The present disclosure relates to designing scanning mirrors used in optical sensing systems, and more particularly to, a method for designing a scanning mirror assembly with an optimized frequency bandwidth by generating linear and non-linear spring constant information using a computer model to simulate scanning mirror oscillation associated with a set of design parameters.
Optical sensing systems, e.g., such as LiDAR systems, have been widely used in advanced navigation technologies, such as to aid autonomous driving or to generate high-definition maps. For example, a typical LiDAR system measures the distance to a target by illuminating the target with pulsed laser light beams and measuring the reflected pulses with a sensor. Differences in laser light return times, wavelengths, and/or phases can then be used to construct digital three-dimensional (3D) representations of the target. Because using a narrow laser beam as the incident light can map physical features with very high resolution, a LiDAR system is particularly suitable for applications such as sensing in autonomous driving and high-definition map surveys.
A LiDAR system may include a transmitter configured to emit a light beam to scan an object and a receiver configured to receive the light beam reflected by the object. The transmitter and the receiver may use optical components (e.g., a scanning mirror) to steer the light beam to a range of directions. A scanning mirror can be a single micro mirror, or an array of micro mirrors integrated into a micromachined mirror assembly made from semiconductor materials such as using microelectromechanical system (MEMS) technologies. In certain applications, a MEMS mirror may be operated at or near resonance. Using resonance may enable optical sensing systems to obtain large mirror scanning angles in a relatively small amount of time as compared to a non-resonating mirror. A MEMS mirror may resonate at or near its characteristic oscillation frequency, which may be determined by the design parameters associated with the scanning mirror, scanner, and/or transmitter.
These design parameters may include, e.g., mirror size, Q-factor, comb finger number, distance between comb fingers, length of comb fingers, drive frequency and amplitude, spring dimension, linear spring constant, non-linear spring constant, just to name a few. These design parameters can be adjusted during the design phase so that the scanning mirror meets one or more target performance characteristic(s), e.g., a target mirror scanning angle, a characteristic oscillation frequency, a target oscillation frequency bandwidth, etc.
The oscillation frequency bandwidth is a characteristic range of frequencies at which a scanning mirror assembly can be driven to oscillate around an axis of rotation. The characteristic range may include the characteristic oscillation frequency of the scanning mirror assembly itself and a set of frequencies located on either side of the characteristic oscillation frequency.
Various design parameters may affect the oscillation frequency bandwidth of a scanning mirror assembly. Examples of such design parameters include, among others, the linear spring constant k1 and the non-linear spring constant k3 associated with the torsion spring(s) included in the scanning mirror assembly. As will be demonstrated later, a ratio r3=k3/k1 (also referred to as the “spring constant ratio”) of the non-linear spring constant k3 over the linear spring constant k1 controls the oscillation frequency bandwidth (also referred to as the “frequency response bandwidth”).
For example, the spring constant ratio r3 is proportional to the oscillation frequency bandwidth such that the larger r3, the wider the oscillation frequency bandwidth. Designing a scanning mirror assembly such that the set of design parameters maximize the associated oscillation frequency bandwidth while maintaining a desired characteristic oscillation frequency may be advantageous in terms of controlling the scanning mirror angle during use by adjusting the drive frequency in the accompanying scanner electronics. Hence, computing the spring constant ratio r3 with a high degree of accuracy and efficiency during the design phase may be beneficial, particularly when designing a scanning mirror assembly with specific performance requirements.
For a rigid scanning mirror assembly, r3 may be computed by finding solutions for Equation (1), which is the equation governing motion for a rigid body under a single degree of freedom:
where θ is the angular displacement, J is mirror rotational moment of inertia, d is damping coefficient, k is rotational spring constant, N is number of drive comb unit, and f(θ) is electrostatic force from a single comb drive under a unit voltage as a function of angular displacement, Li is equivalent arm length of the comb drive relative to the axis of rotation, r3 is the ratio of the non-linear spring constant k3 over the linear spring constant k1, and V(t) is drive voltage. Because k3 is the coefficient for the cubic angular displacement, it is also known as the cubic non-linear spring constant. Furthermore, because the motion of a scanning mirror assembly is constrained by rotation around a fixed axis, a single degree of freedom can be used to approximately describe the motion of the scanning mirror assembly, which may simplify the associated computations.
