The disclosure relates generally to a system and method for facilitating claims processing in a healthcare environment.
According to the American Medical Association, administrative costs associated with the processing of health care insurance claims is upwards of $210 billion per year in the United States. The AMA also estimates that as many as 1 in 5 claims is processed inaccurately leading to significant amounts of money lost due to waste, fraud, and abuse. Three major reasons that claims are not processed by payers are:
Clinicians are increasingly adopting electronic clinical decision support tools to aid in determining their diagnoses. However, no system exists that provides healthcare provider billing personnel with the ability to discover abnormal claims and provide details on which constituent parts may need to be addressed so that the claim is adjudicated as desired.
The disclosure is particularly applicable to processing claims and claim decision support using the X12 healthcare data application programming interfaces (APIs) and it is in this context that the disclosure will be described. It will be appreciated, however, that the system and method has greater utility because: 1) the system and method may be used to process claims information using other known or yet to be developed APIs and protocols; and 2) the system and method may be implemented differently than disclosed below, but those other, alternative implementations are within the scope of the disclosure.
The area of healthcare claims processing is presently at best mismanaged or misappropriated and is wrought with errors that require both manual and electronic processing efforts. The claim processing support system and method disclosed below allows for the pre-processing of the healthcare claims as well as the method to reduce much of this overhead and alerting the user to any errors that occur during the claims processing.
The communication path 106 may be a wired, wireless or a combination of wireless and wired communication paths that use various communication protocols and data transfer protocols to allow the computing devices 102 and the backend 108 to communicate with each other and exchange data with each other to perform the healthcare claim decision support. For example, in one implementation, the TCP/IP and HTTPS or HTTP protocols may be used when a browser application is being used by the computing device 102. The communication path may be, for example, one or more of the Internet/World Wide Web, Ethernet, computer network, wireless data network, digital data network, Intranet, WiFi network and the like.
The backend 108 of the healthcare system may be implemented using one or more computing resources or cloud computing resources, such as one or more processors, one or more blade servers, one or more server computers and the like. The backend 108 may implement the claims decision support aspects using an application programming interface (API) processor 110, an identity matcher component 112, a claims processing engine component 114 and a claims decision support user interface component 116. Each of these components 110-116 may be implemented in hardware or software. If a component is implemented in software, the component may be a plurality of lines of computer code/instructions that may be executed by a processor of, for example, the healthcare backend 108, so that the processor is thus configured to perform the operations and functions of that component. If a component is implemented in hardware, the component may be an integrated circuit, gate array, microprocessor, microcontroller and the like that operate to perform the operations and functions of that component. A store 120 may be connected to the backend and may store various healthcare related data used by the system including, for example healthcare graph data, user healthcare data.
The API processor 110 may be a subsystem/component that processes and parses an incoming healthcare API data stream, such as an X12 healthcare data stream in one example, that is streaming into data that may be used for healthcare claim decision support. When the X12 healthcare data stream is being used, the API processor 110 may extract a healthcare eligibility response stream (a 271 stream), a healthcare claim submission stream (837 stream) and a claim payments stream (835 stream) from the X12 API streaming data. Further details of the API processing may be found in co-pending and commonly owned U.S. patent application Ser. No. 14/466,907, filed Aug. 22, 2014 and entitled “System and Method for Dynamic Transactional Data Streaming”, which is incorporated herein by reference. The output of this API processing component 110 is used to perform the claim decision support and claims processing operations described below.
The identity matcher component 112 may be used to aggregate heterogeneous data in a time domain as described in more detail below with reference to
For the healthcare claim decision support process, the API processor 110 may extract an eligibility responses data stream (271 stream in X12), a claim submissions data stream (837 stream in X12), and a claim payments data stream (835 stream in X12). Further, the identity matcher component 112 may match the heterogeneous data of the healthcare streams as described below in more detail with reference to
The 837 data stream may have various pieces of healthcare claims data.
