This invention relates generally to medical care facilities, and more particularly, to systems and methods for designing medical care facilities.
The retooling of the healthcare industry includes the design and construction of new medical care facilities. This process of design and construction includes not only architectural designing and planning for new construction (e.g., aesthetics), but ensuring that the new facilities accommodate extra capacity of patients and meet other requirements or standards, such as, seismic requirements.
The typical process for designing a medical care facility generally includes planning the design, which is usually based on historical data and basic demographic growth projections of the number of patients in each of a particular category, for example, based on the type of procedure for which the patient is coming to the medical care facility. Using the numbers, an architect, based on his or her experience in designing buildings, which may or may not include designing medical care facilities, determines the layout of the medical care facility, including the number and type of rooms, etc. After designing a layout, the medical care facility is developed including making sure the layout complies with applicable standards and is acceptable to, for example, the health care provider building the facility.
The focus on the design and development of medical care facilities is typically on the size to accommodate increased numbers of patients and the aesthetics of the physical building to be appealing to, for example, the current health care provider building the facility and potential future health care providers interested in building a facility. However, although the new facility is able to accommodate additional patients and may be aesthetically pleasing, because the facility is typically larger and designed based the experience of the architect, such as, based on other hospitals designed and constructed by that architect, the final design may be less efficient, for example, provide less efficient throughput of patients. Thus, a medical care facility is designed and constructed that results in lost time and increased costs.
In an exemplary embodiment, a method for designing a medical care facility is provided. The method includes receiving usage data relating to a medical care facility and selecting at least one metric for evaluating a medical care facility design. The method further includes processing with a processor the usage data to determine a value for the at least one metric corresponding to the medical care facility design.
In another exemplary embodiment, a system for evaluating the design of a medical care facility is provide that includes a computing component configured to receive at least one of usage data, metrics data and workflow data corresponding to a medical care facility design and to process the data to generate a metric value output. The system further includes a user interface configured to receive user inputs relating to processing the received data and a display for displaying the metric value output.
In yet another exemplary embodiment, a computer program embodied on a computer readable medium for evaluating the design of a medical care facility is provided. The computer program includes a code segment that receives usage data and then determines based on a user input a metric value to calculate corresponding to medical care facility design and processes the received usage data to calculate the metric value corresponding to the medical care facility design.
Exemplary embodiments of systems and methods for designing medical care facilities using various metrics to perform workflow analysis of the designs are described in detail below. A technical effect of the systems and methods described herein include at least one of increasing the overall efficiency of the operation of a medical care facility to be developed. Using workflow analysis, an iterative design process is implemented in which metrics are measured to in order to increase the efficiency of the medical care facility based on the design layout.
Various embodiments of the present invention provide an iterative evaluation process that uses metrics to design a medical care facility. It should be noted that when reference is made herein to a medical care facility, this refers to any type of facility providing medical or health care, and may include, for example, a hospital (or a portion thereof), an outpatient facility, a mobile facility (e.g., a mobile trailer), among others.
In general, and as shown in
In various embodiments of the present invention, the database 24 includes usage data for use is designing a medical care facility. The usage data includes, but is not limited to, inpatient volume data (e.g., DRG data), outpatient procedure volume data (e.g., APC/CPT data), departmental or equipment use data from log sheets or Hospital Information Systems (HIS), etc. In general, the usage data includes information relating to the operations of a medical care facility and may be stored, for example, in the form of billing data for a medical care facility. Further, the usage data may relate to different medical resources, including, but not limited to, patients, families of patients, clinicians (e.g., nurses, doctors and technicians), equipment and functional spaces, etc. The usage data may be acquired from different sources or systems.
The various embodiments or components, for example, the system 20 or other processors, may be implemented as part of a computer system, which may be separate from or integrated with a server or other network. The computer system may include a computer having the processor 22, an input device, such as the user input 26, a display 28 and an interface, for example, for accessing the Internet or other systems on a network. The computer may include a microprocessor. The microprocessor may be connected to a communication bus. The computer also may include a memory, for example, configured as the database 24. The memory may include Random Access Memory (RAM) and/or Read Only Memory (ROM). The computer system further may include a storage device, which may be a hard disk drive or a removable storage drive such as a floppy disk drive, optical disk drive, and the like to store, access and transfer, for example, the usage data. The storage device may also be other similar means for loading computer programs or other instructions into the computer system.
