This application relates generally to systems and methods for analyzing samples using x-rays, and more particularly, to x-ray sources configured to provide soft and/or tender x-rays selectable across an x-ray energy range.
Conventional laboratory-based x-ray sources generate x-rays by bombarding a target material (e.g., solid anode; liquid metal jet) with an electron beam. The generated x-rays include emission (e.g., fluorescence) x-rays generated by the electron beam creating holes in the inner core electron orbitals of the target atoms, which are then filled by electrons of the target with binding energies that are lower than the inner core electron orbitals, with concomitant generation of emission x-rays. The emission x-rays have discrete energies that are characteristic of the target atoms and that are less than the kinetic energy of the electron beam. In addition, the generated x-rays include Bremsstrahlung x-rays generated by the deceleration of the electron beam within the target material, the Bremsstrahlung x-rays having a continuum of energies from zero to the kinetic energy of the electron beam. Generally, in x-ray analysis applications (e.g., x-ray photoelectron spectroscopy) in which x-rays having a predetermined energy irradiate the sample, the target material of the x-ray source is selected based on the characteristic discrete energies of the emission x-rays.
For example,
In one aspect disclosed herein, a system for x-ray analysis comprises at least one x-ray source configured to emit x-rays. The at least one x-ray source comprises at least one silicon carbide sub-source on or embedded in at least one thermally conductive substrate and configured to generate the x-rays in response to electron bombardment of the at least one silicon carbide sub-source. At least some of the x-rays emitted from the at least one x-ray source comprises Si x-ray emission line x-rays. The system further comprises at least one x-ray optical train configured to receive the Si x-ray emission line x-rays and to irradiate a sample with at least some of the Si x-ray emission line x-rays.
In another aspect disclosed herein, an x-ray source comprises at least one electron source configured to generate at least one electron beam and at least one target. The at least one target comprises at least one thermally conductive substrate and a plurality of sub-sources on or embedded in at least a portion of the at least one thermally conductive substrate. The sub-sources are separate from one another and in thermal communication with the at least one thermally conductive substrate. At least one sub-source of the plurality of the sub-sources comprises silicon carbide and is configured to emit Si x-ray emission line x-rays in response to bombardment by the at least one electron beam.
In another aspect disclosed herein, a method of x-ray analysis comprises bombarding a target material comprising silicon carbide with electrons. The method further comprises emitting Si x-ray emission line x-rays from the target material. The method further comprises irradiating a sample with at least some of the Si x-ray emission line x-rays. The method further comprises detecting x-rays and/or electrons emitted from the sample.
In another aspect disclosed herein, an x-ray illumination system comprises at least one x-ray source comprising at least a first x-ray sub-source and a second x-ray sub-source. The first and second x-ray sub-sources are on or embedded in at least one thermally conductive substrate. The first x-ray sub-source comprises a first material configured to generate first x-rays in response to electron bombardment of the first x-ray sub-source. The second x-ray sub-source comprises a second material different from the first material, the second material configured to generate second x-rays in response to electron bombardment of the second x-ray sub-source. The system further comprises a plurality of x-ray optical trains comprising a first optical train and a second optical train. The first optical train comprises at least one first collimating x-ray mirror, at least one first energy-selective x-ray monochromator or multilayer, and at least one first focusing x-ray mirror. The first optical train is configured to be positioned to direct at least some of the first x-rays emitted from the first x-ray sub-source to irradiate a sample. The second optical train comprises at least one second collimating x-ray mirror, at least one second energy-selective x-ray monochromator or multilayer, and at least one second focusing x-ray mirror. The second optical train is configured to be positioned to direct at least some of the second x-rays emitted from the second x-ray sub-source to irradiate the sample.
In another aspect disclosed herein, an x-ray photoelectron spectroscopy system comprises at least one x-ray source comprising a plurality of x-ray sub-sources on or embedded in at least one thermally conductive substrate. The x-ray sub-sources comprise a plurality of materials configured to generate x-rays in response to electron bombardment. The system further comprises a plurality of x-ray optical trains, each optical train comprising at least one collimating x-ray optical element, at least one energy-selective optical element, and at least one focusing x-ray optical element. The plurality of x-ray optical trains is configured to be positioned to direct at least some of the x-rays emitted from a selected one of the plurality of x-ray sub-sources to irradiate a sample. The system further comprises a sample chamber configured to contain the sample at a sample pressure. The system further comprises a first chamber and a first electrostatic lens contained in the first chamber at a first pressure less than the sample pressure. The sample chamber and the first chamber are separated from one another by a first wall having a first aperture configured to allow at least some photoelectrons from the sample to propagate from the sample chamber to the first chamber. The system further comprises a second chamber and a second electrostatic lens contained in the second chamber at a second pressure less than the first pressure. The first chamber and the second chamber are separated from one another by a second wall having a second aperture configured to allow at least some of the photoelectrons in the first chamber to propagate to the second chamber.
Certain embodiments described herein advantageously provide emission x-rays with energies within the range between the Al Kα x-ray line (1.49 keV) and the Ga Kα x-ray line (9.25 keV). In certain embodiments, these emission x-rays are used to advantageously provide valuable information regarding samples under analysis (e.g., by selecting the emission x-ray energy to optimize the photoelectron cross sections).
Certain embodiments described herein provide a source of soft and/or tender x-rays (e.g., soft x-rays with energies in a range of 0.5 keV to about 1.8 keV; tender x-rays with energies in a range of about 1.8 keV to 6 keV) selectable across a broad energy range for tuning depth sensitivity as well as studying interfaces (e.g., gas/solid; gas/liquid; liquid/solid). The system in certain embodiments is optimized to provide a high flux of monochromatic and focused x-rays. The x-ray source of certain embodiments described herein is mountable on a 4.5″ ConFlat® flange, includes a replaceable window (e.g., Be), and includes a mechanism with sufficient travel (e.g., 50 mm) to move and position the x-ray source relative to the x-ray optical elements without breaking vacuum and without requiring re-alignment.
Certain embodiments described herein provide selectable (e.g., tunable) x-ray energies (e.g., selectable among 1.74 keV, 2.7 keV, and 5.4 keV), thereby advantageously providing selectable probing depths (e.g., from 1 nm to 15 nm) for surface, interface, and bulk analysis, and with optimized sensitivity to selected elements (e.g., Hf; Al; Ti). Certain embodiments described herein provide high x-ray energy resolution (e.g., better than 0.7 eV for all energies), small x-ray focus spot sizes (e.g., in a range from 10 μm to 200 μm; 15 μm or less; 20 μm or less; 100 μm or less) for small spot analysis and imaging, and high flux of monochromatic x-rays (e.g., greater than 2×109 photons/second at 100 μm spot size and 200 W or 300 W electron beam power; up to 5×109 photons/second) for high-speed analysis). Certain embodiments described herein provide in situ, in vitro, and/or in operando analysis in combination with small focus spot sizes and high excitation energies, thereby advantageously enabling near-ambient pressure operation. For example, by using an x-ray spot size of 100 μm, certain embodiments described herein can include electron energy analyzer slit sizes of 100 μm, thereby allowing a pressure in the sample region of about 20 mbar, which is comparable to the vapor pressure of water (e.g., about 17 mbar at 15 degrees Celsius). For another example, by using an x-ray spot size of 10 μm, certain embodiments described herein can include electron energy analyzer slit sizes of 10 μm, thereby allowing a pressure in the sample region of about 100 mbar or even higher (e.g., 1 bar), with concomitant reduced signal strength, which can be advantageously used for the study of catalysis. Certain embodiments described herein provide fully automated selection of excitation energy and/or focus spot size, with no cross-contamination of different x-rays.
While prior systems have included x-ray sources with anodes having a heat dissipation layer comprising silicon carbide, these the x-ray sources have not been configured to emit Si characteristic x-rays (e.g., the Si Kα1 line) generated in the silicon carbide (see, e.g., U.S. Pat. Appl. Publ. No. 2014/0185778). The x-ray source 20 of certain embodiments described herein is optimized to emit the Si characteristic x-rays (e.g., the Si Kα1 line) generated in the silicon carbide sub-source (e.g., to provide the Si characteristic x-rays for use by the system 10).
In certain embodiments, the at least one x-ray source 20 is configured to bombard a selected sub-source 26 with the at least one electron beam 23 (e.g., by moving, relative to one another, one or both of the at least one electron beam 23 and the at least one target 24). For example, the at least one electron source 21 of certain embodiments can be configured to direct the at least one electron beam 23 (e.g., via electric and/or magnetic fields) to bombard at least one selected sub-source 26 of the plurality of sub-sources 26 (e.g., as denoted in
As schematically illustrated by
In certain embodiments, the at least one layer 27a comprises at least one intermediate layer (e.g., W) between the substrate portion 25a and the silicon carbide, the at least one intermediate layer configured to facilitate adhesion of the silicon carbide to the substrate portion 25a and/or to provide a diffusion barrier between the silicon carbide and the substrate portion 25a. While pure, stoichiometric silicon carbide is a semiconductor, in certain embodiments, the silicon carbide can be non-stoichiometric (e.g., containing excess carbon; a molar ratio of carbon to silicon in a range between 1 and 1.45), can be doped, and/or can be coated with a thin metal layer to provide a predetermined electrical conductivity so that the sub-source 26a is configured to be used in the anode of the x-ray source 20.
In certain embodiments, the plurality of sub-sources 26 comprises at least one first sub-source 26a comprising SiC and at least one second sub-source 26b comprising at least one target material different from SiC (e.g., Al, Ag, Rh, Cr, Au, Ti, Fe, and/or Mo). In certain other embodiments, the plurality of sub-sources 26 comprises a plurality of target materials (e.g., 3, 4, or more) selected from the group consisting of: Al, Ag, Rh, Cr, Au, Ti, Fe, and Mo. The at least one target material can be on (e.g., adhered to; affixed to; sputtered onto) or embedded in a single thermally conductive substrate (e.g., diamond) or a plurality of thermally conductive substrates. For example, the at least one target material can be in thermal communication with the at least one thermally conductive substrate 26, thereby providing a heat flow path away from the at least one target material. The emitted x-rays 22 have energies corresponding to one or more characteristic x-ray lines (e.g., x-ray emission lines) of the at least one target material and ultrahigh source brightness. For example, the emitted x-rays 22 can comprise at least one of: Al Kα x-ray emission line x-rays (about 1.49 keV); Ag Lα x-ray emission line x-rays (about 2.98 keV); Rh Lα x-ray emission line x-rays (about 2.70 keV); Cr Kα1 x-ray emission line x-rays (about 5.42 keV); Au Lα x-ray emission line x-rays (about 9.70 keV); Ti Kα x-ray emission line x-rays (about 4.51 keV); Fe Kα x-ray emission line x-rays (about 6.40 keV); Mo Lα x-ray emission line x-rays (about 2.29 keV); Mo Lβ1 and Mo Lβ2 x-ray emission line x-rays (about 2.39 keV and 2.52 keV, respectively).
In certain embodiments, the at least one x-ray source 20 further comprises an x-ray window 28 (e.g., Be) configured to allow at least some of the Si x-ray emission line x-rays 22a to propagate from a first region within the x-ray source 20 and containing the at least one sub-source 27a, through the x-ray window 28, to a second region outside the x-ray source 20.
In certain embodiments, the at least one target 24 comprises an anode disk configured to be rapidly rotated while under vacuum with different regions of the anode disk along a circular track being sequentially irradiated by the electron beam 23, thereby distributing the heat load from the electron beam 23 over the circular track of the anode disk. In certain such embodiments, the anode disk is cooled by coolant (e.g., water) flowing through cooling channels within the anode disk. In certain other embodiments, the at least one target 24 is radiatively cooled. For example, a rotating anode disk of the at least one target 24 can comprise silicon carbide (which can withstand operating temperatures of about 2000 degrees Celsius), and at least one heat sink can be positioned in close proximity to a surface portion of the rotating anode disk in a region of the rotating anode disk that is separate from the region of the rotating anode disk being irradiated by the electron beam 23. While conventional rotating source anodes with cooling channels can be operated with an electron beam 23 having a power of 1000 W in a spot size of about 80 μm×80 μm, certain embodiments described herein (utilizing a rotating anode disk comprising silicon carbide) can be operated with an electron beam 23 having a power of 200 W or 300 W in a spot size of about 5 μm×5 μm, resulting in at least about a 50× improvement in x-ray brightness (80 μm/5 μm×80 μm/5 μm×200 W/1000 W).
Example parameters of the at least one x-ray source 20 include, but are not limited to: variable anode voltage in a range of 5 keV to 30 keV; electron power of up to 300 W, an electron beam footprint on at least one selected sub-source having a user-selectable size (e.g., full-width-at-half-maximum) with a first lateral dimension within a range of 5 μm to 50 μm (e.g., 5 μm to 25 μm; 10 μm to 50 μm; 10 μm to 25 μm; 25 μm to 50 μm) and a second lateral dimension perpendicular to the first lateral dimension, the second lateral dimension within a range of 30 μm to 200 μm (e.g., 30 μm to 150 μm, 30 μm to 100 μm). Examples of the at least one x-ray source 20 comprising a plurality of sub-sources 26 compatible with certain embodiments described herein are disclosed by U.S. Pat. Nos. 9,874,531, 9,823,203, 9,719,947, 9,594,036, 9,570,265, 9,543,109, 9,449,781, 9,448,190, and 9,390,881, each of which is incorporated in its entirety by reference herein.
In certain embodiments, the system 10 comprises one or more of: an x-ray photoelectron spectroscopy (XPS) system, a photoemission electron microscopy (PEEM) system, an angle-resolved photoemission spectroscopy (ARPES) system, an ambient-pressure x-ray photoelectron spectroscopy (APXPS) system, an x-ray fluorescence (XRF) system, an x-ray emission (XES) system, an x-ray phase contrast imaging system, and a computed tomography imaging system. Other types of systems and/or applications of the system are also compatible with certain embodiments described herein. The samples under analysis can comprise one or more biological samples (e.g., tissue samples), one or more semiconductor samples, one or more geological samples, and/or other types of samples.
For trace element analysis of semiconductor and geological samples, the use of the Si Kα1 x-ray emission line x-rays can advantageously reduce the background contribution from the silicon in the samples. Since the energy of the Si Kα1 x-ray emission line x-rays (about 1.74 keV) is lower than the Si K absorption edge energy, the Si Kα1 x-ray emission line x-rays do not generate the background photoelectron and/or fluorescence contributions from Si that would be seen if x-rays above the Si K absorption edge energy were used.
In certain embodiments, as schematically illustrated by
In certain embodiments, the at least one x-ray collimating optical element 34 comprises at least one substrate (e.g., comprising glass or silicon oxide). For example, the at least one substrate can be a single, unitary, hollow, axially symmetric structure (e.g., an axially symmetric tube) comprising an inner surface 36 that extends fully around the longitudinal axis 38 (e.g., encircles the longitudinal axis 38; extends 360 degrees around the longitudinal axis 38). In certain other embodiments, the at least one substrate can comprise a portion of a hollow, axially symmetric structure (e.g., a portion of an axially symmetric tube) extending along the longitudinal axis 38 with a surface 36 that extends only partially around the longitudinal axis 38 (e.g., less than 360 degrees; in a range of 45 degrees to 315 degrees; in a range of 45 degrees to 360 degrees; in a range of 180 degrees to 360 degrees; in a range of 90 degrees to 270 degrees). In certain other embodiments, the at least one substrate comprises multiple portions (e.g., 2, 3, 4, 5, 6, or more) separate from one another (e.g., with spaces between the portions) and distributed around the longitudinal axis 38, with the surface 36 of each portion extending at least partially around and along the longitudinal axis 38. For example, the surfaces 36 of the multiple portions can each extend around the longitudinal axis 38 by an angle in a range of 15 degrees to 175 degrees, in a range of 30 degrees to 115 degrees, and/or in a range of 45 degrees to 85 degrees.
