System and method for determining path lengths through a body lumen

Information

  • Patent Grant
  • 7596403
  • Patent Number
    7,596,403
  • Date Filed
    Wednesday, June 30, 2004
    20 years ago
  • Date Issued
    Tuesday, September 29, 2009
    15 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Winakur; Eric F
    • Bor; Helene
    Agents
    • Pearl Cohen Zedek Latzer, LLP
Abstract
A system and method for determining the path length through a body lumen, for example to a specified location, is described. A location detection system may identify the location in space of an in-vivo device over time. A path-length detection unit may use data from the location detection system to determine a path traveled by an in-vivo device. A site of interest along that path may be identified. The distance of the site of interest from at least one end point of a body lumen may be determined.
Description
FIELD OF THE INVENTION

The present invention relates to an in-vivo device traveling through a body lumen, and in particular to a system and method to determine the path length or distance through a body lumen to a specified location.


BACKGROUND OF THE INVENTION

The gastrointestinal (GI) tract may typically be a convoluted long tube that folds many times to fit inside the abdomen, proceeding through the esophagus, stomach, small intestine, and large intestine. Autonomous in-vivo devices, for example, ingestible devices that may move through the GI tact, and that may collect data and transmit the data to a receiver system, are known in the art. Such devices may be used to examine areas that may otherwise be difficult to access with non-autonomous devices such as for example, endoscopes, colonscopes, gastroscopes, enteroscopes, laparoscopes, catheters, etc.


During examination of a patient with an autonomous device, a physician may identify one or more sites of interest A physician may want to revisit the sites of interest using, for example, an alternate device (e.g. endoscope, colonscope, a second autonomous device etc). Revisiting may be for more examining, sensing, diagnosing, treating, surgery, etc. In some instances, a physician may attempt to revisit a site of interest with a non-autonomous device only to discover that the site of interest is beyond the range that the non-autonomous device can penetrate. In other instances, an attempt to revisit the site of interest may be carried out with more than one alternate device before succeeding in locating the site of interest. This may lead to unnecessary discomfort, cost, and potential risk to the patient.


SUMMARY OF THE INVENTION

Various embodiments of the present invention provide a system and method for determining path length through a body lumen, for example path length or distance to a specified location. In some embodiments of the present invention a raw path length of the in-vivo device traveling to a specified location along a body lumen may be compared to a raw path length of the in-vivo device traveling through the entire body lumen. The ratio between the two path lengths together with a pre-selected body lumen length may be used to determine a true path length through a body lumen to a specified location. Typically the system of the present invention may include an in-vivo device, a location detection system and a path-length detection unit. Other configurations may be used.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanied drawings in which:



FIG. 1 is a schematic illustration of an in-vivo system according to an embodiment of the present invention;



FIG. 2 is a schematic illustration of a simulated body lumen and a superimposed estimated path through measured location points according to an embodiment of the present invention;



FIG. 3 is an estimated maximum error distribution resulting from using an estimated value of the total length of a body lumen, according to an embodiment of the present invention;



FIG. 4 is a simulated maximum distance error as a function of location along a small intestine according to an embodiment of the present invention; and



FIG. 5 is a flow chart describing a method for determining distance through a body lumen according to some embodiment of the present invention.





It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.


DETAILED DESCRIPTION OF THE INVENTION

In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well-known features may be omitted or simplified in order not to obscure the present invention.


Embodiments of the system, and method of the present invention may typically be used in conjunction with an in-vivo sensing device and system such as described in embodiments in U.S. Pat. No. 5,604,531 to Iddan et al. and/or in International Application number WO 01/65995 entitled “A Device And System For In-Vivo Imaging”, published on 13 Sep. 2001, both of which are assigned to the common assignee of the present invention and both of which are hereby incorporated by reference. Other embodiments of the system and method of the present invention may be used in conjunction with an in-vivo device and system such as is described in embodiments in International Application number WO/03005877, entitled “Device and method for examining a body lumen”, published on Jan. 23, 2003, which is assigned to the common assignee of the present invention and is hereby incorporated in its entirety by reference. Alternate embodiments of the system and method of the present invention may be used with other devices, e.g. non-imaging and/or non-in-vivo devices.


