System and method for detecting errors in a source driver

Information

  • Patent Grant
  • 10467936
  • Patent Number
    10,467,936
  • Date Filed
    Wednesday, May 1, 2019
    5 years ago
  • Date Issued
    Tuesday, November 5, 2019
    5 years ago
Abstract
A system for detecting errors in a source driver for an electronic display includes an upstream logic device, a comparator, and a source driver. The source driver has a number of driven channels which transmit active signals for generating an image on the electronic display and one or more dummy channels which transmit dummy signals to the comparator. The comparator receives and compares signals from at least some of the driven channels with the dummy channels and generates an alert for transmission to the upstream logic device if a mismatch is detected.
Description
TECHNICAL FIELD

The disclosed embodiments of the present invention relate to systems and methods for detecting errors in source drivers using dummy channels.


BACKGROUND OF THE ART

LCD assemblies contain a plurality of components that may fail over time. This can be undesirable in many different situations but specifically when the LCD is being used for information purposes within critical applications (such as instrumentation for fixed wing or rotary wing aircraft, ground vehicles, mission control, etc.). At times there are concerns that the LCD display is not being updated accurately due to a failure in the source driver.


SUMMARY OF THE PREFERRED EMBODIMENTS OF THE INVENTION

In an exemplary embodiment, dummy channels may be placed on the source driver and can be driven with known values. The output of these source driver channels can then be compared to the known values to determine if the source driver is functioning properly.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the disclosed embodiments will be obtained from a reading of the following detailed description and the set of accompanying drawings.



FIG. 1 provides a schematic of a traditional LCD assembly.



FIG. 2 provides a schematic of a traditional LCD source driver architecture.



FIG. 3 provides a schematic of an exemplary embodiment of the LCD source driver feedback system.



FIG. 4 provides a schematic of an alternative embodiment of the LCD source driver feedback system.



FIG. 5 provides a schematic of an alternative embodiment of the LCD source driver feedback system.



FIG. 6 provides a logical flowchart for one embodiment of the method.



FIG. 7 provides a logical flowchart for another embodiment of the method.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.


It will be understood that when an element or layer is referred to as being “on” another element or layer, the element or layer can be directly on another element or layer or intervening elements or layers. In contrast, when an element is referred to as being “directly on” another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that, although the terms first, second, third, etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.


Spatially relative terms, such as “lower”, “upper” and the like, may be used herein for ease of description to describe the relationship of one element or feature to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “lower” relative to other elements or features would then be oriented “upper” relative the other elements or features. Thus, the exemplary term “lower” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.


For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.



FIG. 1 provides a schematic of a traditional LCD assembly. The display interface board (DIB) preferably contains the necessary electronics to control the source and gate drivers.



FIG. 2 provides a schematic of a traditional LCD source driver architecture. Each source driver typically has ‘n’ number of channels to drive the red, green, and blue sub-pixels on each line of the LCD. Of course, it is known to use other combinations of sub-pixels in some applications, such as more than one of each red, green, and blue or sometimes an additional sub-pixel color such as yellow. The preferred embodiments herein can be used with any combination and colors for the LCD sub-pixels. The red, green, and blue are the most widely used combination, so this is shown here.



FIG. 3 provides a schematic of an exemplary embodiment of the LCD source driver feedback system. As an example, assume that the source driver is capable of driving 960 channels or 320 (960/3) pixels (a pixel in this embodiment is comprised of a red, green, and blue sub-pixels). If only 957 channels are used to drive the LCD, then 3 channels may be available for data integrity checking of the source driver. These 3 channels, referred to as “dummy channels” since they are not connected to the LCD, can be routed back to the DIB where they can be digitized (converted from an analog signals to a digital signal) and compared to the known or driven data. It should be noted that although three dummy channels are shown here, three are not required. As few as one or two dummy channels can be used, or alternatively more than three dummy channels could be used. The DIB′ as used herein refers to a display interface board which is commonly used in LCD applications. Generally speaking, these are printed circuit boards with several electronic components, most notably a microprocessor for operating the logic described throughout this application.


For instance, say the DIB provided a digital value of 255(d) for sub-pixel N+1, digital value of 64(d) for sub-pixel N+2, and a digital value of 128(d) for N+3. The source driver may convert these digital values to a corresponding analog voltage based on gamma and polarity. The analog voltages from N+1, N+2, and N+3 would preferably be routed back to the DIB where they would be digitized and compared against the driven digital values. If the two values match, then one could assume, with a high level of confidence that the source driver is functioning properly. If the two values do not match, then one could assume, with a high level of confidence that the source driver is not functioning properly. If multiple mismatches do occur, then the DIB may alert the control logic upstream that an error condition has been detected. The action taken by the DIB under a fault condition could be any one of many actions, such as but not limited to: driving the LCD black, display text on the LCD indicating a fault condition has occurred, audible warnings, flashing lights or LEDs positioned near the LCD, or any other number of possibilities.



