This application claims priority to and the benefit of Korean Patent Application No. 10-2015-0177462, filed on Dec. 11, 2015, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a system and a method for controlling valve timing of a continuous variable valve duration engine.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
An internal combustion engine combusts mixed gas in which fuel and air are mixed at a predetermined ratio through a set ignition mode to generate power by using explosion pressure.
Generally, a camshaft is driven by a timing belt connected with a crankshaft that converts linear motion of a cylinder by the explosion pressure into rotating motion to actuate an intake valve and an exhaust valve, and while the intake valve is opened, air is suctioned into a combustion chamber, and while an exhaust valve is opened, gas which is combusted in the combustion chamber is exhausted.
To improve the operations of the intake valve and the exhaust valve and thereby improve engine performance, a valve lift and a valve opening/closing time (timing) should be controlled according to a rotational speed or load of an engine. Therefore, a continuous variable valve duration (CVVD) device controlling the opening duration of an intake valve and an exhaust valve of the engine and a continuous variable valve timing (CVVT) device controlling the opening and closing timing of the intake valve and the exhaust valve of the engine have been developed.
The CVVD device may control opening duration of the valve.
In addition, the CVVT device may advance or delay the opening or closing timing of the valve in a state that the opening duration of the valve is fixed. That is, if the opening timing of the valve is determined, the closing timing is automatically determined according to the opening duration of the valve.
However, in case of combining the CVVD device and the CVVT device, both the opening duration and timing of the valve should be simultaneously controlled.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the present disclosure and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
The present disclosure provides a system and a method for controlling valve timing of a continuous variable valve duration engine that simultaneously controls duration and timing of the valve being equipped with a continuous variable duration device and a continuous variable valve timing device disposed on intake valve side and exhaust valve side of a turbo engine vehicle by independently controlling an opening and closing timing of an intake valve and an exhaust valve.
The present disclosure provides a method for controlling valve timing of a turbo engine provided with both a continuous variable duration (CVVD) device and a continuous variable valve timing (CVVT) device at an intake valve and exhaust valve sides respectively. The method may include: classifying as a plurality of control regions depending on an engine speed and an engine load, and the a plurality of control regions may include a first control region when the engine load is less than a first predetermined load; a second control region when the engine load is greater than or equal to the first predetermined load and less than a second predetermined load; a third control region when the engine load is greater than or equal to the second predetermined load and less than a third predetermined load; a fourth region when the engine load is greater than or equal to the second predetermined load and the engine speed is greater than or equal to a first predetermined speed and less than a second predetermined speed; a fifth region when the engine load is greater than or equal to the third predetermined load and the engine speed is less than the first predetermined speed; and a sixth region when the engine load is greater than or equal to the third predetermined load and the engine speed is greater than or equal to the second predetermined speed, and may include applying a maximum duration to an intake valve and controlling a valve overlap by using the exhaust valve in the first control region; applying the maximum duration to the intake valve and exhaust valve in the second control region; advancing an intake valve closing (IVC) timing and an exhaust valve closing (EVC) timing in the third control region; approaching the intake valve closing (IVC) timing to bottom dead center in a fourth control region; controlling a wide open throttle valve (WOT) in order to generate scavenging in the fifth control region; and controlling the wide open throttle valve and the intake valve closing (IVC) timing to reduce the knocking in the sixth control region.
If the control region is in the first control region, then the controller may control an intake valve opening (IVO) timing, the intake valve closing (IVC) timing, and an exhaust valve opening (EVO) to be fixed and an exhaust valve closing (EVC) timing to be set up at a maximum value within sustainable combust stability.
If the control region is in the second control region, then the controller may control an exhaust valve closing (EVC) timing to be late as the engine load is increased in order that the exhaust valve reaches the maximum duration.
If the control region is in the third control region, then the controller may advance the intake valve closing (IVC) timing close to a bottom dead center when the engine speed is less than a predetermined speed, the controller may advance the intake valve closing (IVC) timing to after the bottom dead center when the engine speed is greater than or equal to the predetermined speed.
If the control region is in the third control region, then the controller may advance an exhaust valve closing (EVC) timing close to a top dead center while keeping an exhaust valve opening (EVO) timing up.
if the control region is in the fourth control region, then the controller may control the intake valve closing (IVC) timing close to a bottom dead center and an intake valve opening (IVO) timing and an exhaust valve closing (EVC) timing close to a top dead center.