In certain embodiments, at least a portion of the surface 36 has a profile that comprises a portion of a quadric profile in a cross-sectional plane that comprises the longitudinal axis 38. In certain embodiments, the surface 36 comprises multiple portions having cross-sectional profiles (e.g., in a cross-sectional plane that comprises the longitudinal axis 38) comprising corresponding quadric profiles. Examples of quadric profiles compatible with certain embodiments described herein include, but are not limited to: at least one ellipsoid; at least one paraboloid; at least one hyperboloid; or a combination of two or more thereof. In certain embodiments, the surface 36 has a first linear dimension (e.g., length) parallel to the longitudinal axis 38 in a range of 3 mm to 150 mm, a second linear dimension (e.g., width) perpendicular to the first linear dimension in a range of 1 mm to 50 mm, and a maximum linear dimension (e.g., an inner diameter; a maximum length of a straight line segment joining two points on the surface 36) in a range of 1 mm to 50 mm in a plane perpendicular to the longitudinal axis 38, a surface roughness in a range of 0.1 nm to 1 nm, and/or a plurality of surface tangent planes having a range of angles relative to the longitudinal axis 38 in a range of 0.002 radian to 0.5 radian (e.g., in a range of 0.002 radian to 0.4 radian; in a range of 0.002 radian to 0.3 radian; in a range of 0.002 radian to 0.2 radian).
The at least one second x-ray optical element 40 of
The at least one third x-ray optical element 50 of
In certain embodiments, the at least one x-ray focusing optical element 54 comprises at least one substrate (e.g., comprising glass or silicon oxide). For example, the at least one substrate can be a single, unitary, hollow, axially symmetric structure (e.g., an axially symmetric tube) comprising an inner surface 56 that extends fully around the longitudinal axis 58 (e.g., encircles the longitudinal axis 58; extends 360 degrees around the longitudinal axis 58). In certain other embodiments, the at least one substrate can comprise a portion of a hollow, axially symmetric structure (e.g., a portion of an axially symmetric tube) extending along the longitudinal axis 58 with a surface 56 that extends only partially around the longitudinal axis 58 (e.g., less than 360 degrees; in a range of 45 degrees to 315 degrees; in a range of 45 degrees to 360 degrees; in a range of 180 degrees to 360 degrees; in a range of 90 degrees to 270 degrees). In certain other embodiments, the at least one substrate comprises multiple portions (e.g., 2, 3, 4, 5, 6, or more) separate from one another (e.g., with spaces between the portions) and distributed around the longitudinal axis 58, with the surface 56 of each portion extending at least partially around and along the longitudinal axis 58. For example, the surfaces 56 of the multiple portions can each extend around the longitudinal axis 58 by an angle in a range of 15 degrees to 175 degrees, in a range of 30 degrees to 115 degrees, and/or in a range of 45 degrees to 85 degrees.
In certain embodiments, at least a portion of the surface 56 has a profile that comprises a portion of a quadric profile in a cross-sectional plane that comprises the longitudinal axis 58. In certain embodiments, the surface 56 comprises multiple portions having cross-sectional profiles (e.g., in a cross-sectional plane that comprises the longitudinal axis 58) comprising corresponding quadric profiles. Examples of quadric profiles compatible with certain embodiments described herein include, but are not limited to: at least one ellipsoid; at least one paraboloid; at least one hyperboloid; or a combination of two or more thereof. In certain embodiments, the surface 56 has a first linear dimension (e.g., length) parallel to the longitudinal axis 58 in a range of 3 mm to 150 mm, a second linear dimension (e.g., width) perpendicular to the first linear dimension in a range of 1 mm to 50 mm, and a maximum linear dimension (e.g., an inner diameter; a maximum length of a straight line segment joining two points on the surface 56) in a range of 1 mm to 50 mm in a plane perpendicular to the longitudinal axis 58, a surface roughness in a range of 0.1 nm to 1 nm, and/or a plurality of surface tangent planes having a range of angles relative to the longitudinal axis 58 in a range of 0.002 radian to 0.5 radian (e.g., in a range of 0.002 radian to 0.4 radian; in a range of 0.002 radian to 0.3 radian; in a range of 0.002 radian to 0.2 radian).
In certain embodiments, the system 10 further comprises at least one beam stop 80 configured to prevent a non-reflected portion of the x-rays 22 from impinging the at least one second x-ray optical element 40. As schematically illustrated by
In certain embodiments, the system 10 further comprises at least one detector subsystem 70 (e.g., comprising an energy dispersive x-ray energy analyzer and/or an energy dispersive electron energy analyzer) configured to detect x-rays 62 and/or electrons 64 emitted from the sample 60 (e.g., in response to the sample 60 being irradiated by the third x-ray beam 52). For example, for a system 10 selected from the group consisting of an x-ray photoelectron spectroscopy (XPS) system, a photoemission electron microscopy (PEEM) system, and an ambient-pressure x-ray photoelectron spectroscopy (APXPS) system, the at least one detector subsystem 70 can be configured to detect photoelectrons 62 (e.g., with electron energy resolution) emitted from the sample 60 in response to at least a portion of the third x-ray beam 52. For another example, for a system 10 selected from the group consisting of an x-ray fluorescence (XRF) system and an x-ray emission (XES) system, the at least one detector subsystem 70 can be configured to detect emission (e.g., fluorescence) x-rays 64 (e.g., with x-ray energy resolution) emitted from the sample 60 in response to at least a portion of the third x-ray beam 52. In certain embodiments, the at least one detector subsystem 70 comprises a pixel array 72 configured to generate images indicative of a spatial distribution of the elemental distribution of portions of the sample 60 from which the detected electrons 62 and/or detected x-rays 64 are emitted. In certain embodiments, the focused third x-ray beam 52 irradiates a portion of a first surface of the sample 60, and the at least one detector subsystem 70 can be positioned to detect x-rays 62 and/or electrons 64 emitted from at least one of: the same portion of the first surface, a different portion of the first surface, and a second surface of the sample 60 different from the first surface (e.g., the second surface opposite to the first surface). Example detector subsystems 70 compatible with certain embodiments described herein are disclosed by U.S. Pat. Nos. 9,874,531, 9,823,203, 9,719,947, 9,594,036, 9,570,265, 9,543,109, 9,449,781, 9,448,190, and 9,390,881, each of which is incorporated in its entirety by reference herein.
In certain embodiments, each of the x-ray optical trains 90 is mounted to a controllably movable stage 92 (e.g., motorized translation and/or rotation stage) configured to controllably position and select an x-ray optical train 90 for use. For example, as schematically illustrated by
In certain embodiments, a first x-ray optical train 90a is configured to be positioned to receive the x-rays 22 from the x-ray source 20 while a first target material of the x-ray source 20 comprising SiC is emitting x-rays 22a (e.g., including at least some of the Si x-ray emission line x-rays) and a second x-ray optical train 90b is configured to be positioned to receive the x-rays 22 from the x-ray source 20 while a second target material (e.g., Cr) of the x-ray source 20 is emitting x-rays 22b (e.g., including at least some of the x-ray emission line x-rays of the second target material). In certain embodiments further comprising a third x-ray optical train 90c, the third x-ray optical train 90c is configured to be positioned to receive the x-rays 22 from the x-ray source 20 while a third target material (e.g., Rh) of the x-ray source 20 is emitting x-rays 22c (e.g., including at least some of the x-ray emission line x-rays of the third target material).
In certain embodiments, the system 10 is configured to generate a Si Kα (1.74 keV) monochromatic focused third x-ray beam 52 and comprises (i) an x-ray source 20 comprising an anode comprising microstructured SiC; (ii) a first x-ray optical element 30 comprising a collimating parabolic mirror having a silver coating; (iii) a second x-ray optical element 40 comprising a channel-cut quartz or InSb (111) double-crystal monochromator, and (iv) a third x-ray optical element 50 comprising a focusing parabolic mirror having a silver coating. The monochromatic third x-ray beam 52 can have a line width with a full-width-at-half-maximum in a range of 0.5 eV to 0.7 eV, a focused x-ray spot size selectable in a range of 10 μm to 200 μm (e.g., by selecting an electron spot size on the anode; fully automated), and can be optimized for high flux (e.g., at least 2×109 photons/second for a 100 μm spot size at 200 W or 300 W of electron beam power).
In certain embodiments, in addition to being configured to generate a Si Kα (1.74 keV) monochromatic focused third x-ray beam 52 as described above, the system 10 is further configured to generate a Cr Kα (5.42 keV) monochromatic focused third x-ray beam 52 and comprises (i) an x-ray source 20 comprising an anode comprising microstructured chromium imbedded in diamond; (ii) a first x-ray optical element 30 comprising a collimating parabolic mirror having a platinum coating; (iii) a second x-ray optical element 40 comprising a channel-cut Ge (111) or Ge (220) double-crystal monochromator, and (iv) a third x-ray optical element 50 comprising a focusing parabolic mirror having a platinum coating. The monochromatic third x-ray beam 52 can have a line width with a full-width-at-half-maximum of 0.5 eV, a focused x-ray spot size selectable in a range of 10 μm to 200 μm (e.g., by selecting an electron spot size on the anode; fully automated), and can be optimized for high flux (e.g., at least 2×109 photons/second for a 100 μm spot size at 200 W or 300 W of electron beam power).
In certain embodiments, in addition to being configured to generate a Si Kα (1.74 keV) monochromatic focused third x-ray beam 52 as described above, the system 10 is further configured to generate a Rh Lα (2.70 keV) monochromatic focused third x-ray beam 52 and comprises (i) an x-ray source 20 comprising an anode comprising microstructured rhodium imbedded in diamond; (ii) a first x-ray optical element 30 comprising a collimating parabolic mirror having a silver coating; (iii) a second x-ray optical element 40 comprising a channel-cut Ge (111) or Si (111) double-crystal monochromator, and (iv) a third x-ray optical element 50 comprising a focusing parabolic mirror having a silver coating. The monochromatic third x-ray beam 52 can have a line width with a full-width-at-half-maximum of 0.5 eV, a focused x-ray spot size selectable in a range of 10 μm to 200 μm (e.g., by selecting an electron spot size on the anode; fully automated), and can be optimized for high flux (e.g., at least 2×109 photons/second for a 100 μm spot size at 200 W or 300 W of electron beam power).
Depth Selectivity
In certain embodiments, the system 10 is configured to provide depth selectivity by virtue of one or more of the following: the attenuation length within the sample 60 of the excitation third x-ray beam 52 (e.g., the distance that the third x-ray beam 52 propagates within the sample 60 where the intensity of the third x-ray beam 52 has dropped by a factor of 1/e; Iattenuation length/Iincident=1/e); the attenuation length within the sample 60 of the emission (e.g., fluorescence) x-rays 62 (e.g., the distance that the emission x-rays 62 propagate within the sample 60 where the intensity of the emission x-rays 62 has dropped by a factor of 1/e), and/or the inelastic mean free path within the sample 60 of the photoelectrons 64 (e.g., the distance, on average, that the photoelectrons 64 propagate, without loss of kinetic energy, within the sample 60 where the intensity of the photoelectrons 64 has dropped by a factor of 1/e). These attenuation lengths of the x-rays 52, 62 and the inelastic mean free path of the photoelectrons 64 are dependent on the material of the sample 60 and the energies of the excitation x-rays 52, 62 and the kinetic energies of the photoelectrons 64, respectively.
For example,
Example Configurations
As schematically illustrated by
As schematically illustrated by
Example Configuration
Table 1 lists various components of an example configuration of an APXPS system in accordance with certain embodiments described herein. The example configuration can be used in studying various processes and/or phenomena at liquid-solid interfaces (e.g., corrosion of metallic biomaterials, such as medical implants and medical devices; surface chemistry under realistic, ambient pressure environments).
The example configuration compatible with certain embodiments described herein can be characterized by a figure of merit (e.g., for comparison to other APXPS systems. For example, the figure of merit for comparing different APXPS systems for studying solid-liquid interfaces of biomaterials with depth profiling can be expressed as the intensity of the photoelectron peak (Ii) for an element of interest i at a depth (z) from the surface from where photoelectrons are emitted. The intensity Ii is dependent on the photon flux (F) incident on the interface, the average atomic concentration of element i (Ni), the photoelectron cross-section of element i related to the mentioned peak (σi), the inelastic mean free path (Λi) of photoelectrons from element i related to the mentioned peak, and the solid angle of the acceptance (Ω(hv)) of the analyzer (approximately inversely proportional to hv). In the simplest form, Ii=F*Ni*σi*exp(−z/Λi)*Ω(hv) Khv, where Khv corresponds to all other factors (which can be assumed to remain constant for a specific photon energy during the measurement).
In certain embodiments described herein, the example configuration provides five times more flux at the sample than currently marketed APXPS systems. For example, a laboratory-based APXPS system marketed by SPECS Surface Nano Analysis GMBH of Berlin Germany uses Al Kα x-rays at 1.487 keV, which are not suitable for studying solid-liquid interfaces of in-vitro biomaterials (e.g., medical implants) due to the limited IMFP of the photoelectrons. For another example, a Ga Kα (9.3 keV) x-ray source using a Ga liquid jet anode, marketed by Scienta-Omicron GmbH of Taunusstein Germany), suffers from lower cross sections and thus lower detection efficiencies (e.g., by a factor of 6, as compared to using Cr Kα x-rays). In addition, the accepted solid angle of the analyzer for 9.3 keV photoelectrons, as compared to 5.4 keV photoelectrons is about 60% less due to larger retardation used by the analyzer which reduces the solid angle. For still another example, a dual Al Kα and Cr Kα x-ray source marketed as “Phi Quantes” by Ulvac-Phi, Inc. of Kanagawa Japan, utilizes Rowland circle geometry Bragg crystals for monochromatization, which provides high resolution at the expense of lower flux and larger divergence angle.
In certain embodiments described herein, the example configuration provide three different x-ray energies, thereby allowing systematic study of depth profiling and optimizing the performance for signal strength, with a figure of merit about 50 times larger than currently marketed APXPS systems (e.g., equal to about 5 (flux)×6 (cross-section)×1.6 (acceptance solid angle)). As a result, the example configuration can provide higher flux (e.g., by a factor of five) with significantly higher cross sections and the ability for optimization depending on the element of interest and various thicknesses of the liquid and passivation layer of the sample.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is to be understood within the context used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree, as used herein, such as the terms “approximately,” “about,” “generally,” and “substantially,” represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” “generally,” and “substantially” may refer to an amount that is within ±10% of, within ±5% of, within ±2% of, within ±1% of, or within ±0.1% of the stated amount. As another example, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by ±10 degrees, by ±5 degrees, by ±2 degrees, by ±1 degree, or by ±0.1 degree, and the terms “generally perpendicular” and “substantially perpendicular” refer to a value, amount, or characteristic that departs from exactly perpendicular by ±10 degrees, by ±5 degrees, by ±2 degrees, by ±1 degree, or by ±0.1 degree.
Various configurations have been described above. Although this invention has been described with reference to these specific configurations, the descriptions are intended to be illustrative of the invention and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention. Thus, for example, in any method or process disclosed herein, the acts or operations making up the method/process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Features or elements from various embodiments and examples discussed above may be combined with one another to produce alternative configurations compatible with embodiments disclosed herein. Various aspects and advantages of the embodiments have been described where appropriate. It is to be understood that not necessarily all such aspects or advantages may be achieved in accordance with any particular embodiment. Thus, for example, it should be recognized that the various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may be taught or suggested herein.
