1. Field of the Invention
The field of the invention relates to microelectromechanical systems (MEMS). More specifically, the field of the invention relates to interferometric modulators with a reinforcing substance, e.g., a desiccant.
2. Description of the Related Technology
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.
Some embodiments of the invention are package structures for an interferometric modulator that include a reinforcing substance. In some embodiments, the reinforcing substance is a desiccant. The desiccant can be molded or integrated the backplate in such a manner that it provides a structural support for the backplate. In addition the amount and type of desiccant can be designed to optimize the water removing function while minimizing the amount of material, or cost of material, placed with the device. Various embodiment is described in greater detail below.
In some aspects, the invention is a display device package that comprises a transparent substrate, an interferometric modulator configured to modulate light transmitted through the transparent substrate, a backplate cover sealed to the transparent substrate to form a package so that the interferometric modulator is inside of the package, and a reinforcing substance in contact with the backplate cover. The reinforcing substance is configured to provide structural support to the backplate cover.
In some aspects, the invention is a method of manufacturing a display device. The method comprises providing a transparent substrate that comprises an interferometric modulator configured to modulate light transmitted through the transparent substrate, providing a backplate cover configured to mount to the transparent substrate, and applying a reinforcing substance to the backplate cover. The reinforcing substance is configured to provide structural support to the backplate and is also a desiccant. The method further comprises sealing the backplate cover to the transparent substrate.
In some aspects, the invention is a display device. The display device comprises a transparent substrate that comprises an interferometric modulator configured to modulate light transmitted through the transparent substrate, a backplate cover sealed to the transparent substrate to form a package so that the interferometric modulator is inside the package, and a prolonged-acting desiccant associated with the backplate cover. The prolonged-acting desiccant has a half-life for absorbing water of not less than 10 hours.
In some aspects, the invention is a device that comprises an interferometric modulator, a backplate cover sealed to a transparent substrate to form a package so that the interferometric modulator is inside the package, and a reinforcing substance applied to an internal side of the backplate cover. The reinforcing substance is configured to provide structural support to the backplate cover and is a desiccant.
In some aspects, the invention is a display device package that comprises a transparent substrate, an interferometric modulator configured to modulate light transmitted through the transparent substrate, a backplate cover sealed to the transparent substrate to form a package so that the interferometric modulator is inside the package, and a means for reinforcing the backplate cover.
In some aspects, the invention is a display device created by applying a reinforcing substance to a backplate cover, allowing the reinforcing substance to dry, and sealing a transparent substrate comprising an interferometric modulator to the backplate cover. The reinforcing substance is a desiccant.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
In some aspects, the invention is a reinforcing substance on the surface of a backplate in a package of an interferometric modulator. The reinforcing aspect of the substance can be achieved in a variety of ways. For example, the reinforcing substrate can fill variations or imperfections in the backplate and thereby provide additional structural support. Alternatively, the reinforcing substance can form a reinforcing structure in itself, which can add additional strength to the backplate. This can allow for thinner backplates to be used. In one embodiment, the reinforcing substance is a desiccant. In another embodiment, the desiccant is a prolonged acting or long acting desiccant, which, while not necessarily absorbing large amounts of water immediately, is able to absorb water over a relatively prolonged period of time. In some embodiments, the desiccant is covered by a barrier that reduces the amount of water that is exposed to the desiccant and thereby extends the effective lifetime of the desiccant. In some embodiments the desiccant is positioned selectively on the backplate to add support to weak points on the backplate, e.g., on the corners of the backplate. Methods of making and using these embodiments are also contemplated.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers 14a, 14b are separated from the fixed metal layers by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array controller 22. In one embodiment, the array controller 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 44, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 44, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
As discussed above, in some embodiments, the invention can be used in electronic displays for use in portable electronic devices, such as wireless telephones, personal digital assistants, computer monitors, digital music players and the like.
Electronic display 120 can be any type of display including light emitting diode (LED), organic light emitting diode (OLED), or an interferometric modulator (IMOD) direct view electronic display.
Interferometric displays, which are based on MEMS (micro-electro-mechanical-systems) technology, are spatial light modulators that may be used in electronic display applications, such as a wireless telephone handset. Interferometric modulators modulate light by controlling the self-interference of light that strikes a surface of the modulator. For example, U.S. Pat. No. 5,835,255 discloses one example of an interferometric modulator which is hereby incorporated by reference in its entirety.
Reinforcing Substance
While the size of the backplate 130 can be miniaturized to allow for smaller display devices, this results in a thinner backplate which could be relatively weak. Additionally, some manufacturing processes can leave minor imperfections in the backplate, which may weaken the structure as well. Thus, stronger backplates to allow for smaller devices can be desirable. Additionally, it should be realized that each of the above display types are differentially sensitive to moisture. Thus it can be advantageous to provide a means for reducing the amount of moisture that may come in contact with the device.
As mentioned above, aspects of the invention relate to the manufacturing and packaging of electronic displays with a reinforcing substance. The reinforcing substance is configured to add structural support to the package. The reinforcing substance can also be configured to absorb water molecules that permeate the display packaging once it has been manufactured, e.g., it can be a desiccant. As will be appreciated by one of skill in the art, a desiccant maintains a low humidity environment within the display package and prevents water vapor from adversely affecting the operation of the display electronics. This will be explained in further detail below.
Interferometric modulators typically include a transparent substrate, such as glass, as well as moving parts that have a protected space in which to move. A schematic of a basic package structure for an interferometric modulator is illustrated in
The transparent substrate 125 can be any transparent substance capable of having display electronics, such as a thin film MEMS device built upon it. Such transparent substances include, but are not limited to, glass, plastic, and transparent polymers. Images are displayed through the substrate 125, which serves as an imaging surface. The interferometric modulator array may comprise membrane modulators or modulators of the separable type. Examples of such devices are described in U.S. Pat. No. 5,835,255 to Miles. The skilled artisan will appreciate that the backplate 130 can be formed of any suitable material, such as glass, metal, foil, polymer, plastic, ceramic, or semiconductor materials (e.g., silicon).