If the control region is in the fifth control region, then the controller may advance an intake valve opening (IVO) timing to before a top dead center to generate the scavenging and control the intake valve closing (IVC) timing to after a bottom dead center.
If the control region is in the fifth control region, then the controller may delay an exhaust valve opening (EVO) timing to after a bottom dead center so as to reduce interference of exhaust and control an exhaust valve closing (EVC) timing to after a top dead center to maintain catalyst temperature.
If the control region is in the sixth control region, then the controller may advance an exhaust valve opening (EVO) timing to before a bottom dead center to inhibit or prevent an exhaust pumping and to lower boost pressure, and the controller may control an exhaust valve closing (EVC) timing close to a top dead center.
According to another form of the present disclosure, a system for controlling valve timing of a continuous variable valve duration engine provided with a turbo charger may include: a data detector detecting data related to a running state of the vehicle; a camshaft position sensor detecting a position of a camshaft; an intake continuous variable valve duration (CVVD) device controlling an opening time of an intake valve of the engine; an exhaust continuous variable valve duration (CVVD) device controlling an opening time of an exhaust valve of the engine; an intake continuous variable valve timing (CVVT) device controlling an opening and closing timing of the intake valve of the engine; and an exhaust continuous variable valve timing (CVVT) device controlling an opening and closing timing of the exhaust valve of the engine; and a controller configured to classify as a plurality of control regions depending on an engine speed and an engine load based on signals from the data detector and camshaft position sensor and control the intake CVVD device, the exhaust CVVD device, the intake CVVT, and the exhaust CVVT device according to the control region.
The a plurality of control regions may include: a first control region when the engine load is less than a first predetermined load; a second control region when the engine load is greater than or equal to the first predetermined load and less than a second predetermined load; a third control region when the engine load is greater than or equal to the second predetermined load and less than a third predetermined load; a fourth region when the engine load is greater than or equal to the second predetermined load and the engine speed is greater than or equal to a first predetermined speed and less than a second predetermined speed; a fifth region when the engine load is greater than or equal to the third predetermined load and the engine speed is less than the first predetermined speed; and a sixth region when the engine load is greater than or equal to the third predetermined load and the engine speed is greater than or equal to the second predetermined speed, the controller may apply a maximum duration to the intake valve and controlling a valve overlap by the exhaust valve in the first control region, may apply the maximum duration to the intake valve and exhaust valve in the second control region, may advance an intake valve closing (IVC) timing and an exhaust valve closing (EVC) timing in the third control region, may approach the intake valve closing (IVC) timing to bottom dead center in a fourth control region, may control a wide open throttle valve (WOT) in order to generate scavenging in the fifth control region, and may control the wide open throttle valve and the intake valve closing (IVC) timing to reduce the knocking in the sixth control region.
The controller may control an intake valve opening (IVO) timing, the intake valve closing (IVC) timing, and an exhaust valve opening (EVO) to be fixed and an exhaust valve closing (EVC) timing to be set up at maximum value within sustainable combust stability in the first control region.
The controller may control an exhaust valve closing (EVC) timing to be late as the engine load is increased in order that the exhaust valve reaches the maximum duration in the second control region.
The controller may advance the intake valve closing (IVC) timing close to a bottom dead center when the engine speed is less than a predetermined speed, the controller may advance the intake valve closing (IVC) timing to after the bottom dead center when the engine speed is greater than or equal to the predetermined speed in the third control region.
The controller may advance an exhaust valve closing (EVC) timing close to a top dead center while keeping an exhaust valve opening (EVO) timing up in the third control region.
The controller may control the intake valve closing (IVC) timing close to a bottom dead center and an intake valve opening (IVO) timing and an exhaust valve closing (EVC) approaching to a top dead center in the fourth control region.
The controller may advance an intake valve opening (IVO) timing to before a top dead center to generate the scavenging and controls the intake valve closing (IVC) timing to after bottom dead center in the fifth control region.
The controller may delay an exhaust valve opening (EVO) timing to after bottom dead center so as to reduce interference of exhaust and controls an exhaust valve closing (EVC) timing to after a top dead center to maintain catalyst temperature in the fifth control region.
