 | A |
5130987 | Flammer | Jul 1992 | A |
5131038 | Puhl et al. | Jul 1992 | A |
5134650 | Blackmon | Jul 1992 | A |
5136285 | Okuyama | Aug 1992 | A |
5155481 | Brennan, Jr. et al. | Oct 1992 | A |
5159317 | Brav | Oct 1992 | A |
5162776 | Bushnell et al. | Nov 1992 | A |
5177342 | Adams | Jan 1993 | A |
5189287 | Parienti | Feb 1993 | A |
5191192 | Takahira et al. | Mar 1993 | A |
5191326 | Montgomery | Mar 1993 | A |
5193111 | Matty et al. | Mar 1993 | A |
5195018 | Kwon et al. | Mar 1993 | A |
5197095 | Bonnet et al. | Mar 1993 | A |
5200735 | Hines | Apr 1993 | A |
5204670 | Stinton | Apr 1993 | A |
5212645 | Wildes et al. | May 1993 | A |
5216502 | Katz | Jun 1993 | A |
5221838 | Gutman et al. | Jun 1993 | A |
5223844 | Mansell et al. | Jun 1993 | A |
5231658 | Eftechiou | Jul 1993 | A |
5235630 | Moody et al. | Aug 1993 | A |
5239294 | Flanders et al. | Aug 1993 | A |
5239575 | White et al. | Aug 1993 | A |
5241410 | Streck et al. | Aug 1993 | A |
5243338 | Brennan, Jr. et al. | Sep 1993 | A |
5245633 | Schwartz et al. | Sep 1993 | A |
5251205 | Callon et al. | Oct 1993 | A |
5252967 | Brennan et al. | Oct 1993 | A |
5253167 | Yoshida et al. | Oct 1993 | A |
5265150 | Heimkamp et al. | Nov 1993 | A |
5265162 | Bush et al. | Nov 1993 | A |
5266782 | Alanara et al. | Nov 1993 | A |
5272747 | Meads | Dec 1993 | A |
5282204 | Shpancer et al. | Jan 1994 | A |
5282250 | Dent et al. | Jan 1994 | A |
5289165 | Belin | Feb 1994 | A |
5291516 | Dixon et al. | Mar 1994 | A |
5295154 | Meier et al. | Mar 1994 | A |
5305370 | Kearns et al. | Apr 1994 | A |
5309501 | Kozik et al. | May 1994 | A |
5315645 | Matheny | May 1994 | A |
5317309 | Vercellotti et al. | May 1994 | A |
5319364 | Waraksa et al. | Jun 1994 | A |
5319698 | Glidewell et al. | Jun 1994 | A |
5319711 | Servi | Jun 1994 | A |
5323384 | Norwood et al. | Jun 1994 | A |
5325429 | Kurgan | Jun 1994 | A |
5329394 | Calvani et al. | Jul 1994 | A |
5331318 | Montgomery | Jul 1994 | A |
5334974 | Simms et al. | Aug 1994 | A |
5335265 | Cooper et al. | Aug 1994 | A |
5343493 | Karimullah | Aug 1994 | A |
5345231 | Koo et al. | Sep 1994 | A |
5345595 | Johnson et al. | Sep 1994 | A |
5347263 | Carroll et al. | Sep 1994 | A |
5354974 | Eisenberg | Oct 1994 | A |
5355278 | Hosoi et al. | Oct 1994 | A |
5355513 | Clarke et al. | Oct 1994 | A |
5365217 | Toner | Nov 1994 | A |
5371736 | Evan | Dec 1994 | A |
5382778 | Takahira et al. | Jan 1995 | A |
5383134 | Wrzesinski | Jan 1995 | A |
5390206 | Rein | Feb 1995 | A |
5406619 | Akhteruzzaman et al. | Apr 1995 | A |
5412192 | Hoss | May 1995 | A |
5412760 | Peitz | May 1995 | A |
5416475 | Tolbert et al. | May 1995 | A |
5416725 | Pacheco et al. | May 1995 | A |
5418812 | Reyes et al. | May 1995 | A |
5420910 | Rudokas et al. | May 1995 | A |
5424708 | Ballesty et al. | Jun 1995 | A |
5432507 | Mussino et al. | Jul 1995 | A |
5438329 | Gastouniotis et al. | Aug 1995 | A |
5439414 | Jacob | Aug 1995 | A |
5440545 | Buchholz et al. | Aug 1995 | A |
5442553 | Parrillo | Aug 1995 | A |