This application claims the benefit of priority to U.S. Provisional Appl. No. 62/728,574 filed on Sep. 7, 2018 and incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1203495 | Coolidge | Oct 1916 | A |
1211092 | Coolidge | Jan 1917 | A |
1215116 | Coolidge | Feb 1917 | A |
1328495 | Coolidge | Jan 1920 | A |
1355126 | Coolidge | Oct 1920 | A |
1790073 | Pohl | Jan 1931 | A |
1917099 | Coolidge | Jul 1933 | A |
1946312 | Coolidge | Feb 1934 | A |
2926270 | Zunick | Feb 1960 | A |
3795832 | Holland | Mar 1974 | A |
4165472 | Wittry | Aug 1979 | A |
4192994 | Kastner | Mar 1980 | A |
4227112 | Waugh et al. | Oct 1980 | A |
4266138 | Nelson et al. | May 1981 | A |
4426718 | Hayashi | Jan 1984 | A |
4523327 | Eversole | Jun 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4642811 | Georgopoulos | Feb 1987 | A |
4727000 | Ovshinsky | Feb 1988 | A |
4798446 | Hettrick | Jan 1989 | A |
4807268 | Wittry | Feb 1989 | A |
4940319 | Ueda et al. | Jul 1990 | A |
4945552 | Ueda | Jul 1990 | A |
4951304 | Piestrup et al. | Aug 1990 | A |
4972449 | Upadhya et al. | Nov 1990 | A |
5001737 | Lewis et al. | Mar 1991 | A |
5008918 | Lee et al. | Apr 1991 | A |
5119408 | Little | Jun 1992 | A |
5132997 | Kojima | Jul 1992 | A |
5148462 | Spitsyn et al. | Sep 1992 | A |
5173928 | Momose et al. | Dec 1992 | A |
5204887 | Hayashida et al. | Apr 1993 | A |
5249216 | Ohsugi et al. | Sep 1993 | A |
5276724 | Kumasaka et al. | Jan 1994 | A |
5371774 | Cerrina | Dec 1994 | A |
5452142 | Hall | Sep 1995 | A |
5461657 | Hayashida | Oct 1995 | A |
5513237 | Nobuta et al. | Apr 1996 | A |
5602899 | Larson | Feb 1997 | A |
5604782 | Cash, Jr. | Feb 1997 | A |
5629969 | Koshishiba | May 1997 | A |
5657365 | Yamamoto et al. | Aug 1997 | A |
5682415 | O'Hara | Oct 1997 | A |
5715291 | Momose | Feb 1998 | A |
5729583 | Tang et al. | Mar 1998 | A |
5737387 | Smither | Apr 1998 | A |
5768339 | O'Hara | Jun 1998 | A |
5772903 | Hirsch | Jun 1998 | A |
5778039 | Hossain | Jul 1998 | A |
5799056 | Gulman | Aug 1998 | A |
5812629 | Clauser | Sep 1998 | A |
5825848 | Virshup et al. | Oct 1998 | A |
5832052 | Hirose et al. | Nov 1998 | A |
5857008 | Reinhold | Jan 1999 | A |
5878110 | Yamamoto et al. | Mar 1999 | A |
5881126 | Momose | Mar 1999 | A |
5912940 | O'Hara | Jun 1999 | A |
5930325 | Momose | Jul 1999 | A |
6108397 | Cash, Jr. | Aug 2000 | A |
6108398 | Mazor et al. | Aug 2000 | A |
6118853 | Hansen et al. | Sep 2000 | A |
6125167 | Morgan | Sep 2000 | A |
6181773 | Lee et al. | Jan 2001 | B1 |
6195410 | Cash, Jr. | Feb 2001 | B1 |
6226347 | Golenhofen | May 2001 | B1 |
6278764 | Barbee, Jr. et al. | Aug 2001 | B1 |
6307916 | Rogers et al. | Oct 2001 | B1 |
6359964 | Kogan | Mar 2002 | B1 |
6377660 | Ukita et al. | Apr 2002 | B1 |
6381303 | Vu et al. | Apr 2002 | B1 |
6389100 | Verman et al. | May 2002 | B1 |
6430254 | Wilkins | Aug 2002 | B2 |
6430260 | Snyder | Aug 2002 | B1 |
6442231 | O'Hara | Aug 2002 | B1 |
6456688 | Taguchi et al. | Sep 2002 | B1 |
6463123 | Korenev | Oct 2002 | B1 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6504901 | Loxley et al. | Jan 2003 | B1 |
6504902 | Iwasaki et al. | Jan 2003 | B2 |
6507388 | Burghoorn | Jan 2003 | B2 |
6553096 | Zhou et al. | Apr 2003 | B1 |
6560313 | Harding et al. | May 2003 | B1 |
6560315 | Price et al. | May 2003 | B1 |
6707883 | Tiearney et al. | Mar 2004 | B1 |
6711234 | Loxley et al. | Mar 2004 | B1 |
6763086 | Platonov | Jul 2004 | B2 |
6811612 | Gruen et al. | Nov 2004 | B2 |
6815363 | Yun et al. | Nov 2004 | B2 |
6829327 | Chen | Dec 2004 | B1 |
6847699 | Rigali et al. | Jan 2005 | B2 |
6850598 | Fryda et al. | Feb 2005 | B1 |
6870172 | Mankos et al. | Mar 2005 | B1 |
6885503 | Yun et al. | Apr 2005 | B2 |
6891627 | Levy et al. | May 2005 | B1 |
6914723 | Yun et al. | Jul 2005 | B2 |
6917472 | Yun et al. | Jul 2005 | B1 |
6934359 | Chen | Aug 2005 | B2 |
6947522 | Wilson et al. | Sep 2005 | B2 |
6975703 | Wilson et al. | Dec 2005 | B2 |
7003077 | Jen et al. | Feb 2006 | B2 |
7006596 | Janik | Feb 2006 | B1 |
7015467 | Maldonado et al. | Mar 2006 | B2 |
7023950 | Annis | Apr 2006 | B1 |
7023955 | Chen et al. | Apr 2006 | B2 |
7057187 | Yun et al. | Jun 2006 | B1 |
7076026 | Verman et al. | Jun 2006 | B2 |
7079625 | Lenz | Jul 2006 | B2 |
7095822 | Yun | Aug 2006 | B1 |
7103138 | Pelc et al. | Sep 2006 | B2 |
7110503 | Kumakhov | Sep 2006 | B1 |
7119953 | Yun et al. | Oct 2006 | B2 |
7120228 | Yokhin et al. | Oct 2006 | B2 |
7130375 | Yun et al. | Oct 2006 | B1 |
7149283 | Hoheisel et al. | Dec 2006 | B2 |
7170969 | Yun et al. | Jan 2007 | B1 |
7180979 | Momose | Feb 2007 | B2 |
7180981 | Wang | Feb 2007 | B2 |
7183547 | Yun et al. | Feb 2007 | B2 |
7187751 | Kawahara et al. | Mar 2007 | B2 |
7215736 | Wang et al. | May 2007 | B1 |
7215741 | Ukita et al. | May 2007 | B2 |
7218700 | Huber et al. | May 2007 | B2 |
7218703 | Yada et al. | May 2007 | B2 |
7221731 | Yada et al. | May 2007 | B2 |
7245696 | Yun et al. | Jul 2007 | B2 |
7264397 | Ritter | Sep 2007 | B2 |
7268945 | Yun et al. | Sep 2007 | B2 |
7286640 | Yun et al. | Oct 2007 | B2 |
7297959 | Yun et al. | Nov 2007 | B2 |
7298826 | Inazuru | Nov 2007 | B2 |
7330533 | Sampayon | Feb 2008 | B2 |
7346148 | Ukita | Mar 2008 | B2 |
7346204 | Ito | Mar 2008 | B2 |
7349525 | Morton | Mar 2008 | B2 |
7359487 | Newcome | Apr 2008 | B1 |
7365909 | Yun et al. | Apr 2008 | B2 |
7365918 | Yun et al. | Apr 2008 | B1 |
7382864 | Hebert et al. | Jun 2008 | B2 |
7388942 | Wang et al. | Jun 2008 | B2 |
7394890 | Wang et al. | Jul 2008 | B1 |
7400704 | Yun et al. | Jul 2008 | B1 |
7406151 | Yun | Jul 2008 | B1 |
7412024 | Yun et al. | Aug 2008 | B1 |
7412030 | O'Hara | Aug 2008 | B1 |
7412131 | Lee et al. | Aug 2008 | B2 |
7414787 | Yun et al. | Aug 2008 | B2 |
7433444 | Baumann | Oct 2008 | B2 |
7440542 | Baumann | Oct 2008 | B2 |
7443953 | Yun et al. | Oct 2008 | B1 |
7443958 | Harding | Oct 2008 | B2 |
7453981 | Baumann | Nov 2008 | B2 |
7463712 | Zhu et al. | Dec 2008 | B2 |
7474735 | Spahn | Jan 2009 | B2 |
7486770 | Baumann | Feb 2009 | B2 |
7492871 | Popescu | Feb 2009 | B2 |
7499521 | Wang et al. | Mar 2009 | B2 |
7515684 | Gibson et al. | Apr 2009 | B2 |
7522698 | Popescu | Apr 2009 | B2 |
7522707 | Steinlage et al. | Apr 2009 | B2 |
7522708 | Heismann | Apr 2009 | B2 |
7529343 | Safai et al. | May 2009 | B2 |
7532704 | Hempel | May 2009 | B2 |
7551719 | Yokhin et al. | Jun 2009 | B2 |
7551722 | Ohshima et al. | Jun 2009 | B2 |
7561662 | Wang et al. | Jul 2009 | B2 |
7564941 | Baumann | Jul 2009 | B2 |
7583789 | Macdonald et al. | Sep 2009 | B1 |
7601399 | Barnola et al. | Oct 2009 | B2 |
7605371 | Yasui et al. | Oct 2009 | B2 |
7639786 | Baumann | Dec 2009 | B2 |
7646843 | Popescu et al. | Jan 2010 | B2 |
7653177 | Baumann et al. | Jan 2010 | B2 |
7672433 | Zhong et al. | Mar 2010 | B2 |
7680243 | Yokhin et al. | Mar 2010 | B2 |
7738629 | Chen | Jun 2010 | B2 |
7787588 | Yun et al. | Aug 2010 | B1 |
7796725 | Yun et al. | Sep 2010 | B1 |
7796726 | Gendreau et al. | Sep 2010 | B1 |
7800072 | Yun et al. | Sep 2010 | B2 |
7809113 | Aoki et al. | Oct 2010 | B2 |
7813475 | Wu et al. | Oct 2010 | B1 |
7817777 | Baumann et al. | Oct 2010 | B2 |
7848483 | Platonov | Dec 2010 | B2 |
7864426 | Yun et al. | Jan 2011 | B2 |
7864922 | Kawabe | Jan 2011 | B2 |
7873146 | Okunuki et al. | Jan 2011 | B2 |
7876883 | O'Hara | Jan 2011 | B2 |
7889838 | David et al. | Feb 2011 | B2 |
7889844 | Okunuki et al. | Feb 2011 | B2 |
7899154 | Chen et al. | Mar 2011 | B2 |
7902528 | Hera et al. | Mar 2011 | B2 |
7914693 | Jeong et al. | Mar 2011 | B2 |
7920673 | Lanza et al. | Apr 2011 | B2 |
7920676 | Yun et al. | Apr 2011 | B2 |
7924973 | Kottler et al. | Apr 2011 | B2 |
7929667 | Zhuang et al. | Apr 2011 | B1 |
7945018 | Heismann | May 2011 | B2 |
7949092 | Brons | May 2011 | B2 |
7949095 | Ning | May 2011 | B2 |
7974379 | Case et al. | Jul 2011 | B1 |
7983381 | David et al. | Jul 2011 | B2 |
7991120 | Okunuki et al. | Aug 2011 | B2 |
8005185 | Popescu | Aug 2011 | B2 |
8009796 | Popescu | Aug 2011 | B2 |
8009797 | Ouchi | Aug 2011 | B2 |
8041004 | David | Oct 2011 | B2 |
8036341 | Lee | Nov 2011 | B2 |
8058621 | Kommareddy | Nov 2011 | B2 |
8068579 | Yun et al. | Nov 2011 | B1 |
8073099 | Niu et al. | Dec 2011 | B2 |
8094784 | Morton | Jan 2012 | B2 |
8139711 | Takahashi | Mar 2012 | B2 |
8139716 | Okunuki et al. | Mar 2012 | B2 |
8165270 | David et al. | Apr 2012 | B2 |
8184771 | Murakoshi | May 2012 | B2 |
8208602 | Lee | Jun 2012 | B2 |
8208603 | Sato | Jun 2012 | B2 |
8233587 | Sato | Jul 2012 | B2 |
8243879 | Itoh et al. | Aug 2012 | B2 |
8243884 | Rödhammer et al. | Aug 2012 | B2 |
8249220 | Verman et al. | Aug 2012 | B2 |
8280000 | Takahashi | Oct 2012 | B2 |
8306183 | Koehler | Nov 2012 | B2 |
8306184 | Chang et al. | Nov 2012 | B2 |
8331534 | Silver | Dec 2012 | B2 |
8351569 | Baker | Jan 2013 | B2 |
8351570 | Nakamura | Jan 2013 | B2 |
8353628 | Yun et al. | Jan 2013 | B1 |
8357894 | Toth et al. | Jan 2013 | B2 |
8360640 | Reinhold | Jan 2013 | B2 |
8374309 | Donath | Feb 2013 | B2 |
8406378 | Wang et al. | Mar 2013 | B2 |
8416920 | Okumura et al. | Apr 2013 | B2 |
8422633 | Lantz et al. | Apr 2013 | B2 |
8423127 | Mahmood et al. | Apr 2013 | B2 |
8451975 | Tada | May 2013 | B2 |
8422637 | Okunuki et al. | Jun 2013 | B2 |
8488743 | Verman | Jul 2013 | B2 |
8509386 | Lee et al. | Aug 2013 | B2 |
8520803 | Behling | Aug 2013 | B2 |
8526575 | Yun et al. | Sep 2013 | B1 |
8532257 | Mukaide et al. | Sep 2013 | B2 |
8553843 | Drory | Oct 2013 | B2 |
8559594 | Ouchi | Oct 2013 | B2 |
8559597 | Chen et al. | Oct 2013 | B2 |
8565371 | Bredno | Oct 2013 | B2 |
8576983 | Baeumer | Nov 2013 | B2 |
8588372 | Zou et al. | Nov 2013 | B2 |
8591108 | Tada | Nov 2013 | B2 |
8602648 | Jacobsen et al. | Dec 2013 | B1 |
8632247 | Ishii | Jan 2014 | B2 |
8644451 | Aoki et al. | Feb 2014 | B2 |
8666024 | Okunuki et al. | Mar 2014 | B2 |
8666025 | Klausz | Mar 2014 | B2 |
8699667 | Steinlage et al. | Apr 2014 | B2 |
8735844 | Khaykovich et al. | May 2014 | B1 |
8737565 | Lyon et al. | May 2014 | B1 |
8744048 | Lee et al. | Jun 2014 | B2 |
8755487 | Kaneko | Jun 2014 | B2 |
8767915 | Stutman | Jul 2014 | B2 |
8767916 | Hashimoto | Jul 2014 | B2 |
8781069 | Murakoshi | Jul 2014 | B2 |
8824629 | Ishii | Sep 2014 | B2 |
8831174 | Kohara | Sep 2014 | B2 |
8831175 | Silver et al. | Sep 2014 | B2 |
8831179 | Adler et al. | Sep 2014 | B2 |
8837680 | Tsujii | Sep 2014 | B2 |
8855265 | Engel | Oct 2014 | B2 |
8859977 | Kondoh | Oct 2014 | B2 |
8861682 | Okunuki et al. | Oct 2014 | B2 |
8903042 | Ishii | Dec 2014 | B2 |
8908824 | Kondoh | Dec 2014 | B2 |
8972191 | Stampanoni et al. | Mar 2015 | B2 |
8989351 | Vogtmeier et al. | Mar 2015 | B2 |
8989474 | Kido et al. | Mar 2015 | B2 |
8995622 | Adler et al. | Mar 2015 | B2 |
9001967 | Baturin | Apr 2015 | B2 |
9001968 | Kugland et al. | Apr 2015 | B2 |
9007562 | Marconi et al. | Apr 2015 | B2 |
9008278 | Lee et al. | Apr 2015 | B2 |
9016943 | Jacobsen et al. | Apr 2015 | B2 |
9020101 | Omote et al. | Apr 2015 | B2 |
9025725 | Kiyohara et al. | May 2015 | B2 |
9029795 | Sando | May 2015 | B2 |
9031201 | Sato | May 2015 | B2 |
9036773 | David et al. | May 2015 | B2 |
9063055 | Ouchi | Jun 2015 | B2 |
9086536 | Pang et al. | Jul 2015 | B2 |
9129715 | Adler et al. | Sep 2015 | B2 |
9222899 | Yamaguchi | Dec 2015 | B2 |
9230703 | Mohr et al. | Jan 2016 | B2 |
9234856 | Mukaide | Jan 2016 | B2 |
9251995 | Ogura | Feb 2016 | B2 |
9257254 | Ogura et al. | Feb 2016 | B2 |
9263225 | Morton | Feb 2016 | B2 |
9280056 | Clube et al. | Mar 2016 | B2 |
9281158 | Ogura | Mar 2016 | B2 |
9291578 | Adler | Mar 2016 | B2 |
9329141 | Stutman | May 2016 | B2 |
9336917 | Ozawa et al. | May 2016 | B2 |
9357975 | Baturin | Jun 2016 | B2 |
9362081 | Bleuet | Jun 2016 | B2 |
9370084 | Sprong et al. | Jun 2016 | B2 |
9390881 | Yun et al. | Jul 2016 | B2 |
9412552 | Aoki et al. | Aug 2016 | B2 |
9430832 | Koehler et al. | Aug 2016 | B2 |
9439613 | Stutman | Sep 2016 | B2 |
9445775 | Das | Sep 2016 | B2 |
9448190 | Yun et al. | Sep 2016 | B2 |
9449780 | Chen | Sep 2016 | B2 |
9449781 | Yun et al. | Sep 2016 | B2 |
9453803 | Radicke | Sep 2016 | B2 |
9480447 | Mohr et al. | Nov 2016 | B2 |
9486175 | Fredenberg et al. | Nov 2016 | B2 |
9494534 | Baturin | Nov 2016 | B2 |
9502204 | Ikarashi | Nov 2016 | B2 |
9520260 | Hesselink et al. | Dec 2016 | B2 |
9524846 | Sato et al. | Dec 2016 | B2 |
9532760 | Anton et al. | Jan 2017 | B2 |
9543109 | Yun et al. | Jan 2017 | B2 |
9551677 | Mazor et al. | Jan 2017 | B2 |
9557280 | Pfeiffer et al. | Jan 2017 | B2 |
9564284 | Gerzoskovitz | Feb 2017 | B2 |
9570264 | Ogura et al. | Feb 2017 | B2 |
9570265 | Yun et al. | Feb 2017 | B1 |
9588066 | Pois et al. | Mar 2017 | B2 |
9594036 | Yun et al. | Mar 2017 | B2 |
9595415 | Ogura | Mar 2017 | B2 |
9632040 | Stutman | Apr 2017 | B2 |