The controller may advance an exhaust valve opening (EVO) timing to before a bottom dead center to inhibit or prevent an exhaust pumping and to lower boost pressure, and the controller controls an exhaust valve closing (EVC) timing close to a top dead center in the sixth control region.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
In order that the disclosure may be well understood, there will now be described various forms thereof, given by way of example, references being made to the accompanying drawings, in which:
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As those skilled in the art would realize, the described forms may be modified in various different ways, all without departing from the spirit or scope of the present disclosure.
Throughout this specification and the claims which follow, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising” will be understood to imply the inclusion of stated elements but not the exclusion of any other elements.
It is understood that the term “vehicle” or “vehicular” or other similar terms as used herein is inclusive of motor vehicles in general including hybrid vehicles, plug-in hybrid electric vehicles, and other alternative fuel vehicles (e.g., fuels derived from resources other than petroleum). As referred to herein, a hybrid electric vehicle is a vehicle that has two or more sources of power, for example a gasoline-powered and electric-powered vehicle.
Additionally, it is understood that some of the methods may be executed by at least one controller.
The term controller refers to a hardware device that includes a memory and a processor configured to execute one or more steps that should be interpreted as its algorithmic structure. The memory is configured to store algorithmic steps, and the processor is specifically configured to execute said algorithmic steps to perform one or more processes which are described further below.
Furthermore, the control logic of the present disclosure may be embodied as non-transitory computer readable media on a computer readable medium containing executable program instructions executed by a processor, a controller, or the like. Examples of computer readable media include, but are not limited to, ROM, RAM, compact disc (CD)-ROMs, magnetic tapes, floppy disks, flash drives, smart cards, and optical data storage devices. The computer readable recording medium can also be distributed in network coupled computer systems so that the computer readable media is stored and executed in a distributed fashion, e.g., by a telematics server or a controller area network (CAN).
An engine may be a turbo engine provided with a turbocharger.
As shown in
The data detector 10 detects data related to a running state of the vehicle for controlling the CVVD devices and the CVVT devices, and includes: a vehicle speed sensor 11, an engine speed sensor 12, an oil temperature sensor 13, an air flow sensor 14, and an accelerator pedal position sensor 15.
The vehicle speed sensor 11 detects a vehicle speed, transmits a corresponding signal to the controller 30, and may be mounted at a wheel of the vehicle.
The engine speed sensor 12 detects a rotation speed of the engine from a change in phase of a crankshaft or camshaft, and transmits a corresponding signal to the controller 30.
The oil temperature sensor (OTS) 13 detects temperature of oil flowing through an oil control valve (OCV), and transmits a corresponding signal to the controller 30.
The oil temperature detected by the oil temperature sensor 13 may be determined by measuring a coolant temperature using a coolant temperature sensor mounted at a coolant passage of an intake manifold. Therefore, in one form of the present disclosure, the oil temperature sensor 13 may include a coolant temperature sensor, and the oil temperature should be understood to include the coolant temperature.
The air flow sensor 14 detects an air amount drawn into the intake manifold, and transmits a corresponding signal to the controller 30.
The accelerator pedal position sensor (APS) 15 detects a degree in which a driver pushes an accelerator pedal, and transmits a corresponding signal to the controller 30. The position value of the accelerator pedal may be 100% when the accelerator pedal is pressed fully, and the position value of the accelerator pedal may be 0% when the accelerator pedal is not pressed at all.
A throttle valve position sensor (TPS) that is mounted on an intake passage may be used instead of the accelerator pedal position sensor 15. Therefore, in one form of the present disclosure, the accelerator pedal position sensor 15 may include a throttle valve position sensor, and the position value of the accelerator pedal should be understood to include an opening value of the throttle valve.
The camshaft position sensor 20 detects a change of a camshaft angle, and transmits a corresponding signal to the controller 30.
As shown in
The intake continuous variable valve duration (CVVD) device 40 controls an opening time of an intake valve of the engine according to a signal from the controller 30, the exhaust continuous variable valve duration (CVVD) device 50 controls an opening time of an exhaust valve of the engine according to a signal from the controller 30.
The intake continuous variable valve timing (CWT) device 45 controls opening and closing timing of the intake valve of the engine according to a signal from the controller 30, and the exhaust continuous variable valve timing (CVVT) device 55 controls opening and closing timing of the exhaust valve of the engine according to a signal from the controller 30.