As used herein, the term “computer” may include any processor-based or microprocessor-based system including systems using microcontrollers, reduced instruction set circuits (RISC), application specific integrated circuits (ASICs), logic circuits, and any other circuit or processor capable of executing the functions and methods described herein. The above examples are exemplary only, and are thus not intended to limit in any way the definition and/or meaning of the term “computer.”
The computer system executes a set of instructions that are stored in one or more storage elements, in order to process input data, such as, for example, usage and workflow data. The storage elements also may store data or other information as desired or needed. The storage element may be in the form of an information source or a physical memory element within the processing machine.
The set of instructions may include various commands that instruct the computer as a processing machine to perform specific operations such as the methods and processes of the various embodiments of the invention described below. The set of instructions may be in the form of a software program. The software may be in various forms such as system software or application software. Further, the software may be in the form of a collection of separate programs, a program module within a larger program or a portion of a program module. The software also may include modular programming in the form of object-oriented programming. The processing of input data by the processing machine may be in response to user commands, or in response to results of previous processing, or in response to a request made by another processing machine.
As used herein, the terms “software” and “firmware” are interchangeable, and include any computer program stored in memory for execution by a computer, including RAM memory, ROM memory, EPROM memory, EEPROM memory, and non-volatile RAM (NVRAM) memory. The above memory types are exemplary only, and are thus not limiting as to the types of memory usable for storage of a computer program.
In general, a method 50 for designing a medical care facility is shown in
1. A vision defining the overall concept for the medical care facility. This may include receiving input from the medical care provider, employees of the medical care provides, patients, etc. regarding what is important or needed in the medical care facility.
2. A mission for the medical care facility, which may be defined in part by the vision.
3. Priorities for the medical care facility. This may include priorities as set forth by the individuals when defining the vision. For example, priorities for types of medical care to be offered, etc. may be established.
4. Focus for the design of the medical care facility. This may include defining the specific details of particular interest or concern for the design.
Thereafter, a clinical strategy analysis is performed at 54. This may include a market analysis, a current state of technology assessment, a future state of technology adoption plan by service line defined by types of procedures (e.g., a clinical technology roadmap subdivided by procedure), projections for volumes, ALOS and IP/OP practice pattern shifts. Each of the components of the analysis may be performed using know programs or entities or data/information derived therefrom. For example, modeling tools such as MedModel and/or ProModel available from ProModel Corporation of Orem, Utah, may be used to model the operations of the medical care facility. However, the various embodiments are not limited to a particular modeling tool and may be modified to include other modeling tools or processes, such as, for example, the ARENA modeling tool available from Rockwell Software Incorporated of Sewickley, Pa. It should be noted that a company such as SG2 (of Evanston, Ill.) may be used to generate data/information to predict future trends, such as future applications/technologies to provide clinical strategy mapping. For example, the data may be based on emerging clinical technologies and projections of when these emerging technologies are likely to be adopted by, for example, a particular health care provider that is designing a medical care facility. The data/information also may be based on the risk or technology adoption profile of the particular health care provider.
At 56, a lean workflow analysis is performed. In general, the lean workflow analysis may be performed using a computer to provide Pareto analysis as is known to prioritize flow streams (e.g., workflow streams in the medical care facility), map volume weighted flow pathways within the medical care facility, measure current state information and adjust for lean and technology shifts, for example, based on the prediction of future trends. This lean workflow analysis may be used to generate one or more reports regarding the present and future work flows for the medical care facility to be constructed.
For example, a Pareto analysis, as is know, may be performed based on service lines (e.g., cardiology, orthopedics, neurology, dermatology, endocrinology, gastroenterology, general medicine, general surgery, oncology, pediatrics, urology, women's health, etc.) using billing data from a billing system of the medical care facility. A service line chart 100 shown in
Essentially, and as shown in
Additionally, and as shown in
Additionally, and as shown in
It should be noted that the data for the flowcharts 130 and 140 and for generating the percentage values 134, etc., in an exemplary embodiment, are derived from the usage data. This may include using historical data over a predetermined period of time.