FIG. 4 provides a schematic of an alternative embodiment of the LCD source driver feedback system. There are of course many combinations for connecting the ‘dummy’ channels out of a source driver and back to the DIB. In this embodiment, the figure shows dummy channels on each end of the source driver. While this embodiment shows three dummy channels on each end of the source driver, there is no requirement that the number of dummy channels on each end of the source driver is equal, as they could be different.



FIG. 5 provides a schematic of an alternative embodiment of the LCD source driver feedback system. This figure illustrates a situation where there may not be any dummy channels available out of the source driver. In this situation, original signals sent to active LCD channels may be split and routed back to a microprocessor on the DIB as a dummy split channel. In this situation, it would be preferable if the original signal sent to the split active channel was a signal for the image to be produced on the LCD. Again, while the embodiment shown uses the last three sub-pixels out of the source driver to perform the integrity check, this is not required. As few as one channel could be used or as many as hundreds of channels could be used. Also, this splitting technique could be used in combination with the designated dummy channel technique shown above in FIGS. 3 and 4.



FIG. 6 provides a logical flowchart for one embodiment of the method. Here, at least one dummy channel is initially provided and is driven with an original signal. The resulting signal from the dummy channel is then received as a received dummy channel signal. Here, the DIB or other PCB containing a microprocessor would contain the comparison logic which would preferably compare the received dummy channel signal with the original dummy channel signal. If the two match, the logic returns to drive the dummy channel with another original signal to repeat the process. If the two do not match, an error is sent upstream to notify the user as to an error.



FIG. 7 provides a logical flowchart for another embodiment of the method. In this embodiment, an active channel is initially split to produce a dummy channel and an active channel. Both the dummy channel and the active channel are then driven with the same original signal. The active channel is then sent to the LCD while the dummy channel is received as a received dummy channel signal. Again, this received dummy channel signal is then compared with the original signal to determine if an error has occurred.