The controller 30 may classify a plurality of control regions depending on an engine speed and an engine load based on signals from the data detector 10 and camshaft position sensor 20, and controls the intake CVVD and CVVT devices 40 and 45, and the exhaust CVVD and CVVT devices 50 and 55 according to the control regions. Herein, the plurality of control regions may be classified into six regions.
The controller 30 applies a maximum duration to the intake valve and limits a valve overlap by using the exhaust valve in a first control region. The controller 30 applies the maximum duration to the intake and exhaust valves in a second control region, advances an intake valve closing (IVC) timing and exhaust valve closing (EVC) timing in the third control region, approaches the intake valve closing (IVC) timing to bottom dead center (BDC) in a fourth control region, controls a wide open throttle valve (WOT) so as to generate scavenging in a fifth region, controls a wide open throttle valve (WOT) and controls the intake valve closing (IVC) timing to reduce knocking in a sixth region.
For these purposes, the controller 30 may be implemented as at least one processor that is operated by a predetermined program, and the predetermined program may be programmed in order to perform each step of a method for controlling valve timing of a continuous variable valve duration engine according to one form of the present disclosure.
Various forms described herein may be implemented within a recording medium that may be read by a computer or a similar device by using software, hardware, or a combination thereof, for example.
The hardware of the forms described herein may be implemented by using at least one of application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, and electrical units designed to perform any other functions.
The software such as procedures and functions of the forms described in the present disclosure may be implemented by separate software modules. Each of the software modules may perform one or more functions and operations described in the present disclosure. A software code may be implemented by a software application written in an appropriate program language.
Hereinafter, a method for controlling valve timing of a continuous variable valve duration engine according to one form of the present disclosure will be described in detail with reference to
As shown in
The control regions will be described with reference to
The controller 30 may classify control regions as a first control region when the engine load is less than a first predetermined load, a second control region when the engine load is greater than or equal to the first predetermined load and less than a second predetermined load, and a third control region when the engine load is greater than or equal to the second predetermined load and less than a third predetermined load. In addition, the controller 30 may classify control regions as a fourth region when the engine load is greater than or equal to the second predetermined load and the engine speed is greater than or equal to a first predetermined speed and less than a second predetermined speed, a fifth region when the engine load is greater than or equal to the third predetermined load and the engine speed is less than the first predetermined speed, and a sixth region when the engine load is greater than or equal to the third predetermined load and the engine speed is greater than or equal to the second predetermined speed.
Meanwhile, referring the
Although not shown in the drawing, the crank angle which is more than 200 less than 220 is positioned between the curved line of the number 200 and the curved line of the number 220.
In addition, a unit of number designated in an intake valve opening (IVO) timing map is before top dead center (TDC), a unit of number designated in an intake valve closing (IVC) timing map is after bottom dead center (BDC), a unit of number designated in an exhaust valve opening (EVO) timing map is before BDC, and a unit of number designated in an exhaust valve closing (EVC) map is after TDC.
Each region and curved line in the
Referring to the
In the step of S110, if the engine load is less than a first predetermined load, the controller 30 determines that the engine state is under the first control region. At this time, the controller 30 applies a maximum duration to the intake valve and controls the valve overlap between the exhaust valve and intake valve at step S120.
The valve overlap is in a state of that the intake valve is opened and the exhaust valve is not closed yet.
In other words, when the engine is under low load, then the controller 30 may control both the intake valve opening (IVO) timing and the intake valve closing (IVC) timing being fixed such that the intake valve has a maximum duration value.
As shown in
Also, the controller 30 may control the EVO timing to be fixed and set up the EVC timing. Meanwhile, as the valve overlap is increased, the fuel consumption is cut, whereas the combust stability is deteriorated. Accordingly, properly setting the valve overlap is desired. However, according to the present disclosure, it is possible to get highly improved fuel-efficiency by setting optimal valve overlap up, which fixing the EVO timing and controlling the EVC timing to be set up at maximum value within sustainable combust stability. The timing value may be determined by predetermined map.
For example, as shown in
When the current engine state does not belong to the first control region at the step S110, the controller 30 determines whether the current engine state belongs to the second control region at step S130.
In the step of S130, if the engine load is more than or equal to the first predetermined load and less than the second predetermined load, the controller 30 determines that the engine state is under the second control region. At this time, the controller 30 controls both the intake valve and exhaust valve respectively having maximum duration consistently at step S140.