Diagnosis Codes Per Procedure Code
Within the X12 837 file, each service for which a claim has been submitted is represented by an SV1 segment within the 2400—Service Line Number Loop. The SV1 segment contains the procedure code (usually a CPT code) and pointers for up to 4 diagnosis codes (usually either ICD9 or ICD10) for the service. An example SV1 segment may be:
SV1*HC:99211:25*12.25*UN*1*11**1:2:3**Y˜
HI*BK:8901*BF:87200*BF:5559˜
Here the CPT code for the service is 99211 and the ICD9 codes are 89.01, 872.00, and 55.59. In the above example, CPT code 99211 pertains to an evaluation and management (E/M) service. The CPT manual defines code 99211 as an office or other outpatient visit “that may not require the presence of a physician. The example ICD9 codes correspond to Open wound of external ear, unspecified site, without mention of complication (872.00) and Interview and evaluation, described as brief (89.01).
Using the 271 stream, the 837 stream and the 835 stream, the claims processing engine component may perform a sliding window operation as shown in
The Complex event processing (CEP) as described above is a method of tracking and analyzing streams of data from multiple sources and deriving real-time patterns. There are two major issues in dealing with multiple transaction streams (the various X12 streams in one embodiment) that the system and method addresses, namely:
In order to gain an accurate view of what happened in time for the events, the system aggregates the 271, 837, and 835 messages per encounter. An example of the aggregated 271, 837, and 835 messages for an encounter is contained in Appendix A that forms part of the specification and incorporated herein by reference. The system and method uses an extensive process for entity resolution to properly match the person to the encounter using the identity matching system shown in
Frequent Item Set Analysis
Using the most relevant data identified by the sliding analysis window process, the method 400 may perform a frequent item set analysis on the procedure data codes in the healthcare data streams (404). A common reason for service lines to be adjusted during adjudication is that the payer deems the procedure unwarranted with respect to the diagnoses. Association rule learning and frequent item set analysis are methods for discovering items that commonly appear together within a dataset of transactions. By applying these methods to the sliding window of healthcare data, such as the 271/837/835 messages, the method can determine which diagnosis codes are most frequently/infrequently associated to each procedure code and offer suggestions on possible missing or inappropriate diagnosis codes. The result of this analysis may be:
Since the probability is in the lowest quantile, the user would then see (as shown in
The frequent item set analysis process may be performed using several processes including:
Below is an example of when the FP-Growth process is used to perform the frequency item set analysis process.
ICD9 codes for CPT code 99203=[[“500.02”, “890.0”, “326.16”], [“500.02”, “890.0”], [“234.0”, “890.0”, “432.09”]]
The results of the FT-Growth process may be:
Using the frequencies resulting from the frequent item set mining process above, the method can then calculate the probability:
P(CPT|ICD1,ICD2, . . . ,ICDn)
The probability calculates how supported the CPT code is given the diagnosis codes, i.e. how “well” the provider has made their argument to charge for the procedure. The probability is then used to show a message that can be seen in
Procedure Price Analysis
Returning to
SV1*HC:99211:25*12.25*UN*1*11**1:2:3**Y˜
In this example the procedure represented by CPT code 99211 is being charged $12.25 USD by the healthcare services provider (e.g., a doctor, a nurse, a clinic or healthcare professional).
In healthcare claims adjudication, service lines may be adjusted by payers if the charge amount exceeds the payer's allowed amount for the service. This allowed amount is not known to providers unless they have agreed to a contracted rate for the service with the healthcare services payer (e.g., an insurance company). The charged price for the service may be analyzed by determining what percentile the charged price falls in based on the charged prices for the CPT code and payer in the 837 sliding window.
Charged Prices for CPT 99203 for Payer A=[127.26, 160.49, 129.31, 129.90, 168.09, 149.45, 202.16, 135.24, 100.21, 127.23]
Charged Price in 837 being analyzed=$169.23 and the Payer for this claim is Payer A
Using the above charged prices for Payer A, the following percentages may be determined:
In the example above, the percentage is determined based on the prices for Payer A. However, if a different claim being analyzed was being adjudicated by Payer B, then Payer B's prices for the same procedure would be used instead. Thus, for each claim and each procedure, the percentiles of the prices for that procedure for the particular payer may be determined.
