System and method for determining desired yaw rate and lateral velocity for use in a vehicle dynamic control system

Abstract
A control system (18) and method for an automotive vehicle (10) includes a lateral acceleration sensor (32) for generating a lateral acceleration signal, a yaw rate sensor (28) for generating a yaw rate signal, and a safety system. The safety system (44) and the sensors are coupled to a controller (26). The controller (26) determines a front lateral tire force and a rear lateral tire force from the vehicle yaw rate signal and the vehicle lateral acceleration signal; determines a calculated lateral velocity from the front lateral tire force, the rear lateral tire force, and a bank angle; determines a calculated yaw rate from the front lateral tire force and the rear lateral tire force; and controls the safety system in response to the calculated lateral velocity and the calculated yaw rate.
Description
TECHNICAL FIELD

The present invention relates generally to a control apparatus for controlling a system of an automotive vehicle in response to sensed dynamic behavior, and more specifically, to a method and apparatus for determining a desired yaw rate and lateral velocity from a driver's input.


BACKGROUND

Dynamic control system are currently offered in various vehicles. Dynamic control systems include roll stability control systems and yaw stability control systems. Other types of safety systems are also offered in vehicles such as deployment devices including active roll bars and side impact airbags. In such systems various control angles are determined which, in turn, are converted to control signals for deployment or control.


Various conditions of the road such as a bank or road crown affect how the driver must compensate. For example, the driver must compensate to the left when driving on a crowned road. The tire steering angles are also affected by the pitch or bank angles. Typically, control system models do not take into consideration the bank angles with respect to the driver steering input. Thus, such models are not capable of differentiating between a steering input that could cause a yaw vehicle response on a level road surface and one that is needed to maintain the vehicle path when compensating for a bank.


It is therefore desirable to provide a stability control system that takes into account the bank angle with respect to the control system.


SUMMARY OF THE INVENTION

It is therefore one object of the invention to provide a detection scheme that may be used in conjunction with the dynamic stability control system of the vehicle to determine the presence of a rollover.


In one aspect of the invention, a method of controlling a vehicle comprises the steps of determining a calculated lateral velocity from a front lateral tire force, a rear lateral tire force, and a bank angle; determining a calculated yaw rate from the front lateral tire force and the rear lateral tire force; and controlling a safety system in response to the calculated lateral velocity and the calculated yaw rate.


In another aspect of the invention, a control system for an automotive vehicle includes a lateral acceleration sensor for generating a lateral acceleration signal, a yaw rate sensor for generating a yaw rate signal, and a safety system. The safety system and the sensors are coupled to a controller. The controller determines a front lateral tire force and a rear lateral tire force from the vehicle yaw rate signal and the vehicle lateral acceleration signal; determines a calculated lateral velocity from the front lateral tire force, the rear lateral tire force, and a bank angle; determines a calculated yaw rate from the front lateral tire force and the rear lateral tire force; and controls the safety system in response to the calculated lateral velocity and the calculated yaw rate.


One advantage of the invention is that the driver's intent may be easily determined to take into account road angle variation.


Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic view of a vehicle with variable vectors and coordinate frames according to the present invention.



FIG. 2 is a block diagram of a stability system according to the present invention.



FIG. 3 is a bicycle model corresponding to a front wheel and a respective rear wheel of the vehicle.



FIG. 4 is an end view of an automotive vehicle on a bank.



FIG. 5 is a top view of a wheel of a vehicle.



FIG. 6 is a representation of a front force and a rear force of a vehicle relative to the center of gravity.



FIG. 7 is a high level flow chart illustrating condition detection and the resulting actions.





DETAILED DESCRIPTION

In the following figures the same reference numerals will be used to identify the same components. The present invention is may be used in conjunction with a rollover control system for a vehicle. However, the present invention may also be used with a deployment device such as airbag or active roll bar. The present invention will be discussed below in terms of preferred embodiments relating to an automotive vehicle moving in a three-dimensional road terrain.


Referring to FIG. 1, an automotive vehicle 10 with a safety system of the present invention is illustrated with the various forces and moments thereon during a rollover condition. Vehicle 10 has front right (FR) and front left (FL) wheel/tires 12a and 12b and rear right (RR) wheel/tires 13a and rear left (RL) tires 13b respectively. The vehicle 10 may also have a number of different types of front steering systems 14a and rear steering systems 14b including having each of the front and rear wheels configured with a respective controllable actuator, the front and rear wheels having a conventional type system in which both of the front wheels are controlled together and both of the rear wheels are controlled together, a system having conventional front steering and independently controllable rear steering for each of the wheels or vice versa. Generally, the vehicle has a weight represented as Mg at the center of gravity of the vehicle, where g=9.8 m/s2 and M is the total mass of the vehicle.


As mentioned above, the system may also be used with safety systems including active/semi-active suspension systems, anti-roll bar, or airbags or other safety devices deployed or activated upon sensing predetermined dynamic conditions of the vehicle.


The sensing system 16 is coupled to a control system 18. The sensing system 16 may comprise many different sensors including the sensor set typically found in a dynamic control system (including lateral accelerometer, yaw rate sensor, steering angle sensor and wheel speed sensor) together with a roll rate sensor, a vertical accelerometer, and a longitudinal accelerometer. The various sensors will be further described below. The wheel speed sensors 20 are mounted at each corner of the vehicle and generate signals corresponding to the rotational speed of each wheel. The rest of the sensors of sensing system 16 may be mounted directly on the center of gravity of the vehicle body, along the directions x, y and z shown in FIG. 1. The lateral, vertical, and longitudinal acceleration and the roll, yaw and pitch rate may also be housed in an inertial measurement unit (IMU). As those skilled in the art will recognize, the frame from b1, b2 and b3 is called a body frame 22, whose origin is located at the center of gravity of the car body, with the b1 corresponding to the x axis pointing forward, b2 corresponding to the y axis pointing off the driving side (to the left), and the b3 corresponding to the z axis pointing upward. The angular rates of the car body are denoted about their respective axes as wx for the roll rate, wy for the pitch rate and wz for the yaw rate. The present invention calculations may take place in an inertial frame 24 that may be derived from the body frame 22 as described below.


