The present application relates generally to patient temperature control systems.
It has been discovered that the medical outcome for a patient suffering from severe brain trauma or from ischemia caused by stroke or heart attack or cardiac arrest is improved if the patient is cooled below normal body temperature (37° C.). Furthermore, it is also accepted that for such patients, it is important to prevent hyperthermia (fever) even if it is decided not to induce hypothermia. Moreover, in certain applications such as post-CABG surgery, it might be desirable to rewarm a hypothermic patient.
As recognized by the present application, the above-mentioned advantages in regulating temperature can be realized by cooling or heating the patient's entire body using a closed loop heat exchange catheter placed in the patient's venous system and circulating a working fluid such as saline through the catheter, heating or cooling the working fluid as appropriate in an external heat exchanger that is connected to the catheter. The following U.S. patents, all of which are incorporated herein by reference, disclose various intravascular catheters/systems/methods for such purposes: U.S. Pat. Nos. 6,881,551 and 6,585,692 (tri-lobe catheter), U.S. Pat. No. 6,551,349 and U.S. Pat. No. 6,554,797 (metal catheter with bellows), U.S. Pat. No. 6,749,625 and U.S. Pat. No. 6,796,995 (catheters with non-straight, non-helical heat exchange elements), U.S. Pat. No. 6,126,684, U.S. Pat. No. 6,299,599, U.S. Pat. No. 6,368,304, and U.S. Pat. No. 6,338,727 (catheters with multiple heat exchange balloons), U.S. Pat. No. 6,146,411, U.S. Pat. No. 6,019,783, U.S. Pat. No. 6,581,403, U.S. Pat. No. 7,287,398, and U.S. Pat. No. 5,837,003 (heat exchange systems for catheter), U.S. Pat. No. 7,857,781 (various heat exchange catheters).
As understood herein, such catheters often cannot be customized for each individual patient when manufactured, and therefore must be made in a standard size. As further understood herein, this observation means that, in some patients, unused space may exist in the blood vessel beyond that needed to ensure adequate blood flow around the catheter.
Accordingly, an apparatus has a first elongated heat exchange catheter carrying circulating working fluid to and from a heat exchange system. The apparatus also has a second elongated heat exchange catheter carrying circulating working fluid to and from the heat exchange system. The apparatus has a connector supporting proximal portions of both catheters while distal portions of the catheters are disposed inside a patient's vasculature to exchange heat with the patient. If desired, the connector may be a Y-shaped connector.
The catheters may each have a heat exchange segment established by an elongated generally cylindrical balloon in non-limiting embodiments. Also other non-limiting embodiments, the catheters may each have at least one heat exchange segment established by a series of non-straight, non-helical links through which the working fluid flows serially from link to link. In still other non-limiting embodiments, the catheters may each have at least one heat exchange segment established by a straight central supply tube surrounded by three helical return tubes. Alternatively, the catheters may each have at least one heat exchange segment established by alternating segments of bellows regions and fluted regions, where the fluted regions have helical flutes in non-limiting embodiments.
However, it is to be understood that the heat exchange segments may be combined in a single embodiment such that one catheter may have one of the above-described heat exchange segments while the other catheter may have another of the above-described heat exchange segments. It is to be further understood that, in non-limiting embodiments, both catheters may have substantially similar heat exchange segments as described above. Even further, it is to be understood that each catheter May have more than one heat exchange segment, where the plural heat exchange segments of a single catheter may be any of the above-described segments without limitation.
In another aspect, a method includes providing a first elongated heat exchange catheter carrying circulating working fluid to and from a heat exchange system. The method also includes providing a second elongated heat exchange catheter carrying circulating working fluid to and from the heat exchange system. Last, the method includes using a connector supporting proximal portions of both catheters and disposing distal portions of the catheters inside a patient's vasculature to exchange heat with the patient.
In still another aspect, a system includes plural elongated heat exchange catheters carrying circulating working fluid to and from a heat exchange system. The system also includes a connector supporting proximal portions of the catheters while distal portions of the catheters are disposed inside a patient's vasculature to exchange heat with the patient.