The interferometric modulator 140 can be a membrane modulator or modulators of the separable type. Examples of such devices are described in U.S. Pat. No. 5,835,255 to Miles, hereby incorporated in its entirety by reference.
As will be appreciated by one of skill in the art, the backplate 130 can independently be strong enough so that the integrity of the packaging system is not compromised, either throughout the manufacture or throughout the use of the device. However, as discussed in more detail below, the dimensions, shape, composition, and other characteristics of the backplate can be altered depending on the presence or absence of a reinforcing substance in the package. Especially when moving to larger display diagonals, reinforcement of the package allows for the manufacture of a relatively thin display. In addition, reinforcement of the package maintains a minimum bowing of the recessed glass to the order or 100-200 micron when moderate pressure is applied to the backplate. Thus, in some embodiments, in which a reinforcing substance is to be used, a backplate can be thinner or may be insufficient to independently maintain the structural integrity of the packaging system. In other embodiments, the reinforcing substance can simply add additional strength to the system or other desired characteristics, such as a drying ability, or both characteristics. This backplate 130 may also be referred to as a “backplane.” It will be understood that the terms “display,” “package structure,” and “package” can be used interchangeably, as used herein.
The sealant or seal 128 is typically provided to join the transparent substrate 125 and backplate 130 to form the package structure 120. The sealant 128 is typically a non-hermetic seal, such as a conventional epoxy-based adhesive. In addition, the sealant 128 may be made from any polymer, or plastic composition. In one embodiment, the sealant 128 provides a hermetic seal that prevents water vapor and moisture from entering the cavity 135. In other embodiments, the seal 128 can be a polyisobutylene (sometimes called butyl rubber, and other times PIB), o-rings, polyurethane, thin film metal weld, liquid spin-on glass, or solder, among other types of seals that can have a range of permeability of water vapor of about 0.2-4.7 g mm/m2 kPa day.
As shown in
It has been realized that the addition of an additional reinforcing substance to the backplate can be useful in providing additional strength to the backplate without necessarily requiring the greater space required by a thicker backplate.
The reinforcing substance can be selected from a variety of substances. The reinforcing substance can be an epoxy, a desiccant, or some combination thereof. In light of the present disclosure, one of skill in the art will be able to determine appropriate substances, how to prepare, and how to use them. For example, pastes can be prepared by mixing a CaO desiccant or Zeolite desiccant with a polymeric binder. An example of a desiccant paste is the commercially available Cookson HiCap 2800™ desiccant paste. This paste can be screen printed or dispensed onto the backplate. It can have a thin sheet on the order of 50 microns for example, or various shapes and patterns, as described in more detail below. The paste can be heated and activated after dispensing. Another type, a Zeolite based paste for example, can be spread in a similar way, but may not require heating or activated after application. As described in more detail below, the reinforcing substance provides structural support to the package. This support can be due to, for example, the strength and integrity of the reinforcing substance, the shape of the reinforcing substance, its ability to interact with the backplate, or the position or location in which the reinforcing substance is placed. These options are discussed in more detail below.
For example, the integrity of the package can be improved through the filling of holes or crevices in the backplate. Some methods of manufacturing the backplate involve abrasive techniques that can over-etch or crack the backplate. These imperfections in the backplate can weaken the backplate and even provide possible routes through which water or other ambient substances can enter the device. While making a thicker backplate might overcome some of this problem, such a process may require more material and result in a larger device. However, it should be realized that even a thicker backplate may not solve the problem of backplane weakness and reduce the potential of having fracture points in the glass due to usage and temperature variations. As can be envisioned, any cracks in the glass can propagate independent of whether the glass is thick (for example, > about 1.1 mm) or thin (for example, < about 0.7 mm). Additionally, throughout the manufacturing process, a crack could still occur in the backplate. To reduce the chance of such an occurrence, a reinforcing substrate 148 can be added to the backplate 130 that fills, e.g., fractures 202 or over-etched sections 204, e.g., as shown in
In some embodiments, the cracks or gaps themselves are locations of possible breakage 204, and the reinforcing substance 148 is added to fill in these gaps. Thus, direct physical support can be supplied to the backplate in such a manner. In such an embodiment, any substance, e.g., a desiccant, that provides support to the backplate can be used. The reinforcing substance need not supply support to the system at all times, for example, the filling in of these gaps might only reduce the chance that these sections will be deformed if pressure is added to the system, thereby reducing the chance that stresses will be localized to the thinner areas of the backplate.
In some embodiments, the support provided from the reinforcing substance is provided because of the structure or shape of the reinforcing substance. This shape dependent reinforcing substance can be achieved through various embodiments. In one embodiment, it is the shape of an entire section of the desiccant that adds support to the backplate. For example, a plane of supporting substance can be added to the backplate; thus effectively adding thickness, and strength, to the backplate (e.g., as shown in
In some embodiments, the reinforcing substance, e.g., desiccant, is added to areas of the backplate that can benefit from additional strengthening. For example, the reinforcing substance can be added to places where there are right angles or places where there are corners in the backplate. For example, the reinforcing substance can be added to places where there are carve outs or where two planes of the backplate meet. Such an area can be described as a “weak point” of the backplate. In some embodiments, the reinforcing substance is only associated with the weak point of the backplate. In some embodiments, the reinforcing substance is primarily associated with a weak point of the backplate. In some embodiments, more than half of the reinforcing substance is located next to a weak point, for example 50-60, 60-70, 70-80, 80-90, 90-95, 95-100 percent of the reinforcing substance. “Associated” can mean that the presence of the material provides structural support to the particular weak point. In some embodiments, the reinforcing substance is located over the weak point. In some embodiments, one applies the reinforcing substance so that most of the reinforcing substance is associated with a weak point on the backplate.