Embodiments of the in-vivo device that may be used together with the system and method of the present invention may typically be autonomous and may typically be self-contained. For example, the in-vivo device may be a capsule or another unit where all the components may be substantially contained within a container or shell, and where the in-vivo device may not require any wires or cables to, for example, receive power or transmit information. The in-vivo device may communicate with an external receiving and display system to provide display of data, control, or other functions. For example, power may be provided by an internal battery or a wireless receiving system. Other embodiments may have other configurations and capabilities. For example, components may be distributed over multiple sites or units. Control information may be received from an external source.


Embodiments of the present invention may typically include a location detection system for locating the device in vivo, for example, as is described in embodiments of U.S. patent application Publication No. US20020173718, published on Nov. 21, 2001 and entitled “Array System and Method for Locating an In Vivo Signal Source”, which is hereby filly incorporated by reference. It is noted that in other embodiments of the invention, other location detecting methods may be used. For example, in one embodiment of the present of invention, location information may be determined by, for example, including one or more transmitting antennas in an in vivo device, to transmit data using various frequencies, and/or by detecting the location of the in vivo device using components of quasi-static magnetic field(s)—a magnetic method. In some embodiments, methods such as those using ultrasound transceivers or monitors that include, for example, three magnetic coils that receive and transmit positional signals relative to an external constant magnetic field may be used. In yet other embodiments, GPS-like system may be used; for example, a system using transmission from three or more stations. Typically, in some embodiments of the present invention, an array of antennas or sensors may be placed on or close to the abdomen to enable tracking of the in vivo device. Of course, other components or sets of components may be used in accordance with embodiments of the invention.


In one embodiment, a set of locations of the in-vivo device may be determined, and from these locations a distance or path length may be determined. The locations may be determined from the data that is sensed by the device—for example, a radio signal including image or other data may be analyzed for location.


Reference is now made to FIG. 1 showing an in-vivo system 10 according to an embodiment of the present invention. In-vivo system 10 may include an in-vivo device 100, an external recorder 12, a processing unit 14, a display unit 18, and a user input unit 20. In-vivo device 100 may be any suitable traceable or trackable in-vivo device. In some embodiments of the present invention, device 100 may typically be, for example, an in-vivo imaging device, for example as is described in embodiments in U.S. Pat. No. 5,604,531 and/or in International Application number WO 01/65995, that may transmit signals, for example, images through for example an RF channel. Transmitted signals may, for example, be picked-up by an array of antennas 49 that may be, for example, positioned and/or worn on a patient's body 50. Recorder 12 may typically be a portable wearable receiving and recording device and may include a signal pick up system, for example, antenna array 49.


Recorder 12 may, for example, receive signals from antennas 49 and store them, for example, temporarily in for example, a portable storage unit 19. Recorder 12 may include a location detection system 13 that may in one embodiment of the invention utilize, for example, a triangulation method to determine the location of in-vivo device 100 relative to the antenna array 49. The triangulation method may be based, for example, on the difference in signal strength picked up from the transmitting in-vivo device by the various antennas in antenna array 49. Typically, the location detection system 13 and method may be similar to that described in U.S. patent application Publication No. US20020173718. Other suitable location detection systems may be used. In other embodiments of the present invention, location detection system 13 may be wholly or partially integral to data processor 14.


Location data obtained from the location detection system 13 as well as signals or data transmitted by in-vivo device 100 may be, in one embodiment of the invention, for example, downloaded to processor 14 for post-processing, and storage in, for example, storage unit 16. In other embodiments, device 100 may be or include another transmitting device other than an imaging device, for example, an in-vivo device with an RFID tag, or device 100 may be, for example, a non-transmitting in-vivo devices for example a marker, or other traceable, trackable or locatable devices.