In this example, the charged price of $169.23 in the claim being analyzed is above the 75th percentile and below the 95th percentile of $186.83. Accordingly, in this example, the user may be alerted that their charged price is on the higher end for this CPT for this specific payer. An example of the user interface that shows this alert is shown in
Procedure Code Co-Occurrence
Returning to
In addition to reimbursement amounts for each service, the 835 payment file enumerates the reasons that a service line was adjusted by the payer. Using corresponding 837 and 835 files from the sliding window under analysis, the method can predict which services will be adjusted due to the combination of CPT codes in the claim. An example of the data in the various healthcare X12 data streams may be found in Appendix A.
In machine learning and statistics, classification is the problem of predicting to which set of categories a new observation belongs based on training data of instances whose category membership is already known. Using the 837/835 data steam pairs, the method may construct a training set of CPT code sets and assign them either to the class of code sets that are allowed to exist in a claim for a given payer or not.
An example training set may be:
Once the training set is constructed, the method can then train a classifier process to predict whether or not the set of CPT codes in the current claim under review are valid co-occurrences. Multiple algorithms exist for creating classifiers that may be used in different embodiments of the method, including but not limited to:
For example, the classify code example may be:
As a result of this analysis, the system may generate a user interface such as shown in
User Interface Generation
Returning to
One such possible interface is to use a color coding (as shown in
As shown in
The detailed analysis portion 604 for each CPT code may include various indications of problems with the claim. For example, this portion of the user interface may list a price issue 606 that may be identified based on the price analysis process described above and/or an incorrect ICD code for a particular CPT 608 that may be identified by the frequent item set analysis described above. In addition to the example user interfaces described above, the user interface may recommend ICD codes to include/remove for a CPT code.
The above method may be implemented in various different ways. In one implementation, streams using Kafka may be used.
The consumers of the X12 Kafka message streams use an offset to only fetch the messages that are within the temporal sliding analysis window.
FP-Growth is a method for determining frequent itemsets that is more efficient than Apriori since it does not rely on candidate generation and instead uses a frequent pattern tree (FP-tree) which encodes the itemset association information.
The algorithm works as follows:
FP-Tree Structure
The FP-tree is structured as follows:
An example of an FP tree is shown in
FP-Tree Construction Algorithm
Input: A set of transactions and a minimum support threshold
Output: FP-tree
Method:
FP-Tree Growth Algorithm
Input: An FP-tree, T, representing a set of transactions
Output: The set of frequent itemsets
Method: call FP-growth(FP-tree, null)
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated.
The system and method disclosed herein may be implemented via one or more components, systems, servers, appliances, other subcomponents, or distributed between such elements. When implemented as a system, such systems may include an/or involve, inter alia, components such as software modules, general-purpose CPU, RAM, etc. found in general-purpose computers. In implementations where the innovations reside on a server, such a server may include or involve components such as CPU, RAM, etc., such as those found in general-purpose computers.
Additionally, the system and method herein may be achieved via implementations with disparate or entirely different software, hardware and/or firmware components, beyond that set forth above. With regard to such other components (e.g., software, processing components, etc.) and/or computer-readable media associated with or embodying the present inventions, for example, aspects of the innovations herein may be implemented consistent with numerous general purpose or special purpose computing systems or configurations. Various exemplary computing systems, environments, and/or configurations that may be suitable for use with the innovations herein may include, but are not limited to: software or other components within or embodied on personal computers, servers or server computing devices such as routing/connectivity components, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, consumer electronic devices, network PCs, other existing computer platforms, distributed computing environments that include one or more of the above systems or devices, etc.