In some embodiments, soda lime glass is used for the recessed backplate. The glass is typically etched or sandblasted in order to create the recessed areas for the desiccant. Soda lime glass can cost less than borosilicate types of glass. However, soda lime glass can be more susceptible to fractures when under stress and in the presence of water. The use of the desiccant covering the surface of a recessed backplate made of soda lime glass can reinforce the backplate by preventing water from being deposited on the recessed areas. Water on the surface of the soda lime glass can act to increase the rate of fracture, especially when the glass is under stress, e.g., in some assembly processes. Preventing water from depositing on the surface can act to improve the strength of the recessed glass and reduce the chance of fractures developing in the product. As will be appreciated by one of skill in the art, this tendency to fracture under the combination of water and stress is characteristic of soda lime glass above other substances. Thus, the desiccant on the surface of the recessed glass, can, during assembly, act to strengthen or reinforce the backplate by reducing the amount of water present. As will be appreciated by one of skill in the art, in some embodiments, the combination of a reinforcing desiccant on a soda lime glass backplate is contemplated. In some embodiments, a low cost and relatively weak backplate is used, which can be reinforced with a desiccant or other reinforcing substance.
In some embodiments, the expansion characteristics of the reinforcing substance and the backplate are matched. In some embodiments, the coefficients of thermal expansion (“CTE”) of the reinforcing substance and the coefficient of thermal expansion of the backplate are matched. Thus, in one embodiment, the CTEs are the same, allowing the two objects to expand at a similar rate when heated or cooled, which can prevent or reduce stresses that could otherwise be caused between the two. In other words, without matching the CTE of the backplate and the reinforcing substance (e.g., a desiccant), one runs a risk of breaking or deforming one or both upon heating or cooling of the device. As will be appreciated by one of skill in the art, the device can be heated during use or simply during the manufacturing process, for example, during curing of a desiccant or the reinforcing substance. One of skill in the art can determine if the CTEs are significantly the same by adding a layer of the reinforcing substance to the backplate and heating them both. If stresses are generated upon heating (which can be, for example, observed from the presence of bowing of the backplate or backplate breakage) then the CTEs are not significantly the same.
When the coefficients of thermal expansion (“CTE”) do not match, one can configure the reinforcing substance so as to reduce a negative impact from the difference in coefficients (of course, one does not have to do this if the differences in CTEs are acceptable for the desired device and one can still do this even if the CTEs are about the same or the same). Examples of these configurations are shown in
In some embodiments, the amount of support provided to the backplate increases the backplate's ability to withstand breakage by any increased amount of force or weight, for example, an increase of 1-10, 10-30, 30-50, 50-80, 80-100% or more. In some embodiments, the addition of the reinforcing substance allows for the thickness of the backplate to be reduced, for example by as much as 1-10, 10-30, 30-50, 50-70, 70-80, 80-90% or more. In some embodiments, multiple supporting layers are provided, e.g., an initial layer to plug any holes or cracks, and a second layer to add additional support and a desiccant ability. In some embodiments, the reinforcing material is applied to a surface, other than the backplate. For example, a reinforcing substance could be applied to a seal or a part of a substrate, if desired.
In some embodiments, the reinforcing substance can be in a solid form, e.g., a sheet form, and can be associated with the backplate with a “glue” or adhesive. The glue and reinforcing substance can act together to provide support to the backplate. Alternatively, one or the other can individually supply support to the backplate. For example, the reinforcing substance can be an adhesive or epoxy that only fills in gaps or cracks in the backplate. In some embodiments, the solid form reinforcing substance is a sheet of desiccant, which together with an epoxy that can attach it to the backplate, add support to the backplate.
The following discussion uses desiccants as an example of a reinforcing substance; however, in light of the present specification, one of skill in the art will understand that the various embodiments described below can also be used with substances that are not desiccants, with predictable results where appropriate. Likewise, one of skill in the art will appreciate that any of the above embodiments can be made by using a desiccant as the reinforcing substance, although some may be more advantageous than others.
Desiccant as a Reinforcing Substance
Generally, it is desirable to minimize the permeation of water vapor into the package structure and thus control the environment inside the display 120 and hermetically sealing it to ensure that the environment remains constant. An example of a hermetic sealing process is disclosed in U.S. Pat. No. 6,589,625. When the humidity within the package exceeds a level beyond which surface tension from the moisture becomes higher than the restoration force of movable elements within the display electronics, the movable elements (e.g., the movable mirrors 14a, 14b described above) may become permanently stuck to the surface.
Thus, in some embodiments, the reinforcing substance is a desiccant. This will allow a desiccant to be sealed within the display 120. In this embodiment, the structure of the desiccant or desiccant area 148 can be formed within the cavity 135 and attached to the backplate 130. The desiccant can be attached to the surface 131 of the backplate 130 that forms the cavity 135. The desiccant area can include a desiccant material 150, and a membrane cover 155. In some embodiments, the desiccant is a solid or rigid desiccant that can directly add support to the backplate. The desiccant area 148 can be used within displays that have either hermetic or non-hermetic sealants. In displays having a hermetic seal, the desiccant area can be used to control moisture resident within the interior of the package and also act as a sealant for the backplate 130.
In some embodiments of the invention, the desiccant area 148 is configured across the interior surface of the backplate in such a way as to minimize vapor leakage through the backplate and into the cavity 135. In some embodiments, the desiccant is configured to further increase the amount of water absorbed by the desiccant, e.g., a shape that exposes a greater surface area of the desiccant to the internal atmosphere.