A physician or other operator may, for example, use an in-vivo sensing system 10 to, for example, examine, diagnose, check for strictures, treat, and/or perform surgery on a patient. For example, an in-vivo sensing device 100 may, for example, capture images as it travels through the GI tract and transmit them to a recorder 12 external to the body. An external recorder 12 may store the transmitted images as well as other data, for example location data indicating the position in space of the transmitting device. In one embodiment, location data may be determined from sensed data. For example, sensed data such as image data or pressure data may be transmitted, and from the transmissions (e.g., via triangulation) location data may be determined. In other embodiments, the sensed data itself may be analyzed for location data, such as by determining from a set of images distance traveled between images.


After reviewing the transmitted data, for example the images and/or image stream, a physician may identify a site that may be of interest, for example, a location where an in vivo device captured an image(s) indicating, for example, a pathological area in the GI tract that may need further diagnosis, examination, or treatment. In some embodiments of the present invention, a site of interest may be other than a site where pathology may have been identified, a site of interest may be any specified location. In other embodiments, the in-vivo sensing device may include other sensors besides or in addition to image sensors, for example, temperature sensor, pH sensors, blood sensors, etc. and the specified location may be determined based on reviewing data other than image data. In other embodiments of the invention, the in vivo device may be other than a sensing device, or have other functions in addition to sensing, for example, medicine delivery, treatment, or biopsy.


Following examination and/or treatment with an in-vivo autonomous device, a physician may want to revisit one or more sites or location points of interest using an alternate device (e.g. endoscope, colonscope, gastroscope, enteroscope, laparoscope, and another autonomous in-vivo device, etc). It may be helpful for the physician to know how deep into the body lumen the device may need to be inserted in order to reach the location point of interest. This may aid in choosing a procedure, and/or equipment for revisiting. Pre-knowledge of the path length, may help the physician reach the location point of interest more quickly so as to shorten the procedure time (e.g. examination, diagnostic, or treatment) and in that reduce the patient's discomfort. In an alternate embodiment, this information may help a physician decide if it is at all possible to reach the location point of interest with alternate devices. For example, there may be some areas, for example, in the small intestine that may not be reachable with for example with an endoscope, or colonscope, etc. Surgical intervention may be necessary in some circumstances. In some embodiments of the present invention, prior knowledge of the path length to the site may help avoid unsuccessful attempts to approach a site that may not be possible to access. Path length information may be used for other applications. Further, path length other than to a specific or selected location may be obtained using embodiments of the present invention; for example, path length to arbitrary or multiple points, path length after certain times; times to certain path lengths, etc.


Location detection system, such as location detection system 13, may be useful for indicating the location of a transmitting device in space, the motility, as well as the speed at given period of time. However, for body lumens that may be convoluted, it may be difficult to deduce how far through a body lumen a device advanced to reach a location point of interest from knowledge of its instantaneous position in space. In addition, it may be difficult to use an instantaneous location in space to locate a site of interest at a later time, since some body lumens may not be stationary over time. An instantaneous location of a site of interest within a body lumen may change over time and thus it may be difficult to predict its location with respect to the shifting body lumen when revisiting the site.


Typically, processor 14 may also include or be associated with a path-length detection unit 30, to for example, to determine the path length through a body lumen, for example up to a specified location, or in another manner. Data obtained from the location detection system 13, as well as other data, may be used as input to path-length detection unit 30. Other data to be used as input to the path-length detection unit 30 may, for example, include user input data 20 or data from other features of system 10. Path-length detection unit 30 may in some embodiments include one or more software units within processor 14.


Path-length detection unit 30 may typically in some embodiments of the present invention, involve post-processing location data obtained from location detection system 13 and, for example, downloaded from recorder 12. In some embodiments of the present invention, the path-length detection unit 30 may be a stand-alone unit, may be integral to data processor 14 with storage unit 16, and/or integral to data recorder 12. The path-length detection unit 30 may typically include processing and storing capability. In some embodiments of the present invention, the path-length detection unit 30 may include input systems for a user, as well as display systems for displaying to the user, for example, display unit 18. Path-length detection unit 30 may, in other embodiments of the present invention, be partially or entirely integral to recorder 12, and may, for example, not receive user input. Processor 14 may typically be a personal computer but may be any suitable unit for processing and/or storing data. Signals, data, and location related data may for example, be displayed on display unit 18.