In some instances, aspects of the system and method may be achieved via or performed by logic and/or logic instructions including program modules, executed in association with such components or circuitry, for example. In general, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular instructions herein. The inventions may also be practiced in the context of distributed software, computer, or circuit settings where circuitry is connected via communication buses, circuitry or links. In distributed settings, control/instructions may occur from both local and remote computer storage media including memory storage devices.
The software, circuitry and components herein may also include and/or utilize one or more type of computer readable media. Computer readable media can be any available media that is resident on, associable with, or can be accessed by such circuits and/or computing components. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and can accessed by computing component. Communication media may comprise computer readable instructions, data structures, program modules and/or other components. Further, communication media may include wired media such as a wired network or direct-wired connection, however no media of any such type herein includes transitory media. Combinations of the any of the above are also included within the scope of computer readable media.
In the present description, the terms component, module, device, etc. may refer to any type of logical or functional software elements, circuits, blocks and/or processes that may be implemented in a variety of ways. For example, the functions of various circuits and/or blocks can be combined with one another into any other number of modules. Each module may even be implemented as a software program stored on a tangible memory (e.g., random access memory, read only memory, CD-ROM memory, hard disk drive, etc.) to be read by a central processing unit to implement the functions of the innovations herein. Or, the modules can comprise programming instructions transmitted to a general purpose computer or to processing/graphics hardware via a transmission carrier wave. Also, the modules can be implemented as hardware logic circuitry implementing the functions encompassed by the innovations herein. Finally, the modules can be implemented using special purpose instructions (SIMD instructions), field programmable logic arrays or any mix thereof which provides the desired level performance and cost.
As disclosed herein, features consistent with the disclosure may be implemented via computer-hardware, software and/or firmware. For example, the systems and methods disclosed herein may be embodied in various forms including, for example, a data processor, such as a computer that also includes a database, digital electronic circuitry, firmware, software, or in combinations of them. Further, while some of the disclosed implementations describe specific hardware components, systems and methods consistent with the innovations herein may be implemented with any combination of hardware, software and/or firmware. Moreover, the above-noted features and other aspects and principles of the innovations herein may be implemented in various environments. Such environments and related applications may be specially constructed for performing the various routines, processes and/or operations according to the invention or they may include a general-purpose computer or computing platform selectively activated or reconfigured by code to provide the necessary functionality. The processes disclosed herein are not inherently related to any particular computer, network, architecture, environment, or other apparatus, and may be implemented by a suitable combination of hardware, software, and/or firmware. For example, various general-purpose machines may be used with programs written in accordance with teachings of the invention, or it may be more convenient to construct a specialized apparatus or system to perform the required methods and techniques.
Aspects of the method and system described herein, such as the logic, may also be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (“PLDs”), such as field programmable gate arrays (“FPGAs”), programmable array logic (“PAL”) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits. Some other possibilities for implementing aspects include: memory devices, microcontrollers with memory (such as EEPROM), embedded microprocessors, firmware, software, etc. Furthermore, aspects may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. The underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (“MOSFET”) technologies like complementary metal-oxide semiconductor (“CMOS”), bipolar technologies like emitter-coupled logic (“ECL”), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, and so on.
It should also be noted that the various logic and/or functions disclosed herein may be enabled using any number of combinations of hardware, firmware, and/or as data and/or instructions embodied in various machine-readable or computer-readable media, in terms of their behavioral, register transfer, logic component, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) though again does not include transitory media. Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
Although certain presently preferred implementations of the invention have been specifically described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the various implementations shown and described herein may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the applicable rules of law.
The healthcare claims processing system and method disclosed above improves the technical field of healthcare claim processing in which a computer processes healthcare claims. Specifically, unlike conventional healthcare processing systems that are fraught with errors and limitations, the disclosed healthcare claims processing system and method allows for the pre-processing of the healthcare claims as well as the method to reduce much of this overhead and alerting the user to any errors that occur during the claims processing. The disclosed system and method uses a novel analysis sliding window process and the algorithms disclosed to achieve the improved healthcare processing.
