The present invention relates to fluoroscopic image sequences, and more particularly to detecting coronary vessel layers from fluoroscopic image sequences.
Angiography is a medical imaging technique in which X-ray images are used to visualize internal blood filled structures, such as arteries, veins, and the heart chambers. Since blood has the same radiodensity as the surrounding tissues, these blood-filled structures cannot be differentiated from the surrounding tissue using conventional radiology. Thus, in angiography, a contrast agent is added to the blood, usually via a catheter, to make the blood vessels visible via X-ray. In many angiography procedures, X-ray images are taken over a period of time, which results in a sequence of fluoroscopic images, which show the motion of the blood over the period of time. Such fluoroscopic image sequences contain useful information that can be difficult to decipher due to the collapsing of 3-dimensional information into the 2-dimensional images.
In traditional computer imaging problems of motion estimation, occlusion handling or motion segmentation are typically the main concerns. Accordingly, traditional techniques for extracting objects of interest from image sequences typically use intensity based approaches to differentiate between objects in the image sequences. However, such traditional techniques can yield erroneous results in medical image sequences, such as fluoroscopic image sequences, which are generated using the phenomenon of transparency. Since various internal structures have different levels of transparency in the fluoroscopic images, these structures can overlap, and it may be difficult to accurately distinguish between these structures in the fluoroscopic image sequences using the traditional intensity based approaches.
The present invention provides a method and system for extracting coronary vessels from fluoroscopic image sequences using coronary digital subtraction angiography (DSA).
In one embodiment of the present invention, a set of mask images is received. The set of mask images is a sequence of fluoroscopic images of a coronary region taken over at least one full cardiac cycle with no contrast medium injected into the vessels. A sequence of contrast images is then received. The contrast images are fluoroscopic images of the coronary region with a contrast medium injected into the coronary vessels. For each contrast image, approximate vessel regions are detected in the contrast image using learning-based vessel segment detection and a background region of the contrast image is determined based on the detected vessel regions. Background motion is estimated between every mask image and the background region of the contrast image by estimating a motion field between the mask image and the background image and performing covariance-based filtering over the estimated motion field. The mask image is then warped based on the estimated background motion to generate an estimated background layer. One of the mask images that generate the estimated background layer that best matches the background region of the contrast image is selected. The estimated background layer is subtracted from the contrast image to extract a coronary vessel layer for the contrast image.
These and other advantages of the invention will be apparent to those of ordinary skill in the art by reference to the following detailed description and the accompanying drawings.
The present invention is directed to a method for detecting coronary vessels from fluoroscopic images. Embodiments of the present invention are described herein to give a visual understanding of the coronary vessel extraction method. A digital image is often composed of digital representations of one or more objects (or shapes). The digital representation of an object is often described herein in terms of identifying and manipulating the objects. Such manipulations are virtual manipulations accomplished in the memory or other circuitry/hardware of a computer system. Accordingly, is to be understood that embodiments of the present invention may be performed within a computer system using data stored within the computer system.
Digital subtraction angiography (DSA) is a technique for visualizing blood vessels in the human body. In DSA, a sequence of fluoroscopic images, referred to as contrast images, is acquired to show the passage of contrast medium that is injected into the vessel of interest. A sequence of fluoroscopic images contains multiple 2D X-ray images obtained in real time. The X-ray images record a certain field of view of a time period. Accordingly, motion of objects within the field of view can be observed in a sequence of fluoroscopic images. The background structures are largely removed from the contrast images by subtracting a mask image, which is an image acquired before contrast injection. However, the appearance of background structures in a contrast image and a mask image can differ due to fluctuation of radiation, acquisition noise, and patient motion. In traditional DSA where the mask image is directly subtracted from the contrast image, the difference between the background structures in the contrast images and the mask image can cause errors in detecting the blood vessels.
The main cause of differences in the appearance of background structures in a contrast image and a mask image is patient motion. Motion correction for DSA can involve various techniques for image motion estimation, where the motion between a contrast image and a mask image is obtained by warping one image to match the other. Commonly used matching criteria for motion estimation include optimization of various similarity or error measures, such as normalized cross-correlation, sum of absolute values of differences, variance of differences, etc. In the case of coronary DSA, cardiac motion causes more severe differences between contrast images and mask images. Furthermore, because of the complexity of cardiac motion, the commonly used matching criteria are often violated in image regions of coronary vessels, making it more difficult to estimate the background motion around coronary vessels in coronary DSA.