However, computing the spring constant ratio r3 using Equation (1) assumes that the scanning mirror assembly is a rigid body, and thus, its shape maintains a single mode or angular displacement at any point in time during oscillation, which may not always be the case. For example, single crystal silicon or polysilicon, both of which are typical materials used to form a scanning mirror assembly by MEMS fabrication processes, each have a Young's modulus around 160 GPa. This means that a scanning mirror assembly formed from these or similar materials have a certain amount of flexibility.
Consequently, the shape of the scanning mirror assembly formed from these materials is composed of many modes (also referred to as “angular displacements”) or multiple sections (also referred to as “nodes”) of the structure having different angular displacements at the same point during operation. However, Equation (1) fails to account for the flexibility and multiple modes of such a scanning mirror assembly when solving for the spring constant ratio r3. Thus, Equation (1) cannot be used to compute the spring constant ratio r3 for a non-rigid scanning mirror assembly if a high degree of accuracy is to be achieved.
Thus, there is an unmet need for a method to compute the spring constant ratio for a non-rigid body using a governing equation of motion with a single degree of freedom specified by the angular displacement.
Embodiments of the disclosure provide a method for designing a scanning mirror assembly for an optical sensing system. The method may include receiving an initial set of design parameters for the scanning mirror assembly. The method may also include simulating first scanning mirror oscillation based on the initial set of design parameters using a computer model to compute an initial non-linear spring constant associated with at least one spring of the scanning mirror assembly. The method may further include adjusting the set of design parameters for the scanning mirror assembly based on a comparison between the initial non-linear spring constant and a target non-linear spring constant. In certain aspects, the adjusted set of design parameters may include at least one structural alteration to the at least one spring. The method may also include outputting the at least one structural alteration to be implemented on the at least one spring. In certain aspects, the initial set of design parameters and the adjusted set of design parameters may be associated with a same mirror oscillation frequency and linear spring constant.
Embodiments of the disclosure provide an apparatus for designing a scanning mirror assembly for an optical sensing system. The apparatus may include a communication interface configured to receive a set of design parameters of the scanning mirror assembly. The apparatus may further include a memory configured to store a computer model configured to simulate scanning mirror oscillation. The apparatus may further include at least one processor coupled to the memory. The at least one processor may be configured to simulate first scanning mirror oscillation based on the initial set of design parameters using a computer model to compute an initial non-linear spring constant associated with at least one spring of the scanning mirror assembly. The at least one processor may be configured to adjust the set of design parameters for the scanning mirror assembly based on a comparison between the initial non-linear spring constant and a target non-linear spring constant. In certain aspects, the adjusted set of design parameters may include at least one structural alteration to the at least one spring. The at least one processor may be configured to output the at least one structural alteration to be implemented on the at least one spring. In certain aspects, the initial set of design parameters and the adjusted set of design parameters may be associated with a same mirror oscillation frequency and linear spring constant.
Embodiments of the disclosure provide a non-transitory computer-readable medium for designing a scanning mirror assembly. The non-transitory computer-readable medium may be configured to perform a method of simulating scanning mirror oscillation using a set of design parameters. More specifically, the method may include receiving an initial set of design parameters for the scanning mirror assembly. The method may also include simulating first scanning mirror oscillation based on the initial set of design parameters using a computer model to compute an initial non-linear spring constant associated with at least one spring of the scanning mirror assembly. The method may further include adjusting the set of design parameters for the scanning mirror assembly based on a comparison between the initial non-linear spring constant and a target non-linear spring constant. In certain aspects, the adjusted set of design parameters may include at least one structural alteration to the at least one spring. The method may also include outputting the at least one structural alteration to be implemented on the at least one spring. In certain aspects, the initial set of design parameters and the adjusted set of design parameters may be associated with a same mirror oscillation frequency and linear spring constant.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
To overcome the challenges described above in the BACKGROUND section, the techniques provided by the present disclosure enable simulating scanning mirror assembly oscillation by constructing a computer model that accounts for the assembly's flexibility. More specifically, the disclosed computer model may average the various angular displacements across the surface of the scanning mirror for a given angular acceleration. The angular acceleration may be changed incrementally, and the average angular displacement across the surface of the scanning mirror may be determined for each of these increments of angular acceleration. Then the computer model may determine the torque of the entire scanning mirror assembly as a function of the average angular displacements determined for the scanning mirror, which simplifies the computational complexity without introducing inaccuracies in the generated solutions, as compared to the currently available techniques.