The healthcare claims processing system and method disclosed above apply abstract idea with machine, but not generic computer functions. While the system may perform data processing such as healthcare claims processing, the healthcare claim processing is being performed by a computer system that is performing more than just generic computer functions including the processing of X12 API data and performing a sliding window analysis of healthcare claims.
The healthcare claims processing system and method disclosed above also adds specific element that are other than well understood, routine and conventional in the field. Specifically, the system and method use a sliding window analysis of healthcare claims that is not well understood, routine and conventional in the field.
While the foregoing has been with reference to a particular embodiment of the disclosure, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5872021 | Matsumoto et al. | Feb 1999 | A |
6546428 | Baber et al. | Apr 2003 | B2 |
7386565 | Singh et al. | Jun 2008 | B1 |
7917378 | Fitzgerald et al. | Mar 2011 | B2 |
7917515 | Lemoine | Mar 2011 | B1 |
7970802 | Ishizaki | Jun 2011 | B2 |
7992153 | Ban | Aug 2011 | B2 |
8060395 | Frasher et al. | Nov 2011 | B1 |
8073801 | Von Halle et al. | Dec 2011 | B1 |
8095975 | Boss et al. | Jan 2012 | B2 |
8103667 | Azar et al. | Jan 2012 | B2 |
8103952 | Hopp | Jan 2012 | B2 |
8203562 | Alben et al. | Jun 2012 | B1 |
8229808 | Heit | Jul 2012 | B1 |
8286191 | Amini et al. | Oct 2012 | B2 |
8359298 | Schacher et al. | Jan 2013 | B2 |
8364501 | Rana et al. | Jan 2013 | B2 |
8417755 | Zimmer | Apr 2013 | B1 |
8495108 | Nagpal et al. | Jul 2013 | B2 |
8515777 | Rajasenan | Aug 2013 | B1 |
8817665 | Thubert et al. | Aug 2014 | B2 |
8984464 | Mihal et al. | Mar 2015 | B1 |
9165045 | Mok et al. | Oct 2015 | B2 |
9208284 | Douglass | Dec 2015 | B1 |
20020022973 | Sun et al. | Feb 2002 | A1 |
20020038233 | Shubov et al. | Mar 2002 | A1 |
20020165738 | Dang | Nov 2002 | A1 |
20030055668 | Saran et al. | Mar 2003 | A1 |
20030097359 | Ruediger | May 2003 | A1 |
20030171953 | Narayanan et al. | Sep 2003 | A1 |
20030217159 | Schramm-Apple et al. | Nov 2003 | A1 |
20030233252 | Haskell et al. | Dec 2003 | A1 |
20040143446 | Lawrence | Jul 2004 | A1 |
20050010452 | Lusen | Jan 2005 | A1 |
20050071189 | Blake et al. | Mar 2005 | A1 |
20050102170 | Lefever et al. | May 2005 | A1 |
20050137912 | Rao et al. | Jun 2005 | A1 |
20050152520 | Logue | Jul 2005 | A1 |
20050182780 | Forman et al. | Aug 2005 | A1 |
20050222912 | Chambers | Oct 2005 | A1 |
20060036478 | Aleynikov et al. | Feb 2006 | A1 |
20060074290 | Chen et al. | Apr 2006 | A1 |
20060089862 | Anandarao et al. | Apr 2006 | A1 |
20060129428 | Wennberg | Jun 2006 | A1 |
20060136264 | Eaton et al. | Jun 2006 | A1 |
20070113172 | Behrens et al. | May 2007 | A1 |
20070118399 | Avinash et al. | May 2007 | A1 |
20070156455 | Tarino et al. | Jul 2007 | A1 |
20070174101 | Li et al. | Jul 2007 | A1 |
20070180451 | Ryan et al. | Aug 2007 | A1 |
20070214133 | Liberty et al. | Sep 2007 | A1 |