In one embodiment, the desiccant material is configured to act as a patch to seal any leakage holes in the backplate 130. As discussed above, recessed backplates can be weaker than backplates that do not have a recessed portion, and thus can be more subject to fractures when they are sandblasted during manufacture. The desiccant spread on the surface can also be used to reinforce the structural reliability of the backplate (e.g.,
In some embodiments, the desiccant is 1) configured to reduce the stresses due to CTE differences between the backplate and the desiccant, 2) configured to optimize or prolong the drying ability of the desiccant, and 3) configured to provide structural support to the backplate. For example, in
In other embodiments, a relatively small amount of the desiccant is added, thus, only enough desiccant to fill small cracks in the backplate, but not enough to fully cover the entire surface of the backplate. Alternatively, after adding an amount of the desiccant to the backplate to cover the entire surface, any desiccant above the cracks or crevices can be removed. This will provide a backplate in which the desiccant is provided throughout the backplate so as to add support, but where there are gaps in the coverage of the desiccant so that differences in the CTE will not be compounded over large continuous areas of the backplate.
Generally, any hygroscopic substance that can absorb moisture from the air can be used as the desiccant material 150. Preferably, the desiccant does not interfere with the optical properties of the interferometric modulators 140. In one embodiment of the invention, the desiccant preferably includes sealant properties that allow it to act as a moisture sealant for the backplate 130. For example, it should be realized that the desiccant can be admixed with other compositions, such as epoxies or resins in order to provide sealant properties in addition to the advantageous desiccant properties. The desiccant/epoxy mix is preferably not used to seal the backplate and the substrate. Suitable desiccant materials include, but are not limited to, zeolites, calcium sulfate, calcium oxide (e.g., HiCap2800™ desiccant), silica gel, molecular sieves, surface adsorbents, bulk adsorbents, and chemical reactants. Other desiccant materials include indicating silica gel, which is normal silica gel with some of its granules coated with cobalt chloride. This material changes color as it becomes saturated with water. Additionally, the desiccant mixed with epoxy can have superior properties as a reinforcing substance. In some embodiments, the desiccant is optimized to absorb water over a prolonged period of time. This can be achieved by altering the shape and surface exposure of the desiccant, or the composition of the desiccant.
In some embodiments, the desiccant material 150 can be printed or sprayed onto a surface of the interior of the package, such as the backplate after it has been sandblasted or etched using standard photolithographic techniques in order to make the reinforcing substance 148. A mask is preferably first applied to the backplate prior to etching, preferably using standard photolithographic techniques, in order to form recessed pockets or windows in the backplate, allowing the package to be thinner with a thinner perimeter seal, preferably having a thickness of about 15 microns seal width. It will be understood that etching techniques, such as sandblasting and wet etching, are preferred. The skilled artisan will understand that, alternatively, a stencil can be used instead of a photolithographic mask. After the pockets or windows have been created, the desiccant material 150 is applied (e.g., sprayed or brushed on) in the recessed pockets or windows. It will be understood that the mask is preferably not removed until the desiccant material 150 has been applied to the recessed pockets or windows so that there is little danger of applying the desiccant material 150 to the non-recessed areas of the backplate. A thin foil can be applied over the desiccant material to protect the desiccant material 150 if the backplate is manufactured and transported prior to assembly with other parts of the package. The desiccant material 150 can be activated after the package is completed.
In some embodiments, the desiccant material can be integrated into the material that forms the backplate. Such material can be made by incorporating the desiccant into the plastic that forms the backplate. Preferably, the desiccant is incorporated into the backplate on the internal side of the backplate. Examples of such material include 2AP (Sud-Chemie), which combines precise amounts of a desiccant, such as molecular sieve or silica gel, with a polymer. Because the desiccant material is incorporated into the backplate itself, there is no need to add desiccant material in a separate step during the packaging process. In addition, 2AP can be customized to control the moisture adsorption rate. Alternatively, a thin coating of the same material can be added back to the backplate after the initial cavity has been carved out.
Another material suitable for a backplate reinforcing substance is made by Capitol Specialty Plastics Inc. (Auburn, Ala.). This material combines a desiccant with a channeling agent into a polymer that can be molded or extruded into many shapes. Almost any type of polymer can be used with the desiccant. This type of desiccant plastic allows the entire backplate to act as a moisture absorber. Other materials suitable for such a backplate include, but are not limited to, material delivered with foil protection, which can be chemically or plasma etched off, such as amorphous silicon, chrome, and similar materials. While these backplate substances could be used to make complete backplates, preferably, the substances are used on an internal side of another backplate that lacks a desiccant.
Generally, the packaging process to produce the display can be accomplished in a vacuum, pressure between a vacuum up to and including ambient pressure, or pressure higher than ambient pressure. The packaging process can also be accomplished in an environment of varied and controlled high or low pressure during the sealing process. There can be advantages to packaging the display in a completely dry environment, but it is not necessary. Similarly, the packaging environment can be of an inert gas at ambient conditions, or the cavity 135 can be created to contain an inert gas, such as nitrogen, at ambient conditions. Packaging at ambient conditions allows for a lower cost process and more potential for versatility in equipment choice because the device can be transported through ambient conditions without affecting the operation of the device.
Long Life or Prolonged Acting Desiccant
In another embodiment, a desiccant is selected based on its use in an interferometric modulator device. In these embodiments, the desiccant can serve as a reinforcing substance, or alternatively, simply serve as a desiccant with the desired characteristics.
It has been realized that an interferometric modulator device can tolerate higher amounts of water vapor than other technologies, such as OLED. As such, low levels of water vapor can be permissible and the initial amount of water vapor present in the package need not be as low as in OLED devices. Thus, the type and variety of desiccant can be chosen to be optimized for use in an interferometric modulator device. For example, calcium oxide can be used within an interferometric modulator device, even though in its natural unaltered state it absorbs moisture fairly slowly in comparison to other desiccants, such as zeolites. CaO can be tailored to be a fast acting desiccant, although in a preferred embodiment, it refers to a composition that has a prolonged duration of functionality. This is shown more particularly in reference to the data shown in Example 1. Such an embodiment can allow for cheaper materials to be used, alternative manufacturing processes to be employed, or the use of a desiccant that, while not as “effective” at drying initially, is able to absorb water for a longer duration. Due to the more robust nature of the interferometric modulator device, a greater diversity of desiccants can be chosen to be incorporated into the device. This provides significant advantages over prior devices. The desiccants with a more prolonged effective life can be used in the interferometric modulator device and need not result in any degradation of the pixels near the edge of the sealant, where the water flux may enter the package. Other devices, such as OLEDs, require a fast acting desiccant at these areas due to their sensitivity to water vapor.