Moreover, the linear spring constant k1 and non-linear spring constant k3, and subsequently the spring constant ratio r3, may be computed based at least in part on polynomial curve fitting of torque as a function of average angular displacement, e.g., additional details of which are described below in connection with
Some exemplary embodiments are described below with reference to a scanning mirror used in LiDAR system(s), but the application of the scanning mirror assembly disclosed by the present disclosure is not limited to the LiDAR system. Rather, one of ordinary skill would understand that the following description, embodiments, and techniques may apply to any type of optical sensing system (e.g., biomedical imaging, 3D scanning, tracking and targeting, free-space optical communications (FSOC), and telecommunications, just to name a few) known in the art that use a flexible scanning mirror, without departing from the scope of the present disclosure.
Transmitter 1002 can sequentially emit a stream of pulsed laser beams in different directions within a scan range (e.g., a range in angular degrees), as illustrated in
In some embodiments of the present disclosure, laser source 1006 may include a pulsed laser diode (PLD), a vertical-cavity surface-emitting laser (VCSEL), a fiber laser, etc. For example, a PLD may be a semiconductor device similar to a light-emitting diode (LED) in which the laser beam is created at the diode's junction. In some embodiments of the present disclosure, a PLD includes a PIN diode in which the active region is in the intrinsic (I) region, and the carriers (electrons and holes) are pumped into the active region from the N and P regions, respectively. Depending on the semiconductor materials, the wavelength of incident laser beam 1007 provided by a PLD may be greater than 700 nm, such as 760 nm, 785 nm, 808 nm, 848 nm, 905 nm, 940 nm, 980 nm, 1064 nm, 1083 nm, 1310 nm, 1370 nm, 1480 nm, 1512 nm, 1550 nm, 1625 nm, 1654 nm, 1877 nm, 1940 nm, 2000 nm, etc. It is understood that any suitable laser source may be used as laser source 1006 for emitting laser beam 1007.
Scanner 1008 may be configured to emit a laser beam 1009 to an object 1120 in a direction within a range of scanning angles. In some embodiments consistent with the present disclosure, scanner 1008 may include a micromachined mirror assembly having a scanning mirror, such as MEMS mirror 1100. In some embodiments, at each time point during the scan, scanner 1008 may emit laser beam 1009 to object 1120 in a direction within a range of scanning angles by rotating the micromachined mirror assembly. MEMS mirror 1100, at its rotated angle, may deflect the laser beam 1007 generated by laser sources 1006 to the desired direction, which becomes laser beam 1009. The micromachined mirror assembly may include various components that enable, among other things, the rotation of the MEMS mirror 1100. For example, the micromachined mirror assembly may include, among other things, a scanning mirror (e.g., MEMS mirror 1100), a first set of anchors, one or more actuators each coupled to an anchor in the first set of anchors, a second set of anchors, at least one torsion spring coupled to at least one anchor in the set of anchors, and a substrate, just to name a few.
Certain design parameters of the MEMS mirror 1100 may impact its performance. Such design parameters may include, e.g., mirror dimensions, Q-factor, comb finger number, distance between comb fingers, length of comb fingers, drive frequency and amplitude, spring dimension, linear spring constant, non-linear spring constant, torsional spring constant, spring constant ratio, torsion spring dimensions, number of torsion springs, torsion spring angle with respect to one or more of the anchor, gimbal, and/or scanning mirror, just to name a few. Thus, it may be beneficial to design a MEMS mirror 1100 by tailoring the design parameters during the design phase such that target performance requirements are met.