Reference is now made to FIG. 2 showing a simulated body lumen path 210 (solid line) that an in-vivo device may be, for example, traveling in and a set of example location points 230, obtained from a location detection system 13 along the simulated path. An estimated path may be drawn by interpolating between consecutive points to obtain, for example, the estimated path 220 (dashed line). The raw path length may be determined, for example, by integrating the distances between consecutive points using known methods. Small errors may exist when estimating the location data. Errors may be due to, for example, random noise or from the device 100 shifting its orientation in-vivo. When estimating the raw path length through, for example, path 220, the small errors in estimating location may accumulate into large errors in estimating a length of a path especially for long paths such as for example, the path of the small intestine, or other paths in the GI tract, or other body lumens. Calculating the path traveled by an in-vivo device using, for example, the estimated path 220 may, for example, lead to a path much longer than the true path. Smoothing may be used to reduce the error however since the true path may in itself be torturous and unpredictable, it may be difficult to smooth the curve with good precision.


Typically, in some embodiments of the invention, it may be possible to assume that the noise level of the output signal from location detection system 13 may be substantially similar along the entire path through which the in-vivo device travels. As such, a relative path length (LR) represented by the ratio between raw path length to a location point of interest (L) and the raw total path length though the entire body lumen (LT) may be used to estimate more accurately the path length to a location point of interest without the need of separating, or otherwise eliminating the noise from the signal. In one embodiment, the ratio may be described by the following relationship:

LR=L/LT.

Other formulas may be used. In one embodiment, a set of calculated paths, such as a calculated total path length in a lumen and a calculated length to a specified point or target or targets, may be determined. The known or estimated total lumen length may be determined, and a ratio between the known or estimated length and the calculated total length may be determined. This ratio may be applied to the calculated path length of the device to the specified point or points, to determine a more accurate estimated path length or distance to the point or points.


When the in-vivo device may be closer to an existing end point of a body lumen it may be useful for a user to know the relative distance from the existing end point since that may be the direction through which the site may be revisited. As such the following relationship may be used:

LR=L/LT; L≦LT/2
LR=(LT−L)/LT L>LT/2


Other formulas may be used. For a clearer indication of the path length from an end point of a body lumen, a pre-selected overall length of the body lumen may be used. For example, the small intestine may be known to be on average 6 to 8 meters long. In one example, 7 meters may be used as a pre-selected value for the length of the small intestine. Using this estimation, the actual path length (LA) may be expressed by the following equations:

LA=7*L/LT; L≦LT/2
LA=7*(LT−L)/LT L>LT/2


Other formulas may be used.


Reference is now made to FIG. 3 showing an estimated error distribution resulting from using a pre-selected value (as opposed to a true value) of the length of a body lumen, and assuming no error due to location detection (the location detection error is not taken into account in this figure), according to one embodiment of the present invention; other values and curves may be used. The horizontal axis may mark the number of frames, for an in-vivo device transmitting image frames to an external recorder 12 at, for example, a given frequency. The vertical axis may mark the path length traveled through a body lumen determined by location points calculated from transmission signals of each image frame. Curve 310 may represent the true distance traveled. Curve 320 may represent the estimated distance determined, for example, by the method described herein.


As may be seen by the curves in FIG. 3, the greatest discrepancy between the true path length (310) and estimated path length (320) through a body lumen may be near the middle of the body lumen path while the smallest discrepancy between the true (310) and estimated (320) path length through body lumen may be near each of the end points of the body lumen. In some embodiments of the present invention, it may be desirable to estimate the distance through the small intestine so that a site of interest may be revisited for example by an enteroscope and/or a colonscope. Enteroscopes, for example, may only be able to penetrate, for example, approximately a half a meter beyond the top entrance to the small intestine, for example, the pylorus. Colonoscopes, for example, may only be able to penetrate, for example, a few centimeters beyond the cecum and into the small intestine. As such accuracy near the end points may be of greater importance than accuracy for example half way along the small intestine.