9658174 | Omote | May 2017 | B2 |
9700267 | Baturin et al. | Jul 2017 | B2 |
9715989 | Dalakos | Jul 2017 | B2 |
9719947 | Yun et al. | Aug 2017 | B2 |
9748012 | Yokoyama | Aug 2017 | B2 |
9757081 | Proksa | Sep 2017 | B2 |
9761021 | Koehler | Sep 2017 | B2 |
9770215 | Souchay et al. | Sep 2017 | B2 |
9778213 | Bakeman et al. | Oct 2017 | B2 |
9823203 | Yun et al. | Nov 2017 | B2 |
9826949 | Ning | Nov 2017 | B2 |
9837178 | Nagai | Dec 2017 | B2 |
9842414 | Koehler | Dec 2017 | B2 |
9861330 | Rossl | Jan 2018 | B2 |
9874531 | Yun et al. | Jan 2018 | B2 |
9881710 | Roessl | Jan 2018 | B2 |
9916655 | Sampanoni | Mar 2018 | B2 |
9934930 | Parker et al. | Apr 2018 | B2 |
9939392 | Wen | Apr 2018 | B2 |
9970119 | Yokoyama | May 2018 | B2 |
10014148 | Tang et al. | Jul 2018 | B2 |
10020158 | Yamada | Jul 2018 | B2 |
10028716 | Rossl | Jul 2018 | B2 |
10045753 | Teshima | Aug 2018 | B2 |
10068740 | Gupta | Sep 2018 | B2 |
10074451 | Kottler et al. | Sep 2018 | B2 |
10076297 | Bauer | Sep 2018 | B2 |
10085701 | Hoshino | Oct 2018 | B2 |
10105112 | Utsumi | Oct 2018 | B2 |
10115557 | Ishii | Oct 2018 | B2 |
10141081 | Preusche | Nov 2018 | B2 |
10151713 | Wu et al. | Dec 2018 | B2 |
10153061 | Yokoyama | Dec 2018 | B2 |
10153062 | Gall et al. | Dec 2018 | B2 |
10182194 | Karim et al. | Jan 2019 | B2 |
10217596 | Liang et al. | Feb 2019 | B2 |
10231687 | Kahn et al. | Mar 2019 | B2 |
10247683 | Yun et al. | Apr 2019 | B2 |
10256001 | Yokoyama | Apr 2019 | B2 |
10264659 | Miller et al. | Apr 2019 | B1 |
10267752 | Zhang et al. | Apr 2019 | B2 |
10267753 | Zhang et al. | Apr 2019 | B2 |
10269528 | Yun et al. | Apr 2019 | B2 |
10295485 | Yun et al. | May 2019 | B2 |
10295486 | Yun et al. | May 2019 | B2 |
10297359 | Yun et al. | May 2019 | B2 |
10304580 | Yun et al. | May 2019 | B2 |
10349908 | Yun et al. | Jul 2019 | B2 |
10352695 | Dziura et al. | Jul 2019 | B2 |
10352880 | Yun et al. | Jul 2019 | B2 |
10393683 | Hegeman et al. | Aug 2019 | B2 |
10401309 | Yun et al. | Sep 2019 | B2 |
10416099 | Yun et al. | Sep 2019 | B2 |
10429325 | Ito et al. | Oct 2019 | B2 |
10466185 | Yun et al. | Nov 2019 | B2 |
10473598 | Ogata et al. | Nov 2019 | B2 |
10485492 | Koehler et al. | Nov 2019 | B2 |
10514345 | Ogata et al. | Dec 2019 | B2 |
10514346 | Sako | Dec 2019 | B2 |
10568588 | Koehler et al. | Feb 2020 | B2 |
10578566 | Yun et al. | Mar 2020 | B2 |
10634628 | Kasper et al. | Apr 2020 | B2 |
10653376 | Yun et al. | May 2020 | B2 |
10697902 | Sharma et al. | Jun 2020 | B2 |
10743396 | Kawase | Aug 2020 | B1 |
10782252 | Gateshki et al. | Sep 2020 | B2 |
10794845 | Filsinger | Oct 2020 | B2 |
10841515 | Tsujino | Nov 2020 | B1 |
20010006413 | Burghoorn | Jul 2001 | A1 |
20020080916 | Jiang | Jun 2002 | A1 |
20020085676 | Snyder | Jul 2002 | A1 |
20030142790 | Zhou et al. | Jan 2003 | A1 |
20030054133 | Wadley et al. | Mar 2003 | A1 |
20030112923 | Lange | Jun 2003 | A1 |
20030142781 | Kawahara | Jul 2003 | A1 |
20030223536 | Yun et al. | Dec 2003 | A1 |
20040047446 | Platonov | Mar 2004 | A1 |
20040076260 | Charles, Jr. | Apr 2004 | A1 |
20040120463 | Wilson et al. | Jun 2004 | A1 |
20040140432 | Maldonado et al. | Jul 2004 | A1 |
20050025281 | Verman et al. | Feb 2005 | A1 |
20050074094 | Jen et al. | Apr 2005 | A1 |
20050123097 | Wang | Jun 2005 | A1 |
20050163284 | Inazuru | Jul 2005 | A1 |
20050201520 | Smith et al. | Sep 2005 | A1 |
20050282300 | Yun et al. | Dec 2005 | A1 |
20060045234 | Pelc | Mar 2006 | A1 |
20060062350 | Yokhin | Mar 2006 | A1 |
20060182322 | Bernhardt et al. | Aug 2006 | A1 |
20060233309 | Kutzner et al. | Oct 2006 | A1 |
20060239405 | Verman | Oct 2006 | A1 |
20070030959 | Ritter | Feb 2007 | A1 |
20070071174 | Hebert et al. | Mar 2007 | A1 |
20070108387 | Yun et al. | May 2007 | A1 |
20070110217 | Ukita | May 2007 | A1 |
20070183563 | Baumann | Aug 2007 | A1 |
20070183579 | Baumann et al. | Aug 2007 | A1 |
20070189449 | Baumann | Aug 2007 | A1 |
20070248215 | Ohshima et al. | Oct 2007 | A1 |
20080084966 | Aoki et al. | Apr 2008 | A1 |
20080089484 | Reinhold | Apr 2008 | A1 |
20080094694 | Yun et al. | Apr 2008 | A1 |
20080099935 | Egle | May 2008 | A1 |
20080116398 | Hara | May 2008 | A1 |
20080117511 | Chen | May 2008 | A1 |
20080159475 | Mazor et al. | Jul 2008 | A1 |
20080159707 | Lee et al. | Jul 2008 | A1 |
20080165355 | Yasui et al. | Jul 2008 | A1 |
20080170662 | Reinhold | Jul 2008 | A1 |
20080170668 | Kruit et al. | Jul 2008 | A1 |
20080181363 | Fenter et al. | Jul 2008 | A1 |
20080240344 | Reinhold | Oct 2008 | A1 |
20080273662 | Yun | Nov 2008 | A1 |
20090052619 | Endoh | Feb 2009 | A1 |
20090092227 | David | Apr 2009 | A1 |
20090154640 | Baumann et al. | Jun 2009 | A1 |
20090316857 | David et al. | Dec 2009 | A1 |
20090316860 | Okunuki et al. | Dec 2009 | A1 |
20100012845 | Baeumer et al. | Jan 2010 | A1 |
20100027739 | Lantz et al. | Feb 2010 | A1 |
20100040202 | Lee | Feb 2010 | A1 |
20100046702 | Chen et al. | Feb 2010 | A1 |
20100061508 | Takahashi | Mar 2010 | A1 |
20100091947 | Niu | Apr 2010 | A1 |
20100141151 | Reinhold | Jun 2010 | A1 |
20100246765 | Murakoshi | Sep 2010 | A1 |
20100260315 | Sato et al. | Oct 2010 | A1 |
20100272239 | Lantz et al. | Oct 2010 | A1 |
20100284513 | Kawabe | Nov 2010 | A1 |
20110026680 | Sato | Feb 2011 | A1 |
20110038455 | Silver et al. | Feb 2011 | A1 |
20110058655 | Okumura et al. | Mar 2011 | A1 |
20110064191 | Toth et al. | Mar 2011 | A1 |
20110064202 | Thran et al. | Mar 2011 | A1 |
20110085644 | Verman | Apr 2011 | A1 |
20110135066 | Behling | Jun 2011 | A1 |
20110142204 | Zou et al. | Jun 2011 | A1 |
20110235781 | Aoki et al. | Sep 2011 | A1 |
20110243302 | Murakoshi | Oct 2011 | A1 |
20110268252 | Ozawa et al. | Nov 2011 | A1 |
20120041679 | Stampanoni | Feb 2012 | A1 |
20120057669 | Vogtmeier et al. | Mar 2012 | A1 |
20120163547 | Lee et al. | Jun 2012 | A1 |
20120163554 | Tada | Jun 2012 | A1 |
20120224670 | Kiyohara et al. | Sep 2012 | A1 |
20120228475 | Pang et al. | Sep 2012 | A1 |
20120269323 | Adler et al. | Oct 2012 | A1 |
20120269324 | Adler | Oct 2012 | A1 |
20120269325 | Adler et al. | Oct 2012 | A1 |
20120269326 | Adler et al. | Oct 2012 | A1 |
20120294420 | Nagai | Nov 2012 | A1 |
20130011040 | Kido et al. | Jan 2013 | A1 |
20130032727 | Kondoe | Feb 2013 | A1 |
20130039460 | Levy | Feb 2013 | A1 |
20130108012 | Sato | May 2013 | A1 |
20130108022 | Kugland et al. | May 2013 | A1 |
20130195246 | Tamura et al. | Aug 2013 | A1 |
20130223594 | Sprong et al. | Aug 2013 | A1 |
20130235976 | Jeong et al. | Sep 2013 | A1 |
20130251100 | Sasaki et al. | Sep 2013 | A1 |
20130259207 | Omote et al. | Oct 2013 | A1 |
20130279651 | Yokoyama | Oct 2013 | A1 |
20130308112 | Clube et al. | Nov 2013 | A1 |
20130308754 | Yamazaki et al. | Nov 2013 | A1 |
20140023973 | Marconi et al. | Jan 2014 | A1 |
20140029729 | Kucharczyk | Jan 2014 | A1 |
20140037052 | Adler | Feb 2014 | A1 |
20140064445 | Adler | Mar 2014 | A1 |
20140072104 | Jacobsen et al. | Mar 2014 | A1 |
20140079188 | Hesselink et al. | Mar 2014 | A1 |
20140105363 | Chen et al. | Apr 2014 | A1 |
20140146945 | Fredenberg et al. | May 2014 | A1 |
20140153692 | Larkin et al. | Jun 2014 | A1 |
20140177800 | Sato et al. | Jun 2014 | A1 |
20140185778 | Lee et al. | Jul 2014 | A1 |
20140205057 | Koehler et al. | Jul 2014 | A1 |
20140211919 | Ogura et al. | Jul 2014 | A1 |
20140226785 | Stutman et al. | Aug 2014 | A1 |
20140241493 | Yokoyama | Aug 2014 | A1 |
20140270060 | Date et al. | Sep 2014 | A1 |
20140369469 | Ogura et al. | Dec 2014 | A1 |
20140369471 | Ogura et al. | Dec 2014 | A1 |
20150030126 | Radicke | Jan 2015 | A1 |
20150030127 | Aoki et al. | Jan 2015 | A1 |
20150043713 | Chen | Feb 2015 | A1 |
20150049860 | Das | Feb 2015 | A1 |
20150051877 | Bakeman et al. | Feb 2015 | A1 |
20150055743 | Vedantham et al. | Feb 2015 | A1 |
20150055745 | Holzner et al. | Feb 2015 | A1 |
20150071402 | Handa | Mar 2015 | A1 |
20150092924 | Yun et al. | Apr 2015 | A1 |
20150110252 | Yun et al. | Apr 2015 | A1 |
20150117599 | Yun et al. | Apr 2015 | A1 |
20150194287 | Yun et al. | Jul 2015 | A1 |
20150243397 | Yun et al. | Aug 2015 | A1 |
20150247811 | Yun | Sep 2015 | A1 |
20150260663 | Yun et al. | Sep 2015 | A1 |
20150323478 | Stutman | Nov 2015 | A1 |
20150357069 | Yun et al. | Dec 2015 | A1 |
20160064175 | Yun et al. | Mar 2016 | A1 |
20160066870 | Yun et al. | Mar 2016 | A1 |
20160106387 | Kahn | Apr 2016 | A1 |
20160178540 | Yun et al. | Jun 2016 | A1 |
20160178541 | Hwang et al. | Jun 2016 | A1 |
20160206259 | Auclair et al. | Jul 2016 | A1 |
20160268094 | Yun et al. | Sep 2016 | A1 |
20160320320 | Yun et al. | Nov 2016 | A1 |
20160351370 | Yun et al. | Dec 2016 | A1 |
20170018392 | Cheng | Jan 2017 | A1 |
20170047191 | Yun | Feb 2017 | A1 |
20170052128 | Yun et al. | Feb 2017 | A1 |
20170074809 | Ito | Mar 2017 | A1 |
20170162288 | Yun et al. | Jun 2017 | A1 |
20170162359 | Tang et al. | Jun 2017 | A1 |
20170176356 | Hoffman | Jun 2017 | A1 |
20170227476 | Zhang et al. | Aug 2017 | A1 |
20170234811 | Zhang et al. | Aug 2017 | A1 |
20170261442 | Yun et al. | Sep 2017 | A1 |
20170336334 | Yun et al. | Nov 2017 | A1 |
20180144901 | Yun et al. | May 2018 | A1 |
20180182131 | Koehler et al. | Jun 2018 | A1 |
20180202951 | Yun et al. | Jul 2018 | A1 |
20180261352 | Matsuyama et al. | Sep 2018 | A1 |
20180306734 | Morimoto et al. | Oct 2018 | A1 |
20180323032 | Strelec et al. | Nov 2018 | A1 |
20180344276 | DeFreitas et al. | Dec 2018 | A1 |
20180348151 | Kasper et al. | Dec 2018 | A1 |
20180356355 | Momose et al. | Dec 2018 | A1 |
20190017942 | Filevich | Jan 2019 | A1 |
20190017946 | Wack et al. | Jan 2019 | A1 |
20190018824 | Zarkadas | Jan 2019 | A1 |
20190019647 | Lee et al. | Jan 2019 | A1 |
20190027265 | Dey et al. | Jan 2019 | A1 |
20190043689 | Camus | Feb 2019 | A1 |
20190057832 | Durst et al. | Feb 2019 | A1 |
20190064084 | Ullom et al. | Feb 2019 | A1 |
20190086342 | Pois et al. | Mar 2019 | A1 |
20190088439 | Honda | Mar 2019 | A1 |
20190113466 | Karim et al. | Apr 2019 | A1 |
20190115184 | Zalubovsky | Apr 2019 | A1 |
20190131103 | Tuohimaa | May 2019 | A1 |
20190132936 | Steck et al. | May 2019 | A1 |
20190154892 | Moldovan | May 2019 | A1 |
20190172681 | Owen et al. | Jun 2019 | A1 |
20190189385 | Liang et al. | Jun 2019 | A1 |
20190204246 | Hegeman et al. | Jul 2019 | A1 |
20190204757 | Brussard et al. | Jul 2019 | A1 |
20190206652 | Akinwande et al. | Jul 2019 | A1 |
20190212281 | Shchegrov | Jul 2019 | A1 |
20190214216 | Jeong et al. | Jul 2019 | A1 |
20190216416 | Koehler et al. | Jul 2019 | A1 |
20190219713 | Booker et al. | Jul 2019 | A1 |
20190261935 | Kitamura | Aug 2019 | A1 |
20190272929 | Omote et al. | Sep 2019 | A1 |
20190304735 | Safai et al. | Oct 2019 | A1 |
20190311874 | Tuohimma et al. | Oct 2019 | A1 |
20190317027 | Tsuboi et al. | Oct 2019 | A1 |
20190331616 | Schaff et al. | Oct 2019 | A1 |
20190341219 | Zhang et al. | Nov 2019 | A1 |
20190341220 | Parker et al. | Nov 2019 | A1 |
20190353802 | Steinhauser et al. | Nov 2019 | A1 |
20190374182 | Karim et al. | Dec 2019 | A1 |
20190380193 | Matsuhana et al. | Dec 2019 | A1 |
20190387602 | Woywode et al. | Dec 2019 | A1 |
20190391087 | Matejka et al. | Dec 2019 | A1 |
20200003708 | Kobayashi et al. | Jan 2020 | A1 |
20200003712 | Kataoka et al. | Jan 2020 | A1 |
20200041429 | Cho et al. | Feb 2020 | A1 |
20200058462 | Suzuki | Feb 2020 | A1 |
20200088656 | Pois et al. | Mar 2020 | A1 |
20200090826 | Adler | Mar 2020 | A1 |
20200103358 | Wiell et al. | Apr 2020 | A1 |
20200105492 | Behling et al. | Apr 2020 | A1 |
20200154552 | Suzuki et al. | May 2020 | A1 |
20200155088 | Gruener et al. | May 2020 | A1 |
20200158662 | Horiba et al. | May 2020 | A1 |
20200163195 | Steck et al. | May 2020 | A1 |
20200168427 | Krokhmal et al. | May 2020 | A1 |
20200182806 | Kappler et al. | Jun 2020 | A1 |
20200187339 | Freudenberger et al. | Jun 2020 | A1 |
20200191732 | Taniguchi et al. | Jun 2020 | A1 |
20200194212 | Dalakos et al. | Jun 2020 | A1 |
20200203113 | Ponard | Jun 2020 | A1 |
20200225172 | Sato et al. | Jul 2020 | A1 |
20200225173 | Sato et al. | Jul 2020 | A1 |
20200225371 | Greenberg et al. | Jul 2020 | A1 |
20200232937 | Yaroshenko et al. | Jul 2020 | A1 |
20200234908 | Fishman et al. | Jul 2020 | A1 |
20200279351 | Ratner et al. | Sep 2020 | A1 |
20200292475 | Cao et al. | Sep 2020 | A1 |
20200297297 | Kok et al. | Sep 2020 | A1 |
20200300789 | Osakabe et al. | Sep 2020 | A1 |
20200300790 | Gellineau et al. | Sep 2020 | A1 |
20200303265 | Gellineau et al. | Sep 2020 | A1 |
20200305809 | Schwoebel et al. | Oct 2020 | A1 |
20200319120 | Kitamura et al. | Oct 2020 | A1 |
20200321184 | Parker et al. | Oct 2020 | A1 |
20200330059 | Fredenberg et al. | Oct 2020 | A1 |
20200337659 | Sano et al. | Oct 2020 | A1 |
20200378904 | Albarqouni et al. | Dec 2020 | A1 |
20200378905 | Safai | Dec 2020 | A1 |
