Field of the Invention
The present invention relates generally to medical devices and methods, and more specifically to improved devices and methods for controlling an ablation zone created by a device used to treat humans or other animal patients. The device may be used to treat atrial fibrillation.
The condition of atrial fibrillation (AF) is characterized by the abnormal (usually very rapid) beating of left atrium of the heart which is out of synch with the normal synchronous movement (“normal sinus rhythm”) of the heart muscle. In normal sinus rhythm, the electrical impulses originate in the sino-atrial node (“SA node”) which resides in the right atrium. The abnormal beating of the atrial heart muscle is known as fibrillation and is caused by electrical impulses originating instead in the pulmonary veins (“PV”) [Haissaguerre, M. et al., Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins, New England J Med., Vol. 339:659-666].
There are pharmacological treatments for this condition with varying degrees of success. In addition, there are surgical interventions aimed at removing the aberrant electrical pathways from the PV to the left atrium (“LA”) such as the Cox-Maze III Procedure [J. L. Cox et al., The development of the Maze procedure for the treatment of atrial fibrillation, Seminars in Thoracic & Cardiovascular Surgery, 2000; 12: 2-14; J. L. Cox et al., Electrophysiologic basis, surgical development, and clinical results of the maze procedure for atrial flutter and atrial fibrillation, Advances in Cardiac Surgery, 1995; 6: 1-67; and J. L. Cox et al., Modification of the maze procedure for atrial flutter and atrial fibrillation. II, Surgical technique of the maze ITT procedure, Journal of Thoracic & Cardiovascular Surgery, 1995; 2110:485-95]. This procedure is shown to be 99% effective [J. L. Cox, N. Ad, T. Palazzo, et al. Current status of the Maze procedure for the treatment of atrial fibrillation, Seminars in Thoracic & Cardiovascular Surgery, 2000; 12: 15-19] but requires special surgical skills and is time consuming.
There has been considerable effort to copy the Cox-Maze procedure for a less invasive percutaneous catheter-based approach. Less invasive treatments have been developed which involve use of some form of energy to ablate (or kill) the tissue surrounding the aberrant focal point where the abnormal signals originate in the PV. The most common methodology is the use of radio-frequency (“RF”) electrical energy to heat the muscle tissue and thereby ablate it. The aberrant electrical impulses are then prevented from traveling from the PV to the atrium (achieving conduction block within the heart tissue) and thus avoiding the fibrillation of the atrial muscle. Other energy sources, such as microwave, laser, and ultrasound have been utilized to achieve the conduction block. In addition, techniques such as cryoablation, administration of ethanol, and the like have also been used.
There has been considerable effort in developing catheter based systems for the treatment of AF using radiofrequency (RF) energy. One such method is described in U.S. Pat. No. 6,064,902 to Haissaguerre et al. In this approach, a catheter is made of distal and proximal electrodes at the tip. The catheter can be bent in a J shape and positioned inside a pulmonary vein. The tissue of the inner wall of the PV is ablated in an attempt to kill the source of the aberrant heart activity. Other RF based catheters are described in US Patents U.S. Pat. No. 6,814,733 to Schwartz et al., U.S. Pat. No. 6,996,908 to Maguire et al., U.S. Pat. No. 6,955,173 to Lesh, and U.S. Pat. No. 6,949,097 to Stewart et al.
Another source used in ablation is microwave energy. One such device is described by Dr. Mark Levinson [(Endocardial Microwave Ablation: A New Surgical Approach for Atrial Fibrillation; The Heart Surgery Forum, 2006] and Maessen et al. [Beating heart surgical treatment of atrial fibrillation with microwave ablation. Ann Thorac Surg 74: 1160-8, 2002]. This intraoperative device consists of a probe with a malleable antenna which has the ability to ablate the atrial tissue. Other microwave based catheters are described in U.S. Pat. No. 4,641,649 to Walinsky; U.S. Pat. No. 5,246,438 to Langberg; U.S. Pat. No. 5,405,346 to Grundy et al.; and U.S. Pat. No. 5,314,466 to Stem et al.