5445287 | Center et al. | Aug 1995 | A |
5445347 | Ng | Aug 1995 | A |
5451929 | Adelman et al. | Sep 1995 | A |
5451938 | Brennan, Jr. | Sep 1995 | A |
5452344 | Larson | Sep 1995 | A |
5454024 | Lebowitz | Sep 1995 | A |
5465401 | Thompson | Nov 1995 | A |
5467074 | Pedtke | Nov 1995 | A |
5467082 | Sanderson | Nov 1995 | A |
5467345 | Cutler et al. | Nov 1995 | A |
5468948 | Koenck et al. | Nov 1995 | A |
5471201 | Cerami et al. | Nov 1995 | A |
5473322 | Carney | Dec 1995 | A |
5475689 | Kay et al. | Dec 1995 | A |
5481259 | Bane | Jan 1996 | A |
5481532 | Hassan et al. | Jan 1996 | A |
5484997 | Haynes | Jan 1996 | A |
5488608 | Flammer, III | Jan 1996 | A |
5493273 | Smurlo et al. | Feb 1996 | A |
5493287 | Bane | Feb 1996 | A |
5502726 | Fischer | Mar 1996 | A |
5506837 | Sollner et al. | Apr 1996 | A |
5509073 | Monnin | Apr 1996 | A |
5513244 | Joao et al. | Apr 1996 | A |
5515419 | Sheffer | May 1996 | A |
5517188 | Carroll et al. | May 1996 | A |
5522089 | Kikinis et al. | May 1996 | A |
5528215 | Siu et al. | Jun 1996 | A |
5539825 | Akiyama et al. | Jul 1996 | A |
5541938 | Di Zenzo et al. | Jul 1996 | A |
5542100 | Hatakeyama | Jul 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5544784 | Malaspina | Aug 1996 | A |
5548632 | Walsh et al. | Aug 1996 | A |
5550358 | Tait et al. | Aug 1996 | A |
5550359 | Bennett | Aug 1996 | A |
5550535 | Park | Aug 1996 | A |
5553094 | Johnson et al. | Sep 1996 | A |
5555258 | Snelling et al. | Sep 1996 | A |
5555286 | Tendler | Sep 1996 | A |
5562537 | Zver et al. | Oct 1996 | A |
5565857 | Lee | Oct 1996 | A |
5568535 | Sheffer et al. | Oct 1996 | A |
5570084 | Ritter et al. | Oct 1996 | A |
5572438 | Ehlers et al. | Nov 1996 | A |
5573181 | Ahmed | Nov 1996 | A |
5574111 | Brichta et al. | Nov 1996 | A |
5583850 | Snodgrass et al. | Dec 1996 | A |
5587705 | Morris | Dec 1996 | A |
5589878 | Cortjens et al. | Dec 1996 | A |
5590038 | Pitroda | Dec 1996 | A |
5590179 | Shincovich et al. | Dec 1996 | A |
5592491 | Dinks | Jan 1997 | A |
5594431 | Sheppard et al. | Jan 1997 | A |
5596719 | Ramakrishnan et al. | Jan 1997 | A |
5602843 | Gray | Feb 1997 | A |
5604414 | Milligan et al. | Feb 1997 | A |
5604869 | Mincher et al. | Feb 1997 | A |
5606361 | Davidsohn et al. | Feb 1997 | A |
5608786 | Gordon | Mar 1997 | A |
5613620 | Center et al. | Mar 1997 | A |
5615277 | Hoffman | Mar 1997 | A |
5619192 | Ayala | Apr 1997 | A |
5625410 | Washino et al. | Apr 1997 | A |
5628050 | McGraw et al. | May 1997 | A |
5629687 | Sutton et al. | May 1997 | A |
5629875 | Adair, Jr. | May 1997 | A |
5630209 | Wizgall et al. | May 1997 | A |
5631554 | Briese et al. | May 1997 | A |
5636216 | Fox et al. | Jun 1997 | A |
5640002 | Ruppert et al. | Jun 1997 | A |
5644294 | Ness | Jul 1997 | A |
5655219 | Jusa et al. | Aug 1997 | A |
5657389 | Houvener | Aug 1997 | A |
5659300 | Dresselhuys et al. | Aug 1997 | A |
5659303 | Adair, Jr. | Aug 1997 | A |
5668876 | Falk et al. | Sep 1997 | A |
5673252 | Johnson et al. | Sep 1997 | A |
5673304 | Connor et al. | Sep 1997 | A |