20070233603 | Schmidgall et al. | Oct 2007 | A1 |
20070260492 | Feied et al. | Nov 2007 | A1 |
20070276858 | Cushman et al. | Nov 2007 | A1 |
20070288262 | Sakaue et al. | Dec 2007 | A1 |
20080013808 | Russo et al. | Jan 2008 | A1 |
20080082980 | Nessland et al. | Apr 2008 | A1 |
20080091592 | Blackburn et al. | Apr 2008 | A1 |
20080126264 | Tellefsen et al. | May 2008 | A1 |
20080133436 | Di Profio | Jun 2008 | A1 |
20080288292 | Bi et al. | Nov 2008 | A1 |
20080295094 | Korupolu et al. | Nov 2008 | A1 |
20080319983 | Meadows | Dec 2008 | A1 |
20090083664 | Bay | Mar 2009 | A1 |
20090125796 | Day et al. | May 2009 | A1 |
20090192864 | Song et al. | Jul 2009 | A1 |
20090198520 | Piovanetti-Perez | Aug 2009 | A1 |
20090300054 | Fisher et al. | Dec 2009 | A1 |
20090307104 | Weng | Dec 2009 | A1 |
20090313045 | Boyce | Dec 2009 | A1 |
20100076950 | Kenedy et al. | Mar 2010 | A1 |
20100082620 | Jennings, III et al. | Apr 2010 | A1 |
20100088108 | Machado | Apr 2010 | A1 |
20100088119 | Tipirneni | Apr 2010 | A1 |
20100138243 | Carroll | Jun 2010 | A1 |
20100217973 | Kress et al. | Aug 2010 | A1 |
20100228721 | Mok et al. | Sep 2010 | A1 |
20100295674 | Hsieh et al. | Nov 2010 | A1 |
20100332273 | Balasubramanian et al. | Dec 2010 | A1 |
20110015947 | Erry et al. | Jan 2011 | A1 |
20110055252 | Kapochunas et al. | Mar 2011 | A1 |
20110071857 | Malov et al. | Mar 2011 | A1 |
20110137672 | Adams et al. | Jun 2011 | A1 |
20110218827 | Kennefick et al. | Sep 2011 | A1 |
20110270625 | Pederson et al. | Nov 2011 | A1 |
20120011029 | Thomas et al. | Jan 2012 | A1 |
20120035984 | Srinivasa et al. | Feb 2012 | A1 |
20120078940 | Kolluri et al. | Mar 2012 | A1 |
20120130736 | Dunston et al. | May 2012 | A1 |
20120158429 | Murawski et al. | Jun 2012 | A1 |
20120158750 | Faulkner et al. | Jun 2012 | A1 |
20120173279 | Nessa et al. | Jul 2012 | A1 |
20120245958 | Lawrence et al. | Sep 2012 | A1 |
20120246727 | Elovici et al. | Sep 2012 | A1 |
20120290320 | Kurgan et al. | Nov 2012 | A1 |
20120290564 | Mok et al. | Nov 2012 | A1 |
20130030827 | Snyder et al. | Jan 2013 | A1 |
20130044749 | Eisner et al. | Feb 2013 | A1 |
20130085769 | Jost et al. | Apr 2013 | A1 |
20130138554 | Nikankin et al. | May 2013 | A1 |
20130166552 | Rozenwald et al. | Jun 2013 | A1 |
20130204940 | Kinsel et al. | Aug 2013 | A1 |
20130304903 | Mick et al. | Nov 2013 | A1 |
20140046931 | Mok et al. | Feb 2014 | A1 |
20140056243 | Pelletier et al. | Feb 2014 | A1 |
20140059084 | Adams et al. | Feb 2014 | A1 |
20140088981 | Momita | Mar 2014 | A1 |
20140136233 | Atkinson et al. | May 2014 | A1 |
20140180727 | Freiberger | Jun 2014 | A1 |
20140222482 | Gautam et al. | Aug 2014 | A1 |
20140244300 | Bess et al. | Aug 2014 | A1 |
20140249878 | Kaufman et al. | Sep 2014 | A1 |
20140278491 | Weiss | Sep 2014 | A1 |
20140358578 | Ptachcinski | Dec 2014 | A1 |
20140358845 | Mundlapudi et al. | Dec 2014 | A1 |
20150095056 | Ryan et al. | Apr 2015 | A1 |
20150112696 | Kharraz Tavakol | Apr 2015 | A1 |
20150142464 | Rusin et al. | May 2015 | A1 |
20150199482 | Corbin | Jul 2015 | A1 |
20150332283 | Witchey | Nov 2015 | A1 |