Another catheter based method utilizes the cryogenic technique where the tissue of the atrium is frozen below a temperature of -60 degrees C. This results in killing of the tissue in the vicinity of the PV thereby eliminating the pathway for the aberrant signals causing the AF [A. M. Gillinov, E. H. Blackstone and P. M. McCarthy, Atrial fibrillation: current surgical options and their assessment, Annals of Thoracic Surgery 2002; 74:2210-7]. Cryo-based techniques have been a part of the partial Maze procedures [Sueda T., Nagata H., Orihashi K. et al., Efficacy of a simple left atrial procedure for chronic atrial fibrillation in mitral valve operations, Ann Thorac Surg 1997; 63:1070-1075; and Sueda T., Nagata H., Shikata H. et al.; Simple left atrial procedure for chronic atrial fibrillation associated with mitral valve disease, Ann Thorac Surg 1996; 62: 1796-1800]. More recently, Dr. Cox and his group [Nathan H., Eliakim M., The junction between the left atrium and the pulmonary veins, An anatomic study of human hearts, Circulation 1966; 34:412-422, and Cox J. L., Schuessler R. B., Boineau J. P., The development of the Maze procedure for the treatment of atrial fibrillation, Semin Thorac Cardiovasc Surg 2000; 12:2-14] have used cryoprobes (cryo-Maze) to duplicate the essentials of the Cox-Maze III procedure. Other cryo-based devices are described in U.S. Pat. No. 6,929,639 and U.S. Pat. No. 6,666,858 to Lafintaine and U.S. Pat. No. 6,161,543 to Cox et al.
More recent approaches for the AF treatment involve the use of ultrasound energy. The target tissue of the region surrounding the pulmonary vein is heated with ultrasound energy emitted by one or more ultrasound transducers. One such approach is described by Lesh et al. in U.S. Pat. No. 6,502,576. Here the catheter distal tip portion is equipped with a balloon which contains an ultrasound element. The balloon serves as an anchoring means to secure the tip of the catheter in the pulmonary vein. The balloon portion of the catheter is positioned in the selected pulmonary vein and the balloon is inflated with a fluid which is transparent to ultrasound energy. The transducer emits the ultrasound energy which travels to the target tissue in or near the pulmonary vein and ablates it. The intended therapy is to destroy the electrical conduction path around a pulmonary vein and thereby restore the normal sinus rhythm. The therapy involves the creation of a multiplicity of lesions around individual pulmonary veins as required. The inventors describe various configurations for the energy emitter and the anchoring mechanisms.
Yet another catheter device using ultrasound energy is described by Gentry et al. [Integrated Catheter for 3-D Intracardiac Echocardiography and Ultrasound Ablation, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 51, No. 7, pp 799807]. Here the catheter tip is made of an array of ultrasound elements in a grid pattern for the purpose of creating a three dimensional image of the target tissue. An ablating ultrasound transducer is provided which is in the shape of a ring which encircles the imaging grid. The ablating transducer emits a ring of ultrasound energy at 10 MHz frequency. In a separate publication [Medical Device Link, Medical Device and Diagnostic Industry, February 2006], in the description of the device, the authors assert that the pulmonary veins can be imaged.
While these devices and methods are promising, improved devices and methods for creating a heated zone of tissue, such as an ablation zone are needed. Furthermore, it would also be desirable if such devices could create single or multiple ablation zones to block abnormal electrical activity in the heart in order to lessen or prevent atrial fibrillation. Such devices and methods should be easy to use, cost effective and simple to manufacture.