Reference is now made to FIG. 4 showing an exemplary simulated maximum distance error as a function of distance along a small intestine, according to one embodiment of the present invention; other functions may be used, and other lumens may be examined. In this exemplary simulation, the pylorus may be marked as the entrance of the small intestine and the cecum may be marked as the point of exit of the small intestine. The location detection error in this graph may be modeled, for example, as a Rayleigh distribution with, for example, the average distance error of 3.5 cm that may, in some embodiments of the invention, be a typical location detection error. In other embodiments of the present invention, other models and error levels may be used. In this exemplary model, as may be seen by the graph in FIG. 4, the error of the path length through the body lumen may be in the order of magnitude of 10 cm at a distance of 0.5 meter from an end point (entrance and/or exit) of the small intestine marked by the cecum and pylorus respectively. As such, a physician may have indication if a site detected by an autonomous in-vivo device may be revisited by an alternate device and from which direction.


When an in-vivo device may travel through more than one lumen or portion of lumen in its course, for example, esophagus, stomach, and small intestine, it may be useful to be able to locate the end point of the lumen of interest, for example, the small intestine and measure the path length from that end point of that lumen. Various methods may be used for this purpose. For example, pH measurement may be used to detect a change in pH when entering and/or exiting the stomach. A pressure sensor may be used to indicate when device 100 was released from, for example, the small intestine into the roomier large intestine. In one embodiment of the present invention, a pressure indicator may be used to detect, for example, the rhythmic peristaltic pressure that may be typical in the small intestine. In some embodiments of the present invention, other methods involving post-processing of images may be used to identify mucosa and/or tissue that may, for example, be typically found in a specific body lumen. In other embodiments, for example, a specific color scheme that may typically be found in a specific body lumen may be used to identify the end points through a body lumen. In yet other embodiments, a physician or medical technician may identify through image or other data, the end points of a body lumen and use, for example, user input unit 20 to input that information to path-length detection unit 30.


Reference is now made to FIG. 5 showing a flow chart describing a method for determining a path length through a body lumen up to a specified location, according to one embodiment of the present invention. In block 510 an in-vivo device may sense data or a condition from within a body lumen. In some embodiments of the invention, the sensed data may be image data, for example, image data captured within the body lumen of the GI tract. Other data may be sensed instead of or in addition to image data, for example, temperature, pressure, motility, etc.


Data captured or collected may be, for example, transmitted (block 520). In other embodiments pure location data (e.g., via a carrier signal or other signal) may be transmitted; further, transmission need not occur. For example, externally generated signals (e.g., X-rays, ultrasound signals) may be used to determine location data. In other embodiments of the present invention, a signal other than the data sensed may be transmitted to indicate a specified condition was met, for example, a signal to indicate that an in-vivo device may be caught behind a stricture, or other conditions. The data transmitted may be picked up by one or more pick up devices, for example one or more antennas 49. The transmitted data and the data pertaining to the location of the in-vivo device (obtained by location detection system 13) may be, for example, stored in recorder 12 (block 530). Typically, the process of sensing (block 510), transmitting (block 520), and storing (block 530) may continue for predetermined time period until all relevant data may be assumed to have been collected and stored. Other methods of determining a suitable time for termination of data collection and storage may be used.


In block 535, sensed data and location data may be downloaded to, for example, data processor 14. According to some embodiments no downloading may be required. In other embodiments of the present invention, transmitted data may be directed (by wire or wireless connection) to processing unit 14 in real time. A user may review data transmitted from an in-vivo device, for example, a stream of images. When reviewing the data, the user may mark one or more images that may be of interest, for example, may show pathology. The image or images of interest may be marked with any suitable user input means 20, for example, keyboard, computer mouse, touch-sensitive screen, and/or other suitable means. Data from the location detection system may be used to determine the location of a site of interest, for example a site where the marked images were captured in-vivo (block 540). In one embodiment of the present invention, a user may mark, for example, images that indicate the entrance and exit points of the body lumen containing the image of interest. In other embodiments, marking need not be used, and path length data may be generated independent of specific or requested points.