The angular rate sensors and the accelerometers may be mounted on the vehicle car body along the body frame directions b1, b2 and b3, which are the x-y-z axes of the sprung mass of the vehicle.


The longitudinal acceleration sensor is mounted on the car body located at the center of gravity, with its sensing direction along b1-axis, whose output is denoted as ax. The lateral acceleration sensor is mounted on the car body located at the center of gravity, with its sensing direction along b2-axis, whose output is denoted as ay.


The other frame used in the following discussion includes the road frame, as depicted in FIG. 1. The road frame system r1r2r3 is fixed on the driven road surface, where the r3 axis is along the average road normal direction computed from the normal directions of the four-tire/road contact patches.


In the following discussion, the Euler angles of the body frame b1b2b3 with respect to the road frame r1r2r3 are denoted as θxbr, θybr, and θzbr, which are also called the relative Euler angles (i.e., relative roll, relative pitch and relative yaw angles, respectively).


Referring now to FIG. 2, roll stability control system 18 is illustrated in further detail having a controller 26 used for receiving information from a number of sensors which may include a yaw rate sensor 28, a speed sensor 20, a lateral acceleration sensor 32, a vertical accelerometer sensor 33, a roll angular rate sensor 34, a steering wheel (hand wheel) angle sensor 35, a longitudinal acceleration sensor 36, a pitch rate sensor 37, steering angle position sensor 38 (of the wheels or actuator due to driver input at the road surface), suspension load sensor 40 and suspension position sensor 42. Some of these sensors may be grouped together in an IMU such as lateral acceleration, vertical acceleration, longitudinal acceleration, yaw, pitch and roll rates.


Controller 26 may include a signal multiplexer 50 that is used to receive the signals from the sensors 28-42. The signal multiplexer 50 that provides the signals to a wheel lift detector 52, a vehicle roll angle calculator 54, and to a roll stability control (RSC) feedback control command 56. Also, wheel lift detector 52 may be coupled to the vehicle roll angle calculator 54. The vehicle roll angle calculator 54 may also be coupled to the RSC feedback command 56. Vehicle roll angle calculator 54 is described in provisional applications 60/400,376 and 60/400,172, and U.S. application Ser. No. 10/459,697, the disclosures of which are incorporated herein by reference.


In the preferred embodiment the sensors are located at the center of gravity of the vehicle. Those skilled in the art will recognize that the sensor may also be located off the center of gravity and translated equivalently thereto.


Lateral acceleration, roll orientation and speed may be obtained using a global positioning system (GPS). Based upon inputs from the sensors, controller 26 may control a safety device 44. Depending on the desired sensitivity of the system and various other factors, not all the sensors 28-42 may be used in a commercial embodiment. Safety device 44 may control an airbag 45 or a steering actuator 46A-46D at one or more of the wheels 12a, 12b, 13a, 13b of the vehicle 10. Also, other vehicle components such as a suspension control 48 may be used to adjust the suspension to prevent rollover.


Roll angular rate sensor 34 and pitch rate sensor 37 may sense the roll condition or lifting of the vehicle based on sensing the height of one or more points on the vehicle relative to the road surface. Sensors that may be used to achieve this include a radar-based proximity sensor, a laser-based proximity sensor and a sonar-based proximity sensor.


Roll rate sensor 34 and pitch rate sensor 37 may also sense the roll condition or lifting based on sensing the linear or rotational relative displacement or displacement velocity of one or more of the suspension chassis components. This may be in addition to or in combination with suspension position sensor 42. The position sensor 42, roll rate sensor 34 and/or the pitch rate sensor 37 may include a linear height or travel sensor, a rotary height or travel sensor, a wheel speed sensor used to look for a change in velocity, a steering wheel position sensor, a steering wheel velocity sensor and a driver heading command input from an electronic component that may include steer by wire using a hand wheel or joy stick.


The roll condition or lifting may also be sensed by sensing directly or estimating the force or torque associated with the loading condition of one or more suspension or chassis components including a pressure transducer in an act of air suspension, a shock absorber sensor such as a load sensor 40, a strain gauge, the steering system absolute or relative motor load, the steering system pressure of the hydraulic lines, a tire lateral force sensor or sensors, a longitudinal tire force sensor, a vertical tire force sensor or a tire sidewall torsion sensor. The yaw rate sensor 28, the roll rate sensor 34, the lateral acceleration sensor 32, and the longitudinal acceleration sensor 36 may be used together to determine that the wheel has lifted. Such sensors may be used to determine wheel lift or estimate normal loading associated with wheel lift. These are passive methods as well.


The roll condition of the vehicle may also be established by one or more of the following translational or rotational positions, velocities or accelerations of the vehicle including a roll gyro, the roll rate sensor 34, the yaw rate sensor 28, the lateral acceleration sensor 32, the vertical acceleration sensor 33, a vehicle longitudinal acceleration sensor 36, lateral or vertical speed sensor including a wheel-based speed sensor 20, a radar-based speed sensor, a sonar-based speed sensor, a laser-based speed sensor or an optical-based speed sensor.