In addition to being in solid or gel form, the desiccant material 150 can alternatively be in powder form. These powders can be inserted directly into the area 148 or they may be mixed with an adhesive prior to entrance into the area 148. It should be realized that the area 148 can take any form, and can be of any thickness that provides the proper desiccating function for the display 120.
Typically, in packages containing desiccants, the lifetime expectation of the device can depend on the lifetime of the desiccant. When the desiccant is fully consumed, the electronic display 120 can fail to operate as sufficient moisture enters the cavity 135. The theoretical maximum lifetime of the display device is determined by the water vapor flux into the cavity 135 as well as the amount and type of desiccant material. The theoretical lifetime of the device can be calculated with the following equations:
where P is the water vapor permeation coefficient for the perimeter seal 128 and
is the water vapor pressure gradient across the width of the sealant 128.
In the embodiment of the display 120 having a hermetic sealant, the lifetime of the device is not as dependent on the desiccant capacity, or the geometry of the sealant. In display devices wherein the sealant 128 is not hermetic, the lifetime of the device is more dependent on the capacity of the desiccant to retain moisture.
The membrane 155 preferably is made from a compound that is strong enough to contain the desiccant material, but also allow water vapor to pass through the membrane and contact the desiccant material. One example of such a material is Tyvek® (Dupont Corporation) or polyethylene, preferably with a low moisture vapor transmission rate (MVTR). The MVTR of the barrier depends upon the type and thickness of the materials used and the external environmental conditions. It should be realized that the membrane 155 can adhere directly to the backplate 130, or be sealed to the backplate 130 with an adhesive.
Table 1 below provides the MVTR for a number of membrane materials. By knowing the MVTR (in grams of water per square foot per day), the total surface area of the membrane (membrane surface area) and the length of time in storage, the amount of moisture penetrating the package over time can be calculated.
Another embodiment of the display 120 is illustrated in
The following example is not meant to limit the invention as the invention is defined in the claims.
This Example demonstrates an analysis of a prolonged acting desiccant and how one can determine the effectiveness and possible duration over which the desiccant can be effective.
A set amount of HiCap2800 desiccant (53 mm×63 mm) was collected and stored in a sealed container. A volume of air within the sealed container was then measured for moisture through the use of a dew point sensor. This was repeated multiple times over several days. The result is shown in
As can be seen, the initial slope of the curve is 0.2 mg/hour. During the first day, the slope slowed to 0.01 mg/hour. At this slower rate, and in an amount of 3 mg of desiccant, it would take more than 300 hours to saturate this desiccant. These results can be typical of prolonged acting desiccants.
Similarly, the process can be carried out for testing the duration of effectiveness for fast acting desiccants, such as a Bondline Zeolite™ desiccant. The results from such a similar test are shown in
The above rates can be compared with the rates and saturation levels for other desiccants. Those desiccants with longer drying times (longer effective half-lives for example) can be selected in this manner. A graph comparing the drying duration and saturation levels of Zeolite (a relatively fast acting desiccant, denoted by diamonds, relative humidity of 40-52% and a temperature of 17-20° C.) and Staydry HiCap2000™ desiccant (denoted by triangles) is shown in
In some embodiments, a prolonged acting desiccant is defined as one that has an effective half-life that is greater than that of Zeolite. A prolonged acting desiccant can also be one that, for a given amount of desiccant, has a half life that is 110-120, 120-140, 140-180, 180-250, or 250-500% of Zeolite. Alternatively, a prolonged acting desiccant can be one with a slope of no more than 0.2, 0.2-0.1, 0.1-0.05, 0.05-0.01, 0.01-0.001 mg/hour or less of water absorption for an area of 53*63 mm of desiccant. Alternatively, for a same amount of volume or mass of desiccant, the prolonged acting desiccant can continue to absorb water for 10-30, 30-50, 50-100, 100-200, 200-500% longer than for a similar amount of Zeolite. Alternatively, a prolonged acting desiccant can be defined as one that is capable of absorbing additional water after 60, 70, 80, 100, 200, 300, or more hours.
In one embodiment, a fast acting desiccant is a desiccant that absorbs water at about 0.6 mg/minute or faster and a prolonged acting desiccant is a desiccant that absorbs water at about 0.2-0.01 mg/hour or slower, as described above. In one embodiment, prolonged acting and fast acting desiccants are defined, respectively, as the two desiccants shown in
In some embodiments, fast and prolonged are measured by half-lives. For example, in the example shown in
In the example above, the temperature of the chamber was about 22-28° C. and the volume of the chamber was about 427 cm3. In the above example, the initial amount of water in the chamber resulted in a dew point of about +4° C. or +39° F. Alternatively, the amount of water in the air can be described in terms of parts per million, e.g., about 4990 ppm of water in air. Thus, these values can be used to help define “prolonged” and “fast” acting desiccants. For example, in some embodiments, any desiccant that is placed in a similar situation (e.g., amount of initial water, volume, and temperature) and exhibits the same or a more prolonged absorption rate than the above described prolonged acting desiccant can be a prolonged acting desiccant. In some embodiments, the relative humidity at room temperature is about 20% to 30% in the container initially. As will be appreciated by one of skill in the art, various amounts of water can be present in any container initially, and can vary, for example, between 0.0081 ppm and 12650 ppm, 2260-9800 ppm, and 3640-6580 ppm of water in air.