Data from the location detection system may be used to determine the location of the end points of the body lumen (block 550). In other embodiments of the present invention, the end points of the body lumen may be located without user input, for example, by methods described herein. In other embodiments of the present invention, the end points may be recognized by for example, a change of color, visible texture, measured pH, measured pressure, etc. In other embodiments of the present invention, the end points may be recognized by using a tissue color bar as may be described in embodiments described in U.S. provisional application 60/507,508, entitled, “Device, System And Method For Presentation Of In-Vivo Data,” which is hereby incorporated by reference in its entirety. Other methods of determining end points of body lumens may be implemented.


In block 560 the data pertaining to the location of the in-vivo device may be processed to determine the raw path length through the body lumen from the entrance to the exit point (LT). In block 570 the raw path length from the determined entrance point of the body lumen to the location point of interest (L) may be calculated. In block 580 the actual path length (LA) may be determined based on raw path lengths LT and L, and a pre-selected length of the overall length of the body lumen. In other embodiments of the present invention, the actual path length (LA) may be based on other suitable input data besides or in addition to the input data described herein. For example, path lengths LT and L may be preprocessed before calculating their ratio for determining the actual path length. Typically, the path-length detection unit 30 may perform tasks described in blocks 560 through blocks 580. In other embodiments of the present invention, the tasks described in blocks 560 to 580 may be shared by more than one unit or component in system 10, for example the tasks may be shared by location detection system 13. A health professional may use the information obtained on the path length to, to help him decide how to proceed with diagnosis or treatment of a patient.


Other steps and series of steps may be used.