20200378907 | Morton | Dec 2020 | A1 |
20200378908 | Fujimura et al. | Dec 2020 | A1 |
20200388461 | Behling et al. | Dec 2020 | A1 |
20200398509 | Sanli et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
101257851 | Sep 2008 | CN |
101532969 | Sep 2009 | CN |
102124537 | Jul 2011 | CN |
102325498 | Jan 2012 | CN |
102551761 | Jul 2012 | CN |
0432568 | Jun 1991 | EP |
0751533 | Jan 1997 | EP |
1028451 | Aug 2000 | EP |
1169713 | Jan 2006 | EP |
3093867 | Nov 2016 | EP |
2548447 | Jan 1985 | FR |
H06-188092 | Jul 1994 | JP |
H07-056000 | Mar 1995 | JP |
H07-194592 | Aug 1995 | JP |
H08-128971 | May 1996 | JP |
H08-184572 | Jul 1996 | JP |
H11-304728 | Nov 1999 | JP |
H11-352079 | Dec 1999 | JP |
2000-306533 | Nov 2000 | JP |
2001-021507 | Jan 2001 | JP |
2003-149392 | May 2003 | JP |
2003-288853 | Oct 2003 | JP |
2004-089445 | Mar 2004 | JP |
2004-518262 | Jun 2004 | JP |
2007-218683 | Aug 2007 | JP |
2007-265981 | Oct 2007 | JP |
2007-311185 | Nov 2007 | JP |
2008-200359 | Apr 2008 | JP |
2008-145111 | Jun 2008 | JP |
2008-197495 | Aug 2008 | JP |
2009-195349 | Mar 2009 | JP |
2009-212058 | Sep 2009 | JP |
2010-236986 | Oct 2010 | JP |
2011-029072 | Feb 2011 | JP |
2011-033537 | Feb 2011 | JP |
2011-218147 | Nov 2011 | JP |
2012-032387 | Feb 2012 | JP |
2012-187341 | Oct 2012 | JP |
2012-254294 | Dec 2012 | JP |
2013-508683 | Mar 2013 | JP |
2015-529984 | Jul 2013 | JP |
2013-157269 | Aug 2013 | JP |
2013-160637 | Aug 2013 | JP |
2013-181811 | Sep 2013 | JP |
2013-239317 | Nov 2013 | JP |
2015-002074 | Jan 2015 | JP |
2015-047306 | Mar 2015 | JP |
2015-072263 | Apr 2015 | JP |
2015-077289 | Apr 2015 | JP |
2017-040618 | Feb 2017 | JP |
10-2012-0091591 | Aug 2012 | KR |
10-2014-0059688 | May 2014 | KR |
WO 1995006952 | Mar 1995 | WO |
WO 1998011592 | Mar 1998 | WO |
WO 2002039792 | May 2002 | WO |
WO 2003081631 | Oct 2003 | WO |
WO 2005109969 | Nov 2005 | WO |
WO 2006096052 | Sep 2006 | WO |
WO 2007125833 | Nov 2007 | WO |
WO 2008068044 | Jun 2008 | WO |
WO 2009098027 | Aug 2009 | WO |
WO 20091104560 | Aug 2009 | WO |
WO 2010109909 | Sep 2010 | WO |
WO 2011032572 | Mar 2011 | WO |
WO 2012032950 | Mar 2012 | WO |
WO 2013004574 | Jan 2013 | WO |
WO 2013111050 | Aug 2013 | WO |
WO 2013118593 | Aug 2013 | WO |
WO 2013160153 | Oct 2013 | WO |
WO 2013168468 | Nov 2013 | WO |
WO 2014054497 | Apr 2014 | WO |
WO 2015016019 | Feb 2015 | WO |
WO 2015034791 | Mar 2015 | WO |
WO 2015066333 | May 2015 | WO |
WO 2015084466 | Jun 2015 | WO |
WO 2015152490 | Oct 2015 | WO |
WO 2015168473 | Nov 2015 | WO |
WO 2015176023 | Nov 2015 | WO |
WO 2015187219 | Dec 2015 | WO |
WO 2016187623 | Nov 2016 | WO |
WO 2017031740 | Mar 2017 | WO |
WO 2017204850 | Nov 2017 | WO |
WO 2017-204850 | Nov 2017 | WO |
WO 2017213996 | Dec 2017 | WO |
WO 2018122213 | Jul 2018 | WO |
WO 2018175570 | Sep 2018 | WO |
Entry |
---|
“Diamond,” Section 10.4.2 of Zorman et al., “Material Aspects of Micro-Nanoelectromechanical Systems,” Chapter 10 of Springer Handbook of Nanotechnology, 2nd ed., Barat Bushan, ed. (Springer Science + Business Media, Inc., New York, 2007), pp. 312-314. |
“Element Six CVD Diamond Handbook” (Element Six, Luxembourg, 2015). |
“High performance benchtop EDXRF spectrometer with Windows® software,” published by: Rigaku Corp., Tokyo, Japan; 2017. |
“Monochromatic Doubly Curved Crystal Optics,” published by: X-Ray Optical Systems, Inc. (XOS), East Greenbush, NY; 2017. |
“Optics and Detectors,” Section 4 of X-Ray Data Booklet, 3rd Ed., A.C. Thompson ed. (Lawrence Berkeley Nat'l Lab, Berkeley, CA, 2009). |
“Properties of Solids,” Ch. 12 of CRC Handbook of Chemistry and Physics, 90th ed., Devid R. Lide & W.M. “Mickey” Haynes, eds. (CRC Press, Boca Raton, FL, 2009), pp. 12-41-12-46; 12-203-12-212. |
“Science and Technology of Future Light Sources”, Arthur L. Robinson (LBNL) and Brad Plummer (SLAG), eds. Report Nos. ANL-08/39 / BNL-81895-2008 / LBNL-1090E-2009 / SLAC-R-917 (Lawrence Berkeley Nat'l Lab, Berkeley, CA, Dec. 2008). |
“Series 5000 Packaged X-ray Tubes,” Product Technical Data Sheet DS006 Rev. G, X-Ray Technologies Inc. (Oxford Instruments), Scotts Valley, CA (no date). |
“Toward Control of Matter: Energy Science Needs for a New Class of X-Ray Light Sources” (Lawrence Berkeley Nat'l Lab, Berkeley, CA, Sep. 2008). |
“X-ray Optics for BES Light Source Facilities,” Report of the Basic Energy Sciences Workshop on X-ray Optics for BES Light Source Facilities, D. Mills & H. Padmore, Co-Chairs, (U.S. Dept. of Energy, Office of Science, Potomac, MD, Mar. 2013). |
Abullian et al., “Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence,” Nov. 28, 2012, The Journal of Chemical Physics, vol. 137, pp. 204907-1 to 204907-8. |
Adachi et al., “Development of the 17-inch Direct-Conversion Dynamic Flat-panel X-ray Detector (FPD),” Digital R/F (Shimadzu Corp., 2 pages (no date, published—2004 with product release). |
Aharonovich et al., “Diamond Nanophotonics,” Adv. Op. Mat'ls vol. 2, Issue 10 (2014). |
Als-Nielsen et al., “Phase contrast imaging” Sect. 9.3 of Ch. 9 of “Elements of Modern X-ray Physics, Second Edition” , (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011), pp. 318-329. |
Als-Nielsen et al., “Photoelectric Absorption,” Ch. 7 of “Elements of Modern X-ray Physics, Second Edition,” (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011). |
Als-Nielsen et al., “Refraction and reflection from interfaces,” Ch. 3 of “Elements of Modern X-ray Physics, Second Edition,” (John Wiley & Sons Ltd., Chichester, West Sussex, UK, 2011), pp. 69-112. |
Als-Nielsen et al., “X-rays and their interaction with matter”, and “Sources”, Ch. 1 & 2 of “Elements of Modern X-ray Physics, Second Edition” (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011). |
Altapova et al., “Phase contrast laminography based on Talbot interferometry,” Opt. Express, vol. 20, No. 6, (2012) pp. 6496-6508. |
Ando et al., “Smooth and high-rate reactive ion etching of diamond,” Diamond and Related Materials, vol. 11, (2002) pp. 824-827. |
Arfelli et al., “Mammography with Synchrotron Radiation: Phase-Detection Techniques,” Radiology vol. 215, (2000), pp. 286-293. |
Arndt et al., Focusing Mirrors for Use with Microfocus X-ray Tubes, 1998, Journal of Applied Crystallography, vol. 31, pp. 733-741. |
Bachucki et al., “Laboratory-based double X-ray spectrometer for simultaneous X-ray emission and X-ray absorption studies,” J. Anal. Atomic Spectr. DOI:10.1039/C9JA00159J (2019). |
Balaic et al., “X-ray optics of tapered capillaries,” Appl. Opt. vol. 34 (Nov. 1995) pp. 7263-7272. |
Baltes et al., “Coherent and incoherent grating reconstruction,” J. Opt. Soc. Am. A vol. 3(8), (1986), pp. 1268-1275. |
Barbee Jr., “Multilayers for x-ray optics,” Opt. Eng. vol. 25 (Aug. 1986) pp. 898-915. |
Baron et al., “A compact optical design for Bragg reflections near backscattering,” J. Synchrotron Rad., vol. 8 (2001), pp. 1127-1130. |
Bech, “In-vivo dark-field and phase-contrast x-ray imaging,” Scientific Reports 3, (2013), Article No. 03209. |
Bech, “X-ray imaging with a grating interferometer,” University of Copenhagen PhD. Thesis, (May 1, 2009). |
Bergamin et al., “Measuring small lattice distortions in Si-crystals by phase-contrast x-ray topography,” J. Phys. D: Appl. Phys. vol. 33 (Dec. 31, 2000) pp. 2678-2682. |
Bernstorff, “Grazing Incidence Small Angle X-ray Scattering (GISAXS),” Presentation at Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications, Apr. 2008, Trieste, Italy. |
Bilderback et al., “Single Capillaries,” Ch. 29 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Birkholz, “Chapter 4: Grazing Incidence Configurations,” Thin Film Analysis by X-ray Scattering (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006). |
Bjeoumikhov et al., “A modular system for XRF and XRD applications consisting of a microfocus X-ray source and different capillary optics,” X-ray Spectrometry, vol. 33 (2004), pp. 312-316. |
Bjeoumikhov et al., “Capillary Optics for X-Rays,” Ch. 18 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds. (Springer, Berlin, Germany, 2008), pp. 287-306. |
Canberra Model S-5005 WinAxil X-Ray Analysis Software, published by: Canberra Eurisys Benelux N.V./S.A.,Zellik, Belgium; Jun. 2004. |
Cerrina, “The Schwarzschild Objective,” Ch. 27 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Chen et al., “Advance in detection of low sulfur content by wavelength dispersive XRF,” Proceedings of the Annual ISA Analysis Division Symposium (2002). |
Chen et al., “Doubly curved crystal (DCC) X-ray optics and applications,” Powder Diffraction, vol. 17(2) (2002), pp. 99-103. |
Chen et al., “Guiding and focusing neutron beams using capillary optics,” Nature vol. 357 (Jun. 4, 1992), pp. 391-393. |
Chervenak et al., “Experimental thick-target bremsstrahlung spectra from electrons in the range 10 to 30 keV”, Phys. Rev. A vol. 12 (1975), pp. 26-33. |
Chon, “Measurement of Roundness for an X-Ray Mono-Capillary Optic by Using Computed Tomography,” J. Korean Phys. Soc. vol. 74, No. 9, pp. 901-906 (May 2019). |
Coan et al., “In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs,” Phys. Med. Biol. vol. 55(24) (2010), pp. 7649-7662. |
Cockcroft et al., “Chapter 2: Experimental Setups,” Powder Diffraction: Theory and Practice, R.E. Dinnebier and S.J.L. Billinge, eds (Royal Society of Chemistry Publishing, London, UK, 2008). |
Cohen et al., “Tunable laboratory extended x-ray absorption fine structure system,” Rev. Sci. Instr. vol. 51, No. 3, Mar. 1980, pp. 273-277. |
Cong et al., “Fourier transform-based iterative method for differential phase-contrast computed tomography”, Opt. Lett. vol. 37 (2012), pp. 1784-1786. |
Cornaby et al., “Advances in X-ray Microfocusing with Monocapillary Optics at CHESS,” CHESS News Magazine (2009), pp. 63-66. |
Cornaby et al., “Design of Single-Bounce Monocapillary X-ray Optics,” Advances in X-ray Analysis: Proceedings of the 55th Annual Conference on Applications of X-ray Analysis, vol. 50, (International Centre for Diffraction Data (ICDD), 2007), pp. 194-200. |
Cornaby, “The Handbook of X-ray Single Bounce Monocapillary Optics, Including Optical Design and Synchrotron Applications” (PhD Dissertation, Cornell University, Ithaca, NY, May 2008). |
David et al., “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. vol. 84, (2007), pp. 1172-1177. |
David et al., “Hard X-ray phase imaging and tomography using a grating interferometer,” Spectrochimica Acta Part B vol. 62 (2007) pp. 626-630. |
Davis et al., “Bridging the Micro-to-Macro Gap: A New Application for Micro X-Ray Fluorescence,” Microsc Microanal., vol. 17(3) (Jun. 2011), pp. 410-417. |
Diaz et al., “Monte Carlo Simulation of Scatter Field for Calculation of Contrast of Discs in Synthetic CDMAM Images,” In: Digital Mammography, Proceedings 10th International Workshop IWDM 2010 (Springer Verlag, Berlin Heidelberg), (2010), pp. 628-635 (9 pages). Jun. 18, 2010. |
Ding et al., “Reactive Ion Etching of CVD Diamond Films for MEMS Applications,” Micromachining and Microfabrication, Proc. SPIE vol. 4230 (2000), pp. 224-230. |
Dobrovinskaya et al., “Thermal Properties,” Sect. 2.1.5 of “Sapphire: Material, Manufacturing,, Applications” (Springer Science + Business Media, New York, 2009). |
Dong et al., “Improving Molecular Sensitivity in X-Ray Fluorescence Molecular Imaging (XFMI) of Iodine Distribution in Mouse-Sized Phantoms via Excitation Spectrum Optimization,” IEEE Access, vol. 6, pp. 56966-56976 (2018). |
Erko et al., “X-ray Optics,” Ch. 3 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin, Germany, 2006), pp. 85-198. |
Falcone et al., “New directions in X-ray microscopy,” Contemporary Physics, vol. 52, No. 4, (Jul.-Aug. 2010), pp. 293-318. |
Fernández-Ruiz, “TXRF Spectrometry as a Powerful Tool for the Study of Metallic Traces in Biological Systems,” Development in Analytical Chemistry, vol. 1 (2014), pp. 1-14. |
Freund, “Mirrors for Synchrotron Beamlines,” Ch. 26 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Ge et al., “Investigation of the partially coherent effects in a 2D Talbot interferometer,” Anal. Bioanal. Chem. vol. 401, (2011), pp. 865-870. Apr. 29, 2011 pub Jun. 14, 2011. |
Gibson et al., “Polycapillary Optics: An Enabling Technology for New Applications,” Advances in X-ray Analysis, vol. 45 (2002), pp. 286-297. |
Gonzales et al., “Angular Distribution of Bremsstrahlung Produced by 10-Kev and 20 Kev Electrons Incident on a Thick Au Target”, in Application of Accelerators in Research and Industry, AIP Conf. Proc. 1221 (2013), pp. 114-117. |
Gonzales et al., “Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag”, Phys. Rev. A vol. 84 (2011): 052726. |
Günther et al., “Full-field structured-illumination super-responution X-ray transmission microscopy,” Nature Comm. 10:2494 (2019) and supplementary information. |