Safety device 44 may control the position of the front right wheel actuator 46A, the front left wheel actuator 46B, the rear left wheel actuator 46C, and the right rear wheel actuator 46D. Although as described above, two or more of the actuators may be simultaneously controlled. For example, in a rack-and-pinion system, the two wheels coupled thereto are simultaneously controlled. Based on the inputs from sensors 28 through 42, controller 26 determines a roll condition and/or wheel lift and controls the steering position of the wheels.


Safety device 44 may be coupled to a brake controller 60. Brake controller 60 controls the amount of brake torque at a front right brake 62A, front left brake 62b, rear left brake 62c and a rear right brake 62d. Other safety systems such as an antilock brake system 64, a yaw stability control system 66 and a traction control system 68 may also benefit from the dynamic conditions determined herein. Using this information, the control strategy such as an amount of braking may be modified.


Speed sensor 20 may be one of a variety of speed sensors known to those skilled in the art. For example, a suitable speed sensor may include a sensor at every wheel that is averaged by controller 26. The controller may translate the wheel speeds into the speed of the vehicle. Yaw rate, steering angle, wheel speed and possibly a slip angle estimate at each wheel may be translated back to the speed of the vehicle at the center of gravity. Various other algorithms are known to those skilled in the art. Speed may also be obtained from a transmission sensor. For example, if speed is determined while speeding up or braking around a corner, the lowest or highest wheel speed may not be used because of its error. Also, a transmission sensor may be used to determine vehicle speed.


Load sensor 40 may be a load cell coupled to one or more suspension components. By measuring the stress, strain or weight on the load sensor a shifting of the load can be determined.


The roll condition of a vehicle can be characterized by the relative roll angle between the vehicle body and the wheel axle and the wheel departure angle (between the wheel axle and the average road surface). Both the relative roll angle and the wheel departure angle may be calculated in relative roll angle estimation module by using the roll rate and lateral acceleration sensor signals. If both the relative roll angle and the wheel departure angles are large enough, the vehicle may be in either single wheel lifting or double wheel lifting. On the other hand if the magnitude of both angles are small enough, the wheels are likely all grounded.


The roll condition of a vehicle can be characterized by rolling radius-based wheel departure roll angle, which captures the angle between the wheel axle and the average road surface through the dynamic rolling radii of the left and right wheels when both of the wheels are grounded. Since the computation of the rolling radius is related to the wheel speed and the linear velocity of the wheel, such rolling-radius based wheel departure angle will assume abnormal values when there are large wheel slips. This happens when a wheel is lifted and there is torque applied to the wheel. Therefore, if this rolling radius-based wheel departure angle is increasing rapidly, the vehicle might have lifted wheels. Small magnitude of this angle indicates the wheels are all grounded.


The roll condition of the vehicle can be seen indirectly from the wheel longitudinal slip. If during a normal braking or driving torque the wheels at one side of the vehicle experience increased magnitude of slip, then the wheels of that side are losing longitudinal road torque. This implies that the wheels are either driven on a low mu surface or lifted up.


The roll condition of the vehicle can be characterized by the normal loading sustained at each wheel. Theoretically, when a normal loading at a wheel decreases to zero, the wheel is no longer contacting the road surface. In this case a potential rollover is under the way. Large magnitude of this loading indicates that the wheel is grounded.


The roll condition can be identified by checking the actual road torques applied to the wheels and the road torques which are needed to sustain the wheels when they are grounded. The actual road torques can be obtained through torque balancing for each wheel using wheel acceleration, driving torque and braking torque. If the wheel is contacting the road surface, the calculated actual road torques must match or be larger than the torques determined from the nonlinear torques calculated from the normal loading and the longitudinal slip at each wheel.


The roll condition of a vehicle can be characterized by the relative roll angle θxr the vehicle body and the wheel axle, which has been calculated by using the roll rate and lateral acceleration sensor signals. If this roll angle is increasing rapidly, the vehicle might be in the edge of wheel lifting or rollover. Small magnitude of this angle indicates the wheels are not lifted or are all grounded.


The roll condition of a vehicle can also be characterized by the roll angle between the wheel axle and the average road surface, this is called wheel departure angle. If this roll angle is increasing rapidly, the vehicle has lifted wheel or wheels and aggressive control action needs to be taken in order to prevent the vehicle from rolling over. Small magnitude of this angle indicates the wheels are not lifted. This section describes how to quantitatively determine the vehicle roll angle when a qualitative wheel lifting is identified. That is, if a qualitative wheel lifting is detected, a quantitative computation of the wheel lifting may be initiated.


Referring now to FIG. 3, a bicycle model is illustrated. The bicycle model essentially corresponds to a longitudinal half of the vehicle with front wheel 12b and rear wheel 13b. The model may also apply to the other side of the vehicle. In the following description the following constants are used:

    • CCf, CCr—cornering compliance of front and rear axles (rad/N)
    • a, b—distance from center of gravity to front and rear axles (m)










δ
f





θ
body



,





δ
r





θ
body



-





gain





from





body





roll





angle





about





the





x





axis





to





steer





angle





for





the





front





and





rear





axles






(

rad


/


rad

)













δ
f




ϕ


,





δ
r




ϕ


-





gain





from





body





pitch





angle





about





the





y





axis





to





steer





angle





for





the





front





and





rear





axles






(

rad


/


rad

)









    • m—vehicle total mass (kg)

    • g—acceleration due to gravity (m/s^2)

    • Iz—vehicle yaw moment of inertia (kg−m^2)





In the following description the following inputs are used:

    • θbank—road bank angle about the x axis (radians); this may be determined in various known ways such as in/(FGT 1660)
    • θbody—body roll angle (relative roll angle) about the x axis (radians); this may be determined in various known ways such as in (FGT 1660)
    • u—vehicle longitudinal speed along the x axis (m/s)1 this may be derived from the individual wheel speeds
    • δdriver—steering angle due to driver input (radians); this may be derived from a sensor or calculated based on SWA


In the following description the following intermediate variables are used:

    • Fyf, Fyr—front and rear lateral tire forces (N)
    • αf, αr—front and rear tire slip angles. These are the angles between directions the tires are pointing, and the direction of the velocity vectors at the respective axles (radians)


In the following description the following state variable are used:

    • r—vehicle rotational yaw rate about the z axis (rad/s)
    • v—vehicle lateral velocity along the y axis (m/s)


In the following description the following assumptions are used:

    • αf and αr are small
    • δr is small but δf can be large
    • Tire forces are normal to the plane of the tire


Referring now to FIG. 4, a rear end view of the vehicle showing the relationship of the various angles of the vehicle 10 relative to the road surface 11 is illustrated. In the following a reference road bank angle θbank is shown relative to the vehicle 10 on a road surface. The vehicle 10 has a vehicle body 10a and wheel axle 10b. The body or relative roll angle θbody is the angle between the wheel axle 10b and the body 10a. The global roll angle θx is the angle between the horizontal plane (e.g., at sea level) and the vehicle body 10a.


Referring now to FIG. 5, a plot illustrating front tire velocity projections is shown. The variable velf is the resultant velocity of the front tires along the axis x′. The lateral velocity is v+a*r and the longitudinal velocity is u. These are used to form a projection onto the x′ and y′ axes.


Referring now to FIG. 6, a free body diagram of a vehicle showing the front lateral force Ff and rear lateral force Fr is illustrated. This diagram will be used to illustrate the sum of the forces and the sum of the moments about the center of gravity c.g. of the vehicle.


Referring now to FIG. 7, an equation of motion derivation is illustrated. However, first, the various sensors and constants and vehicle conditions are read or determined in step 100. In step 102, the equations of motion are formulated.


Equations of motion are formulated in the plane of the road. The rear tire force in the x direction is calculated by the following relation in step 102.







F
yr

=

-


α
r


C






C
r









where the rear slip angle αr is:







α
r

=




arctan


(


v
latr

u

)


-

δ
r






v
latr

u

-

δ
r



=



v
-

b
*
r


u

-

δ
r








The rear steering angle is given by:







δ
r

=






δ
r





θ
body



*

θ
body


+





δ
r




ϕ


*
ϕ






In the front of the vehicle δf is not necessarily small as in the case of δr. The front tire force in the x direction is determined in step 104 by:











F
yf

=


-


α
f


C






C
f




*

cos


(

δ
f

)




,
where







δ
f

=


δ
driver

+





δ
f





θ
body



*

θ
body


+





δ
f




ϕ


*
ϕ









Additionally, to determine the angle αf between the resultant velocity of the front tires (velf) and the longitudinal axis of the tire (x′), the resultant velocity is projected onto lateral and longitudinal axes perpendicular and parallel to the wheel (x′ and y′). To do this, the longitudinal velocity (u) and lateral velocity (v+a*r) components of the front tire velocity, in the body coordinate axes (x and y), can be projected onto the x′ and y′ axes through trigonometry. These projections, vlatf and vlongf can then be used to determine the slip angle of the tire. FIG. 5 shows the trigonometry used to obtain expressions for these projections. In step 106, the front tire slip angle can then be determined by:







α
f

=


arctan
(


v
latf


v
longf


)






(

v
+

a
*
r


)

*

cos


(

δ
f

)



-

u
*

sin


(

δ
f

)






u
*

cos


(

δ
f

)



+


(

v
+

a
*
r


)

*

sin


(

δ
f

)










Taking the sum of forces in the y direction in step 108 and the sum of moments about the center of gravity in the z direction in step 110, the equations of motion are:












F
y


=


m
*

a
y


=


m
*

(




v



t


+

r
*
u


)


=


F
yr

+

F
yf

-

m
*
g
*

sin


(

θ
bank

)















M

z
-

c
.
c
.




=



I
z

*



r



t



=



F
yf

*
a

-


F
yr

*
b










Note that the component of gravity due to the bank angle only affects the sum of forces in the y direction since the moments are summed about the center of gravity.


In step 112, the differential equations from steps 108 and 110 can be numerically integrated to obtain the vehicle state variables, a desired or calculated yaw rate, and a desired or calculated lateral velocity. The safety system(s) or device 44 of the control system 18 may then be controlled in step 114 according to these desired or calculated yaw rate and lateral velocity values. For example, a yaw rate system using these values takes into consideration values such as pitching and road bank angle such as in a crowning of the road.


Safety systems such as the yaw stability control (YSC) system 66 and rollover control systems may particularly benefit from such value determinations. Deploying device type safety devices such as side airbags 45 and active roll bars may also benefit.


While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.