The present disclosure provides a method that enables the adjustment of the design parameters during the design phase for a sample scanning mirror assembly, such as one or more MEMS mirror 1100, scanner 1008, and/or transmitter 1002. These adjustments may be made based on the computed spring constant ratio r3 (also referred to as the “initial spring constant ratio r3”). For example, an initial spring constant ratio r3 (also referred to as the “computed spring constant ratio r3”) computed for an initial set of design parameters may be compared to a target non-linear spring constant ratio r3′. When the initial non-linear spring constant ratio r3 meets the target non-linear spring constant ratio r3′, the initial set of design parameters may be those used to manufacture the scanning mirror assembly. Otherwise, when the initial non-linear spring constant ratio r3 does not meet the target non-linear spring constant ratio r3′, an adjusted set of design parameters may be proposed, and the simulation may be rerun based on the adjusted set of design parameters.
A subsequent determination may be made as to whether the target spring constant ratio r3′ is met using the adjusted set of design parameters. The set of design parameters may be adjusted until a scanning mirror assembly design that meets the target spring constant ratio r3′ is achieved. In certain implementations, the method may determine appropriate design alterations based on a comparison of the computed spring constant ratio r3 and a target spring constant ratio r3′. The adjusted set of design parameters may be selected such that the characteristics oscillation frequency and the linear spring constant remains constant and only the non-linear spring constant is changed, e.g., additional details of which are set forth below in connection with
Still referring to
In some embodiments, receiver 1004 may be configured to detect a laser beam 1110 returned from object 1120. The returned laser beam 1110 may be in a different direction from laser beam 1009. Receiver 1004 can collect laser beams returned from object 1120 and output electrical signals reflecting the intensity of the returned laser beams. Upon contact, laser light can be reflected by object 1120 via backscattering, such as Raman scattering and/or fluorescence. As illustrated in
Photodetector 1121 may be configured to detect returned laser beam 1110 returned from object 1120. In some embodiments, photodetector 1121 may convert the laser light (e.g., returned laser beam 1110 ) collected by lens 1140 into an electrical signal 1190 (e.g., a current or a voltage signal). Electrical signal 1190 may be generated when photons are absorbed in a photodiode included in photodetector 1121. In some embodiments of the present disclosure, photodetector 1121 may include a PIN detector, a PIN detector array, an avalanche photodiode (APD) detector, a APD detector array, a single photon avalanche diode (SPAD) detector, a SPAD detector array, a silicon photo multiplier (SiPM/MPCC) detector, a SiP/MPCC detector array, or the like.
LiDAR system 1000 may also include one or more signal processor 1124. Signal processor 1124 may receive electrical signal 1190 generated by photodetector 1121. Signal processor 1124 may process electrical signal 1190 to determine, for example, distance information carried by electrical signal 1190. Signal processor 1124 may construct a point cloud based on the processed information. Signal processor 1124 may include a microprocessor, a microcontroller, a central processing unit (CPU), a graphical processing unit (GPU), a digital signal processor (DSP), or other suitable data processing devices.
For example, the scanning mirror design 200 may include an initial set of design parameters that may be used to compute the associated non-linear spring constant. In some embodiments, the initial set of design parameters may be associated with one or more components of a scanning mirror assembly. Such components may include at least one of, e.g., a scanning mirror 202 (e.g., MEMS mirror 1100), a first set of anchors 204a, a second set of anchors 204b, fixed drive comb fingers 206a coupled to anchors 204b, sliding comb drive fingers 206b coupled to the scanning mirror 202, one or more torsion springs 208, and/or a substrate 211, just to name a few.
In some embodiments, the initial set of design parameters may be parameters of these components, and any change to these parameters may affect the linear spring constant k1, the non-linear spring constant ratio k3, and the spring constant ratio r3, and hence, the oscillation frequency bandwidth of the assembly. For example, the initial set of design parameters may include dimensions (e.g., length, width, and thickness) of the above components, e.g., dimensions of the scanning mirror 202 and dimensions of the drive comb, and distances between these components, e.g., the distance between the scanning mirror 202 and the anchors 204b. Other examples of the initial set of design parameters may include one or more of the materials of these components, the characteristic frequency of the scanning mirror 202, the total overlap area for all drive comb fingers 206a, 206b, air gap spacing between components (e.g., the air gap between fixed drive comb fingers 206a and the sliding comb drive fingers 206b), drive voltage frequency, silicon density, and the moment of inertia of the scanning mirror, just to name a few.