The controller 30 may control the EVC timing to be late as the engine load is increased in order that the exhaust valve reaches the maximum duration. Herein, the controller 30 may fix both the IVO timing and the IVC timing and apply maximum duration to the exhaust valve in company with maximum duration to the intake valve already applied.
Meanwhile, it is desired for naturally aspirated engine to be kept being manifold absolute pressure (MAP), which is the difference between atmospheric pressure and pressure of intake manifold. However, the turbo engine according to one form of the present disclosure doesn't have to be controlled because the turbo engine is boosted and the pressure of the intake manifold is greater than the atmospheric pressure.
When the current engine state does not belong to the second control region at the step S130, the controller 30 determines whether the current engine state belongs to the third control region at step S150.
In the step of S150, if the engine load is more than or equal to the second predetermined load and less than the third predetermined load, the controller 30 determines that the engine state is under the third control region. At this time, the controller 30 advances the IVC timing and EVC timing at step S160.
The IVC timing is controlled at the LIVC position (Late Intake Valve Closing; an angle of 100-110 degrees after BDC, referring the
At this time, the controller 30 may rapidly advance the IVC timing close to BDC when the engine speed is less than the predetermined speed so as to reflect characteristic of the turbo engine, as shown in
Furthermore, as shown in
When the current engine state does not belong to the third control region at the step S150, the controller 30 determines whether the current engine state belongs to the fourth control region at step S170.
If the engine state is under the fourth control region in the S170, the controller 30 controls the IVC timing close to the BDC at step S180.
The fourth control region may be a low boost region that the engine load is greater than or equal to the second predetermined load and the engine speed is greater than or equal to the first predetermined speed and less than the second predetermined speed. For example, the first predetermined speed may be 1500 rpm, and the second predetermined speed may be 2500 rpm.
The controller 30 controls the IVC timing close to BDC in the fourth region due to improving fuel efficiency. In addition, the controller 30 may shorten the valve overlap between the intake valve and the exhaust valve and improve the combust stability by approaching the IVO timing and EVC timing close to the TDC. Accordingly, short intake duration (e.g., 180 degrees) may be used in the fourth control region.
When the current engine state does not belong to the fourth control region at the step S170, the controller 30 determines whether the current engine state belongs to the fifth control region at step S190.
In the S190, if the engine load is greater than or equal to the third predetermined load and the engine speed is greater than or equal to the first predetermined speed, then the controller 30 determines that the engine state is under the fifth control region. At this time, the controller 30 fully opens a throttle valve and controls to generate scavenging at step S200.
In the turbo engine, if the throttle valve is controlled to be wide open (WOT) when the engine speed is less than the first predetermined speed (e.g., 1500 rpm), intake port pressure becomes higher than exhaust port pressure by boosting. Therefore, an effect of a scavenging phenomenon which emits combustion gas of the exhaust is prominent in the turbo engine compared to a natural aspirated engine.
Accordingly, as shown in
Moreover, as shown in
When the current engine state does not belong to the fifth control region at the step S190, the controller 30 determines whether the current engine state belongs to the sixth control region at step S210.
In the step of S210, if the engine load is greater than or equal to the third predetermined load and the engine speed is greater than or equal to the second predetermined speed, then the controller determines the engine state is under the sixth control region. At this time, the controller 30 fully opens a throttle valve and controls IVC timing in order to reduce the knocking at step S220.
When the engine speed is greater than the second predetermined speed (e.g., 2500 rpm) in the sixth control region, the scavenging phenomenon disappears because exhaust port pressure is much higher than intake port pressure. Therefore, as shown in
Meanwhile, when WOT control is performed at a high speed condition, knocking is rarely generated in the natural aspirated engine, on the contrary, knocking may be deteriorated in the turbo engine. Thus, as shown in
As described above, duration and timing of the continuous variable valve are simultaneously controlled, so the engine may be controlled under desired conditions.
That is, since opening timing and closing timing of the intake valve and the exhaust valve are appropriately controlled, thereby improving fuel efficiency under a partial load condition and engine performance under a high load condition. In addition, a starting fuel amount may be reduced by increasing a valid compression ratio, and exhaust gas may be reduced by shortening time for heating a catalyst.