5673305 | Ross | Sep 1997 | A |
5682139 | Pradeep et al. | Oct 1997 | A |
5682476 | Tapperson et al. | Oct 1997 | A |
5689229 | Chaco et al. | Nov 1997 | A |
5699328 | Ishizaki et al. | Dec 1997 | A |
5701002 | Oishi et al. | Dec 1997 | A |
5702059 | Chu et al. | Dec 1997 | A |
5704046 | Hogan | Dec 1997 | A |
5704517 | Lancaster, Jr. | Jan 1998 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5706976 | Purkey | Jan 1998 | A |
5708223 | Wyss | Jan 1998 | A |
5708655 | Toth | Jan 1998 | A |
5712619 | Simkin | Jan 1998 | A |
5712980 | Beeler et al. | Jan 1998 | A |
5714931 | Petite et al. | Feb 1998 | A |
5717718 | Rowsell et al. | Feb 1998 | A |
5726634 | Hess et al. | Mar 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5732074 | Spaur et al. | Mar 1998 | A |
5732078 | Arango | Mar 1998 | A |
5736965 | Mosebrook et al. | Apr 1998 | A |
5740232 | Pailles et al. | Apr 1998 | A |
5742509 | Goldberg et al. | Apr 1998 | A |
5745849 | Britton | Apr 1998 | A |
5748104 | Argyroudis et al. | May 1998 | A |
5748619 | Meier | May 1998 | A |
5754111 | Garcia | May 1998 | A |
5754227 | Fukuoka | May 1998 | A |
5757783 | Eng et al. | May 1998 | A |
5757788 | Tatsumi et al. | May 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5764742 | Howard et al. | Jun 1998 | A |
5767791 | Stoop et al. | Jun 1998 | A |
5771274 | Harris | Jun 1998 | A |
5774052 | Hamm et al. | Jun 1998 | A |
5781143 | Rossin | Jul 1998 | A |
5790644 | Kikinis | Aug 1998 | A |
5790662 | Valerij et al. | Aug 1998 | A |
5790938 | Talarmo | Aug 1998 | A |
5796727 | Harrison et al. | Aug 1998 | A |
5798964 | Shimizu et al. | Aug 1998 | A |
5801643 | Williams et al. | Sep 1998 | A |
5815505 | Mills | Sep 1998 | A |
5818822 | Thomas et al. | Oct 1998 | A |
5822273 | Bary et al. | Oct 1998 | A |
5822544 | Chaco et al. | Oct 1998 | A |
5825772 | Dobbins et al. | Oct 1998 | A |
5826195 | Westerlage et al. | Oct 1998 | A |
5828044 | Jun et al. | Oct 1998 | A |
5832057 | Furman | Nov 1998 | A |
5838223 | Gallant et al. | Nov 1998 | A |
5838237 | Revell et al. | Nov 1998 | A |
5838812 | Pare, Jr. et al. | Nov 1998 | A |
5841118 | East et al. | Nov 1998 | A |
5841764 | Roderique et al. | Nov 1998 | A |
5842976 | Williamson | Dec 1998 | A |
5844808 | Konsmo et al. | Dec 1998 | A |
5845230 | Lamberson | Dec 1998 | A |
5852658 | Knight et al. | Dec 1998 | A |
5854994 | Canada et al. | Dec 1998 | A |
5862201 | Sands | Jan 1999 | A |
5864772 | Alvarado et al. | Jan 1999 | A |
5873043 | Comer | Feb 1999 | A |
5874903 | Shuey et al. | Feb 1999 | A |
5880677 | Lestician | Mar 1999 | A |
5884184 | Sheffer | Mar 1999 | A |
5884271 | Pitroda | Mar 1999 | A |
5886333 | Miyake | Mar 1999 | A |
5889468 | Banga | Mar 1999 | A |
5892690 | Boatman et al. | Apr 1999 | A |
5892758 | Argyroudis | Apr 1999 | A |
5892924 | Lyon et al. | Apr 1999 | A |
5896097 | Cardozo | Apr 1999 | A |
5897607 | Jenney et al. | Apr 1999 | A |
5898369 | Godwin | Apr 1999 | A |
5905438 | Weiss et al. | May 1999 | A |
5907291 | Chen et al. | May 1999 | A |