In some embodiments, the linear spring constant k1, non-linear spring constant k3, and spring constant ratio r3 may be computed using the initial set of design parameters and computations according to, e.g., Equations (2) and (5)-(7) set forth below.
To implement a numerical simulation that computes the linear spring constant k1, non-linear spring constant k3, and spring constant ratio r3 for a flexible scanning mirror assembly, the computer model of the present disclosure may convert the above dimensional Equation (1) into non-dimensional Equation (2), by introducing a non-dimensional time τ. Computing solutions for non-dimensional Equation (2) may simplify the computations performed during the scanning mirror simulation. In terms of oscillation frequency, dimensions of Hz (1 Hz=1 revolution per second) or kHz are typically used. However, when performing mathematical computations, dimensions of Hz is not numerically compatible, and hence, non-dimensional ‘radians’ may be used by the disclosed computer model. The computer model of the present disclosure may be configured to divide the time step (e.g., two time steps, ten time steps, 20 time steps, 100 time steps, etc.) to numerically integrate Equation (2):
where τ is a non-dimensional time such that the natural frequency of Equation (2) becomes 2π. When the scanning mirror assembly is driven at or near its natural frequency, the magnitude of the angular displacement, θ, is controlled primarily by the quality factor Q of the scanning mirror, and is linearly proportional to drive torque, and inversely proportional to torsional spring constant k, which may also be referred to as “linear spring constant”). For mirror oscillation, the linear spring constant is the torsion spring constant because the motion is rotary. In other words, ‘k’ in Equation (2) is the same ‘k’ as in Equation (1).
As a scanning mirror assembly rotates, a tension force T is generated along the spring as the scanning mirror assembly rotates, which is responsible for the non-linear spring constant k3, as described below in connection to the example cantilever assembly 292 of
where β is geometry dependent constant, EI is the flexural rigidity of the cantilever beam, w is the width of the cantilever beam, and L is the length of the cantilever beam.
When a tension force T is present along the cantilever beam, its natural frequency ftotal becomes larger as shown below in Equation (4):
where α is another geometry dependent constant, the
term is the first frequency component from tension force T and the
term is from the bending or twisting of the cantilever beam.
A larger natural frequency ftotal corresponds to a stiffer spring. In other words, a stiffer spring requires a larger force (torque) to rotate about an axis, which is the effect of the non-linear spring constant k3. In other words, the larger the angular displacement, the larger the torque required to turn.
The non-linear spring constant k3 is cubic (3rd order) due to the symmetric nature of scanning mirror assembly design. If the non-linear spring is quadratic (2nd order), the scanning mirror assembly would be asymmetric. In other words, an asymmetric scanning mirror assembly would experience different torques when rotating in a positive direction as opposed to a negative direction.
Considering that a spring is made up of an infinite number of fibers, the fiber along the axis of rotation contributes only to the linear spring constant k1. All other fibers contribute both to both the linear spring constant k1 and nonlinear spring constant k3. The fibers at the outer most of the spring contribute most to the non-linearity.
Both the linear spring constant k1 and the nonlinear spring constant k3 are functions of the spring dimensions and shapes. Therefore, the computer model and/or user can manipulate both dimensions and shapes of the springs to search for a target pair of linear spring constant k1 and non-linear spring constant k3.
Assuming the torsion spring is cubic non-linear, then the relationship between torque and angular displacement B can be expressed as a polynomial as shown below in Equation (5):
torques=k1θ1+k3θ3=kθ(1+r3θ2) (5)
where r3 is the spring constant ratio of the non-linear spring constant k3 over the linear spring constant k1, and k=k1.
As previously mentioned, to solve for the linear spring constant k1, non-linear spring constant k3, and spring constant ratio r3 for a flexible scanning mirror assembly, the associated governing equation of motion must account for the assembly's flexibility if a high degree of accuracy is to be achieved. To compute the linear spring constant k1, non-linear spring constant k3, and spring constant ratio r3 for a flexible scanning mirror assembly, the disclosed method simulates scanning mirror assembly oscillation by constructing a computer model that accounts for the assembly's flexibility, e.g., as will be described in additional detail below in connection with
On the other hand,
In some embodiments, the linear spring constant k1, non-linear spring constant k3, and spring constant ratio r3 for flexible scanning mirror assembly 220 may be computed using the initial set of design parameters and computations according to, e.g., Equations (6) and (7) set forth below. The computer model (e.g., ANSYS ADPL, Simulink schematic ordinary differential equation (ODE) solver, etc.) may use the solutions for Equations (6) and (7) to solve for a numerical simulation of non-dimensional Equation (2) shown above. Once the solutions to non-dimensional Equation (2) have been found, they may be converted back into quantities with dimensions to solve for Equation (1).