Description of Background Art
Other devices based on ultrasound energy to create circumferential lesions arc described in U.S. Pat. Nos. 6,997,925; 6,966,908; 6,964,660; 6,954,977; 6,953,460; 6,652,515; 6,547,788; and 6,514,249 to Maguire et al.; U.S. Pat. No. 6,955,173; 6,052,576; 6,305,378; 6,164,283; and 6,012,457 to Lesh;U.S. Pat. No. 6,872,205; 6,416,511; 6,254,599; 6,245,064; and 6,024,740; to Lesh et al.; U.S. Pat. No. 6,383,151; 6,117,101; and WO 99/02096 to Diederich et al.; U.S. Pat. No. 6,635,054 to Fjield et al.; U.S. Pat. No. 6,780,183 to Jimenez et al.; U.S. Pat. No. 6,605,084 to Acker et al.; U.S. Pat. No. 5,295,484 to Marcus et al.; and WO 2005/117734 to Wong et al.
In all above approaches, the inventions involve the ablation of tissue inside a pulmonary vein or at the location of the ostium. The anchoring mechanisms engage the inside lumen of the target pulmonary vein. In all these approaches, the anchor is placed inside one vein, and the ablation is done one vein at a time.
The present invention relates generally to medical devices and methods, and more specifically to medical devices and methods used to deliver energy to tissue as a treatment for atrial fibrillation and other medical conditions.
In a first aspect of the present invention, an ablation device for treating atrial fibrillation in a patient comprises a housing having a proximal end, a distal end and an energy source adjacent the distal end of the housing. The energy source has an active portion and an inactive portion. The active portion is adapted to deliver energy to tissue when the energy source is energized thereby creating a partial or complete zone of ablation in the tissue. This ablation zone blocks abnormal electrical activity through the tissue and reduces or eliminates atrial fibrillation in the patient. The inactive portion of the energy source does not emit energy or emits substantially no energy when the energy source is energized.
The housing may also comprise an elongate shaft coupled with the proximal end of the housing. The energy source may comprise an ultrasound transducer. The ultrasound transducer may have a flat distal face, a circular shape or it have a concave or convex surface. The ultrasound transducer may have an acoustic matching layer disposed on its front face. The matching layer may be adapted to reduce reflection of the energy emitted from the transducer back toward the transducer. The inactive portion of the energy source may comprise an aperture in the energy source. In other embodiments, the inactive portion of the energy source may comprise a first material and the active portion may comprise a second material different than the first material. The energy source may comprise a plurality of inactive portions. The energy source may comprise a plurality of annular transducers concentrically disposed around one another or a grid of transducers.
The energy source may deliver ultrasound energy or radiofrequency energy, microwave energy, photonic energy, thermal energy, and cryogenic energy. The energy may be delivered in a beam and the beam may be positioned an angle of between 40 degrees and 140 degrees relative to the surface of the tissue. The zone of ablation may comprise a transmural lesion. The zone of ablation may comprise a linear, circular or elliptical ablation path. A distal end of the energy source may be recessed from the distal end of the housing.
The device may comprise a sensor near the distal end of the housing. The sensor may be adapted to detect characteristics of the tissue to be treated such as thickness or temperature, or the sensor may be able to determine the distance between the energy source and a surface of the tissue. The sensor may be a thermocouple or thermistor. The device may also include a processor for controlling the energy source and the treated tissue may comprise a pulmonary vein. The device may further comprise a coolant source having a coolant, and the coolant flows through the housing and cools the tissue. The device may also comprise a backing element coupled with the energy source. The backing element may provide a heat sink for the energy source. The backing may also create a reflective surface adapted to reflect energy from the energy source toward the distal end of the housing. In some embodiments, the device may further comprise a lens coupled with the energy source and adapted to focus the beam of energy.
In another aspect of the present invention, a method of ablating tissue in a patient as a treatment for atrial fibrillation comprises providing a housing having a proximal end, a distal end, and an energy source adjacent the distal end. Energizing the energy source causes the energy source to deliver energy to the tissue. The energy source comprises an active portion and an inactive portion. The active portion delivers the energy when the energy source is energized, and the inactive portion does not emit energy or emits substantially no energy when the energy source is energized. A zone of ablation is created that blocks abnormal electrical activity in the tissue thereby reducing or eliminating atrial fibrillation in the patient.