Guttmann et al., “Ellipsoidal capillary as condenser for the BESSY full-field x-ray microscope,” J. Phys. Conf. Ser. vol. 186 (2009): 012064. |
Harasse et al., “Iterative reconstruction in x-ray computed laminography from differential phase measurements”, Opt. Express. vol. 19 (2011), pp. 16560-16573. |
Harasse et al., “X-ray Phase Laminography with a Grating Interferometer using Iterative Reconstruction”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Conf. Proc. vol. 1466, (2012), pp. 163-168. |
Harasse et al., “X-ray Phase Laminography with Talbot Interferometer”, in Developments in X-Ray Tomography VII, Proc. SPIE vol. 7804 (2010), 780411. |
Hasse et al., “New developments in laboratory-based x-ray sources and optics,” Adv. In Laboratory-based X-Ray Sources, Optics, and Applications VI, ed. A.M, Khounsary, Proc. SPIE vol. 10387, 103870B-1 (2017). |
Hemraj-Benny et al., “Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials,” Small, vol. 2(1), (2006), pp. 26-35. |
Henke et al., “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables, vol. 54 (No. 2) (Jul. 1993), pp. 181-342. |
Hennekam et al., “Trace metal analysis of sediment cores using a novel X-ray fluorescence core scanning method,” Quaternary Int'l, https://doi.org/10.1016/j.quaint.2018.10.018 (2018). |
Honma et al., Full-automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at Spring-8, 2011, AIP Conference Proceedings 1234, pp. 13-16. |
Howard et al., “High-Definition X-ray Fluorescence Elemental Mapping of Paintings,” Anal. Chem., 2012, vol. 84(7), pp. 3278-3286. |
Howells, “Gratings and Monochromators in the VUV and Soft X-RAY Spectral Region,” Ch. 21 of Handbook of Optics vol. III, 2nd Ed. (McGraw Hill, New York, 2001). |
Howells, “Mirrors for Synchrotron-Radiation Beamlines,” Publication LBL-34750 (Lawrence Berkeley Laboratory, Berkeley, CA, Sep. 1993). |
Hrdý et al, “Diffractive-Refractive Optics: X-ray Crystal Monochromators with Profiled Diffracting Surfaces,” Ch. 20 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds. (Springer, Berlin Heidelberg New York, 2008). |
Hwang et al, “New etching process for device fabrication using diamond,” Diamond & Related Materials, vol. 13 (2004) pp. 2207-2210. |
Ide-Ektessabi et al., “The role of trace metallic elements in neurodegenerative disorders: quantitative analysis using XRF and XANES spectroscopy,” Anal. Sci., vol. 21(7) (Jul. 2005), pp. 885-892. |
Ihsan et al., “A microfocus X-ray tube based on a microstructured X-ray target”, Nuclear Instruments and Methods in Physics Research B vol. 267 (2009) pp. 3566-3573. |
Ishisaka et al., “A New Method of Analyzing Edge Effect in Phase Contrast Imaging with Incoherent X-rays,” Optical Review, vol. 7, No. 6, (2000), pp. 566-572. |
Ito et al., “A Stable In-Laboratory EXAFS Measurement System,” Jap. J. Appl. Phys., vol. 22, No. 2, Feb. 1, 1983, pp. 357-360. |
Itoh et al., “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Op. Express, vol. 19, No. 4 (2011) pp. 3339-3346. |
Janssens et al, “Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis,” TrAC Trends in Analytical Chemistry 29.6 (Jun. 2010): 464-478. |
Jahrman et al., “Vacuum formed temporary spherically and toroidally bent crystal analyzers for x-ray absorption and x-ray emission spectroscopy,” Rev. Sci. Inst. vol. 90, 013106 (2019). |
Jiang et al., “X-Ray Phase-Contrast Imaging with Three 2D Gratings,” Int. J. Biomed. Imaging, (2008), 827152, 8 pages. |
Jin et al., “Development of an X-ray tube with two selective targets modulated by a magnetic field,” Rev. Sci. Inst. vol. 90, 083105 (2019). |
Joy, “Astronomical X-ray Optics,” Ch. 28 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Kalasová et al., “Characterization of a laboratory-based X-ray computed nonotomography system for propagation-based method of phase contrast imaging,” IEEE Trans. On Instr. And Meas., DOI 10.1109/TIM.2019.2910338 (2019). |
Keyrilainen et al., “Phase contrast X-ray imaging of breast,” Acta Radiologica, vol. 51 (8), (2010), pp. 866-884. Jan. 18, 2010 pub Jun. 15, 2010. |
Kidalov et al., “Thermal Conductivity of Diamond Composites,” Materials, vol. 2 (2009) pp. 2467-2495. |
Kido et al., “Bone Cartilage Imaging with X-ray Interferometry using a Practical X-ray Tube”, in Medical Imaging 2010: Physics of Medical Imaging, Proc. SPIE vol. 7622 (2010), 762240. |
Kim, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express vol. 20(5), (2012), pp. 4904-4920. |
Kim et al., “Observation of the Talbot Effect at Beamline 6C Bio Medical Imaging of he Pohang Light Source—II,” J. Korean Phys. Soc., vol. 74, No. 10, pp. 935-940 (May 2019). |
Kirkpatrick et al., “Formation of Optical Images by X-Rays”, J. Opt. Soc. Am. vol. 38(9) (1948), pp. 766-774. |
Kirz, “Phase zone plates for x rays and the extreme uv,” J. Op. Soc. Am. vol. 64 (Mar. 1974), pp. 301-309. |
Kirz et al., “The History and Future of X-ray Microscopy”, J. Physics: Conden. Series vol. 186 (2009): 012001. |
Kiyohara et al., “Development of the Talbot-Lau Interferometry System Available for Clinical Use”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Cong. Proc. vol. 1466, (2012), pp. 97-102. |
Klockenkämper et al., “7.1 Instrumental Developments” and “7.3 Future Prospects by Combinations,” from Chapter 7 of Total Reflection X-ray Fluorescence Analysis and Related Methods 2nd Ed. (J. Wiley and Sons, Hoboken, NJ, 2015). |
Klockenkämper et al., “Chapter 3: Instrumentation for TXRF and GI-XRF,” Total Reflection X-ray Fluorescence Analysis and Related Methods 2nd Ed. (J. Wiley and Sons, Hoboken, NJ, 2015). |
Kottler et al., “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express vol. 15(3), (2007), pp. 1175-1181. |
Kottler et al., “Dual energy phase contrast x-ray imaging with Talbot-Lau interferometer,” J. Appl. Phys. vol. 108(11), (2010), 114906. Jul. 7, 2010 pub Dec. 7, 2010. |
Kumakhov et al., “Multiple reflection from surface X-ray optics,” Physics Reports, vol. 191(5), (1990), pp. 289-350. |
Kumakhov, “X-ray Capillary Optics. History of Development and Present Status” in Kumakhov Optics and Application, Proc. SPIE 4155 (2000), pp. 2-12. |
Kuwabara et al., “Hard-X-ray Phase-Difference Microscopy with a Low-Brilliance Laboratory X-ray Source”, Appl. Phys. Express vol. 4 (2011) 062502. |
Kuznetsov, “X-Ray Optics Calculator,” Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences (IMT RAS), Chernogolovka, Russia (6 pages submitted); 2016. |
Lagomarsino et al., “Reflective Optical Arrays,” Ch. 19 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al. eds. (Springer, Berlin, Germany, 2008), pp. 307-317. |
Lai, “X-Ray Microfocusing Optics,” Slide Presentation from Argonne National Laboratory, 71 slides, Cheiron Summer School 2007. |
Langhoff et al., “X-ray-Sources,” Ch. 2 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin Heidelberg New York, 2006), pp. 33-82. |
Lechner et al., “Silicon drift detectors for high count rate X-ray spectroscopy at room temperature,” Nuclear Instruments and Methods, vol. 458A (2001), pp. 281-287. |
Leenaers et al., “Application of Glancing Incidence X-ray Analysis,” 1997, X-ray Spectrometry, vol. 26, pp. 115-121. |
Lengeler et al., “Refractive X-ray Optics,” Ch. 20 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001. |
Li et al., “Source-optic-crystal optimisation for compact monochromatic imaging,” Proc. SPIE 5537 (2004), pp. 105-114. |
Li et al., “X-ray phase-contrast imaging using cascade Talbot-Lau interferometers,” Proc. SPIE 10964 (2018), pp. 1096469-1-1096469-6. |
Li et al., “Study on High Thermal Conductivity of X-ray Anode with Composite Diamond Substrate,” J. Phys.: Conf. Ser., vol. 1300, 012115 (2019). |
Lohmann et al., “An interferometer based on the Talbot effect,” Optics Communications vol. 2 (1971), pp. 413-415. |
Lübcke et al., “Soft X-ray nanoscale imaging using a sub-pixel resolution charge coupled device (CCD) camera,” Ref. Sci. Instrum. vol. 90, 043111 (2019). |
Lühl et al., “Scanning transmission X-ray microscopy with efficient X-ray fluorescence detection (STXM-XRF) for biomedical applications in the soft and tender energy range,” J. Synch. Rad. vol. 26, https://doi.org/10.1107/S1600577518016879, (2019). |
Macdonald et al., “An Introduction to X-ray and Neutron Optics,” Ch. 19 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Macdonald et al., “Polycapillary and Multichannel Plate X-Ray Optics,” Ch. 30 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Macdonald et al., “Polycapillary X-ray Optics for Microdiffraction,” J. Appl. Cryst., vol. 32 (1999) pp. 160-167. |
Macdonald, “Focusing Polycapillary Optics and Their Applications,” X-Ray Optics and Instrumentation, vol. 2010, (Oct. 2010): 867049. |
Maj et al., “Etching methods for improving surface imperfections of diamonds used for x-ray monochromators,” Adv. X-ray Anal., vol. 48 (2005), pp. 176-182. |
Malgrange, “X-ray Optics for Synchrotron Radiation,” ACTA Physica Polonica A, vol. 82(1) (1992) pp. 13-32. |
Malzer et al., “A laboratory spectrometer for high throughput X-ray emission spectroscopy in catalysis research,” Rev. Sci. Inst. 89, 113111 (2018). |
Masuda et al., “Fabrication of Through-Hole Diamond Membranes by Plasma Etching Using Anodic Porous Alumina Mask,” Electrochemical and Solid-State Letters, vol. 4(11) (2001) pp. G101-G103. |
Matsushita, “Mirrors and Multilayers,” Slide Presentation from Photon Factor, Tsukuba, Japan, 65 slides, (Cheiron School 2009, Sprint-8, Japan, Nov. 2009). |
Matsushita, “X-ray monochromators,” Slide Presentation from Photon Factory, Tsukuba, Japan, 70 slides, (Cheiron School 2009, Spring-8, Japan, Nov. 2009). |
Matsuyama et al., “Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry”, Opt Express vol. 20 (2012), pp. 24977-24986. |
Miao et al., “Motionless phase stepping in X-ray phase contrast imaging with a compact source,” Proceedings of the National Academy of Sciences, vol. 110(48), (2013), pp. 19268-19272. |
Michette, “Zone and Phase Plates, Bragg-Fresnel Optics,” Ch. 23 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Mizutani et al., X-ray microscopy for neural circuit reconstruction in 9th International Conference on X-Ray Microscopy, J. Phys: Conf. Ser. 186 (2009) 012092. |
Modregger et al., “Grating-Based X-ray Phase Contrast Imaging,” Ch. 3 of Emerging Imaging Technologies in Medicine, M. Anastasio & P. La Riviere, ed., CRC Press, Boca Raton, FL, (2012), pp. 43-56. |
Momose et al., “Biomedical Imaging by Talbot-Type X-Ray Phase Tomography” in Developments in X-Ray Tomography V, Proc. SPIE vol. 6318 (2006) 63180T. |
Momose et al., “Grating-Based X-ray Phase Imaging Using Multiline X-ray Source”, Jpn. J. Appl. Phys. vol. 48 (2009), 076512. |
Momose et al., “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging” Jpn. J. Appl. Phys. vol. 45 2006 pp. 5254-5262. |
Momose et al., “Phase Tomography Using X-ray Talbot Interferometer”, in Synchrotron Radiation Instrumentation: Ninth International Conference, AIP Conf. Proc. vol. 879 (2007), pp. 1365-1368. |
Momose et al., “Phase-Contrast X-Ray Imaging Using an X-Ray Interferometer for Biological Imaging”, Analytical Sciences vol. 17 Supplement (2001), pp. i527-i530. |
Momose et al., “Sensitivity of X-ray Phase Imaging Based on Talbot Interferometry”, Jpn. J. Appl. Phys. vol. 47 (2008), pp. 8077-8080. |
Momose et al., “X-ray Phase Measurements with Talbot Interferometry and Its Applications”, in International Conference on Advanced Phase Measurement Methods in Optics and Imaging, AIP Conf. Proc. vol. 1236 (2010), pp. 195-199. |
Momose et al., “X-ray Phase Imaging—From Static Observation to Dynamic Observation—”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 67-77. |
Momose et al., “X-ray Phase Imaging Using Lau Effect”, Appl. Phys. Express vol. 4 (2011) 066603. |
Momose et al., “X-Ray Phase Imaging with Talbot Interferometry”, in “Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and Inverse Problems”, Y. Censor, M. Jiang & G.Wang, eds, (Medical Physics Publishing, Madison, WI, USA, 2010), pp. 281-320. |
Momose et al., “X-ray phase tomography with a Talbot interferometer in combination with an X-ray imaging microscope”, in 9th International Conference on X-Ray Microscopy, J. Phys: Conf. Ser. 186 (2009) 012044. |
Momose et al., “X-ray Talbot Interferometry with Capillary Plates”, Jpn. J. Appl. Phys. vol. 45 (2006), pp. 314-316. |
Momose et al., “Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm”, Opt. Express vol. 19 (2011), pp. 8423-8432. |
Momose et al., “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation”, Opt. Express vol. 17 (2009), pp. 12540-12545. |
Momose et al., “Phase Imaging with an X-ray Talbot Interferometer”, Advances in X-ray Analysis vol. 49(3) (2006), pp. 21-30. |
Momose et al.,“Demonstration of X-Ray Talbot Interferometry”, Jpn. J. Appl. Phys. vol. 42 (2003), pp. L866-L868. |