5907491 | Canada et al. | May 1999 | A |
5907540 | Hayashi | May 1999 | A |
5907807 | Chavez et al. | May 1999 | A |
5914672 | Glorioso et al. | Jun 1999 | A |
5914673 | Jennings et al. | Jun 1999 | A |
5917405 | Joao | Jun 1999 | A |
5917629 | Hortensius et al. | Jun 1999 | A |
5923269 | Shuey et al. | Jul 1999 | A |
5926103 | Petite | Jul 1999 | A |
5926529 | Hache et al. | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5933073 | Shuey | Aug 1999 | A |
5941363 | Partyka et al. | Aug 1999 | A |
5941955 | Wilby et al. | Aug 1999 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5949779 | Mostafa et al. | Sep 1999 | A |
5949799 | Grivna et al. | Sep 1999 | A |
5953319 | Dutta et al. | Sep 1999 | A |
5953371 | Rowsell et al. | Sep 1999 | A |
5955718 | Levasseur et al. | Sep 1999 | A |
5960074 | Clark | Sep 1999 | A |
5963146 | Johnson et al. | Oct 1999 | A |
5963452 | Etoh et al. | Oct 1999 | A |
5963650 | Simionescu et al. | Oct 1999 | A |
5966658 | Kennedy, III et al. | Oct 1999 | A |
5969608 | Sojdehei et al. | Oct 1999 | A |
5973756 | Erlin | Oct 1999 | A |
5974236 | Sherman | Oct 1999 | A |
5978364 | Melnik | Nov 1999 | A |
5978371 | Mason, Jr. et al. | Nov 1999 | A |
5986574 | Colton | Nov 1999 | A |
5987421 | Chuang | Nov 1999 | A |
5991625 | Vanderpool | Nov 1999 | A |
5991639 | Rautiola et al. | Nov 1999 | A |
5994892 | Turino et al. | Nov 1999 | A |
5995592 | Shirai et al. | Nov 1999 | A |
5995593 | Cho | Nov 1999 | A |
5997170 | Brodbeck | Dec 1999 | A |
5999094 | Nilssen | Dec 1999 | A |
6005759 | Hart et al. | Dec 1999 | A |
6005963 | Bolle et al. | Dec 1999 | A |
6021664 | Granato et al. | Feb 2000 | A |
6023223 | Baxter, Jr. | Feb 2000 | A |
6026095 | Sherer et al. | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6028857 | Poor | Feb 2000 | A |
6031455 | Grube et al. | Feb 2000 | A |
6032197 | Birdwell et al. | Feb 2000 | A |
6035213 | Tokuda et al. | Mar 2000 | A |
6035266 | Williams et al. | Mar 2000 | A |
6036086 | Sizer, II et al. | Mar 2000 | A |
6038491 | McGarry et al. | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6054920 | Smith et al. | Apr 2000 | A |
6060994 | Chen | May 2000 | A |
6061604 | Russ et al. | May 2000 | A |
6064318 | Kirchner et al. | May 2000 | A |
6067017 | Stewart et al. | May 2000 | A |
6067030 | Burnett et al. | May 2000 | A |
6069886 | Ayerst et al. | May 2000 | A |
6073169 | Shuey et al. | Jun 2000 | A |
6073266 | Ahmed et al. | Jun 2000 | A |
6073840 | Marion | Jun 2000 | A |
6075451 | Lebowitz et al. | Jun 2000 | A |
6078251 | Landt et al. | Jun 2000 | A |
6087957 | Gray | Jul 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6094622 | Hubbard et al. | Jul 2000 | A |
6100817 | Mason, Jr. et al. | Aug 2000 | A |
6101427 | Yang | Aug 2000 | A |
6101445 | Alvarado et al. | Aug 2000 | A |
6112983 | D'Anniballe et al. | Sep 2000 | A |
6115580 | Chuprun et al. | Sep 2000 | A |
6119076 | Williams et al. | Sep 2000 | A |
6121593 | Mansbery et al. | Sep 2000 | A |
6121885 | Masone et al. | Sep 2000 | A |