The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
Referring initially to
As shown, working fluid may be circulated between the heat exchange system 12 and catheter 10 through supply and return lines 16, 18 that connect to the proximal end of the catheter 10 as shown. Note that as used herein, “proximal” and “distal” in reference to the catheter are relative to the system 12. A patient temperature signal from a catheter-borne temperature sensor may be provided to the system 12 through an electrical line 20 or wirelessly-if desired. Alternatively, a patient temperature signal may be provided to the system 12 from a separate esophageal probe or rectal probe or tympanic sensor or bladder probe or other temperature probe that measures the temperature of the patient 14.
The catheter 10, in addition to interior supply and return lumens through which the working fluid is circulated, may also have one or more infusion lumens connectable to an IV component 22 such as a syringe or IV bag for infusing medicaments into the patient, or an instrument such as an oxygen or pressure monitor for monitoring patient parameters, etc.
The catheter 10 can be positioned typically in the vasculature of the patient 14 and more preferably in the venous system of the patient 14 such as in the inferior vena cava through a groin insertion point or the superior vena cava through a neck (jugular or subclavian) insertion point.
Now in reference to
In accordance with present principles, the catheters 24 and 26 can be used to induce therapeutic hypothermia in a patient 32 using the catheter, in which coolant such as, but not limited to, saline circulates in closed loops as similarly described in reference to
Still in reference to
Additionally, patient temperature signals from catheter-borne temperature sensors may also be provided to the system 30 through respective electrical lines 38 and 44, or wirelessly if desired, such that the electrical lines 38 and 44 may be connected to temperature sensors in the catheters 24 and 26. However, it is to be understood that a single temperature sensor may be placed in only one of the catheters 24 or 26 in non-limiting embodiments. Alternatively, a patient temperature signal may be provided to the system 30 from a separate esophageal probe or rectal probe or tympanic sensor or bladder probe or other temperature probe that measures the temperature of the patient 32.
One or both catheters 24 and 26, in addition to interior supply and return lumens through which the working fluid is circulated, may also have one or more infusion lumens connectable to an IV component 46, such as a syringe or IV bag for infusing medicaments into the patient, or an instrument such as an oxygen or pressure monitor for monitoring patient parameters, etc. Although the IV component 46 as shown in
The catheters of
It may now be further appreciated that distal portions of the catheters 24 and 26 can be positioned in concert into the same insertion site of a patient 32, typically in the vasculature of the patient 32 and more preferably in the venous system of the patient 32 such as in the inferior vena cava through a groin insertion point or the superior vena cava through a neck (jugular or subclavian) insertion point. The positioning of distal portions of the catheters 24 and 26 into the patient 32 allows for more effective and efficient heat exchange with the patient 32 than a single catheter would. Furthermore, it is to be understood that the catheters 24 and 26 may be any of the catheters described below, or may be another type of catheter not described in reference to
Moving on,
Yet again,
While the particular SYSTEM AND METHOD FOR DOUBLED USE OF PATIENT TEMPERATURE CONTROL CATHETER is herein shown and described in detail, it is to be understood that the subject matter which is encompassed by the present invention is limited only by the claims.