Momose et al.,“Phase Tomography Using an X-ray Talbot Interferometer”, in Developments in X-Ray Tomography IV, Proc. SPIE vol. 5535 (2004), pp. 352-360. |
Momose, “Recent Advances in X-ray Phase Imaging”, Jpn. J. Appl. Phys. vol. 44 (2005), pp. 6355-6367. |
Montgomery, “Self Imaging Objects of Infinite Aperture,” J. Opt. Soc. Am. vol. 57(6), (1967), pp. 772-778. |
Morimoto et al., “Development of multiline embedded X-ray targets for X-ray phase contrast imaging,” XTOP 2012 Book of Abstracts, (Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 2012), pp. 74-75. |
Morimoto et al., “X-ray phase contrast imaging by compact Talbot-Lau interferometer with a signal transmission grating,” 2014, Optics Letters, vol. 39, No. 15, pp. 4297-4300. |
Morimoto et al., “Design and demonstration of phase gratings for 2D single grating interferometer,” Optics Express vol. 23, No. 23, 29399 (2015). |
Munro et al., Design of a novel phase contrast imaging system for mammography, 2010, Physics in Medicine and Biology, vol. 55, No. 14, pp. 4169-4185. |
Nango et al., “Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone”, Biomed. Opt. Express vol. 4 (2013), pp. 917-923. |
Neuhausler et al., “Non-destructive high-resolution X-ray imaging of ULSI micro-electronics using keV X-ray microscopy in Zernike phase contrast,” Microelectronic Engineering, Elsevier Publishers BV., Amsterdam, NO, vol. 83, No. 4-9 (Apr. 1, 2006) pp. 1043-1046. |
Newville, “Fundamentals of XAFS,” (Univ. of Chicago, Chicago, IL, Jul. 23, 2004). |
Noda et al., “Fabrication of Diffraction Grating with High Aspect Ratio Using X-ray Lithography Technique for X-ray Phase Imaging,” Jpn. J. Appl. Phys. vol. 46, (2007), pp. 849-851. |
Noda et al., “Fabrication of High Aspect Ratio X-ray Grating Using X-ray Lithography” J. Solid Mech_ Mater. Eng. vol. 3 (2009), pp. 416-423. |
Nojeh, “Carbon Nanotube Electron Sources: From Electron Beams to Energy Conversion and Optophononics”, ISRN Nanomaterials vol. 2014 (2014): 879827. |
Nuhn, “From storage rings to free electron lasers for hard x-rays”, J.A37 Phys.: Condens. Matter vol. 16 (2004), pp. S3413-S34121. |
Nykanen et al., “X-ray scattering in full-field digital mammography,” Med. Phys. vol. 30(7), (2003), pp. 1864-1873. |
Oji et al., Automatic XAFS measurement system developed at BL14B2 in SPring-8, Available online Nov. 15, 2011, Journal of Synchrotron Radiation, vol. 19, pp. 54-59. |
Olbinado et al., “Demonstration of Stroboscopic X-ray Talbot Interferometry Using Polychromatic Synchrotron and Laboratory X-ray Sources”, Appl. Phys. Express vol. 6 (2013), 096601. |
Ortega et al., “Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy,” J. Royal Society Interface vol. 6 suppl. 5 (Oct. 6, 2009), pp. 6S649-6S658. |
Otendal et al., A 9 keV electron-impact liquid-gallium-jet x-ray source, Rev. Sci. Instrum. vol. 79 (2008): 016102. |
Oxford Instruments Inc., Series 5000 Model XTF5011 X-ray Tube information, Jun. 1998, 3 pages. |
Parrill et al., “GISAXS—Glancing Incidence Small Angle X-ray Scattering,” Journal de Physique IV, vol. 3 (Dec. 1993), pp. 411-417. |
Paxscan Flat Panel X-ray Imaging, Varian Sales Brochure, (Varian Medical Systems, Palo Alto, CA, Nov. 11, 2004). |
Pfeiffer et al., “Hard-X-ray dark-field imaging using a grating interferometer,” Nature Materials vol. 7, (2008), pp. 134-137. |
Pfeiffer et al., “Hard x-ray phase tomography with low brilliance x-ray sources,” Phys. Rev. Lett. vol. 98, (2007), 108105. |
Pfeiffer et al., “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Physics vol. 2, (2006), pp. 258-261. |
Pfeiffer, “Milestones and basic principles of grating-based x-ray and neutron phase-contrast imaging,” in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 2-11. |
Pianetta et al., “Application of synchrotron radiation to TXRF analysis of metal contamination on silicon wafer surfaces,” Thin Solid Films, vol. 373(1-2), 2000, pp. 222-226. |
Potts, “Electron Probe Microanalysis”, Ch. 10 of “A Handbook of Silicate Rock Analysis” (Springer Science + Business Media, New York, 1987), pp. 326-382 (equation quoted from p. 336). |
Prewitt et al., “FIB Repair of 5X Reticles and Effects on IC Quality,” Integrated Circuit Metrology, Inspection, and Process Control VII, Proc. SPIE vol. 1926 (1993), pp. 517-526. |
Prewitt et al., “Focused ion beam repair: staining of photomasks and reticles,” J. Phys. D Appl. Phys. vol. 26 (1993), pp. 1135-1137. |
Prewitt et al., “Gallium Staining in FIB Repair of Photomasks,” Microelectronic Engineering, vol. 21 (1993), pp. 191-196. |
Pushie et al., “Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems,” Chem. Rev. 114:17, 8499-8541 (2014). |
Pushie et al., “Prion protein expression level alters regional copper, iron and zinc content in the mouse brain,” Metallomics vol. 3, 206-214 (2011). |
Qin et al., “Trace metal imaging with high spatial resolution: Applications in biomedicine,” Metallomics, vol. 3 (Jan. 2011), pp. 28-37. |
Rayleigh, “On copying diffraction gratings and some phenomena connected therewith,” Philos. Mag. vol. 11 (1881), pp. 196-205. |
Renaud et al., “Probing surface and interface morphology with Grazing Incidence Small Angle X-ray Scattering,” Surface Science Reports, vol. 64:8 (2009), pp. 255-380. |
Riege, “Electron Emission from Ferroelectrics—A Review”, CERN Report CERN AT/93-18 (CERN, Geneva, Switzerland, Jul. 1993). |
Rix et al., “Super-Resolution X-ray phase-contrast and dark-field imaging with a single 2D grating and electromagnetic source stepping,” Phys. Med. Biol. In press https://doi.org/10.1088/1361-6560/ab2ff5 (2019). |
Röntgen, Ueber eine neue Art von Strahlen (Wurzburg Verlag, Wurzburg, Germany, 1896) also, in English, “On a New Kind of Rays,” Nature vol. 53 (Jan. 23, 1896). pp. 274-276. |
Rovezzi, “Study of the local order around magnetic impurities in semiconductors for spintronics.” PhD Dissertation, Condensed Matter, Universite Joseph-Fourier—Grenoble I, 2009, English <tel-00442852>. |
Rutishauser, “X-ray grating interferometry for imaging and metrology,” 2003, ETH Zurich, Diss. ETH No. 20939. |
Sato et al., Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube, 2011, Optics Letters, vol. 36, No. 18, pp. 3551-3553. |
Scherer et al., “Bi-Directional X-Ray Phase-Contrast Mammography,” PLoS One, vol. 9, Issue 5 (May 2014) e93502. |
Scholz, “X-ray Tubes and Monochromators,” Technical Workshop EPIC, Universität Würzburg (2007); 41 slides, 2007. |
Scholze et al., “X-ray Detectors and XRF Detection Channels,” Ch. 4 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin Heidelberg, Germany, 2006), pp. 85-198. |
Scordo et al., “Pyrolitic Graphite Mosaic Drystal Thickness and Mosaicity Optimization for an Extended Source Von Hamos X-ray Spectrometer,” Condens. Matter Vo. 4, pp. 38-52 (2019). |
Scott, “Hybrid Semiconductor Detectors for High Spatial Resolution Phase-contrast X-ray Imaging,” Thesis, University of Waterloo, Department of Electrical and Computer Engineering, 2019. |
Sebert, “Flat-panel detectors:how much better are they?” Pediatr. Radial. vol. 36 (Suppl 2), (2006), pp. 173-181. |
Seifert et al., “Talbot-Lau x-ray phase-contrast setup for fast scanning of large samples,” Sci. Rep. 9:4199, pp. 1-11 (2019). |
Shen, “Polarizing Crystal Optics,” Ch. 25 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Shields et al., “Overview of Polycapillary X-ray Optics,” Powder Diffraction, vol. 17(2) (Jun. 2002), pp. 70-80. |
Shimura et al., “Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets”, Opt. Lett. vol. 38(2) (2013), pp. 157-159. |
Siddons, “Crystal Monochromators and Bent Crystals,” Ch. 22 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Smith, “Fundamentals of Digital Mammography:Physics, Technology and Practical Considerations,” Publication R-BI-016 (Hologic, Inc., Bedford, MA, Mar. 2005). |
Snigirev et al., “Hard X-Ray Microoptics,” Ch. 17 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds (Springer, Berlin, Germany, 2008), pp. 255-285. |
Sparks Jr., “X-ray Fluorescence Microprobe for Chemical Analysis,” in Synchrotron Radiation Research, H. Winick & S. Doniach, eds. (Plenum Press, New York, NY 1980), pp. 459-512. |
Spiller, “Multilayers,” Ch. 24 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Stampanoni et al., “The First Analysis and Clinical Evaluation of Native Breast Tissue Using Differential Phase-Contrast Mammography,” Investigative Radiology, vol. 46, pp. 801-806. pub 2011-12-xx. |
Strüder et al., “Silicon Drift Detectors for X-ray Imaging,” Presentation at Detector Workshop on Synchrotron Radiation Instrumentation, 54 slides, (Argonne Nat'l Lab, Argonne, IL Dec. 8, 2005), available at: <http://www.aps.anl.gov/News/Conferences/2005/Synchrotron_Radiation_Instrumentation/Presentations/Strueder.pdf>. |
Strüder et al., “X-Ray Detectors,” Ch. 4 of “X-ray Spectrometry: Recent Technological Advances,” K. Tsuji et al. eds. (John Wiley & Sons, Ltd. Chichester, West Sussex, UK, 2004), pp. 63-131. |
Stupple et al., “Modeling of Heat Transfer in an Aluminum X-Ray Anode Employing a Chemical Vapor Deposited Diamond Heat Spreader,” J. Heat Transfer, Vo. 140, 124501-1-5 (Dec. 2018). |
Sun et al., “Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source,” Nucl. Inst. and Methods in Phys. Res. A 802(2015) pp. 5-9. |
Sun et al., “Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary,” Nucl. Inst. and Methods in Phys. Res. A746 (2014) pp. 33-38. |
Sunday et al., “X-ray Metrology for the Semiconductor Industry Tutorial,” J. Res. Nat'l Inst. Stan. vol. 124: 124003 (2019); https://doi.org/10.6028/jres.124.003. |
Suzuki et al., “Hard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination,” J. Phys.: Conf. Ser. vol. 463 (2013): 012028. |
Suzuki, “Development of the DIGITEX Safire Cardiac System Equipped with Direct conversion Flat Panel Detector,” Digital Angio Technical Report (Shimadzu Corp., Kyoto, Japan, no date, published—2004 with product release). |
Takahama, “RADspeed safire Digital General Radiography System Equipped with New Direct-Conversion FPD,” Medical Now, No. 62 (2007). |
Takeda et al., “Differential Phase X-ray Imaging Microscopy with X-ray Talbot Interferometer” Appl. Phys. Express vol. 1 (2008) 117002. |
Takeda et al., “X-Ray Phase Imaging with Single Phase Grating”, Jpn. J. Appl. Phys. vol. 46 (2007), pp. L89-L91. |
Takeda et al., “In vivo physiological saline-infused hepatic vessel imaging using a two-crystal-interferometer-based phase-contrast X-ray technique”, J. Synchrotron Radiation vol. 19 (2012), pp. 252-256. |
Talbot, “Facts relating to optical science No IV,” Philos. Mag. vol. 9 (1836), pp. 401-407. |
Tanaka et al., “Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry”, Z. Med. Phys. vol. 23 (2013), pp. 222-227. |
Tang et al., “Micro-computed tomography (Micro-CT): a novel approach for intraoperative breast cancer specimen imaging,” Breast Cancer Res. Treat. vol. 139, pp. 311-316 (2013). |
Taniguchi et al., “Diamond nanoimprint lithography,” Nanotechnology, vol. 13 (2002) pp. 592-596. |
Terzano et al., Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report), Pure Appl. Chem. 2019. |
Tkachuk et al., “High-resolution x-ray tomography using laboratory sources”, in Developments in X-Ray Tomography V, Proc. SPIE 6318 (2006): 631810. |
Tkachuk et al., “Multi-length scale x-ray tomography using laboratory and synchrotron sources”, Microsc. Microanal. vol. 13 (Suppl. 2) (2007), pp. 1570-1571. |
Töpperwien et al., “Multiscale x-ray phase-contrast tomography in a mouse model of transient focal cerebral ischemia,” Biomed. Op. Express, vol. 10, No. 1, Jan. 2019, pp. 92-103. |
Touzelbaev et al., “Applications of micron-scale passive diamond layers for the integrated circuits and microelectromechanical systems industries,” Diamond and Rel. Mat'ls, vol. 7 (1998) pp. 1-14. |
Tsuji et al., “X-Ray Spectrometry: Recent Technological Advances,” John Wiley & Sons Ltd. Chichester, West Susses, UK 2004), Chapters 1-7. |
Udagawa, “An Introduction to In-House EXAFS Facilities,” The Rigaku Journal, vol. 6, (1) (1989), pp. 20-27. |
Udagawa, “An Introduction to X-ray Absorption Fine Structure,” The Rigaku Journal, vol. 11(2)(1994), pp. 30-39. |
Uehara et al., “Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices”, J. Appl. Phys. vol. 114 (2013), 134901. |
Viermetz et al., “High resolution laboratory grating-based X-ray phase-contrast CT,” Scientific Reports 8:15884 (2018). |
Vogt, “X-ray Fluorescence Microscopy: A Tool for Biology, Life Science and Nanomedicine,” Presentation on May 16, 2012 at James Madison Univ., Harrisonburg, VA (31 slides), 2012. |
Wan et al.,“Fabrication of Multiple Slit Using Stacked-Sliced Method for Hard X-ray Talbot-Lau Interferometer”, Jpn. J. Appl. Phys. vol. 47 (2008), pp. 7412-7414. |