As will be appreciated by one of skill in the art, there are a variety of ways in which a desiccant can be made into a prolonged acting desiccant. While certain compositions can be mixed with the desiccant to slow the permeation of water into the desiccant, other approaches are also contemplated. For example, a vapor barrier can be used to reduce the amount of water vapor that is exposed to the desiccant at any one time. As will be appreciated by one of skill in the art, the “vapor barrier” would not completely block all water from the desiccant; rather, it can reduce the amount of water vapor contacting the desiccant, thereby extending the time that the desiccant can absorb water. The vapor barrier can reduce the amount of water that is on one enclosed side of the vapor barrier by any amount, for example, 1-10, 10-20, 20-40, 40-60, 60-80, 80-99% or more reduction in water or water vapor is possible. In some embodiments, the vapor barrier is a sheet that covers the desiccant. In other embodiments, the vapor barrier is a compound that is added to the desiccant (also called vapor barrier material or a desiccant half-life extending compound). There can be multiple compounds or layers applied to any one section of desiccant. The vapor barrier need not be applied to all of the desiccant, as it may be advantageous to have a fast and a prolonged acting desiccant together. In some embodiments, the desiccant half-life extending compound is mixed throughout the entire section of desiccant.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.
This Application claims priority to U.S. Provisional Application No. 60/613,801, filed Sep. 27, 2004, the contents of which are hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2534846 | Ambrose et al. | Dec 1950 | A |
3439973 | Paul et al. | Apr 1969 | A |
3443854 | Weiss | May 1969 | A |
3653741 | Marks | Apr 1972 | A |
3656836 | de Cremoux et al. | Apr 1972 | A |
3813265 | Marks | May 1974 | A |
3955880 | Lierke | May 1976 | A |
4036360 | Deffeyes | Jul 1977 | A |
4074480 | Burton | Feb 1978 | A |
4099854 | Decker et al. | Jul 1978 | A |
4228437 | Shelton | Oct 1980 | A |
4377324 | Durand et al. | Mar 1983 | A |
4389096 | Hori et al. | Jun 1983 | A |
4403248 | te Velde | Sep 1983 | A |
4431691 | Greenlee | Feb 1984 | A |
4441791 | Hornbeck | Apr 1984 | A |
4445050 | Marks | Apr 1984 | A |
4459182 | te Velde | Jul 1984 | A |
4482213 | Piliavin et al. | Nov 1984 | A |
4500171 | Penz et al. | Feb 1985 | A |
4519676 | te Velde | May 1985 | A |
4531126 | Sadones | Jul 1985 | A |
4566935 | Hornbeck | Jan 1986 | A |
4571603 | Hornbeck et al. | Feb 1986 | A |
4596992 | Hornbeck | Jun 1986 | A |
4615595 | Hornbeck | Oct 1986 | A |
4662746 | Hornbeck | May 1987 | A |
4663083 | Marks | May 1987 | A |
4681403 | te Velde et al. | Jul 1987 | A |
4710732 | Hornbeck | Dec 1987 | A |
4748366 | Taylor | May 1988 | A |
4786128 | Birnbach | Nov 1988 | A |
4790635 | Apsley | Dec 1988 | A |
4844614 | Henderson et al. | Jul 1989 | A |
4856863 | Sampsell et al. | Aug 1989 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4977009 | Anderson et al. | Dec 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5018256 | Hornbeck | May 1991 | A |
5022745 | Zayhowski et al. | Jun 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5037173 | Sampsell et al. | Aug 1991 | A |
5044736 | Jaskie et al. | Sep 1991 | A |
5061049 | Hornbeck | Oct 1991 | A |
5075796 | Schildkraut et al. | Dec 1991 | A |
5078479 | Vuilleumier | Jan 1992 | A |
5079544 | DeMond et al. | Jan 1992 | A |
5083857 | Hornbeck | Jan 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5099353 | Hornbeck | Mar 1992 | A |
5124834 | Cusano et al. | Jun 1992 | A |
5142405 | Hornbeck | Aug 1992 | A |
5142414 | Koehler | Aug 1992 | A |
5153771 | Link et al. | Oct 1992 | A |
5162787 | Thompson et al. | Nov 1992 | A |
5168406 | Nelson | Dec 1992 | A |
5170156 | DeMond et al. | Dec 1992 | A |
5172262 | Hornbeck | Dec 1992 | A |
5179274 | Sampsell | Jan 1993 | A |
5192395 | Boysel et al. | Mar 1993 | A |
5192946 | Thompson et al. | Mar 1993 | A |
5206629 | DeMond et al. | Apr 1993 | A |
5214419 | DeMond et al. | May 1993 | A |
5214420 | Thompson et al. | May 1993 | A |
5216537 | Hornbeck | Jun 1993 | A |
5226099 | Mignardi et al. | Jul 1993 | A |
5231532 | Magel et al. | Jul 1993 | A |
5233385 | Sampsell | Aug 1993 | A |
5233456 | Nelson | Aug 1993 | A |
5233459 | Bozler et al. | Aug 1993 | A |
5244707 | Shores | Sep 1993 | A |
5254980 | Hendrix et al. | Oct 1993 | A |
5272473 | Thompson et al. | Dec 1993 | A |
5278652 | Urbanus et al. | Jan 1994 | A |
5280277 | Hornbeck | Jan 1994 | A |
5287096 | Thompson et al. | Feb 1994 | A |