6124806 | Cunningham et al. | Sep 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6128551 | Davis et al. | Oct 2000 | A |
6130622 | Hussey et al. | Oct 2000 | A |
6133850 | Moore | Oct 2000 | A |
6137423 | Glorioso et al. | Oct 2000 | A |
6140975 | Cohen | Oct 2000 | A |
6141347 | Shaughnessy et al. | Oct 2000 | A |
6150936 | Addy | Nov 2000 | A |
6150955 | Tracy et al. | Nov 2000 | A |
6157464 | Bloomfield et al. | Dec 2000 | A |
6157824 | Bailey | Dec 2000 | A |
6163276 | Irving et al. | Dec 2000 | A |
6172616 | Johnson et al. | Jan 2001 | B1 |
6174205 | Madsen et al. | Jan 2001 | B1 |
6175922 | Wang | Jan 2001 | B1 |
6177883 | Jennetti et al. | Jan 2001 | B1 |
6181255 | Crimmins et al. | Jan 2001 | B1 |
6181284 | Madsen et al. | Jan 2001 | B1 |
6181981 | Varga et al. | Jan 2001 | B1 |
6188354 | Soliman et al. | Feb 2001 | B1 |
6192390 | Berger et al. | Feb 2001 | B1 |
6198390 | Schlager et al. | Mar 2001 | B1 |
6199068 | Carpenter | Mar 2001 | B1 |
6208266 | Lyons et al. | Mar 2001 | B1 |
6215440 | Morales | Apr 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6218958 | Eichstaedt | Apr 2001 | B1 |
6218983 | Kerry et al. | Apr 2001 | B1 |
6219409 | Smith et al. | Apr 2001 | B1 |
6229439 | Tice | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6234111 | Ulman et al. | May 2001 | B1 |
6236332 | Conkright et al. | May 2001 | B1 |
6243010 | Addy et al. | Jun 2001 | B1 |
6246677 | Nap et al. | Jun 2001 | B1 |
6246886 | Oliva | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6259369 | Monico | Jul 2001 | B1 |
6275707 | Reed et al. | Aug 2001 | B1 |
6286756 | Stinson et al. | Sep 2001 | B1 |
6288634 | Weiss et al. | Sep 2001 | B1 |
6288641 | Casais | Sep 2001 | B1 |
6295291 | Larkins | Sep 2001 | B1 |
6301514 | Canada et al. | Oct 2001 | B1 |
6304556 | Haas | Oct 2001 | B1 |
6305602 | Grabowski et al. | Oct 2001 | B1 |
6308111 | Koga | Oct 2001 | B1 |
6311167 | Davis et al. | Oct 2001 | B1 |
6314169 | Schelberg, Jr. et al. | Nov 2001 | B1 |
6317029 | Fleeter | Nov 2001 | B1 |
6334117 | Covert et al. | Dec 2001 | B1 |
6351223 | DeWeerd et al. | Feb 2002 | B1 |
6356205 | Salvo et al. | Mar 2002 | B1 |
6357034 | Muller et al. | Mar 2002 | B1 |
6362745 | Davis | Mar 2002 | B1 |
6363057 | Ardalan et al. | Mar 2002 | B1 |
6366217 | Cunningham et al. | Apr 2002 | B1 |
6366622 | Brown et al. | Apr 2002 | B1 |
6369769 | Nap et al. | Apr 2002 | B1 |
6370489 | Williams et al. | Apr 2002 | B1 |
6373399 | Johnson et al. | Apr 2002 | B1 |
6380851 | Gilbert et al. | Apr 2002 | B1 |
6384722 | Williams | May 2002 | B1 |
6393341 | Lawrence et al. | May 2002 | B1 |
6393381 | Williams et al. | May 2002 | B1 |
6393382 | Williams et al. | May 2002 | B1 |
6396839 | Ardalan et al. | May 2002 | B1 |
6400819 | Nakano et al. | Jun 2002 | B1 |
6401081 | Montgomery et al. | Jun 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6411889 | Mizunuma et al. | Jun 2002 | B1 |
6415245 | Williams et al. | Jul 2002 | B2 |
6421354 | Godlewski | Jul 2002 | B1 |
6421731 | Ciotti, Jr. et al. | Jul 2002 | B1 |
6422464 | Terranova | Jul 2002 | B1 |