While this present disclosure has been described in connection with what is presently considered to be practical forms, it is to be understood that the present disclosure is not limited to the disclosed forms. On the contrary, it is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0177462 | Dec 2015 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3633555 | Raggi | Jan 1972 | A |
4552112 | Nagao | Nov 1985 | A |
5080055 | Komatsu et al. | Jan 1992 | A |
5121733 | Goto et al. | Jun 1992 | A |
5161497 | Simko et al. | Nov 1992 | A |
5224460 | Havstad et al. | Jul 1993 | A |
5421308 | Hitomi et al. | Jun 1995 | A |
5429100 | Goto et al. | Jul 1995 | A |
5450824 | Yamane et al. | Sep 1995 | A |
5469818 | Yoshioka et al. | Nov 1995 | A |
5553573 | Hara et al. | Sep 1996 | A |
5622144 | Nakamura | Apr 1997 | A |
5687681 | Hara | Nov 1997 | A |
5698779 | Yoshioka | Dec 1997 | A |
5778840 | Murata et al. | Jul 1998 | A |
5809955 | Murata et al. | Sep 1998 | A |
5924334 | Hara et al. | Jul 1999 | A |
5992361 | Murata et al. | Nov 1999 | A |
6318343 | Nakagawa et al. | Nov 2001 | B1 |
6336436 | Miyakubo | Jan 2002 | B1 |
6553949 | Kolmanovsky et al. | Apr 2003 | B1 |
6619242 | Kaneko | Sep 2003 | B2 |
6837199 | Matsuura et al. | Jan 2005 | B2 |
7793625 | Nakamura et al. | Sep 2010 | B2 |
7823550 | Murata | Nov 2010 | B2 |
8205587 | Murata et al. | Jun 2012 | B2 |
8235015 | Murata | Aug 2012 | B2 |
8677957 | Goto et al. | Mar 2014 | B2 |
8887691 | Chen | Nov 2014 | B2 |
9863331 | Ryu et al. | Jan 2018 | B2 |
9863340 | Ryu | Jan 2018 | B2 |
9874153 | Ryu | Jan 2018 | B2 |
9874154 | Ryu | Jan 2018 | B2 |
9879619 | Ryu | Jan 2018 | B2 |
9889838 | Ryu | Feb 2018 | B2 |
9903281 | Ryu | Feb 2018 | B2 |
9932883 | Iwai | Apr 2018 | B2 |
9932908 | Ryu | Apr 2018 | B2 |
9964050 | Ryu et al. | May 2018 | B2 |
10006378 | Ryu et al. | Jun 2018 | B2 |
20010025615 | Nohara et al. | Oct 2001 | A1 |
20010032605 | Kadowaki | Oct 2001 | A1 |
20010050067 | Sato | Dec 2001 | A1 |
20020043243 | Majima | Apr 2002 | A1 |
20030131805 | Yang | Jul 2003 | A1 |
20040099244 | Matsuura et al. | May 2004 | A1 |
20050235933 | Arai et al. | Oct 2005 | A1 |
20060037571 | Machida | Feb 2006 | A1 |
20060266311 | Fujii | Nov 2006 | A1 |
20070181096 | Wagner et al. | Aug 2007 | A1 |
20070272202 | Kuo et al. | Nov 2007 | A1 |
20080029050 | Ichmura et al. | Feb 2008 | A1 |
20080308053 | Tsuchida | Dec 2008 | A1 |
20090007564 | Suzuki et al. | Jan 2009 | A1 |
20090031973 | Murata | Feb 2009 | A1 |
20090241877 | Hoshikawa | Oct 2009 | A1 |
20090272363 | Yun et al. | Nov 2009 | A1 |
20090277434 | Surnilla | Nov 2009 | A1 |
20100023242 | Kawamura | Jan 2010 | A1 |
20100217504 | Fujii et al. | Aug 2010 | A1 |
20120000197 | Maruyama et al. | Jan 2012 | A1 |
20120004826 | Shimo et al. | Jan 2012 | A1 |
20130206104 | Kuhlmeyer et al. | Aug 2013 | A1 |
20130213332 | Yano et al. | Aug 2013 | A1 |
20130276731 | Yano et al. | Oct 2013 | A1 |
20150034052 | Shimizu | Feb 2015 | A1 |
20150114342 | Iwai | Apr 2015 | A1 |
20150167508 | Ha | Jun 2015 | A1 |