5296950 | Lin et al. | Mar 1994 | A |
5304419 | Shores | Apr 1994 | A |
5305640 | Boysel et al. | Apr 1994 | A |
5311360 | Bloom et al. | May 1994 | A |
5312513 | Florence et al. | May 1994 | A |
5323002 | Sampsell et al. | Jun 1994 | A |
5325116 | Sampsell | Jun 1994 | A |
5327286 | Sampsell et al. | Jul 1994 | A |
5331454 | Hornbeck | Jul 1994 | A |
5339116 | Urbanus et al. | Aug 1994 | A |
5365283 | Doherty et al. | Nov 1994 | A |
5381253 | Sharp et al. | Jan 1995 | A |
5401983 | Jokerst et al. | Mar 1995 | A |
5411769 | Hornbeck | May 1995 | A |
5444566 | Gale et al. | Aug 1995 | A |
5446479 | Thompson et al. | Aug 1995 | A |
5448314 | Heimbuch et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5454906 | Baker et al. | Oct 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5457566 | Sampsell et al. | Oct 1995 | A |
5459602 | Sampsell | Oct 1995 | A |
5459610 | Bloom et al. | Oct 1995 | A |
5461411 | Florence et al. | Oct 1995 | A |
5489952 | Gove et al. | Feb 1996 | A |
5497172 | Doherty et al. | Mar 1996 | A |
5497197 | Gove et al. | Mar 1996 | A |
5499062 | Urbanus | Mar 1996 | A |
5500635 | Mott | Mar 1996 | A |
5500761 | Goossen et al. | Mar 1996 | A |
5506597 | Thompson et al. | Apr 1996 | A |
5515076 | Thompson et al. | May 1996 | A |
5517347 | Sampsell | May 1996 | A |
5523803 | Urbanus et al. | Jun 1996 | A |
5526051 | Gove et al. | Jun 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5526688 | Boysel et al. | Jun 1996 | A |
5535047 | Hornbeck | Jul 1996 | A |
5548301 | Kornher et al. | Aug 1996 | A |
5551293 | Boysel et al. | Sep 1996 | A |
5552924 | Tregilgas | Sep 1996 | A |
5563398 | Sampsell | Oct 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5570135 | Gove et al. | Oct 1996 | A |
5579149 | Moret et al. | Nov 1996 | A |
5581272 | Conner et al. | Dec 1996 | A |
5583688 | Hornbeck | Dec 1996 | A |
5589852 | Thompson et al. | Dec 1996 | A |
5591379 | Shores | Jan 1997 | A |
5597736 | Sampsell | Jan 1997 | A |
5600383 | Hornbeck | Feb 1997 | A |
5602671 | Hornbeck | Feb 1997 | A |
5606441 | Florence et al. | Feb 1997 | A |
5608468 | Gove et al. | Mar 1997 | A |
5610438 | Wallace et al. | Mar 1997 | A |
5610624 | Bhuva | Mar 1997 | A |
5610625 | Sampsell | Mar 1997 | A |
5614785 | Wallace et al. | Mar 1997 | A |
5619059 | Li et al. | Apr 1997 | A |
5619365 | Rhoades et al. | Apr 1997 | A |
5619366 | Rhoads et al. | Apr 1997 | A |
5636052 | Arney et al. | Jun 1997 | A |
5646768 | Kaeiyama | Jul 1997 | A |
5650881 | Hornbeck | Jul 1997 | A |
5654741 | Sampsell et al. | Aug 1997 | A |
5657099 | Doherty et al. | Aug 1997 | A |
5659374 | Gale, Jr. et al. | Aug 1997 | A |
5665997 | Weaver et al. | Sep 1997 | A |
5703710 | Brinkman et al. | Dec 1997 | A |
5710656 | Goossen | Jan 1998 | A |
5739945 | Tayebati | Apr 1998 | A |
5745193 | Urbanus et al. | Apr 1998 | A |
5745281 | Yi et al. | Apr 1998 | A |
5771116 | Miller et al. | Jun 1998 | A |
5784190 | Worley | Jul 1998 | A |
5784212 | Hornbeck | Jul 1998 | A |
5815141 | Phares | Sep 1998 | A |
5818095 | Sampsell | Oct 1998 | A |
5825528 | Goosen | Oct 1998 | A |
5835255 | Miles | Nov 1998 | A |
5842088 | Thompson | Nov 1998 | A |
5853662 | Watanabe | Dec 1998 | A |
5882761 | Kawami et al. | Mar 1999 | A |
5912758 | Knipe et al. | Jun 1999 | A |
5939785 | Klonis et al. | Aug 1999 | A |
5986796 | Miles | Nov 1999 | A |
6028690 | Carter et al. | Feb 2000 | A |
6038056 | Florence et al. | Mar 2000 | A |
6040937 | Miles | Mar 2000 | A |
6049317 | Thompson et al. | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6061075 | Nelson et al. | May 2000 | A |
6099132 | Kaeriyama | Aug 2000 | A |
6113239 | Sampsell et al. | Sep 2000 | A |
6147790 | Meier et al. | Nov 2000 | A |
6160833 | Floyd et al. | Dec 2000 | A |
6180428 | Peeters et al. | Jan 2001 | B1 |
6201633 | Peeters et al. | Mar 2001 | B1 |
6232936 | Gove et al. | May 2001 | B1 |
6238755 | Harvey et al. | May 2001 | B1 |
6261853 | Howell et al. | Jul 2001 | B1 |
6282010 | Sulzbach et al. | Aug 2001 | B1 |
6295154 | Laor et al. | Sep 2001 | B1 |
6323982 | Hornbeck | Nov 2001 | B1 |
6445062 | Honda | Sep 2002 | B1 |
6447126 | Hornbeck | Sep 2002 | B1 |
6465355 | Horsley | Oct 2002 | B1 |
6466358 | Tew | Oct 2002 | B2 |
6473274 | Maimone et al. | Oct 2002 | B1 |
6480177 | Doherty et al. | Nov 2002 | B2 |
6496122 | Sampsell | Dec 2002 | B2 |
6545335 | Chua et al. | Apr 2003 | B1 |
6548908 | Chua et al. | Apr 2003 | B2 |
6549338 | Wolverton et al. | Apr 2003 | B1 |
6552840 | Knipe | Apr 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6600201 | Hartwell et al. | Jul 2003 | B2 |
6606175 | Sampsell et al. | Aug 2003 | B1 |
6625047 | Coleman, Jr. | Sep 2003 | B2 |
6630786 | Cummings et al. | Oct 2003 | B2 |