While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made. Embodiments of the present invention may include other apparatuses for performing the operations herein. Such apparatuses may integrate the elements discussed, or may comprise alternative components to carry out the same purpose. It will be appreciated by persons skilled in the art that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A computer-implemented method for determining a relative path length traveled to a specific location through a body lumen by an in vivo device, the method comprising the steps: determining, using a processing unit, a raw path length value of the in vivo device through the body lumen to the specific location based upon location data of the in vivo device;determining a total raw lumen length value based upon location data of the in vivo device;calculating, using the processing unit, a relative path length value using a ratio between the raw path length value and the raw total lumen length value; andproviding the relative path length value to a user for use by said user in examination, diagnosis or treatment of said body lumen.
  • 2. The method according to claim 1 comprising capturing images of the body lumen as the in vivo device travels through the body lumen.
  • 3. The method according to claim 1 comprising sensing the body lumen as the in vivo device travels through the body lumen.
  • 4. The method according to claim 1 comprising sensing pH, pressure or temperature of the body lumen.
  • 5. The method according to claim 2, comprising obtaining the location data of the in vivo device based on the captured images.
  • 6. The method according to claim 1, comprising obtaining the location data of the in vivo device based on data sensed by the in vivo device.
  • 7. The method according to claim 2 comprising transmitting the captured images to an external receiving system.
  • 8. The method according to claim 1 wherein the body lumen is the gastrointestinal tract.
  • 9. The method according to claim 1 wherein the in vivo device is a swallowable capsule.
  • 10. The method according to claim 1, comprising obtaining the location data of the in vivo device based on triangulation of the signal strength received by antennas of the an external receiving system.
  • 11. The method according to claim 1 further comprising: post-processing images sent from the in vivo device to identify end points of a portion of a body lumen traveled by the in vivo device; andproviding indication to the user if a point of interest may be revisited by an alternate device.
  • 12. The method according to claim 11 wherein post-processing images is performed by identifying a color scheme of the images corresponding to a specific body lumen portion.
  • 13. The method according to claim 11 further comprising providing indication to the user from which direction the point of interest may be revisited by the alternative device.
  • 14. The method according to claim 10 further comprising providing a relative distance from a near exit point of a body lumen portion.
  • 15. The method according to claim 10 wherein a portion of a body lumen is selected from the group consisting of: esophagus, stomach, and small intestine.
  • 16. The method according to claim 10 wherein an end point of a portion of a body lumen is selected from the group consisting of: pylorus and cecum.
  • 17. The method according to claim 10 wherein providing indication to the user comprises suggesting a method selected from the group consisting of: endoscopy, colonscopy, gastroscopy, enteroscopy, laparoscopy and surgical intervention.
  • 18. The method according to claim 1 further comprising: pre-selecting an overall length of the body lumen value; andcalculating an actual path length value using said relative path length value and the overall length of the body lumen value.
  • 19. The method according to claim 18 further comprising providing the corrected path length value to a user.
  • 20. The method according to claim 18 wherein the overall length of the body lumen value is between 6 to 8 meters.
US Referenced Citations (115)
Number Name Date Kind
3460528 Carney Aug 1969 A
3683890 Beal Aug 1972 A
3971362 Pope et al. Jul 1976 A
4178735 Jackson Dec 1979 A
4239040 Hosoya et al. Dec 1980 A
4262632 Hanton et al. Apr 1981 A
4278077 Mizumoto Jul 1981 A
4439197 Honda et al. Mar 1984 A
4507115 Kambara et al. Mar 1985 A
4646724 Sato et al. Mar 1987 A
4689621 Kleinberg Aug 1987 A
4803992 Lemelson Feb 1989 A