Claims
  • 1. A control system for a vehicle, said control system comprising: a yaw rate sensor operable to generate a vehicle yaw rate signal;a lateral acceleration sensor operable to generate a vehicle lateral acceleration signal;a safety system; anda controller coupled to said yaw rate sensor, said lateral acceleration sensor, and said safety system;wherein said controller is operable to determine a front lateral tire force and a rear lateral tire force from said vehicle yaw rate signal and said vehicle lateral acceleration signal; determine a calculated lateral velocity from said front lateral tire force, said rear lateral tire force, and a bank angle; determine a calculated yaw rate from said front lateral tire force and said rear lateral tire force; and control said safety system in response to said calculated lateral velocity and said calculated yaw rate.
  • 2. A control system as recited in claim 1, wherein said safety system comprises a rollover control system.
  • 3. A control system as recited in claim 1, wherein said safety system comprises a yaw stability control system.
  • 4. A control system as recited in claim 1, wherein said calculated yaw rate is determined from said front lateral tire force, a first distance from a front axle to a center of gravity, a second distance from a rear axle to said center of gravity, and a rear lateral velocity.
  • 5. A control system as recited in claim 1, wherein said rear lateral tire force is determined in response to a rear tire slip angle and a rear cornering compliance.
  • 6. A control system as recited in claim 5, wherein said rear tire slip angle is determined from a vehicle lateral velocity, a yaw rate signal, and a vehicle longitudinal velocity.
  • 7. A control system as recited in claim 5, wherein said rear tire slip angle is determined from a vehicle lateral velocity, a yaw rate signal, a vehicle longitudinal velocity, and a rear steering angle.
  • 8. A control system as recited in claim 7, wherein said rear steering angle is determined by a gain from body roll due to a steering angle of a rear axle.
  • 9. A control system as recited in claim 1, wherein said front lateral tire force is determined in response to a front tire slip angle and a front cornering compliance.
  • 10. A control system as recited in claim 1, wherein said front lateral tire force is determined in response to a front tire slip angle, a front cornering compliance, and a front steering angle.
  • 11. A control system as recited in claim 10, wherein said front steering angle is determined in response to a driver input steering angle, a first gain from a body roll angle due to a steering angle of a front axle, and a second gain from a body pitch angle due to a steering angle of said front axle.
  • 12. A control system as recited in claim 10, wherein said front tire slip angle is determined from a vehicle longitudinal velocity, a vehicle lateral velocity, and a yaw rate signal from a yaw rate sensor.
  • 13. A method of controlling a safety system for a vehicle, said method comprising the steps of: (a) generating a vehicle yaw rate signal;(b) generating a vehicle lateral acceleration signal;(c) operating a controller to determine a front lateral tire force and a rear lateral tire force from said vehicle yaw rate signal and said vehicle lateral acceleration signal;(d) operating said controller to determine a calculated lateral velocity from said front lateral tire force, said rear lateral tire force, and a bank angle;(e) operating said controller to determine a calculated yaw rate from said front lateral tire force and said rear lateral tire force; and(f) operating said controller to control said safety system in response to said calculated lateral velocity and said calculated yaw rate.
  • 14. A method as recited in claim 13, wherein step (b) is at least partially accomplished with a lateral acceleration sensor.
  • 15. A method as recited in claim 13, wherein step (a) is at least partially accomplished with a yaw rate sensor.
  • 16. A method as recited in claim 13, wherein said calculated yaw rate is determined from said front lateral tire force, a first distance from a front axle to a center of gravity, a second distance from a rear axle to said center of gravity, and a rear lateral velocity.
  • 17. A method as recited in claim 13, wherein said rear lateral tire force is determined in response to a rear tire slip angle and a rear cornering compliance.
  • 18. A method as recited in claim 17, wherein said rear tire slip angle is determined from a vehicle lateral velocity, a yaw rate signal, and a vehicle longitudinal velocity.