6632698 | Ives | Oct 2003 | B2 |
6643069 | Dewald | Nov 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6666561 | Blakley | Dec 2003 | B1 |
6674562 | Miles | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6710908 | Miles et al. | Mar 2004 | B2 |
6741377 | Miles | May 2004 | B2 |
6741384 | Martin et al. | May 2004 | B1 |
6741503 | Farris et al. | May 2004 | B1 |
6747785 | Chen et al. | Jun 2004 | B2 |
6775174 | Huffman et al. | Aug 2004 | B2 |
6778155 | Doherty et al. | Aug 2004 | B2 |
6791660 | Hayashi et al. | Sep 2004 | B1 |
6794119 | Miles | Sep 2004 | B2 |
6811267 | Allen et al. | Nov 2004 | B1 |
6819469 | Koba | Nov 2004 | B1 |
6822628 | Dunphy et al. | Nov 2004 | B2 |
6829132 | Martin et al. | Dec 2004 | B2 |
6853129 | Cummings et al. | Feb 2005 | B1 |
6855610 | Tung et al. | Feb 2005 | B2 |
6859218 | Luman et al. | Feb 2005 | B1 |
6861277 | Monroe et al. | Mar 2005 | B1 |
6862022 | Slupe | Mar 2005 | B2 |
6862029 | D'Souza et al. | Mar 2005 | B1 |
6867896 | Miles | Mar 2005 | B2 |
6870581 | Li et al. | Mar 2005 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7164520 | Palmateer et al. | Jan 2007 | B2 |
7368803 | Gally et al. | May 2008 | B2 |
7405924 | Gally et al. | Jul 2008 | B2 |
20010003487 | Miles | Jun 2001 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020024711 | Miles | Feb 2002 | A1 |
20020054424 | Miles | May 2002 | A1 |
20020056900 | Liu et al. | May 2002 | A1 |
20020063322 | Robbins et al. | May 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020119724 | Hammel | Aug 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020149096 | Liebeskind | Oct 2002 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030062186 | Boroson et al. | Apr 2003 | A1 |
20030072070 | Miles | Apr 2003 | A1 |
20030108306 | Whitney et al. | Jun 2003 | A1 |
20030121418 | Loop et al. | Jul 2003 | A1 |
20030122137 | Hashimoto | Jul 2003 | A1 |
20030138656 | Sparks | Jul 2003 | A1 |
20030160021 | Platt et al. | Aug 2003 | A1 |
20030184412 | Gorrell | Oct 2003 | A1 |
20030202264 | Weber et al. | Oct 2003 | A1 |
20030202265 | Reboa et al. | Oct 2003 | A1 |
20030202266 | Ring et al. | Oct 2003 | A1 |
20040051929 | Sampsell et al. | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040061492 | Lopes et al. | Apr 2004 | A1 |
20040080807 | Chen et al. | Apr 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040122175 | Hekal | Jun 2004 | A1 |
20040145049 | McKinnell et al. | Jul 2004 | A1 |
20040147056 | McKinnell et al. | Jul 2004 | A1 |
20040160143 | Shreeve et al. | Aug 2004 | A1 |
20040166603 | Carley | Aug 2004 | A1 |
20040174583 | Chen et al. | Sep 2004 | A1 |
20040179281 | Reboa | Sep 2004 | A1 |
20040189195 | Allemand | Sep 2004 | A1 |
20040212026 | Van Brocklin et al. | Oct 2004 | A1 |
20040213962 | Bourdelais et al. | Oct 2004 | A1 |
20040217378 | Martin et al. | Nov 2004 | A1 |
20040217919 | Piehl et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040218334 | Martin et al. | Nov 2004 | A1 |
20040218341 | Martin et al. | Nov 2004 | A1 |
20040227493 | Van Brocklin et al. | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20040240138 | Martin et al. | Dec 2004 | A1 |
20040245588 | Nikkel et al. | Dec 2004 | A1 |
20040259370 | Bergman | Dec 2004 | A1 |
20040263944 | Miles et al. | Dec 2004 | A1 |
20050001828 | Martin et al. | Jan 2005 | A1 |
20050038950 | Adelmann | Feb 2005 | A1 |
20050057442 | Way | Mar 2005 | A1 |
20050068583 | Gutkowski et al. | Mar 2005 | A1 |
20050069209 | Damera-Venkata et al. | Mar 2005 | A1 |
20050074919 | Patel et al. | Apr 2005 | A1 |
20050093134 | Tarn | May 2005 | A1 |
20050247477 | Kothari et al. | Nov 2005 | A1 |
20050253283 | Dcamp | Nov 2005 | A1 |
20060066935 | Cummings et al. | Mar 2006 | A1 |
20070170568 | Palmateer et al. | Jul 2007 | A1 |
20070268201 | Sampsell et al. | Nov 2007 | A1 |
20080164544 | Palmateer et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
0 667 548 | Aug 1995 | EP |
0 969 700 | Jan 2000 | EP |
1 251 546 | Oct 2002 | EP |
1418154 | May 2004 | EP |
02-068513 | Mar 1990 | JP |
03-199920 | Aug 1991 | JP |
2003-217828 | Jul 2003 | JP |
WO9530924 | Nov 1995 | WO |
WO9717628 | May 1997 | WO |
WO9952006 | Oct 1999 | WO |
WO9952006 | Oct 1999 | WO |
WO 0239513 | May 2002 | WO |
WO 02042716 | May 2002 | WO |
WO 03009317 | Jan 2003 | WO |
WO03007049 | Jan 2003 | WO |
WO03069413 | Aug 2003 | WO |
WO03073151 | Sep 2003 | WO |
WO2004006003 | Jan 2004 | WO |
WO2004026757 | Apr 2004 | WO |
WO 2005110914 | Nov 2005 | WO |
WO 2005114294 | Dec 2005 | WO |
WO 2005114294 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060066600 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60613801 | Sep 2004 | US |