The energy source may comprise an ultrasound transducer. The energy source may deliver one of ultrasound energy, radiofrequency energy, microwave energy, photonic energy, thermal energy, and cryogenic energy to the tissue. The energy source may comprise a first transducer and a second transducer, and the method may further comprise energizing the first transducer and energizing the second transducer. The first transducer may be energized differently than the second transducer such that the first transducer emits a first energy beam different than a second energy beam emitted by the second transducer. The first transducer may be operated in a therapeutic mode and the second transducer may be operated in a diagnostic mode. Energizing the energy source may comprise adjusting one of frequency, voltage, duty cycle, and power level of the energy delivered to the energy source. The energy delivered to the tissue may have a frequency in the range of 5 to 25 MHz. The energy source may be energized with a voltage ranging from 5 to 200 volts peak to peak.
The zone of ablation may comprise a transmural lesion, a linear ablation path or a circular or elliptical ablation path. Creating the zone of ablation may comprise rotating the energy source about an axis. The zone of ablation may comprise a tear drop shaped region of the tissue. The zone of ablation may have a depth of approximately 1 mm to 20 mm.
The method may further comprise determining gap distance with a sensor coupled with the housing, the gap distance being the distance extending between the energy source and a surface of the tissue. In some embodiments, the method may further comprise maintaining the gap distance substantially constant. The method may also comprise determining thickness or other characteristics of the tissue with a sensor coupled with the housing. In some embodiments, the sensor comprises a portion of the energy source. The method may comprise sensing temperature of the tissue with a sensor coupled with the housing. A processor may be used to control the energy source. The method also may comprise sensing of the ablated tissue and thus progress of lesion formation may also be monitored.
The tissue may comprise a pulmonary vein. The method may also comprise positioning the housing in the left atrium of the patient's heart. The angle between the energy source and the tissue surface may be adjusted and the tissue may also be cooled. Cooling the tissue prevents unwanted tissue damage and also controls the shape of the ablation zone. The energy source may also be cooled, for example, with a cooling fluid that flows past the energy source. The shape of the zone of ablation may be controlled.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
The following description of preferred embodiments of the invention is not intended to limit the invention to these embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
The Energy Source.
As shown in
As shown in
Furthermore, the housing 16, and the energy source 12 within it, are preferably moved along an ablation path such that the energy source 12 provides a partial or complete zone of ablation along the ablation path. The zone of ablation along the ablation path preferably has any suitable geometry to provide therapy, such as providing a conduction block for treatment of atrial fibrillation in a patient. The zone of ablation along the ablation path may alternatively provide any other suitable therapy for a patient. Alternatively, the ablation could be a single spot or a very small circle, ablating a focal source of electrical activity. A linear ablation path is preferably created by moving the housing 16, and the energy source 12 within it, along an X, Y, and/or Z-axis. As shown in
As shown in
The energy source 12 is preferably an ultrasound transducer that emits an ultrasound beam, but may alternatively be any suitable energy source that functions to provide a source of ablation energy. Suitable sources of ablation energy include but are not limited to, radio frequency (RF) energy, microwaves, photonic energy, and thermal energy. The therapy could alternatively be achieved using cooled sources (e.g., cryogenic fluid). The energy delivery system 10 preferably includes a single energy source 12, but may alternatively include any suitable number of energy sources 12. The ultrasound transducer is preferably made of a piezoelectric material such as PZT (lead zirconate titanate) or PVDF (polyvinylidine difluoride), or any other suitable ultrasound emitting material. For simplicity, the front face of the transducer is preferably flat, but may alternatively have a more complex geometry such as either concave or convex to achieve an effect of a lens or to assist in apodization selectively decreasing the vibration of a portion or portions of the surface of the transducer and management of the propagation of the energy beam 20. The transducer preferably has a circular geometry, but may alternatively be elliptical, polygonal, or any other suitable shape. The transducer may further include coating layers which are preferably thin layer(s) of a suitable material. Some suitable transducer coating materials may include graphite, metal-filled graphite, gold, stainless steel, nickel-cadmium, silver, a metal alloy, and amalgams or composites of suitable materials. For example, as shown in