  • 19. A method as recited in claim 17, wherein said rear tire slip angle is determined from a vehicle lateral velocity, a yaw rate signal, a vehicle longitudinal velocity, and a rear steering angle.
  • 20. A method as recited in claim 19, wherein said rear steering angle is determined by a gain from body roll due to a steering angle of a rear axle.
  • 21. A method as recited in claim 13, wherein said front lateral tire force is determined in response to a front tire slip angle and a front cornering compliance.
  • 22. A method as recited in claim 13, wherein said front lateral tire force is determined in response to a front tire slip angle, a front cornering compliance, and a front steering angle.
  • 23. A method as recited in claim 22, wherein said front tire slip angle is determined from a vehicle longitudinal velocity, a vehicle lateral velocity, and a yaw rate signal from a yaw rate sensor.
  • 24. A method of controlling a safety system for a vehicle, said method comprising the steps of: (a) determining a front lateral tire force and also a rear lateral tire force based on input from both a vehicle yaw rate sensor and a vehicle lateral acceleration sensor;(b) determining a calculated lateral velocity from said front lateral tire force, said rear lateral tire force, and a bank angle;(c) determining a calculated yaw rate from said front lateral tire force and said rear lateral tire force; and(d) controlling said safety system in response to said calculated lateral velocity and said calculated yaw rate.
  • 25. A method as recited in claim 24, wherein said calculated lateral velocity is also determined from a mass of said vehicle.
  • 26. A method as recited in claim 24, wherein said calculated yaw rate is determined from said front lateral tire force, a first distance from a front axle to a center of gravity, a second distance from a rear axle to said center of gravity, and a rear lateral velocity.
  • 27. A method as recited in claim 24, wherein said rear lateral tire force is determined in response to a rear tire slip angle and a rear cornering compliance.
  • 28. A method as recited in claim 27, wherein said rear tire slip angle is determined from a vehicle lateral velocity, a yaw rate signal, and a vehicle longitudinal velocity.
  • 29. A method as recited in claim 27, wherein said rear tire slip angle is determined from a vehicle lateral velocity, a yaw rate signal, a vehicle longitudinal velocity, and a rear steering angle.
  • 30. A method as recited in claim 29, wherein said rear steering angle is determined by a gain from body roll due to a steering angle of a rear axle.
  • 31. A method as recited in claim 24, wherein said front lateral tire force is determined in response to a front tire slip angle and a front cornering compliance.
  • 32. A method as recited in claim 24, wherein said front lateral tire force is determined in response to a front tire slip angle, a front cornering compliance, and a front steering angle.
  • 33. A method as recited in claim 32, wherein said front steering angle is determined in response to a driver input steering angle, a first gain from a body roll angle due to a steering angle of a front axle, and a second gain from a body pitch angle due to a steering angle of said front axle.
  • 34. A method as recited in claim 32, wherein said front tire slip angle is determined from a projection of a longitudinal velocity and a lateral velocity.
  • 35. A method as recited in claim 32, wherein said front tire slip angle is determined from a vehicle longitudinal velocity, a vehicle lateral velocity, and a yaw rate signal from a yaw rate sensor.
US Referenced Citations (316)
Number Name Date Kind
2917126 Phillips Dec 1959 A
3604273 Kwok et al. Sep 1971 A
3608925 Murphy Sep 1971 A
3797893 Burckhardt Mar 1974 A
3899028 Morris et al. Aug 1975 A
3948567 Kasselmann et al. Apr 1976 A
3972543 Presley et al. Aug 1976 A
4023864 Lang et al. May 1977 A
RE30550 Reise Mar 1981 E
4294113 Sprott et al. Oct 1981 A
4480714 Yabuta et al. Nov 1984 A
4548079 Klatt Oct 1985 A
4592565 Eagle Jun 1986 A
4597462 Sano et al. Jul 1986 A
4624476 Tanaka et al. Nov 1986 A
4650212 Yoshimura Mar 1987 A
4679808 Ito et al. Jul 1987 A
4690553 Fukamizu et al. Sep 1987 A
4696489 Fujishiro et al. Sep 1987 A
4705130 Fukunaga et al. Nov 1987 A
4712807 Kurosawa Dec 1987 A
4761022 Ohashi Aug 1988 A
4765649 Ikemoto et al. Aug 1988 A
4767588 Ito Aug 1988 A
4778773 Sukegawa Oct 1988 A
4797823 Ikemoto et al. Jan 1989 A
4809183 Eckert Feb 1989 A
4827416 Kawagoe et al. May 1989 A
4846496 Tanaka et al. Jul 1989 A
4872116 Ito et al. Oct 1989 A
4888696 Akatsu et al. Dec 1989 A
4898431 Karnopp et al. Feb 1990 A
4930082 Harara et al. May 1990 A
