In
In
In
In
In
In the following discussion, the terms “certain embodiments”, “an embodiment”, “embodiment”, “embodiments”, “the embodiment”, “the embodiments”, “one or more embodiments”, “some embodiments”, “one embodiment”, and other variants thereof, mean one or more (but not all) embodiments unless expressly specified otherwise. The terms “including”, “comprising”, “having” and variants thereof mean “including but not limited to”, unless expressly specified otherwise. The enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a”, “an” and “the” mean “one or more”, unless expressly specified otherwise.
Referring to
Referring now to
In the xml rendition of active content, following the description of nodes (
Together, the nodes and edges describe a complete directed graph containing all questions and answers that lead to a diagnosis and resolution of the problem or problem family of the active content document.
Referring back to
Referring now to
The present invention identifies that search methodologies may be beneficially implemented to search the aforementioned active content, or a mixture of active content and traditional documents. Searches of knowledge documents may be performed in either a self-help or call center environment, wherein one may enter search terms or a description of one's problem to perform a keyword search that returns matching documents. In this manner, users may be encouraged to provide reasonable descriptions of their problems in a search query and then to use semantic analysis to discern when questions being called out by the active content are either explicitly or implicitly being answered. Because there maybe some doubt as to whether the answers believed to be implied by the search are in fact implied by the search, a user can be presented with the answers in a way such that the answers can readily be changed (i.e. as in the previously discussed
Referring now to
Referring now to
Accordingly, one or more of the embodiments described herein may as well be implemented by those skilled in the art as a method, apparatus or article of manufacture involving software, firmware, micro-code, hardware and/or combinations thereof. Certain embodiments of the present invention in system 501 may reside on and/or may be implemented in a processor, a memory, storage, circuit, hardware, firmware, software, etc. In one embodiment, the present invention may be deployed as computing instructions by a person or automated processing integrating computer-readable code into a computing system, wherein the code in combination with the computing system is enabled to perform the operations of the described embodiments. Certain ones of the operations described herein may be performed in parallel as well as sequentially. In alternative embodiments, certain of the operations may be performed in a different order, modified or removed. Furthermore, some of the elements have been described separately for purposes of illustration. Such components may be integrated into a fewer number of components or divided into a larger number of components. Additionally, certain operations described as performed by a specific component may be performed by other components.
The term “article of manufacture” as used herein refers to code or logic implemented in a medium, where such medium may comprise hardware logic [e.g., an integrated circuit chip, Programmable Gate Array (PGA), Application Specific Integrated Circuit (ASIC), etc.] or a computer readable medium, such as magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs, optical disks, etc.), volatile and non-volatile memory devices [e.g., Electrically Erasable Programmable Read Only Memory (EEPROM), Read Only Memory (ROM), Programmable Read Only Memory (PROM), Random Access Memory (RAM), Dynamic Random Access Memory (DRAM), Static Random Access Memory (SRAM), flash, firmware, programmable logic, etc.]. Code in the computer readable medium is accessed and executed by a processor. The medium in which the code or logic is encoded may also comprise transmission signals propagating through space or a transmission media, such as an optical fiber, copper wire, etc. The transmission signal in which the code or logic is encoded may further comprise a wireless signal, satellite transmission, radio waves, infrared signals, Bluetooth, etc. The transmission signal in which the code or logic is encoded is capable of being transmitted by a transmitting station and received by a receiving station, where the code or logic encoded in the transmission signal may be decoded and stored in hardware or a computer readable medium at the receiving and transmitting stations or devices. Additionally, the “article of manufacture” may comprise a combination of hardware and software components in which the code is embodied, processed, and executed. Of course, those skilled in the art will recognize that many modifications may be made without departing from the scope of embodiments, and that an article of manufacture may comprise any information bearing medium. For example, an article of manufacture comprises a storage medium having stored therein instructions that when executed by a machine results in operations being performed.
Certain embodiments can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In a preferred embodiment, the invention is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc. Furthermore, certain embodiments can take the form of a computer program product accessible from a computer usable or computer readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer usable or computer readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk—read only memory (CD-ROM), compact disk—read/write (CD-R/W) and DVD.
Elements of the invention that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more intermediaries. Additionally, a description of an embodiment with several elements in communication with each other does not necessarily imply that all such components are required. On the contrary a variety of optional elements are described to illustrate the wide variety of possible embodiments.
Further, although process steps, method steps, algorithms or the like may be described in a sequential order, such processes, methods and algorithms may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps be performed in that order. The steps of processes described herein may be performed in any order practical. Further, some steps may be performed simultaneously, in parallel, or concurrently.
Therefore, the foregoing description of the embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Many modifications and variations are possible in light of the above teaching.