The energy source 12 is preferably one of several variations. In a first variation, as shown in
The inactive portion 42 is preferably a hole or gap defined by the energy source 12′. In this variation, a coolant source may be coupled to, or in the case of a coolant fluid, it may flow through the hole or gap defined by the energy source 12′ to further cool and regulate the temperature of the energy source 12′. The inactive portion 42 may alternatively be made of a material with different material properties from that of the energy source 12′. For example, the material is preferably a metal, such as copper, which functions to draw or conduct heat away from the energy source 12. Alternatively, the inactive portion is made from the same material as the energy source 12, but with the electrode plating removed or disconnected from the electrical attachments 14 and or the generator. The inactive portion 42 is preferably disposed along the full thickness of the energy source 12′, but may alternatively be a layer of material on or within the energy source 12′ that has a thickness less than the full thickness of the energy source 12′. As shown in
In a third variation, as shown in
In a fourth variation, as shown in
The Electrical Attachment.
As shown in
The energy delivery system 10 of the preferred embodiments also includes an electrical generator (not shown) that functions to provide power to the energy source 12 via the electrical attachment(s) 14. The energy source 12 is preferably coupled to the electrical generator by means of the suitably insulated wires 38 and 38′ connected to the electrical attachments 14 and 14′ coupled to the two faces of the energy source 12. When energized by the generator the energy source 12 emits energy. The generator provides an appropriate signal to the energy source 12 to create the desired energy beam 20. The frequency is preferably in the range of 1 to 30 MHz and more preferably in the range of 5 to 25 MHz. The energy of the energy beam 20 is determined by the excitation voltage applied to the energy source 12, the duty cycle, and the total time the voltage is applied. The voltage is preferably in the range of 5 to 200 volts peak-to-peak. In addition, a variable duty cycle is preferably used to control the average power delivered to the energy source 12. The duty cycle preferably ranges from 0% to 100%, with a repetition frequency that is preferably faster than the time constant of thermal conduction in the tissue. One such appropriate repetition frequency is approximately 40 kHz.
Energy Beam and Tissue Interaction. When energized with an electrical signal or pulse train by the electrical attachment 14 and/or 14′, the energy source 12 emits an energy beam 20 (such as a sound pressure wave). The properties of the energy beam 20 are determined by the characteristics of the energy source 12, the matching layer 34, the backing 22 (described below), and the electrical signal from electrical attachment 14. These elements determine the frequency, bandwidth, beam pattern, and amplitude of the energy beam 20 (such as a sound wave) propagated into the tissue. As shown in
The Physical Characteristics of the Lesion.
The shape of the lesion or ablation zone 278 formed by the energy beam 20 depends on the characteristics of suitable combination factors such as the energy beam 20, the energy source 12 (including the material, the geometry, the portions of the energy source 12 that are energized and/or not energized, etc.), the matching layer 34, the backing 22 (described below), the electrical signal from electrical attachment 14 (including the frequency, the voltage, the duty cycle, the length and shape of the signal, etc.), and the characteristics of target tissue into which the beam 20 propagates and the length of contact or dwell time. The characteristics of the target tissue include the thermal transfer properties and the ultrasound absorption, attenuation, and backscatter properties of the target tissue and surrounding tissue.