Further, a volume weighted service line chart 150 as shown in
Referring again to
The iterative process is continued until a predetermined level or threshold for a metric is achieved, for example, when the number of feet traveled by clinicians for a year is lower than a maximum threshold. It should be noted that the iterative process may be performed for the entire design layout for the medical care facility or a portion thereof, such as, for example, a confined space. The confined space may be defined, for example, as a healthcare campus, hospital wing, individual department, a floor of the medical care facility, a particular facility, such as an ambulatory facility, a particular building, such as, a medical office building or an imaging center, and combinations thereof. Further, this process may be performed on a plurality of different designs or options to generate an options matrix 80 as shown in
Once the predetermined level or threshold for the metric is achieved, the layout or plan meeting that predetermined level or threshold is selected for development at 60. This includes know processes of developing the structural and other aspects of the design, for example, the civil engineering development of the design. This process may include selecting features for the medical care facility that do not impact the metrics, such as, for example, wiring, paint, etc. It should be noted that if a design change is made that may affect the defined metric(s), the iterative process at 58 may be repeated.
In an exemplary embodiment of the invention, the lean work flow analysis at 56, design and analysis of one or more architectural plans or layouts at 58, and selection of plan or layout at 60 together are defined by a design optimization method 170 shown in
Thereafter, at 176, one or more architectural designs defined by one or more layouts are generated based on the flow or process models. This may include generating architectural layouts for different variations or options for a design for a proposed medical care facility. The number of rooms, types of rooms, positioning of rooms, etc. is initially determined based on the flow or process models developed at 174. Workflows are then simulated for each of the layouts or designs at 176. This may include, for example, simulating different designs or comparing different options (e.g., different positioning of rooms) to provide a comparative analysis. It should be noted the designs or layouts may be provided by the same or different entities (e.g., different architect/engineer firms). This process may also include incorporating predicated changes in flow, as well as, predicted changes in technology as described above.
Architectural revisions are then made to the layouts or designs at 178. This may include, for example, changing the number of a particular type of rooms, changing the location of particular rooms, changing the arrangement of particular rooms, etc. This process results in a revised design or layout based on the simulated workflows at 176. Thereafter, the revised layout or plan is evaluated to determine at 180 if the overall plan or the portion changed satisfies a predetermined metric, which in various embodiments, is defined by a threshold level. For example, the metric may be distance traveled, time of travel, number or trips, time in motion, etc. as described above. Further, these metrics may be evaluated for different service lines, workflows, or individuals, for example, for clinicians, patients, families, visitors, etc. The threshold level may be based on, for example, a desired change from a baseline level, a user defined value, etc. If the one or more metrics are not satisfied at 180 then new architectural designs are generated at 176, for example, based on changes to particular service lines having an excessive distance traveled metric. If the one or more metrics are satisfied at 180, then at 182 a final design or layout is selected.
Referring again to
The various embodiments and methods may be implemented using any type of computer or computing machine and may be provided in connection with a user interface. For example, in one exemplary embodiment, a user interface 190 as shown in FIG. may be provided. The user interface may include a Design field 192 for selecting from one of a plurality or designs or layouts (or revisions thereof), for example, from a pull down menu. The user interface 190 also includes a Metrics field 194 for selecting one or more metrics for evaluation. The Metric values field 196 displays the current metric value, which may be compared to a threshold value. Additionally, a difference value from a baseline value and a previous design for one or more or the metrics is displayed in the Difference field 198. It should be noted that the user interface 190 may display information based on data or information generated and provided from the various embodiments and which may include using different processes or programs as described herein.
Thus, in one embodiment, a system 200 may be provided for implementing one or more of the various embodiments of the invention. The system 200 includes a processor for receiving and processing information, such as usage data, workflow data, metrics, calculated flow values, etc. This information may be weighted, for example, based on percentages, etc. This information may be received from other computers or machines, for example, from a different system (e.g., billing system) or from a connected or networked system. The system includes a computing component 202 having a processor 204 for processing the received information. For example, in an exemplary embodiment, the processor 204 is configured or programmed to implement one or more of the various methods described herein. The computing component 202 also includes a memory 206 for storing, for example, the received information or intermediate processed data. The system 200 also includes a user interface 208, which in an exemplary embodiment is the user interface 190. The system further includes a display 210 for displaying the processed results, for example, a metric value output. It should be noted that the components described herein may be implemented as modules, with each performing or defining particular actions or processes.
Thus, the various embodiments of the present invention provide a system and method for designing a medical care facility. The various embodiments obtain usage and workflow data and use metrics to evaluate one or more designs to select, for example, an optimized design based on specific service lines and workflows.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.