Wang et al., “Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy,” Biotech. Adv., vol. 31 (2013) pp. 387-392. |
Wang et al., “Non-invasive classification of microcalcifications with phase-contrast X-ray mammography,” Nature Comm. vol. 5:3797, pp. 1-9 (2014). |
Wang, On the single-photon-counting (SPC) modes of imaging using an XFEL source, presented at IWORLD2015. |
Wang et al., “Precise patterning of diamond films for MEMS application” Journal of Materials Processing Technology vol. 127 (2002), pp. 230-233. |
Wang et al., “Measuring the average slope error of a single-bounce ellopsoidal glass monocapillary X-ray condenser based on an X-ray source with an adjustable source size,” Nucl. Inst. and Meth. A934, 36-40 (2019). |
Wang et al., “High beam-current density of a 10-keV nano-focus X-ray source,” Nucl. Inst. and Meth. A940, 475-478 (2019). |
Wansleben et al., “Photon flux determination of a liquid-metal jet x-ray source by means of photon scattering,” arXiv:1903.06024v1, Mar. 14, 2019. |
Weitkamp et al., “Design aspects of X-ray grating interferometry,” in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 84-89. |
Weitkamp et al., “Hard X-ray phase imaging and tomography with a grating interferometer,” Proc. SPIE vol. 5535, (2004), pp. 137-142. |
Weitkamp et al., “X-ray wavefront diagnostics with Talbot interferometers,” International Workshop on X-Ray Diagnostics and Scientific Application of the European XFEL, Ryn, Poland, (2010), 36 slides. |
Wen et al., “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology, vol. 251 (2009) pp. 910-918. |
Wen et al., “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Op. Lett. vol. 35, No. 12, (2010) pp. 1932-1934. |
Wittry et al., “Properties of fixed-position Bragg diffractors for parallel detection of x-ray spectra,” Rev. Sci. Instr. vol. 64, pp. 2195-2200 (1993). |
Wobrauschek et al., “Energy Dispersive, X-Ray Fluorescence Analysis,” Encyclopedia of Analytical Chemistry, R.A. Meyers, Ed. (Wiley 2010). |
Wobrauschek et al., “Micro XRF of light elements using a polycapillary lens and an ultra-thin window Silicon Drift Detector inside a vacuum chamber,” 2005, International Centre for Diffraction Data 2005, Advances in X-ray Analysis, vol. 48, pp. 229-235. |
Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen” [Grazing Incidence Reflector Systems as Imaging Optics for X-rays] Annalen der Physik vol. 445, Issue 1-2 (1952), pp. 94-114. |
X-ray-Optics.de Website, http://www.x-ray-optics.de/, accessed Feb. 13, 2016. |
Yakimchuk et al., “Ellipsoidal Concentrators for Laboratory X-ray Sources: Analytical approaches for optimization,” Mar. 22, 2013, Crystallography Reports, vol. 58, No. 2, pp. 355-364. |
Yamamoto, “Fundamental physics of vacuum electron sources”, Reports on Progress in Physics vol. 69, (2006), pp. 181-232. |
Yanagihara et al., “X-Ray Optics,” Ch. 3 of “X-ray Spectrometry: Recent Technological Advances,” K. Tsuji et al. eds. (John Wiley & Sons, Ltd. Chichester, West Sussex, UK, 2004), pp. 63-131. |
Yang et al., “Analysis of Intrinsic Stress in Diamond Films by X-ray Diffraction,” Advances in X-ray Analysis, vol. 43 (2000), pp. 151-156. |
Yashiro et al., “Distribution of unresolvable anisotropic microstructures revealed in visibility-contrast images using x-ray Talbot interferometry”, Phys. Rev. B vol. 84 (2011), 094106. |
Yashiro et al., “Hard x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating”, Phys. Rev. A vol. 82 (2010), 043822. |
Yashiro et al., “Theoretical Aspect of X-ray Phase Microscopy with Transmission Gratings” in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Conf. Proc. vol. 1466, (2012), pp. 144-149. |
Yashiro et al., “X-ray Phase Imaging and Tomography Using a Fresnel Zone Plate and a Transmission Grating”, in “The 10th International Conference on X-ray Microscopy Radiation Instrumentation”, AIP Conf. Proc. vol. 1365 (2011) pp. 317-320. |
Yashiro et al., “Efficiency of capturing a phase image using cone-beam x-ray Talbot interferometry”, J. Opt. Soc. Am. A vol. 25 (2008), pp. 2025-2039. |
Yashiro et al., “On the origin of visibility contrast in x-ray Talbot interferometry”, Opt. Express (2010), pp. 16890-16901. |
Yashiro et al., “Optimal Design of Transmission Grating for X-ray Talbot Interferometer”, Advances in X-ray Analysis vol. 49(3) (2006), pp. 375-379. |
Yashiro et al., “X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating”, in the 10th International Conference on Synchrotron Radiation Instrumentation, AIP Conf. Proc. vol. 1234 (2010), pp. 473-476. |
Yashiro et. al., “Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating”, Phys. Rev. Lett. vol. 103 (2009), 180801. |
Yu et al., “Morphology and Microstructure of Tungsten Films by Magnetron Sputtering,” Mat. Sci. Forum, vol. 913, pp. 416-423 (2018). |
Zanette et al., “Two-Dimensional X-Ray Grating interferometer,” Phys. Rev. Lett. vol. 105 (2010) pp. 248102-1 248102-4. |
Zeeshan et al., “In-house setup for laboratory-based x-ray absorption fine structure spectroscopy measurements,” Rev. Sci. Inst. 90, 073105 (2019). |
Zeng et al., “Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes,” Appl. Opt. vol. 47 (May 2008), pp. 2376-2381. |
Zeng et al., “Glass Monocapillary X-ray Optics and Their Applications in X-Ray Microscopy,” X-ray Optics and Microanalysis: Proceedings of the 20th International Congress, AIP Conf. Proc. vol. 1221, (2010), pp. 41-47. |
Zhang et al., “Application of confocal X-ray fluorescence based on capillary X-ray optics in nondestructively measuring the inner diameter of monocapillary optics,” Optics Comm. (2018) https://doi.org/10.1016/j.optcom.2018.11.064. |
Zhang et al., “Fabrication of Diamond Microstructures by Using Dry and Wet Etching Methods”, Plasma Science and Technology vol. 15(6) (Jun. 2013), pp. 552-554. |
Zhang et al., “Measurement of the inner diameter of monocapillary with confocal X-ray scattering technology based on capillary X-ray optics,” Appl. Opt. (Jan. 8, 2019), doc ID 351489, pp. 1-10. |
Behling, “Medical X-ray sources Now and for the Future,” Nucl. Inst. and Methods in Physics Research A 873, pp. 43-50 (2017). |
Chang et al., “Ultra-high aspect ratio high-resolution nanofabrication of hard X-ray diffractive optics,” Nature Comm. 5:4243, doi: 10.1038/ncomms5243 (2014). |
Dittler et al., “A mail-in and user facility for X-ray absorption near-edge structure: the CEI-XANES laboratory X-ray spectrometer at University of Washington,” J. Synch. Rad. vol. 26, eight pages, (2019). |
Huang et al., “Theoretical analysis and optimization of highly efficient multilayer-coated blazed gratings with high fix-focus constant for the tender X-ray region,” Op. Express Vo. 28, No. 2, pp. 821-845 (2020). |
Kim et al., “A Simulation Study on the Transfer Characteristics of the Talbot Pattern Through Scintillation Screens in the Grating Interferometer,” J. Rad. Sci. and Tech. 42(1), pp. 67-75 (2019). |
Kulow et al., “On the Way to Full-Field X-ray Fluorescence Spectroscopy Imaging with Coded Apertures,” J. Anal. At. Spectrom. Doi: 10.1039/C9JA00232D (2019). |
Li et al., “Production and Heat Properties of an X-ray Reflective Anode Based on a Diamond Heat Buffer Layer,” Materials vol. 13, p. 241 (2020). |
Weitkamp et al., Tomography with grating interferometers at low-brilliance sources, 2006, SPIE, vol. 6318, pp. 0S-1 to 0S-10. |
Weitkamp et al., “X-ray phase imaging with a grating interferometer,” Opt. Express vol. 13(16), (2005), pp. 6296-6304. |
Weitkamp et al., “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. vol. 86, (2005), 054101. |
Zhou et al., “Quasi-parallel X-ray microbeam obtained using a parabolic monocapillary X-ray lens with an embedded square-shaped lead occluder,” arXiv:2001.04667 (2020). |
Akan et al., “Metal-Assisted Chemical Etching and Electroless Deposition for Fabrication of Hard X-ray Pd/Si Zone Plates,” Micromachines, vol. 11, 301; doi:10.3390/mi11030301 (2020). |
Hashimoto et al., “Improved reconstruction method for phase stepping data with stepping errors and dose fluctuations,” Optics Express, vol. 28, No. 11, pp. 16363-16384 (2020). |
Momose et al., “Recent Progress in X-ray and Neutron Phase Imaging with Gratings,” Quantum Beam Science, vol. 4, No. 9; doi:10.3390/qubs4010009 (2020). |
Takeo et al., “Soft x-ray nanobeam formed by an ellipsoidal mirror,” Appl. Phys. Lett., vol. 116, 121102 (2020). |
Wang et al., “Double-spherically bent crystal high-resolution X-ray spectroscopy of spatially extended sources,” Chinese Optics Lett., vol. 18(6), 061101 (2020). |
Yamada et al., “Compact full-field hard x-ray microscope based on advanced Kirkpatrick-Baez mirrors,” Optica, vol. 7, No. 4 pp. 367-370 (2020). |
Yoshioka et al., “Imaging evaluation of the cartilage in rheumatoid arthritis patients with an x-ray phase imaging apparatus based on Talbot-Lau interferometry,” Scientific Reports, 10:6561, https://doi.org/10.1038/s41598-020-63155-9 (2020). |
International Search Report and Written Opinion, Application No. PCT/US2019/049553, dated Mar. 4, 2020, in 16 pages. |
Datta et al., “A new generation of direct X-ray detectors for medical and synchrotron imaging applications,” Sci. Reports, vol. 10, p. 20097 (2020). |
Graetz et al., “Lenseless C-ray Nano-Tomography down to 150 nm Resolution: on the Quantification of Modulation Transfer and Focal Spot of the Lab-based ntCT System,” arXiv:2009.11749v1 [physics.ins-det] Sep. 24, 2020, 10 pages. |
Mijovilovich et al., “Analysis of trace metal distribution in plants with lab-based microscopic X-ray fluorescence imaging,” Plant Methods, vol. 16, No. 82, 21 pages (2020). |
Pandeshwar et al., “Modeling of beam hardening effects in a dual-phase X-ray grading interferometer for quantitative dark-field imaging,” Optics Express, vol. 28, No. 13, Jun. 22, 2020, pp. 19187-19204 (2020). |
Paunesku et al., “X-Ray Fluorescence Microprobe Imaging in Biology and Medicine,” J. Cell. Biochem. vol. 99, pp. 1489-1502 (2006). |
Penkov et al., “X-Ray Calc: A software for the simulation of X-ray reflectivity,” SoftwareX, vol. 12, p. 100528 (2020). |
Redus et al., “Spectrometer configuration and measurement uncertainty in X-ray spectroscopy,” X-Ray Spectrom., pp. 1-14 (2020). |
Romano et al., “Microfabrication of X-ray Optics by Metal Assisted Chemical Etching: A Review,” Micromachines, vol. 11, No. 589, 23 pages (2020). |
Salditt, “Nanoscale Photonic Imaging,” Topics in Applied Physics, vol. 134, T. Salditt et al., eds., Springer Open, 2020. |
Schunck et al., “Soft x-ray imaging spectroscopy with micrometer resolution,” Optica vol. 8, No. 2, pp. 156-160 (2021). |
Senba et al., “Stable sub-micrometre high-flux probe for soft X-ray ARPES using a monolithic Wolter mirror,” J. Synch. Rad., vol. 27, 5 pages, (2020). |
Shi et al., “Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching,” Micromachines, vol. 11, p. 864, 13 pages (2020). |
Takeo et al., “A highly efficient nanofocusing system for soft x rays,” Appl. Phys. Lett., vol. 117, 151104 (2020). |
Taphorn et al., “Grating-based spectral X-ray dark-field imaging for correlation with structural size measures,” Sci. Reports, vol. 10, 13195 (2020). |
Tucker, “Design of X-Ray Source for Real-Time Computed Tomography,” Dissertation, Missouri Univ. of Sci. And Tech., Scholars' Mine, 104 pages (2020). |
Vila-Comamala et al., “High sensitivity X-ray phase contrast imaging by laboratory grating-based interferometry at high Talbot order geometry,” Op. Express vol. 29, No. 2, pp. 2049-2064 (2021). |
Wang et al., “Design and Fabrication of Soft X ray Supermirrors,” https://doi.org/10.21203/rs.3.rs-139888/v1 (2021). |
Wilde et al., “Modeling of an X-ray grating-based imaging interferometer using ray tracing,” Op. Express vol. 28, No. 17, p. 24657 (2020). |
Withers et al., “X-ray computed tomography,” Nature Reviews | Methods Primers, vol. 1, No. 18, pp. 1-21 (2021). |
Yang et al., “Comparative study of single-layer, bilayer, and trilayer mirrors with enhanced x-ray reflectance in 0.5- to 80keV energy region,” J. Astron. Telesc. Instrum. Syst., vol. 6(4) 044001, 12 pages (2020). |
Zhou et al., “A study of new type electric field modulation multi-target X-ray source,” Nucl. Inst. and Methods in Physics Research A, https://doi.org/10.1016/j.nima.2020.164342 (2020). |
Zhou et al., “X-ray wavefront characterization with grating interferometry using an x-ray microfocus laboratory source,” Proceedings, vol. 11492, Advances in Metrology for X-Ray and EUV Optics IX; 114920Q, https://doi.org/10.1117/12.2576152 (2020). |
Buchanan et al., “Effective modelling of high-energy laboratory-based x-ray phase contrast imaging utilising absorption masks or gratings,” J. Appl. Physics (accepted) (2020). |
Number | Date | Country | |
---|---|---|---|
20200098537 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62728574 | Sep 2018 | US |