4951198 Watanabe et al. Aug 1990 A
4960292 Sadler Oct 1990 A
4964679 Rath Oct 1990 A
4967865 Schindler Nov 1990 A
4976330 Matsumoto Dec 1990 A
4998593 Karnopp et al. Mar 1991 A
5002142 Klosterhaus Mar 1991 A
5033770 Kamimura et al. Jul 1991 A
5058017 Adachi et al. Oct 1991 A
5066041 Kindermann et al. Nov 1991 A
5085458 Kii et al. Feb 1992 A
5088040 Matsuda et al. Feb 1992 A
5089967 Haseda et al. Feb 1992 A
5097917 Serizawa et al. Mar 1992 A
5159553 Karnopp et al. Oct 1992 A
5163319 Spies et al. Nov 1992 A
5189920 Martinez Mar 1993 A
5200896 Sato et al. Apr 1993 A
5208749 Adachi et al. May 1993 A
5217248 Reast Jun 1993 A
5224765 Matsuda Jul 1993 A
5228757 Ito et al. Jul 1993 A
5230396 Yasui Jul 1993 A
5239868 Takenaka et al. Aug 1993 A
5247466 Shimada et al. Sep 1993 A
5261503 Yasui Nov 1993 A
5265020 Nakayama Nov 1993 A
5274576 Williams Dec 1993 A
5278761 Ander et al. Jan 1994 A
5282134 Gioutsos et al. Jan 1994 A
5297646 Yamamura et al. Mar 1994 A
5307274 Takata et al. Apr 1994 A
5311431 Cao et al. May 1994 A
5311956 Sugiyama May 1994 A
5324102 Roll et al. Jun 1994 A
5335176 Nakamura Aug 1994 A
5365439 Momose et al. Nov 1994 A
5370199 Akuta et al. Dec 1994 A
5408411 Nakamura et al. Apr 1995 A
5438515 Miichi et al. Aug 1995 A
5446658 Pastor et al. Aug 1995 A
5455770 Hadeler et al. Oct 1995 A
5490063 Genise Feb 1996 A
5510989 Zabler et al. Apr 1996 A
5515277 Mine May 1996 A
5548536 Ammon Aug 1996 A
5549328 Cubalchini Aug 1996 A
5560688 Schappler et al. Oct 1996 A
5576957 Asanuma et al. Nov 1996 A
5579245 Kato Nov 1996 A
5598335 You Jan 1997 A
5602734 Kithil Feb 1997 A
5610575 Gioutsos Mar 1997 A
5627756 Fukada et al. May 1997 A
5634698 Cao et al. Jun 1997 A
5640324 Inagaki Jun 1997 A
5648903 Liubakka Jul 1997 A
5671982 Wanke Sep 1997 A
5676433 Inagaki et al. Oct 1997 A
5684702 Phillips et al. Nov 1997 A
5694319 Suissa et al. Dec 1997 A
5703776 Soung Dec 1997 A
5707117 Hu et al. Jan 1998 A
5707120 Monzaki et al. Jan 1998 A
5719790 Lohrenz et al. Feb 1998 A
5720533 Pastor et al. Feb 1998 A
5723782 Bolles, Jr. Mar 1998 A
5732377 Eckert Mar 1998 A
5732378 Eckert et al. Mar 1998 A
5732379 Eckert et al. Mar 1998 A
5736939 Corcoran Apr 1998 A
5737224 Jeenicke et al. Apr 1998 A
5740041 Iyoda Apr 1998 A
5740877 Sasaki Apr 1998 A
5742918 Ashrafi et al. Apr 1998 A
5742919 Ashrafi et al. Apr 1998 A
5762406 Yasui et al. Jun 1998 A
5774819 Yamamoto Jun 1998 A
5782543 Monzaki et al. Jul 1998 A
5787375 Madau et al. Jul 1998 A
5801647 Survo et al. Sep 1998 A
5809434 Ashrafi et al. Sep 1998 A
5816670 Yamada et al. Oct 1998 A
5825284 Dunwoody et al. Oct 1998 A
5842143 Lohrenz et al. Nov 1998 A
5857160 Dickinson et al. Jan 1999 A
5857535 Brooks Jan 1999 A
5869943 Nakashima et al. Feb 1999 A
5878357 Sivashankar et al. Mar 1999 A
5890084 Halasz et al. Mar 1999 A
5893896 Imamura et al. Apr 1999 A
5925083 Ackermann Jul 1999 A
5926087 Busch Jul 1999 A
5931546 Nakashima et al. Aug 1999 A
5931887 Hac Aug 1999 A
5935181 Iwasaki Aug 1999 A
5941920 Schubert Aug 1999 A
5944137 Moser et al. Aug 1999 A
5944392 Tachihata et al. Aug 1999 A
5946644 Cowan et al. Aug 1999 A
5964819 Naito Oct 1999 A
5965808 Normann Oct 1999 A
5971503 Joyce et al. Oct 1999 A
6002974 Schiffman Dec 1999 A
6002975 Schiffman et al. Dec 1999 A
6026926 Noro et al. Feb 2000 A
6038495 Schiffman Mar 2000 A
6040916 Griesinger Mar 2000 A
6050360 Pattok et al. Apr 2000 A
6055472 Breunig et al. Apr 2000 A
6062336 Amberkar et al. May 2000 A
6065558 Wielenga May 2000 A
6073065 Brown et al. Jun 2000 A
6079513 Nishizaki et al. Jun 2000 A
6081761 Harada et al. Jun 2000 A
6085133 Keuper et al. Jul 2000 A
6085860 Hackl et al. Jul 2000 A
6086168 Rump Jul 2000 A
6089344 Baughn et al. Jul 2000 A
6104284 Otsuka Aug 2000 A
6121873 Yamada et al. Sep 2000 A
6122568 Madau et al. Sep 2000 A
6122584 Lin et al. Sep 2000 A
6129172 Yoshida Oct 2000 A
6141604 Mattes et al. Oct 2000 A
6141605 Joyce Oct 2000 A
6144904 Tseng Nov 2000 A
6149251 Wuerth et al. Nov 2000 A
6161905 Hac et al. Dec 2000 A
6167357 Zhu Dec 2000 A
6169939 Raad et al. Jan 2001 B1
6169946 Griessbach Jan 2001 B1
6170594 Gilbert Jan 2001 B1
6176555 Semsey Jan 2001 B1
6178375 Breunig Jan 2001 B1
6179310 Clare et al. Jan 2001 B1
6179394 Browalski et al. Jan 2001 B1
6184637 Yamawaki et al. Feb 2001 B1
6185485 Ashrafti et al. Feb 2001 B1
6185497 Taniguchi et al. Feb 2001 B1
6186267 Hackl et al. Feb 2001 B1
6192305 Schiffmann Feb 2001 B1
6195606 Barta et al. Feb 2001 B1
6198988 Tseng Mar 2001 B1
6202009 Tseng Mar 2001 B1
6202020 Kyrtsos Mar 2001 B1
6206383 Burdock Mar 2001 B1
6219604 Dilger et al. Apr 2001 B1
6223114 Boros et al. Apr 2001 B1
6226579 Hackl et al. May 2001 B1
6227482 Yamamoto May 2001 B1
6232875 DeZorzi May 2001 B1