More specifically, the computer model may generate a simulation of a flexible scanning mirror assembly based on a set of initial design parameters. The initial set of design parameters may be input into the computer model by a user or the computer model may select the initial set of design parameters from sample design parameters. Then, the computer model may simulate the mirror oscillation when an angular acceleration {umlaut over (θ)} is applied to the simulated flexible scanning mirror assembly 220. The angular acceleration {umlaut over (θ)} used for the simulation may be selected such that the simulated scanning mirror 202 oscillates at a frequency associated with a predetermined scanning angle (e.g., such as 5 mechanical degrees) that falls within a range of scanning angles up to the maximum scanning angle associated with a particular scanning mirror assembly design. As will be described, the computer model may repeat the simulation for different angular accelerations. Under each angular acceleration {umlaut over (θ)}, the simulated scanning mirror 202, gimbal 214, and torsion spring 208 may deform in their natural shape, such as the example depicted in
To simplify computations associated with determining torque as a function of angular displacement θ, the computer model may first compute the average angular displacement θ for all nodes across the entire surface of the scanning mirror 202. For example, the computer model may determine the average angular displacement of all nodes using Equation (6) for a given angular acceleration {umlaut over (θ)}:
where n is the total number of nodes over the surface of the scanning mirror 202 in the numerical model (also referred to as a “simulation”), zi is vertical displacement of node i, yi is distance from node i relative to the axis of rotation.
Then under the same angular acceleration {umlaut over (θ)}, the resulting torque can be computed for all rotating bodies in the assembly (e.g., scanning mirror 202, gimbal 214, comb drive fingers 206b) using Equation (7) seen below:
torque(θ)={umlaut over (θ)}r2dm (70
where r is distance from a mass element “dm” to the axis of rotation. The three-dimensional integration covers the entire rotating bodies (e.g., scanning mirror 202, gimbal 214, comb drive fingers 206b) in the assembly.
Then, the angular acceleration {umlaut over (θ)} may be changed incrementally, and the average angular displacement θ may be computed for each of these increments of angular acceleration. The angular accelerations {umlaut over (θ)} may be those associated with different scanning angles. Then the computer model may compute the torque of the entire scanning mirror assembly as a function of the average angular displacement associated with that angular acceleration, and so on until torque as a function of angular displacement for each of the simulated angular accelerations have been computed. The computer model may save the resulting data as a lookup table that correlates torque and angular displacement, an example of which is shown in
Finally, for a scanning mirror assembly design using the initial set of design parameters, for a given relation between angular displacement and torque for a particular design, the computer model may compute the linear spring constant k1 and the cubic non-linear spring constant k3 using cubic polynomial curve fitting, examples of which are depicted in
The computer model may compare r3 computed for the initial set of design parameters with a target spring constant ratio r3′ to determine whether these design parameters achieve the desired result. If the initial set of design parameters achieves the target linear spring constant k1′, the target non-linear spring constant k3′, the target spring constant ratio r3′, the computer model may output such an indication. Otherwise, if the initial set of design parameters does not achieve one or more of the target non-linear spring constant k3′, the target spring constant ratio r3′, an adjusted set of design parameters may be proposed either by the computer model or as an input from a user and the simulation rerun.
The adjusted set of design parameters may include, e.g., at least one structural alteration to the at least one spring. More specifically, the at least one structural alteration may include a change in size of the at least one spring, a change in number of springs of the at least one spring, a change in spacing between two or more springs of the at least one spring, a change in angle between the at least one spring and a component of the scanning mirror assembly, a change in scanning mirror assembly type, as depicted in
In implementations in which a target linear spring constant k1′, and hence, the target characteristic oscillation frequency is achieved using the initial set of design parameters, the structural alterations may be selected such that the non-linear spring constant k3 is adjusted (to increase spring constant ratio r3) without changing the linear spring constant k1, thereby increasing the oscillation frequency bandwidth without changing the characteristic oscillation frequency of the scanning mirror assembly.