Embodiments of the present invention provide a viable approach to coronary DSA that combines robust motion estimation and learning-based object detection to achieve fully automatic and real-time coronary vessel subtraction. Embodiments of the present invention formulate coronary DSA as a problem to remove dynamic background structures from a contrast image. Pixel values in X-ray images are determined by the energy flux incident on the detector, which is commonly described as an exponential attenuation function as the X-ray beams pass through the layers of tissue. As a result, X-ray images are often dealt with in the logarithmic space and modeled as a linear superposition of multiple layers. In the case of coronary DSA, in an advantageous implementation of the present invention, only two layers are considered, a coronary layer and a background layer. The coronary layer is defined as a transparent image layer including coronary arteries filled with contrast medium. The background layer is defined as a transparent layer including background structures. A contrast image in a fluoroscopic sequence is denoted herein as It(x), its coronary layer is denoted as IC,t(x), and it background layer is denoted as IB,t(x), where t is a time index and x is a pixel location. The formulation of layer composition after logarithmic post-processing can be expressed as:
I
t(x)=IC,t(x)+IB,t(x). (1)
The goal of coronary DSA is to remove the background layer to extract the coronary arteries while both layers are undergoing cardiac and respiratory motion.
At step 102, multiple mask images are received. The mask images are fluoroscopic or X-ray images of a coronary region of a patient without any contrast agent injected into the coronary vessels. The mask images are a sequence taken over the course of at least one cardiac cycle (heartbeat). Accordingly, the cardiac motion over the course of a full cardiac cycle is implicitly embedded in the set of mask images, such that background structures in various cardiac phases are captured in the set of mask images. The mask images can be received by acquiring the mask images directly from an X-ray scanning device. It is also possible that the mask images can be received by loading mask images that were previously acquired images and stored, for example, on a computer readable medium or storage of a computer system. When the set of mask images is received, the mask images are stored on a memory or storage of a computer system that is implementing the method of
At step 104, a sequence of contrast images is received. The sequence of contrast images can be electronic data representing fluoroscopic or X-ray images resulting from an X-ray procedure, such as an angiograph, in which a contrast agent is injected into the coronary vessels. The sequence of contrast images are images of the coronary region taken at a regular interval over a time frame. Each image in the sequence can be referred to as a frame. The contrast images can be received directly from an X-ray scanning device, or previously stored contrast images can be loaded. The sequence of contrast images are processed frame by frame to independently extract the coronary vessels for each contrast image in the sequence. Accordingly, steps 106-116 of
At step 106, vessel regions in the contrast image are detected using learning-based vessel segment detection. In order to detect vessel regions in the contrast image, a vessel segment detector can be implemented using a binary classifier that separated the class of vessel images from the class of non-vessel images. The binary classifier is learned from a set of vessel images and non-vessel images using a probabilistic boosting tree (PBT) algorithm. To prepare a set of training samples, coronary vessels are manually annotated in a number of contrast images, local image patches containing the annotated vessels are used as the positive set of training samples, and patches away from the vessels are used as the negative training samples. The PBT algorithm learns a binary decision tree, where each node of the tree is a binary classifier by itself and is learned using the Adaboost algorithm. An extended set of Haar features can be used for training the boosted classifiers.
Given an image patch Ipatch, the trained binary classifier calculates the posterior probability that a vessel segment appears in this image patch p(vessel\Ipatch). A detected vessel region can be defined as the image area where vessel segments are detected with high probabilities (i.e., greater than a certain threshold). The remaining area of the image includes primarily background structures and is defined as the background region. To detect vessel segments with different thicknesses, the contrast image can be rescaled several times to generate a coarse-to-fine image pyramid, and the vessel segmentation detection can be performed at multiple scales. At each scale, in order to speed up vessel detection for a contrast image, it is possible to apply a set of efficient steerable filters to identify ridge features and their different orientations in the contrast image, and then perform the vessel detection using the binary classifier only at the ridge features.
Image 206 of
To speed up the process of vessel segment detection, ridge-like image structures are first located in the contrast image through the use of steerable filters, as described above and illustrated in
Returning to
Effective motion compensation is critical for coronary DSA. In particular there is a mixture of cardiac and respiratory motion between the mask image Im and the contrast image It. Accurate parametric methods are often difficult to obtain for such complex motion. Instead, embodiments of the present invention resort to nonparametric estimation of a dense motion field v(x) from the image data. In order to achieve robust motion estimation with sub-pixel accuracy, the present invention modify the well-known Lucas-Kanade algorithm with an additional step of convariance-based fusion to smooth motion estimation, and propose a new motion estimation technique referred to herein as Lucas-Kanade-Fusion (LKF).