Number | Name | Date | Kind |
---|---|---|---|
1459112 | Mehl | Jun 1923 | A |
1857031 | Schaffer | May 1932 | A |
2663030 | Dahlberg | Dec 1953 | A |
2673987 | Upshaw et al. | Apr 1954 | A |
3225191 | Calhoun | Dec 1965 | A |
3369549 | Armao | Feb 1968 | A |
3425419 | Dato | Feb 1969 | A |
3504674 | Swenson | Apr 1970 | A |
3726269 | Webster, Jr. | Apr 1973 | A |
3744555 | Fletcher et al. | Jul 1973 | A |
3751077 | Hiszpanski | Aug 1973 | A |
3937224 | Uecker | Feb 1976 | A |
3945063 | Matsuura | Mar 1976 | A |
4038519 | Foucras | Jul 1977 | A |
4065264 | Lewin | Dec 1977 | A |
4103511 | Kress et al. | Aug 1978 | A |
4126132 | Portner et al. | Nov 1978 | A |
4153048 | Magrini | May 1979 | A |
4173228 | Van Steenwyk et al. | Nov 1979 | A |
4181132 | Parks | Jan 1980 | A |
4298006 | Parks | Nov 1981 | A |
4459468 | Bailey | Jul 1984 | A |
4532414 | Shah et al. | Jul 1985 | A |
4554793 | Harding, Jr. | Nov 1985 | A |
4581017 | Sahota | Apr 1986 | A |
4638436 | Badger et al. | Jan 1987 | A |
4653987 | Tsuji et al. | Mar 1987 | A |
4661094 | Simpson | Apr 1987 | A |
4665391 | Spani | May 1987 | A |
4672962 | Hershenson | Jun 1987 | A |
4754752 | Ginsburg et al. | Jul 1988 | A |
4787388 | Hofmann | Nov 1988 | A |
4813855 | Leveen et al. | Mar 1989 | A |
4849196 | Yamada et al. | Jul 1989 | A |
4852567 | Sinofsky | Aug 1989 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4906237 | Johansson et al. | Mar 1990 | A |
4941475 | Williams et al. | Jul 1990 | A |
5092841 | Spears | Mar 1992 | A |
5103360 | Maeda | Apr 1992 | A |
5106360 | Ishiwara et al. | Apr 1992 | A |
5192274 | Bierman | Mar 1993 | A |
5195965 | Shantha | Mar 1993 | A |
5211631 | Sheaff | May 1993 | A |
5269758 | Taheri | Dec 1993 | A |
5281215 | Milder | Jan 1994 | A |
5304214 | DeFord et al. | Apr 1994 | A |
5334346 | Kim et al. | Aug 1994 | A |
5342301 | Saab | Aug 1994 | A |
5344436 | Fontenot et al. | Sep 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5383856 | Bersin | Jan 1995 | A |
5403281 | O'Neill et al. | Apr 1995 | A |
5433740 | Yamaguchi | Jul 1995 | A |
5437673 | Baust et al. | Aug 1995 | A |
5458639 | Tsukashima et al. | Oct 1995 | A |
5486207 | Mahawili | Jan 1996 | A |
5486208 | Ginsburg | Jan 1996 | A |
5507792 | Mason et al. | Apr 1996 | A |
5531714 | Dahn et al. | Jul 1996 | A |
5531776 | Ward et al. | Jul 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5624392 | Saab | Apr 1997 | A |
5634907 | Rani et al. | Jun 1997 | A |
5676670 | Kim | Oct 1997 | A |
5701905 | Esch | Dec 1997 | A |
5709564 | Yamada et al. | Jan 1998 | A |
5709654 | Klatz et al. | Jan 1998 | A |
5716386 | Ward et al. | Feb 1998 | A |
5730720 | Sites et al. | Mar 1998 | A |
5733319 | Neilson et al. | Mar 1998 | A |
5737782 | Matsuura et al. | Apr 1998 | A |
5776079 | Cope et al. | Jul 1998 | A |
5788647 | Eggers | Aug 1998 | A |
5837003 | Ginsburg | Nov 1998 | A |
5862675 | Scaringe et al. | Jan 1999 | A |
5895418 | Saringer | Apr 1999 | A |
5908407 | Frazee et al. | Jun 1999 | A |
5957963 | Dobak, III | Sep 1999 | A |
5980561 | Kolen et al. | Nov 1999 | A |