For example, the initial set of design parameters may include a torsion spring 208 with the dimensions seen in
Assuming 1.7 kHz is the target characteristic oscillation frequency, it can be achieved by experimenting and properly choosing values of L & w. As shown in the example depicted in
By way of example, assuming that the target spring constant ratio r3′ is 20, the initial set of design parameters of
For illustrative purposes, the adjusted set of design parameters may result in mirror designs as those depicted in
With the assumption that the target spring constant ratio r3′is 20, the adjusted set of design parameters of
For illustrative purposes, the subsequent adjusted set of design parameters may result in mirror designs as those depicted in
In some embodiments, both the linear spring constant k1 and non-linear spring constant k3 to achieve the target spring constant ratio r3′. For example, the adjusted set of design parameters illustrated in
For each of ratio r3, by applying all other design parameters to the computer model and by applying a sinusoidal drive voltage, a frequency response curve (e.g., such as the one illustrated in
When an even higher non-linear spring constant is desired, a teeter totter type torsion spring may be used as the adjusted set of design parameters as illustrated in
As seen in
In the design illustrated in
Communication interface 502 may send data to and receive data from databases via communication cables, a Wireless Local Area Network (WLAN), a Wide Area Network (WAN), wireless networks such as radio waves, a cellular network, and/or a local or short-range wireless network (e.g., Bluetooth™), or other communication methods. In some embodiments, communication interface 502 may include an integrated service digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection. As another example, communication interface 502 may include a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links can also be implemented by communication interface 502. In such an implementation, communication interface 502 can send and receive electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
Consistent with some embodiments, communication interface 502 may receive an initial set of design parameters 501 and/or an adjusted set of design parameters 503 from a database or a user input (not shown). Communication interface 502 may further provide the initial set of design parameters 501 to memory 506 and/or storage 508 for storage or to processor 504 for processing.
Processor 504 may include any appropriate type of general-purpose or special-purpose microprocessor, digital signal processor, or microcontroller. Processor 504 may be configured as a separate processor module dedicated to simulating scanning mirror oscillation and computing performance characteristics based on the initial set of design parameters 501. Processor 504 may be configured to execute a computational toolbox to perform a series of computations. The computational toolbox may include a plurality of functional blocks configured as a computer model for simulating the scanning mirror oscillation. Alternatively, processor 504 may be configured as a shared processor module for performing other functions in addition to determining design parameter values and making design changes of the scanning mirror.
Memory 506 and storage 508 may include any appropriate type of mass storage provided to store any type of information that processor 504 may need to operate. Memory 506 and storage 508 may be a volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other type of storage device or tangible (i.e., non-transitory) computer-readable medium including, but not limited to, a ROM, a flash memory, a dynamic RAM, and a static RAM. Memory 506 and/or storage 508 may be configured to store one or more computer programs that may be executed by processor 504 to perform functions disclosed herein. For example, memory 506 and/or storage 508 may be configured to store program(s) that may be executed by processor 504 to determine design parameter values of the scanning mirror.
In some embodiments, memory 506 and/or storage 508 may also store various scanning mirror design parameters including e.g., initial design parameters and adjusted design parameters associated with structural alterations (e.g., one or more of a change in size of the at least one spring, a change in number of springs of the at least one spring, a change in spacing between two or more springs of the at least one spring, a change in angle between the at least one spring and a component of the scanning mirror assembly, just to name a few), target performance characteristics for various scanning mirror designs, one or more look-up tables that correlate electrostatic force as a function of angular displacement for various scanning mirror designs, and/or a computer model configured to simulate scanning mirror oscillation, etc. Memory 506 and/or storage 508 may also store information associated with Equations (1)-(7) used to simulate scanning mirror oscillation and to compute performance characteristics, linear spring constant k1, the non-linear spring constant k3, and the spring constant ratio r3 as a result of the simulation, etc.