As described above, the background region Ωt of the contrast image It is determined by subtracting the detected vessel segments from It. For a pixel x ∈ Ωt, the goal is to find the corresponding displacement vector v(x) such that It matches Im(x+v(x)). During breathing and cardiac movements, different layers of tissues and bone structures undergo different motion. This leads to multiple layers of transparent motion in their 2D projection. Thus, strictly speaking, a perfect matching of coronary images acquired at different times, i.e., It(x)=Im(x+v(x)), does not exist within a single layer of motion. However, instead of attempting to recover the true motion, embodiments of the present invention eliminate background structures through motion compensation. For this purpose, the major motion at each location x ∈ Ωt that accounts for the most significant mismatch between It(x) and Im(x) is estimated.
The Lucas-Kanade algorithm assumes that the unknown displacement v(x) is constant within a local neighborhood R(x)={xi: i=1, . . . ,n} of x, and the displacement vector is calculated by minimizing the following error function:
In an iterative procedure, incremental motion δv=[δvx,δvy]T is solved through linear equations after applying Taylor expansion:
where Im,w(x)=Im(x+v(x)) is the warped image of Im. The solution to Equation (3) can be expressed as:
(x)=(ATA)−1ATb (4)
and ∇xI=└δxI,δyI┘ is the image gradients. The Lucas-Kanade algorithm calculates the displacement vector δv from a local neighborhood. However, one issue with this solution is that the confidence of this calculation is not taken into account. In homogeneous image regions, the solution becomes degenerate due to lack of textures, which is not unusual in coronary fluoroscopic images.
According to an advantageous embodiment of the present invention, in order to overcome this issue, the confidence of the motion estimation is characterized with a covariance term and the new LKF technique has been developed by the present inventors to perform covariance-based filtering over the motion field. Note that is the minimum-mean-square-error (MMSE) estimate of δv in the least square formulation:
argminδv⊕Aδv−b∥2. (5)
According to estimation theory, the covariance of this estimate can be written as:
In estimation theory, the uncertainty of an estimate is characterized by its covariance. Unreliable motion estimation has a covariance matrix with large eigenvalues, which occurs in homogenous image regions with lack of textures. To enforce global smoothness and consistency over the motion field, a robust fusion technique is used to smooth out the initial motion field calculated using the Lucas-Kanade algorithm. Assuming that the initial displacement vectors (x) and the associated covariance matrices C((x)) have been calculated using Equations (4) and (6), the fusion technique performs a covariance-weighted spatial filtering on the motion field as follows, where the initial estimates of the motion vectors are weighted according to their reliability:
where {xi} are local estimates of x. As Equation (8) indicates, the covariance-based filtering imposes lower weights on motion estimates with large uncertainty and higher weights on motion estimates with small uncertainty. This procedure effectively removes outliers and unreliable motion vectors in the initial motion field and improves the smoothness and spatial consistency of the resulting motion field.
The method of
Returning to
I
B,t(x)=Im(x+). (9)
Image 210 of
At step 112, the coronary vessel layer is extracted from the contrast image by subtracting the estimated background layer (i.e., the warped mask image) from the contrast image. Accordingly, once the estimated background layer IB,t(x) is generated, the coronary layer IC,t(x), is generated by subtracting the motion compensated background layer, such that:
I
C,t(x)=It(x)−IB,t(x) (10)
Image 212 of
At step 114, a coronary enhanced image is generated. Once the coronary vessel layers are extracted from the contrast image, it is possible to virtually enhance the coronary vessels in the contrast image. This is a direct clinical application of the coronary DSA method can save contrast medium and lower radiation. In order to enhance the coronary vessels, a coronary enhanced image is generated by weighting the coronary layer and combing the weighted coronary layer with the estimated background layer. This decreases the brightness of pixels in the extracted coronary vessel layer in the original contrast image, making the coronary vessels appear darker. Accordingly, an enhanced contrast image can be obtained as:
I
enhanced,t(x)=α·IC,t(x)+IB,t(x) (11)
Image 214 of
At step 116, the extracted coronary vessel layer and the coronary enhanced image are output. The extracted coronary vessel layer can be output by displaying the coronary vessel layer as an image on a display device. Similarly, the coronary enhanced image can be output by displaying the coronary enhance image on a display device. The coronary vessel layer and coronary enhanced image may also be output by storing the coronary vessel layer and/or the coronary enhanced image, for example, in a computer readable medium or storage or memory of a computer system.
The above-described methods for extracting coronary vessels from a sequence of fluoroscopic contrast images may be implemented on a computer using well-known computer processors, memory units, storage devices, computer software, and other components. A high level block diagram of such a computer is illustrated in
The foregoing Detailed Description is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention. Those skilled in the art could implement various other feature combinations without departing from the scope and spirit of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/086,505, filed Aug. 6, 2008, the disclosure of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61086505 | Aug 2008 | US |