6019783 | Philips et al. | Feb 2000 | A |
6042559 | Dobak, III | Mar 2000 | A |
6051019 | Dobak, III | Apr 2000 | A |
6059825 | Hobbs et al. | May 2000 | A |
6096068 | Dobak, III et al. | Aug 2000 | A |
6110139 | Loubser | Aug 2000 | A |
6117065 | Hastings et al. | Sep 2000 | A |
6117105 | Bresnaham et al. | Sep 2000 | A |
6124452 | Di Magno | Sep 2000 | A |
6126684 | Gobin et al. | Oct 2000 | A |
6146141 | Schumann | Nov 2000 | A |
6146411 | Noda et al. | Nov 2000 | A |
6148634 | Sherwood | Nov 2000 | A |
6149670 | Worthen et al. | Nov 2000 | A |
6149677 | Dobak, III | Nov 2000 | A |
6231594 | Dae | May 2001 | B1 |
6283940 | Mulholland | Sep 2001 | B1 |
6299599 | Pham et al. | Oct 2001 | B1 |
6338727 | Noda et al. | Jan 2002 | B1 |
6383144 | Mooney et al. | May 2002 | B1 |
6409747 | Gobin et al. | Jun 2002 | B1 |
6416533 | Gobin et al. | Jul 2002 | B1 |
6428563 | Keller | Aug 2002 | B1 |
6450990 | Walker et al. | Sep 2002 | B1 |
6464716 | Dobak, III et al. | Oct 2002 | B1 |
6527798 | Ginsburg et al. | Mar 2003 | B2 |
6530946 | Noda et al. | Mar 2003 | B1 |
6544282 | Dae et al. | Apr 2003 | B1 |
6551309 | Le Pivert | Apr 2003 | B1 |
6554791 | Cartledge et al. | Apr 2003 | B1 |
6605106 | Schwartz | Aug 2003 | B2 |
6610083 | Keller et al. | Aug 2003 | B2 |
6620187 | Carson et al. | Sep 2003 | B2 |
6620188 | Ginsburg et al. | Sep 2003 | B1 |
6624679 | Tomaivolo et al. | Sep 2003 | B2 |
6635076 | Ginsburg | Oct 2003 | B1 |
6679906 | Hammack et al. | Jan 2004 | B2 |
6685733 | Dae et al. | Feb 2004 | B1 |
6706060 | Tzeng et al. | Mar 2004 | B2 |
6716188 | Noda et al. | Apr 2004 | B2 |
6719723 | Wemeth | Apr 2004 | B2 |
6719779 | Daoud | Apr 2004 | B2 |
6726653 | Noda et al. | Apr 2004 | B2 |
6740109 | Dobak, III | May 2004 | B2 |
6799342 | Jarmon | Oct 2004 | B1 |
6843800 | Dobak, III | Jan 2005 | B1 |
6887263 | Bleam et al. | May 2005 | B2 |
6893419 | Noda et al. | May 2005 | B2 |
6969399 | Schock et al. | Nov 2005 | B2 |
7189253 | Lunderqvist et al. | Mar 2007 | B2 |
7241307 | Lennox | Jul 2007 | B2 |
7510569 | Dae et al. | Mar 2009 | B2 |
7666215 | Callister et al. | Feb 2010 | B2 |
7822485 | Collins | Oct 2010 | B2 |
7846193 | Dae et al. | Dec 2010 | B2 |
7857781 | Noda et al. | Dec 2010 | B2 |
8105262 | Noda et al. | Jan 2012 | B2 |
8105263 | Noda et al. | Jan 2012 | B2 |
8105264 | Noda et al. | Jan 2012 | B2 |
8109894 | Noda et al. | Feb 2012 | B2 |
8157767 | Rozenberg et al. | Apr 2012 | B2 |
8512280 | Rozenberg et al. | Aug 2013 | B2 |
20010031946 | Walker et al. | Oct 2001 | A1 |
20010047196 | Ginsburg et al. | Nov 2001 | A1 |
20020013569 | Sterman et al. | Jan 2002 | A1 |
20020022823 | Luo et al. | Feb 2002 | A1 |
20020049484 | Werneth et al. | Apr 2002 | A1 |
20020145525 | Friedman et al. | Oct 2002 | A1 |
20020183692 | Callister | Dec 2002 | A1 |
20020198579 | Khanna | Dec 2002 | A1 |
20030236496 | Samson et al. | Dec 2003 | A1 |
20040089058 | De Haan et al. | May 2004 | A1 |
20040102825 | Daoud | May 2004 | A1 |
20040210231 | Boucher et al. | Oct 2004 | A1 |
20040215297 | Collins | Oct 2004 | A1 |
20050010272 | Pham et al. | Jan 2005 | A1 |