As shown in
In some embodiments, one or more of units 542-546 of
In step 602, communication interface 502 may receive an initial set of design parameters 501 (e.g., design parameters associated with scanning mirror design 200 of
In step 604, the simulation model unit 542 may simulate first scanning mirror oscillation based on the initial set of design parameters 501 using a computer model to compute an initial non-linear spring constant associated with at least one spring of the scanning mirror assembly. Step 604 may include one or more sub-steps as described below.
For example, referring to one aspect of step 604, simulation model unit 542 may simulate scanning mirror oscillation by determining a plurality of nodes associated with a scanning mirror of the scanning mirror assembly, the scanning mirror being a non-rigid body. For example, referring to
In certain other aspects of step 604, simulation model unit 542 may simulate scanning mirror oscillation for the given angular acceleration {umlaut over (θ)} by computing an angular displacement associated with each of the plurality of nodes, the angular displacement of a node being computed based at least in part on an associated vertical displacement and distance to an axis of rotation of the scanning mirror. For example, referring to
In still further aspects of step 604, simulation model unit 542 may simulate scanning mirror oscillation by computing an average angular displacement of the scanning mirror assembly based at least in part on the angular displacement computed for each of the plurality of nodes. For example, referring to
In still another aspect of step 604, simulation model unit 542 may simulate scanning mirror oscillation by computing a torque as a function of average angular displacement across a scanning mirror angle associated with the scanning mirror assembly. For example, referring to
In further aspects of step 604, simulation model unit 542 may simulate scanning mirror oscillation by generating a data set that correlates the torque and the angular displacement across the scanning mirror angle associated with the scanning mirror assembly as an output of the computer model. For example, referring to
In certain aspects of step 604, simulation model unit 542 may simulate scanning mirror oscillation by performing cubic polynomial curve fitting using the dataset that correlates torque and the angular displacement across the scanning mirror angle of the scanning mirror assembly. In certain aspects, the initial non-linear spring constant is computed based at least in part on the cubic polynomial curve fitting. For example, referring to
At step 606, the computation unit 544 may determine whether the initial (computed) non-linear spring constant meets a target non-linear spring constant k3′. Upon determining that the initial non-linear spring constant meets the target non-linear spring constant k3′, the operations may stop. Otherwise, upon determining that the initial non-linear spring constant does not meet the target non-linear spring constant k3′, method 600 proceeds to step 608.
At step 608, the design parameter adjustment unit 546 may adjust the set of design parameters for the scanning mirror assembly based on a comparison between the initial non-linear spring constant k3 and a target non-linear spring constant k3′. In certain aspects, the initial set of design parameters and the adjusted set of design parameters are associated with a same mirror oscillation frequency and linear spring constant. The adjusted set of design parameters may include at least one structural alteration to the at least one spring such as those illustrated in
At step 610, the communication interface 502 may output the adjusted set of design parameters 505 including the at least one structural alteration to be implemented on the at least one spring. For example, the change to the shape or dimensions of the at least one spring may be output to a user, e.g., a mirror design engineer.
At step 612, the simulation model unit 542 may simulate second scanning mirror oscillation based on the adjusted set of design parameters 505 using the computer model to compute an adjusted non-linear spring constant associated with at least one spring of the scanning mirror assembly. For example, the simulation model unit 542 may rerun the simulation using the adjusted set of design parameters by performing step 604 above and its associated sub-steps.
In some embodiments, based on the simulations performed in method 600, a frequency response curve 507 can be generated, associated with the various spring constants r3. For example, for each of ratio r3, by applying all other design parameters to the computer model and by applying a sinusoidal drive voltage, a frequency response curve (e.g., such as the one illustrated in
Another aspect of the disclosure is directed to a non-transitory computer-readable medium storing instructions which, when executed, cause one or more processors to perform the methods, as discussed above. The computer-readable medium may include volatile or non-volatile, magnetic, semiconductor-based, tape-based, optical, removable, non-removable, or other types of computer-readable medium or computer-readable storage devices. For example, the computer-readable medium may be the storage device or the memory module having the computer instructions stored thereon, as disclosed. In some embodiments, the computer-readable medium may be a disc or a flash drive having the computer instructions stored thereon.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed system and related methods. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed system and related methods.
It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.