20150167509 | Ha | Jun 2015 | A1 |
20160090877 | Kim et al. | Mar 2016 | A1 |
20170082037 | Ryu et al. | Mar 2017 | A1 |
20170089230 | Son et al. | Mar 2017 | A1 |
20170167318 | Ryu | Jun 2017 | A1 |
20170167323 | Son et al. | Jun 2017 | A1 |
20170167393 | Ryu et al. | Jun 2017 | A1 |
20170167394 | Ryu | Jun 2017 | A1 |
20170167396 | Ryu | Jun 2017 | A1 |
20170167398 | Ryu | Jun 2017 | A1 |
20170167399 | Ryu | Jun 2017 | A1 |
20170167400 | Ryu | Jun 2017 | A1 |
20170167401 | Ryu et al. | Jun 2017 | A1 |
20170167402 | Ryu | Jun 2017 | A1 |
20170167403 | Ryu | Jun 2017 | A1 |
20170167404 | Ryu | Jun 2017 | A1 |
20170167405 | Ryu | Jun 2017 | A1 |
20170167406 | Ryu | Jun 2017 | A1 |
20170167407 | Ryu | Jun 2017 | A1 |
20170167408 | Ryu | Jun 2017 | A1 |
20170167409 | Ryu | Jun 2017 | A1 |
20170167414 | Ryu | Jun 2017 | A1 |
20170234243 | Ryu | Aug 2017 | A1 |
20170268435 | Ryu | Sep 2017 | A1 |
20170268436 | Ryu | Sep 2017 | A1 |
20170268437 | Ryu | Sep 2017 | A1 |
20170284235 | Son et al. | Oct 2017 | A1 |
20170284238 | Son et al. | Oct 2017 | A1 |
20180073455 | Barra | Mar 2018 | A1 |
20180100444 | Ryu et al. | Apr 2018 | A1 |
20180100445 | Ryu et al. | Apr 2018 | A1 |
20180100446 | Ryu et al. | Apr 2018 | A1 |
20180100447 | Ryu et al. | Apr 2018 | A1 |
20180100448 | Ryu et al. | Apr 2018 | A1 |
20180100452 | Ryu et al. | Apr 2018 | A1 |
20180100453 | Ryu et al. | Apr 2018 | A1 |
20180100454 | Ryu et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
H07-42514 | Feb 1995 | JP |
H 07-324610 | Dec 1995 | JP |
2005-098150 | Apr 2005 | JP |
2006-046293 | Feb 2006 | JP |
2010-216464 | Sep 2010 | JP |
10-0321206 | Jan 2002 | KR |
10-2009-0013007 | Feb 2009 | KR |
2013-171830 | Nov 2013 | WO |
Entry |
---|
Non-Final Office Action dated May 16, 2018 from the corresponding U.S. Appl. No. 15/258,043, 9 pages. |
Notice of Allowance dated May 16, 2018 from the corresponding U.S. Appl. No. 15/340,742, 52 pages. |
Non-Final Office Action dated Dec. 11, 2018 from the corresponding U.S. Appl. No. 15/258,043, 18 pages. |
Non-Final Office Action dated Sep. 7, 2018 from the corresponding U.S. Appl. No. 15/839,581, 15 pages. |
Non-Final Office Action dated Aug. 24, 2018 from the corresponding U.S. Appl. No. 15/840,079, 41 pages. |
Non-Final Office Action dated Sep. 28, 2018 from the corresponding U.S. Appl. No. 15/839,606, 33 pages. |
Non-Final Office Action dated Oct. 5, 2018 from the corresponding U.S. Appl. No. 15/839,626, 19 pages. |
Non-Final Office Action dated Oct. 10, 2018 from the corresponding U.S. Appl. No. 15/839,596, 29 pages. |
Notice of Allowance dated Mar. 18, 2019 from the corresponding U.S. Appl. No. 15/839,581, 14 pages. |
Final Office Action dated Mar. 18, 2019 from corresponding U.S. Appl. No. 15/840,079, 31 pages. |
Extended European Search Report dated Mar. 4, 2019 from the corresponding European Application No. 18201117.1 (9 pages). |
Final Office Action dated Apr. 11, 2019 from corresponding U.S. Appl. No. 15/839,606 (13 pages). |
Number | Date | Country | |
---|---|---|---|
20170167393 A1 | Jun 2017 | US |