20050027281 | Lennox | Feb 2005 | A1 |
20050156744 | Pires | Jul 2005 | A1 |
20050209662 | Lunderqvist et al. | Sep 2005 | A1 |
20070007640 | Harnden et al. | Jan 2007 | A1 |
20070076401 | Carrez et al. | Apr 2007 | A1 |
20080215002 | Rozenberg et al. | Sep 2008 | A1 |
20100042089 | Soltesz et al. | Feb 2010 | A1 |
20100324483 | Rozenberg et al. | Dec 2010 | A1 |
20130331762 | Kassab et al. | Dec 2013 | A1 |
20140094883 | Lim et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
19531935 | Feb 1997 | DE |
2040169 | Aug 1980 | GB |
1183185 | Feb 1985 | GB |
2212262 | Jul 1989 | GB |
2383828 | Jul 2003 | GB |
09-215754 | Aug 1997 | JP |
10-0127777 | May 1998 | JP |
10-305103 | Nov 1998 | JP |
9001682 | Feb 1990 | WO |
9304727 | Mar 1993 | WO |
9400177 | Jan 1994 | WO |
9401177 | Jan 1994 | WO |
9725011 | Jul 1997 | WO |
9824491 | Jun 1998 | WO |
9840017 | Sep 1998 | WO |
0010494 | Mar 2000 | WO |
0113809 | Mar 2001 | WO |
0164146 | Sep 2001 | WO |
0176517 | Oct 2001 | WO |
0183001 | Nov 2001 | WO |
Entry |
---|
Mark A. Saab, “Multi-Lumen Heat Transfer Catheter System”, file history of pending U.S. Appl. No. 12/924,933, filed Oct. 8, 2010. |
David J. Scott, Ben F. Brian, Lloyd F. Wright, Leo A. Chin, Edward W. Hollmen, Saniel W. Seegars, Mark A. Logan, “Apparatus and Method for Providing Enhanced Heat Transfer from a Body”, file history of pending U.S. Appl. No. 12/897,637, filed Oct. 4, 2010. |
Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Edward A. Oliver, “Method and Apparatus for Regional and Whole Body Temperature Modification”, file history of pending U.S. Appl. No. 13/101,000, filed May 4, 2011. |
Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Edward A. Oliver, “Method and Apparatus for Regional and Whole Body Temperature Modification”, file history of pending U.S. Appl. No. 13/101,036, filed May 4, 2011. |
Timothy R. Machold, Wade A. Keller, Alex T. Roth, Nicole Denise Bloom, “Method and System for Control of a Patient's Body Temperature by Way of a Transluminally Insertable Heat Exchange Catheter”, file history of pending U.S. Appl. No. 13/161,648, filed Jun. 20, 2011. |
F.W. Behmann, E Bontke, “Die Regelung der Wärmebildung bei künstlicher Hypothermie”, Pffügers Archiv, Bd. 266, S. 408-421 (1958). |
F.W. Behmann, E. Bontke, “Intravasale Kühlung”, Pffügers Archiv, Bd. 263, S. 145-165 (1956). |
Wilhelm Behringer, Stephan Prueckner, Rainer Kenter, Samuel A. Tisherman, Ann Radovsky, Robert Clark, S. William Stezoski, Heremy Henchir, Edwin Klein, Peter Safar, “Rapid Hypothermic Aortic Flush Can Achieve Survival without Brain Damage after 30 Minutes Cardiac Arrest in Dogs”, anesthesiology, V. 93, No. 6, Dec. 2000. |
Dorraine Day Watts, Arthur Trask, Karen Soeken, Philip Predue, Sheilah Dols, Christopher Kaufman; “Hypothermic Coagulopathy in trauma: Effect of Varying levels of Hypothermia on Enzyme Speed, Platelet Function, and Fibrinolytic Activity”. The Journal of Trauma: Injury, Infection, and Critical Care, Vo. 44, No. 5 (1998). |
Number | Date | Country | |
---|---|---|---|
20130079857 A1 | Mar 2013 | US |