The shape of the lesion or ablation zone 278 formed by the energy beam 20 is preferably one of several variations due to the energy source 12 (including the material, the geometry, the portions of the energy source 12 that are energized and/or not energized, etc.). In a first variation of the ablation zone 278, as shown in
In a second variation, as shown in
The size and characteristics of the ablation zone 278 also depend on the frequency and voltage applied to the energy source 12 to create the desired energy beam 20. For example, as the frequency increases, the depth of penetration of ultrasound energy into the tissue is reduced resulting in an ablation zone 278 (
The size and characteristics of the ablation zone 278 also depend on the time the targeted tissue is contacted by the energy beam 20, as shown in
The ultrasound energy density preferably determines the speed at which the ablation occurs. The acoustic power delivered by the energy source 12 divided by the cross sectional area of the beam 20 determines the energy density per unit time. Effective acoustic power preferably ranges from 0.3 watt to >10 watts, and the corresponding power densities preferably range from 6 watts/cm2 to >200 watts/cm2. These power densities are developed in the ablation zone. As the beam diverges beyond the ablation zone, the power density falls such that ablation will not occur, regardless of the time exposure.
Although the shape of the ablation zone 278 is preferably one of several variations, the shape of the ablation zone 278 may be any suitable shape and may be altered in any suitable fashion due to any suitable combination of the energy beam 20, the energy source 12 (including the material, the geometry, etc.), the matching layer 34, the backing 22 (described below), the electrical signal from electrical attachment 14 (including the frequency, the voltage, the duty cycle, the length of the pulse, etc.), and the target tissue the beam 20 propagates into and the length of contact or dwell time.
The Sensor. The energy delivery system 10 of the preferred embodiments also includes a sensor and/or the energy source 12 further functions to detect the gap (the distance of the tissue surface from the energy source 12), the thickness of the tissue targeted for ablation, the characteristics of the ablated tissue, the incident beam angle, and any other suitable parameter or characteristic of the tissue and/or the environment around the energy delivery system 10, such as the temperature. By detecting information, the sensor (coupled to the processor, as described below) preferably functions to guide the therapy provided by the ablation of the tissue.
The sensor is preferably one of several variations. In a first variation, the sensor is preferably an ultrasound transducer that functions to detect information with respect to the gap, the thickness of the tissue targeted for ablation, the characteristics of the ablated tissue, and any other suitable parameter or characteristic. The sensor preferably has a substantially identical geometry as the energy source 12 to insure that the area diagnosed by the sensor is substantially identical to the area to be treated by the energy source 12. More preferably, the sensor is the same transducer as the transducer of the energy source, wherein the energy source 12 further functions to detect information by operating in a different mode (such as A-mode, defined below).
The sensor of the first variation preferably utilizes a burst of ultrasound of short duration, which is generally not sufficient for heating of the tissue. This is a simple ultrasound imaging technique, referred to in the art as A Mode, or Amplitude Mode imaging. As shown in
In a second variation, the sensor is a temperature sensor that functions to detect the temperature of the target tissue, the surrounding environment, the energy source 12, the coolant fluid as described below, and/or the temperature of any other suitable element or area. The temperature senor is preferably a thermocouple, but may alternatively be any suitable temperature sensor, such as a thermistor or an infrared temperature sensor. This temperature information gathered by the sensor is preferably used to manage ablation of the tissue 276 during therapy and to manage the temperature of the target tissue and/or the energy delivery system 10 as discussed below.
The Processor.
The energy delivery system 10 of the preferred embodiments also includes a processor, coupled to the sensor 40 and to the electrical attachment 14, that controls the electrical attachment 14 and/or the electrical signal delivered to the electrical attachment 14 based on the information from the sensor 40. The processor is preferably a conventional processor, but may alternatively be any suitable device to perform the desired functions.