Having shown and described a preferred embodiment of the invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention and still be within the scope of the claimed invention. Thus, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. A system for detecting errors in a source driver for an electronic display, comprising: an upstream logic device;a comparator;a number of drive channels in electrical communication with the source driver and configured to transmit active signals for generating an image on the electronic display; andone or more dummy channels in electrical communication with the source driver and configured to transmit dummy signals from the source driver to the comparator;wherein the comparator is in electronic communication with one or more of the drive channels, the one or more dummy channels, and the upstream logic device, wherein the comparator is configured to receive and electronically compare the active signals from said one or more of the drive channels to the dummy signals received from said one or more of the dummy channels and generate an indication if the received active signals do not match the received dummy signals;wherein each of the dummy channels bypass the electronic display.
  • 2. The system of claim 1 wherein: the comparator is configured to generate an alert for transmission to the upstream logic device if more than one mismatch is detected.
  • 3. The system of claim 2 wherein: the upstream logic device is configured to, following receipt of the alert, drive the electronic display black.
  • 4. The system of claim 2 wherein: the upstream logic device is configured to, following receipt of the alert, display text on the electronic display indicating a fault condition has been detected.
  • 5. The system of claim 2 further comprising: a speaker in electronic communication with the upstream logic device, wherein the upstream logic device is configured to, following receipt of the alert, generate an audible warning.
  • 6. The system of claim 2 further comprising: an illumination device in electronic communication with the upstream logic device, wherein the upstream logic device is configured to, following receipt of the alert, cause the illumination device to flash.
  • 7. The system of claim 1 wherein: the electronic display is a liquid crystal display.
  • 8. The system of claim 1 wherein: each of the dummy channels are electronically split from one of the number of drive channels.
  • 9. The system of claim 1 wherein: each of the dummy channels are electrically isolated from the number of drive channels and the electronic display.
  • 10. The system of claim 1 further comprising: an analog to digital converter which digitizes the received dummy signal.
  • 11. The system of claim 1 further comprising: a display interface board in electronic communication with the electronic display, wherein the comparator is a microprocessor located on the display interface board.
  • 12. The system of claim 11 further comprising: a second source driver in electronic communication with the DIB.
  • 13. The system of claim 1 wherein: the dummy channels comprise the last three channels on the source driver.
  • 14. The system of claim 13 wherein: the dummy channels further comprise the first three channels on the source driver.
  • 15. A method for detecting errors in an electronic display assembly comprising the steps of: providing: an electronic display;a display interface board comprising a microprocessor;an upstream logic device in electronic communication with the electronic display and the microprocessor;a number of gate drivers electrically connected to the microprocessor and the electronic display; anda number of source drivers electrically connected to the upstream logic device, the microprocessor, and the electronic display;connecting a first number of channels from each of the source drivers to the electronic display;connecting a second number of channels from each of the source drivers to the microprocessor such that the second number of channels bypass the electronic display;driving the first number of channels with active signals for generating an image on the electronic display;driving the second number of channels with dummy signals;receiving active signals from at least some of the first number of channels of each of the source drivers at the microprocessor;receiving all of the dummy signals from each of the source drivers at the microprocessor;electronically comparing, at the microprocessor, the received active signals with the received dummy signals;generating an alert for where a mismatch is found between the received active signals and the received dummy signals; andtransmitting the alert to the upstream logic device.
  • 16. The system of claim 15 further comprising the steps of: providing an analog to digital converter electrically connected to each of the second number of channels of each of the source drivers and the microprocessor; andconverting, at the analog to digital converter, each of the dummy signals to a digital format.
  • 17. The system of claim 15 further comprising the steps of: commanding, by way of the upstream logic device, the electronic display to be driven black or to display text indicating that a fault condition has been detected.
  • 18. The system of claim 15 wherein: each of the one or more dummy driven channels are split from one of the number of actively driven channels.
  • 19. The system of claim 15 wherein: each of the dummy driven channels are electrically isolated from the number of actively driven channels and bypass the electronic display.
  • 20. A system for detecting errors in an electronic display assembly comprising: a liquid crystal display (“LCD”);a display interface board comprising: a microprocessor; andan analog to digital converter;an upstream logic device in electronic communication with the LCD and the display interface board;a number of gate drivers electrically connected to the display interface board;a number of source drivers electrically connected to the upstream logic device and the display interface board;a number of actively driven channels on each of the source drivers, wherein each of the actively driven channel is configured to transmit active signals for generating an image on the LCD from the source driver to the LCD; anda number of dummy driven channels on each of the source drivers, wherein each of the dummy driven channels are configured to transmit dummy signals from the source driver to the microprocessor; andwherein the microprocessor is in electronic communication with one or more of the actively driven channels of each of the source drivers, the one or more dummy driven channels of each of the source drivers, and the upstream logic device;wherein the microprocessor comprises executable software instructions, which when executed, configure the microprocessor to receive and electronically compare the active signals from the actively driven channels in electronic communication with the microprocessor with the dummy signals to detect mismatches, generate an alert if more than one mismatch between the received active signals and the received dummy signals is detected within a predetermined period of time, and transmit generated alerts to the upstream logic device;wherein the analog to digital converter is in electronic communication with each of the dummy driven channels and the microprocessor and is configured to covert each of the received dummy signals from an analog signal to a digital signal;wherein the upstream logic device is configured to take a predetermined action upon receipt of the alert.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/054,068 filed Aug. 3, 2018, which is a divisional of U.S. application Ser. No. 14/227,578 filed Mar. 27, 2014, which claims the benefit of U.S. Provisional Application No. 61/805,784 filed on Mar. 27, 2013, the disclosures of each of which are hereby incorporated by reference in their entireties.

US Referenced Citations (26)
Number Name Date Kind
5635915 Gray Jun 1997 A
5801948 Wood et al. Sep 1998 A
5959604 Mosier Sep 1999 A
6816143 Lambert Nov 2004 B1
7167151 Yamashita Jan 2007 B2
8576354 Dunn Nov 2013 B2
8704751 Dunn Apr 2014 B2
8963818 Kim et al. Feb 2015 B2
9418603 Dunn Aug 2016 B2
20030169553 Brown et al. Sep 2003 A1
20050128169 Kang et al. Jun 2005 A1
20050128170 Kang et al. Jun 2005 A1
20050276514 Fisher Dec 2005 A1
20060108218 Gephart et al. May 2006 A1
20070046680 Hedrick Mar 2007 A1
20070120790 Joen May 2007 A1
20080278644 Fukami et al. Nov 2008 A1
20090040199 Lee Feb 2009 A1
20090272402 Kim et al. Nov 2009 A1
20100279028 Dine Nov 2010 A1
20110130981 Chaji Jun 2011 A1
20120102255 Moore Apr 2012 A1
20140043375 Hu Feb 2014 A1
20170060150 Stefanski et al. Mar 2017 A1
20180036740 Nelson Feb 2018 A1
20180059176 Ding et al. Mar 2018 A1
Foreign Referenced Citations (3)
Number Date Country
411042782 Feb 1999 JP
10-2005-0087481 Aug 2005 KR
10-2006-0078584 Jul 2006 KR
Related Publications (1)
Number Date Country
20190259318 A1 Aug 2019 US
Provisional Applications (1)
Number Date Country
61805784 Mar 2013 US
Divisions (1)
Number Date Country
Parent 14227578 Mar 2014 US
Child 16054068 US
Continuations (1)
Number Date Country
Parent 16054068 Aug 2018 US
Child 16400191 US