6233510 Platner et al. May 2001 B1
6236916 Staub et al. May 2001 B1
6263261 Brown et al. Jul 2001 B1
6266596 Hartman et al. Jul 2001 B1
6272420 Schramm et al. Aug 2001 B1
6278930 Yamada et al. Aug 2001 B1
6282471 Burdock et al. Aug 2001 B1
6282472 Jones et al. Aug 2001 B1
6282474 Chou et al. Aug 2001 B1
6290019 Kolassa et al. Sep 2001 B1
6292734 Murakami et al. Sep 2001 B1
6292759 Schiffmann Sep 2001 B1
6311111 Leimbach et al. Oct 2001 B1
6314329 Madau et al. Nov 2001 B1
6315373 Yamada et al. Nov 2001 B1
6321141 Leimbach Nov 2001 B1
6324445 Tozu et al. Nov 2001 B2
6324446 Brown et al. Nov 2001 B1
6324458 Takagi et al. Nov 2001 B1
6330522 Takeuchi Dec 2001 B1
6332104 Brown et al. Dec 2001 B1
6338012 Brown et al. Jan 2002 B2
6349247 Schramm et al. Feb 2002 B1
6351694 Tseng et al. Feb 2002 B1
6352318 Hosomi et al. Mar 2002 B1
6356188 Meyers et al. Mar 2002 B1
6360147 Lee Mar 2002 B1
6363309 Irie et al. Mar 2002 B1
6366844 Woywod et al. Apr 2002 B1
6370938 Leimbach et al. Apr 2002 B1
6394240 Barwick May 2002 B1
6397127 Meyers et al. May 2002 B1
6419240 Burdock et al. Jul 2002 B1
6424897 Mattes et al. Jul 2002 B1
6427102 Ding Jul 2002 B1
6428118 Blosch Aug 2002 B1
6433681 Foo et al. Aug 2002 B1
6438463 Tobaru et al. Aug 2002 B1
6438464 Woywod et al. Aug 2002 B1
6453226 Hac et al. Sep 2002 B1
6456194 Carlson et al. Sep 2002 B1
6459990 McCall et al. Oct 2002 B1
6471218 Burdock et al. Oct 2002 B1
6477480 Tseng et al. Nov 2002 B1
6496758 Rhode et al. Dec 2002 B2
6496763 Griessbach Dec 2002 B2
6498976 Ehlbeck et al. Dec 2002 B1
6502023 Fukada Dec 2002 B1
6523637 Nakano et al. Feb 2003 B1
6526342 Burdock et al. Feb 2003 B1
6529803 Meyers et al. Mar 2003 B2
6529811 Watson et al. Mar 2003 B2
6542073 Yeh et al. Apr 2003 B2
6542792 Schubert et al. Apr 2003 B2
6547022 Hosomi et al. Apr 2003 B2
6547343 Hac Apr 2003 B1
6549842 Hac et al. Apr 2003 B1
6553284 Holst et al. Apr 2003 B2
6554293 Fennel et al. Apr 2003 B1
6556908 Lu et al. Apr 2003 B1
6559634 Yamada May 2003 B2
6593849 Chubb et al. Jul 2003 B2
6600414 Foo et al. Jul 2003 B2
6600985 Weaver Jul 2003 B2
6618656 Kueblbeck et al. Sep 2003 B2
6631317 Lu Oct 2003 B2
6637543 Card Oct 2003 B2
6650971 Haas Nov 2003 B2
6654674 Lu et al. Nov 2003 B2
6678631 Schiffmann Jan 2004 B2
6681196 Glaser et al. Jan 2004 B2
6681881 Andonian et al. Jan 2004 B2
6698542 Nishizaki et al. Mar 2004 B2
6718248 Lu Apr 2004 B2
6719087 Demerly Apr 2004 B2
6725140 Lu et al. Apr 2004 B2
6741922 Holler May 2004 B2
6745624 Porter Jun 2004 B2
6756890 Schramm et al. Jun 2004 B1
6766875 Yamamoto Jul 2004 B2
6784794 McQuade Aug 2004 B1
6799092 Lu Sep 2004 B2
6816764 Coelingh et al. Nov 2004 B2
6834218 Meyers et al. Dec 2004 B2
6856868 Le et al. Feb 2005 B1
6873987 Faye et al. Mar 2005 B1
6904350 Lu et al. Jun 2005 B2
6941205 Hrovat et al. Sep 2005 B2
7010409 Lu et al. Mar 2006 B2
7079928 Lu et al. Jul 2006 B2
7109856 Lu et al. Sep 2006 B2
7130735 Brown et al. Oct 2006 B2
7132937 Lu et al. Nov 2006 B2
7233236 Lu et al. Jun 2007 B2
7323976 Lu et al. Jan 2008 B2
20020014799 Nagae Feb 2002 A1
20020040268 Yamada et al. Apr 2002 A1
20020056582 Chubb May 2002 A1
20020075139 Yamamoto et al. Jun 2002 A1
20020096003 Yamada et al. Jul 2002 A1
20020109310 Lim Aug 2002 A1
20020139599 Lu Oct 2002 A1
20020143451 Hac et al. Oct 2002 A1
20030040856 Winner et al. Feb 2003 A1
20030055549 Barta et al. Mar 2003 A1
20030109939 Burgdorf et al. Jun 2003 A1
20030163231 Meyers et al. Aug 2003 A1
20030171865 Moser Sep 2003 A1
20030182025 Tseng et al. Sep 2003 A1
20040010383 Lu Jan 2004 A1
20040019418 Lu et al. Jan 2004 A1
20040026158 Rieth et al. Feb 2004 A1
20040064246 Lu Apr 2004 A1
20040119335 Szabo et al. Jun 2004 A1
20040158368 Haas Aug 2004 A1
20040199314 Meyers et al. Oct 2004 A1
20040217647 Einig Nov 2004 A1
20050033486 Schmitt et al. Feb 2005 A1
20050080542 Lu et al. Apr 2005 A1
20050080543 Lu et al. Apr 2005 A1
20050102083 Xu et al. May 2005 A1
20050131604 Lu Jun 2005 A1
20050177296 Brown et al. Aug 2005 A1
20050273240 Brown et al. Dec 2005 A1
20060074530 Meyers et al. Apr 2006 A1
20060261937 Lu et al. Nov 2006 A1
20070106443 Lu May 2007 A1
20080059034 Lu Mar 2008 A1
20080086251 Lu et al. Apr 2008 A1
20080117035 Lu et al. May 2008 A1
20080120005 Lu et al. May 2008 A1
Foreign Referenced Citations (16)
Number Date Country
0 430 813 Dec 1993 EP
0 662 601 Jul 1995 EP
0 758 601 Feb 1997 EP
781695 Jul 1997 EP
1 046 571 Apr 2000 EP
1 197 409 Sep 2001 EP
2257403 Jan 1993 GB
2305479 Apr 1997 GB
2 342 078 Apr 2000 GB
2414815 Dec 2005 GB
05319289 Dec 1993 JP
06183363 Jul 1994 JP
2002173012 Jun 2002 JP
2005145155 Jun 2005 JP
WO 0220318 Mar 2002 WO
WO 03072397 Sep 2003 WO
Related Publications (1)
Number Date Country
20050273240 A1 Dec 2005 US