4819620 Okutsu Apr 1989 A
4844076 Lesho et al. Jul 1989 A
4936823 Colvin et al. Jun 1990 A
4940997 Hamlin et al. Jul 1990 A
5042486 Pfeiler et al. Aug 1991 A
5081041 Yafuso et al. Jan 1992 A
5109870 Silny et al. May 1992 A
5187572 Nakamura et al. Feb 1993 A
5211165 Dumoulin et al. May 1993 A
5267033 Hoshino Nov 1993 A
5279607 Schentag et al. Jan 1994 A
5330427 Weissenburger Jul 1994 A
5368027 Lubbers et al. Nov 1994 A
5377678 Dumoulin et al. Jan 1995 A
5395366 D'Andrea et al. Mar 1995 A
5398670 Ortiz et al. Mar 1995 A
5429132 Guy et al. Jul 1995 A
5479935 Essen-Moller Jan 1996 A
5495114 Adair Feb 1996 A
5549109 Samson et al. Aug 1996 A
5558640 Pfeiler et al. Sep 1996 A
5604531 Iddan et al. Feb 1997 A
5671739 Darrow et al. Sep 1997 A
5697384 Miyawaki et al. Dec 1997 A
5730129 Darrow et al. Mar 1998 A
5782765 Jonkman Jul 1998 A
5800350 Coppelson et al. Sep 1998 A
5819736 Avny et al. Oct 1998 A
5837196 Pinkel et al. Nov 1998 A
5913820 Bladen et al. Jun 1999 A
5929901 Adair et al. Jul 1999 A
5936406 Potthast Aug 1999 A
5946813 Nachbaur et al. Sep 1999 A
5986693 Adair et al. Nov 1999 A
5993378 Lemelson Nov 1999 A
6043839 Adair et al. Mar 2000 A
6082366 Andra et al. Jul 2000 A
6099482 Brune et al. Aug 2000 A
6149581 Klingenstein Nov 2000 A
6174291 McMahon Jan 2001 B1
6285897 Kilcoyne et al. Apr 2001 B1
6228048 Robbins May 2001 B1
6230038 von Gutfeld et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6304766 Colvin, Jr. Oct 2001 B1
6324418 Crowley et al. Nov 2001 B1
6330464 Colvin et al. Dec 2001 B1
6369812 Lyriboz et al. Apr 2002 B1
6385482 Boksberger et al. May 2002 B1
6395562 Hammock et al. May 2002 B1
6428469 Iddan et al. Aug 2002 B1
6473635 Rasche Oct 2002 B1
6475145 Baylor Nov 2002 B1
6488694 Lau et al. Dec 2002 B1
6618612 Acker et al. Sep 2003 B1
6632175 Marshall Oct 2003 B1
6692430 Adler Feb 2004 B2
6709387 Glukhovsky et al. Mar 2004 B1
6741882 Schaffter et al. May 2004 B2
6757557 Bladen et al. Jun 2004 B1
6804547 Pelzer et al. Oct 2004 B2
6813512 Aldefeld et al. Nov 2004 B2
6871086 Nevo et al. Mar 2005 B2
6904308 Frisch et al. Jun 2005 B2
6923768 Camus et al. Aug 2005 B2
6944316 Glukhovsky et al. Sep 2005 B2
6947787 Webler Sep 2005 B2
6950690 Meron et al. Sep 2005 B1
6992477 Govari Jan 2006 B2
6996432 Ostrovsky et al. Feb 2006 B2
7010338 Ritter et al. Mar 2006 B2
7076284 Segawa et al. Jul 2006 B2
20010017649 Yaron Aug 2001 A1
20010025135 Naito et al. Sep 2001 A1
20010035902 Iddan et al. Nov 2001 A1
20020015952 Anderson et al. Feb 2002 A1
20020042562 Meron et al. Apr 2002 A1
20020099310 Kimchy et al. Jul 2002 A1
20020103417 Gazdzinski Aug 2002 A1
20020109774 Meron et al. Aug 2002 A1
20020146368 Meron et al. Oct 2002 A1
20020158976 Vni et al. Oct 2002 A1
20020173718 Frisch et al. Nov 2002 A1
20020177779 Adler et al. Nov 2002 A1
20020198470 Imran et al. Dec 2002 A1
20030018280 Lewkowicz et al. Jan 2003 A1
20030020810 Takizawa et al. Jan 2003 A1
20030023150 Yokoi et al. Jan 2003 A1
20030114742 Lewkowicz et al. Jan 2003 A1
20030028078 Glukhovsky Feb 2003 A1
20030045790 Lewkowicz et al. Mar 2003 A1
20030167000 Mullick et al. Sep 2003 A1
20030171648 Yokoi et al. Sep 2003 A1
20030171649 Yokoi et al. Sep 2003 A1
20030171652 Yokoi et al. Sep 2003 A1
20030195415 Iddan Oct 2003 A1
20030208107 Refael Nov 2003 A1
20030214579 Iddan Nov 2003 A1
20030214580 Iddan Nov 2003 A1
20030216622 Meron et al. Nov 2003 A1
20040027459 Segawa et al. Feb 2004 A1
20050065441 Glukhovsky Mar 2005 A1
Foreign Referenced Citations (42)
Number Date Country
34 40 177 Jun 1986 DE
2 688 997 Oct 1993 FR
126727 Aug 1999 IL
143259 May 2001 IL
143258 Apr 2002 IL
4144533 May 1992 JP
6114037 Apr 1994 JP
6285044 Oct 1994 JP
7111985 May 1995 JP
7289504 Nov 1995 JP
2000342522 Dec 2000 JP
2001091860 Apr 2001 JP
2001095755 Apr 2001 JP
2001095756 Apr 2001 JP
2001104241 Apr 2001 JP
2001104242 Apr 2001 JP
2001104243 Apr 2001 JP
2001104244 Apr 2001 JP
2001104287 Apr 2001 JP
2001112709 Apr 2001 JP
2001112710 Apr 2001 JP
2001112740 Apr 2001 JP
2001137182 May 2001 JP
2001224554 Aug 2001 JP
2001231744 Aug 2001 JP
2001245844 Sep 2001 JP
2002010990 Jan 2002 JP
2000342524 Jun 2002 JP
2000342525 Jun 2002 JP
WO 9932028 Jul 1999 WO
WO 0110294 Feb 2001 WO
WO 0150941 Jul 2001 WO
WO 0169213 Sep 2001 WO
WO 02055126 Jul 2002 WO
WO 02055984 Jul 2002 WO
WO 02067593 Aug 2002 WO
WO 02094337 Nov 2002 WO
WO 02102223 Dec 2002 WO
WO 03003706 Jan 2003 WO
WO 03011103 Feb 2003 WO
WO 2004028336 Apr 2004 WO
WO 2004035106 Apr 2004 WO
Related Publications (1)
Number Date Country
20060036166 A1 Feb 2006 US