6424270 | Ali | Jul 2002 | B1 |
6424931 | Sigmar et al. | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6431439 | Suer et al. | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6438575 | Khan et al. | Aug 2002 | B1 |
6445291 | Addy et al. | Sep 2002 | B2 |
6456960 | Williams et al. | Sep 2002 | B1 |
6457038 | Defosse | Sep 2002 | B1 |
6462644 | Howell et al. | Oct 2002 | B1 |
6462672 | Besson | Oct 2002 | B1 |
6477558 | Irving et al. | Nov 2002 | B1 |
6483290 | Hemminger et al. | Nov 2002 | B1 |
6484939 | Blaeuer | Nov 2002 | B1 |
6489884 | Lamberson et al. | Dec 2002 | B1 |
6491828 | Sivavec et al. | Dec 2002 | B1 |
6492910 | Ragle et al. | Dec 2002 | B1 |
6504357 | Hemminger et al. | Jan 2003 | B1 |
6507794 | Hubbard et al. | Jan 2003 | B1 |
6509722 | Lopata | Jan 2003 | B2 |
6519568 | Harvey et al. | Feb 2003 | B1 |
6538577 | Ehrke et al. | Mar 2003 | B1 |
6542076 | Joao | Apr 2003 | B1 |
6542077 | Joao | Apr 2003 | B2 |
6543690 | Leydier et al. | Apr 2003 | B2 |
6560223 | Egan et al. | May 2003 | B1 |
6574603 | Dickson et al. | Jun 2003 | B1 |
6584080 | Ganz et al. | Jun 2003 | B1 |
6600726 | Nevo et al. | Jul 2003 | B1 |
6608551 | Anderson et al. | Aug 2003 | B1 |
6618578 | Petite | Sep 2003 | B1 |
6618709 | Sneeringer | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6628965 | LaRosa et al. | Sep 2003 | B1 |
6653945 | Johnson et al. | Nov 2003 | B2 |
6654357 | Wiedeman | Nov 2003 | B1 |
6671586 | Davis et al. | Dec 2003 | B2 |
6674403 | Gray et al. | Jan 2004 | B2 |
6678255 | Kuriyan | Jan 2004 | B1 |
6678285 | Garg | Jan 2004 | B1 |
6731201 | Bailey et al. | May 2004 | B1 |
6735630 | Gelvin et al. | May 2004 | B1 |
6747557 | Petite et al. | Jun 2004 | B1 |
6771981 | Zalewski et al. | Aug 2004 | B1 |
6804532 | Moon et al. | Oct 2004 | B1 |
6816088 | Knoska et al. | Nov 2004 | B1 |
6888876 | Mason, Jr. et al. | May 2005 | B1 |
6891838 | Petite | May 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6959550 | Freeman et al. | Nov 2005 | B2 |
7027416 | Kriz | Apr 2006 | B1 |
7054271 | Brownrigg et al. | May 2006 | B2 |
20010002210 | Petite | May 2001 | A1 |
20010003479 | Fujiwara | Jun 2001 | A1 |
20010021646 | Antonucci et al. | Sep 2001 | A1 |
20010024163 | Petite | Sep 2001 | A1 |
20010034223 | Rieser et al. | Oct 2001 | A1 |
20010038343 | Meyer et al. | Nov 2001 | A1 |
20020002444 | Williams et al. | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20021112323 | Petite | Jan 2002 | |
20020019725 | Petite | Feb 2002 | A1 |
20020027504 | Petite | Mar 2002 | A1 |
20020031101 | Petite | Mar 2002 | A1 |
20020032746 | Lazaridis | Mar 2002 | A1 |
20020061031 | Sugar et al. | May 2002 | A1 |
20020072348 | Wheeler et al. | Jun 2002 | A1 |
20020089428 | Walden et al. | Jul 2002 | A1 |
20020095399 | Devine et al. | Jul 2002 | A1 |
20020098858 | Struhsaker | Jul 2002 | A1 |
20020109607 | Cumeralto et al. | Aug 2002 | A1 |
20020136233 | Chen et al. | Sep 2002 | A1 |
20020158774 | Johnson et al. | Oct 2002 | A1 |
20020163442 | Fischer | Nov 2002 | A1 |