The processor preferably receives information from the sensor such as information related to the gap distance, the thickness of the tissue targeted for ablation, the characteristics of the ablated tissue, and any other suitable parameter or characteristic. Based on this information, the processor preferably controls the energy beam 20 emitted from the energy source 12 by modifying the electrical signal sent to the energy source 12 via the electrical attachment 14 such as the frequency, the voltage, the duty cycle, the length of the pulse, and/or any other suitable parameter. The processor preferably also controls the energy beam 20 by controlling which portions of the energy source 12 are energized and/or at which frequency, voltage, duty cycle, etc. Different portions of the energy source 12 may be energized as described above with respect to the plurality of annular transducers 44 and the grid of transducer portions 46 of the energy source 12″ and 12″′ respectively. Additionally, the processor may further be coupled to a fluid flow controller. The processor preferably controls the fluid flow controller to increase or decrease fluid flow based on the sensor detecting characteristics of the ablated tissue, of the unablated or target tissue, the temperature of the tissue and/or energy source, and/ or the characteristics of any other suitable condition.
By controlling the energy beam 20 (and/or the cooling of the targeted tissue or energy source 12), the shape of the ablation zone 278 is controlled. For example, the depth 288 of the ablation zone is preferably controlled such that a transmural lesion (a lesion through the thickness of the tissue) is achieved. Additionally, the processor preferably functions to minimize the possibility of creating a lesion beyond the targeted tissue, for example, beyond the outer atrial wall. If the sensor detects the lesion and/or the ablation window 2172 (as shown in
Additionally, the processor preferably functions to maintain a preferred gap distance. The gap distance is preferably between 0 mm and 30 mm, more preferably between 1 mm and 20 mm. If the sensor detects that the ablation window 2172 (as shown in
Additional Elements. As shown in
While the energy source 12 is emitting an energy beam 20, the energy source may become heated. The energy source 12 is preferably maintained within a safe operating temperature range by cooling the energy source 12. Cooling of the energy source 12 is preferably accomplished by contacting the energy source 12 with a fluid, for example, saline or any other physiologically compatible fluid, preferably having a lower temperature relative to the temperature of the energy source 12. In a first version, the temperature of the fluid is preferably cold enough that it both cools the transducer and the target tissue. In this version, the temperature of the fluid or gel is preferably between -5 and 5 degrees Celsius and more preferably substantially equal to zero degrees Celsius. In a second version, the temperature of the fluid is within a temperature range such that the fluid cools the energy source 12, but it does not cool the target tissue however, and may actually warm the target tissue. The fluid may alternatively be any suitable temperature to sufficiently cool the energy source 12. By way of an example, as shown in
The energy delivery system 10 of the preferred embodiments also includes a lens, coupled to the energy source 12, that functions to provide additional flexibility in adjusting the beam pattern of the energy beam 20. The lens is preferably a standard acoustic lens, but may alternatively be any suitable lens to adjust the energy beam 20 in any suitable fashion. For example, an acoustic lens could create a beam that is more uniformly collimated, such that the minimum beam width D′ approaches the diameter of the disc D. This will provide a more uniform energy density in the ablation window 2172, and therefore more uniform lesions as the tissue depth varies within the window. A lens could also be used to move the position of the minimum beam width D′, for those applications that may need either shallower or deeper lesion. This lens could be fabricated from plastic or other material with the appropriate acoustic properties, and bonded to the face of energy source 12. Alternatively, the energy source 12 itself may have a geometry such that it functions as a lens, or the matching layer or coating of the energy source 12 may function as a lens.
Although omitted for conciseness, the preferred embodiments include every combination and permutation of the various energy sources 12, electrical attachments 14, energy beams 20, sensors 40, and processors.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claim, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claim.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
The present application is a continuation of U.S. application Ser. No. 12/482,640, titled “SYSTEM AND METHOD FOR DELIVERING ENERGY TO TISSUE”, filed on Jun. 11, 2009 [attorney docket no. 31760-707.201], which claims priority to U.S. Provisional Application No. 61/061,610, filed on Jun. 14, 2008 [attorney docket no. 31760-707.101], the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61061610 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12482640 | Jun 2009 | US |
Child | 15234632 | US |