20020169643 | Petite | Nov 2002 | A1 |
20020193144 | Belski et al. | Dec 2002 | A1 |
20030001754 | Johnson et al. | Jan 2003 | A1 |
20030023146 | Shusterman | Jan 2003 | A1 |
20030028632 | Davis | Feb 2003 | A1 |
20030030926 | Aguren et al. | Feb 2003 | A1 |
20030034900 | Han | Feb 2003 | A1 |
20030035438 | Larsson | Feb 2003 | A1 |
20030036822 | Davis et al. | Feb 2003 | A1 |
20030046377 | Daum et al. | Mar 2003 | A1 |
20030058818 | Wilkes et al. | Mar 2003 | A1 |
20030069002 | Hunter et al. | Apr 2003 | A1 |
20030073406 | Benjamin et al. | Apr 2003 | A1 |
20030078029 | Petite | Apr 2003 | A1 |
20030093484 | Petite | May 2003 | A1 |
20030133473 | Manis et al. | Jul 2003 | A1 |
20030169710 | Fan et al. | Sep 2003 | A1 |
20030185204 | Murdock | Oct 2003 | A1 |
20030210638 | Yoo et al. | Nov 2003 | A1 |
20040047324 | Diener | Mar 2004 | A1 |
20040053639 | Petite | Mar 2004 | A1 |
20040131125 | Sanderford, Jr. et al. | Jul 2004 | A1 |
20040133917 | Schilling | Jul 2004 | A1 |
20040183687 | Petite | Sep 2004 | A1 |
20040228330 | Kubler et al. | Nov 2004 | A1 |
20050190055 | Petite | Sep 2005 | A1 |
20050195768 | Petite | Sep 2005 | A1 |
20050195775 | Petite | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050243867 | Petite | Nov 2005 | A1 |
20060095876 | Brownrigg et al. | May 2006 | A1 |
20080186898 | Petite | Aug 2008 | A1 |
20090006617 | Petite | Jan 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
0718954 | Jun 1996 | EP |
07144 | Feb 1998 | EP |
1096454 | May 2001 | EP |
2817110 | May 2002 | FR |
2229302 | Sep 1990 | GB |
2247761 | Mar 1992 | GB |
2262683 | Jun 1993 | GB |
2297663 | Aug 1996 | GB |
2310779 | Sep 1997 | GB |
2326002 | Dec 1998 | GB |
2336272 | Oct 1999 | GB |
2352004 | Jan 2001 | GB |
2352590 | Jan 2001 | GB |
60261288 | Dec 1985 | JP |
01255100 | Oct 1989 | JP |
11353573 | Dec 1999 | JP |
200113590 | Apr 2000 | JP |
2001063425 | Mar 2001 | JP |
2001088401 | Apr 2001 | JP |
2001309069 | Nov 2001 | JP |
2001319284 | Nov 2001 | JP |
2001357483 | Dec 2001 | JP |
2002007672 | Jan 2002 | JP |
2002007826 | Jan 2002 | JP |
2002085354 | Mar 2002 | JP |
2002171354 | Jun 2002 | JP |
2001025431 | Apr 2001 | KR |
03021877 | Mar 2003 | NO |
WO 9013197 | Nov 1990 | WO |
WO 9800056 | Jan 1998 | WO |
WO9810393 | Mar 1998 | WO |
WO 9837528 | Aug 1998 | WO |
WO 9913426 | Mar 1999 | WO |
WO0036812 | Jun 2000 | WO |
WO 0115114 | Aug 2000 | WO |
WO 0124109 | Apr 2001 | WO |
WO 0208725 | Jan 2002 | WO |
WO 0208866 | Jan 2002 | WO |
WO 02052521 | Jul 2002 | WO |
WO02052521 | Jul 2002 | WO |
WO 03007264 | Jan 2003 | WO |
WO03007264 | Jan 2003 | WO |
WO 03021877 | Mar 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20020027504 A1 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
60223943 | Aug 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09271517 | Mar 1999 | US |
Child | 09925786 | US | |
Parent | 09439059 | Nov 1999 | US |
Child | 09271517 | US | |
Parent | 09812809 | Mar 2001 | US |
Child | 09439059 | US | |
Parent | 09412895 | Oct 1999 | US |
Child | 09812809 | US |