20160028552 | Spanos et al. | Jan 2016 | A1 |
20160055205 | Jonathan et al. | Feb 2016 | A1 |
20160253679 | Venkatraman et al. | Sep 2016 | A1 |
20160328641 | Alsaud et al. | Nov 2016 | A1 |
20160342750 | Alsaud et al. | Nov 2016 | A1 |
20160342751 | Alsaud et al. | Nov 2016 | A1 |
20170091397 | Shah et al. | Mar 2017 | A1 |
20170103164 | Dunlevy et al. | Apr 2017 | A1 |
20170103165 | Dunlevy et al. | Apr 2017 | A1 |
20170132621 | Miller et al. | May 2017 | A1 |
20170372300 | Dunlevy et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2478440 | Oct 2013 | GB |
WO 2012122065 | Sep 2012 | WO |
Entry |
---|
Ahlswede et al., Network Information Flow, IEEE Transactions on Information Theory, vol. 46, No. 4; Jul. 2000 (13 pgs.). |
Bhattacharya, Indrajit and Getoor, Lise, Entity Resolution In Graphs, Department of Computer Science, University of Maryland (2005) (21 pgs.). |
Chen et al., Adaptive Graphical Approach to Entity Resolution, Jun. 18-23, 2007, Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 204-213 (10 pgs.). |
Christen, Data Matching, Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection, © Springer-Verlag Berlin Heidelberg, 2012 (279 pgs.). |
Cohen et al.,A Comparison of String Metrics for Matching Names and Records, © 2003, American Association for Artificial Intelligence (www.aaai.org) (6 pgs.). |
Coleman et al., Medical Innovation—a diffusion study; The Bobbs-Merrill Company, Inc., 1966 (248 pgs.). |
Domingos et al., Mining High-Speed Data Streams, (2000) (10 pgs.). |
Greenhalgh et al., Diffusion of Innovations in Health Service Organisations—a systematic literature review, Blackwell Publishing, 2005 (325 pgs.). |
Jackson et al., The Evolution of Social and Economic Networks, Journal of Economic Theory 106, pp. 265-295, 2002 (31 pgs.). |
Jackson, Matthew O., Social and Economic Networks, Princeton University Press, 2008 (509 pgs.). |
Krempl et al., Open Challenges for Data Stream Mining Research, SIGKDD Explorations, vol. 16, Issue 1, Jun. 2014 (64 pgs.). |
Lin et al., A simplicial complex, a hypergraph, structure in the latent semantic space of document clustering, © Elsevier, 2005 (26 pgs.). |
Rebuge, Business Process Analysis in Healthcare Environments, 2011, Ellsevier Ltd., pp. 99-116 (18 pgs.). |
Wasserman et al., Social Network Analysis: Methods and Applications, Cambridge University Press; 1994 (434 pgs.). |
White et al., Algorithms for Estimating Relative Importance in Networks, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003 (10 pgs.). |
(MATHJAX), Naive Bayes Categorisation (with some help from Elasticsearch), blog post dated Dec. 29, 2013 (https://blog.wtf.sg/2013/12/29/naive-bayes-categorisation-with-some-help-from-elasticsearch/). (8 pgs.). |
Webpage: New Health Care Electronic Transactions Standards Versions 5010, D.0, and 3.0, Jan. 2010 ICN 903192; http://www.cms.gov/Regulations-and-Guidance/HIPAA-Adminstrative-Simplification/Versions5010and D0/downloads/w5010BasicsFctCht.pdf (4 pgs.). |
Webpage: U.S. Dept. of Health and Human Services, Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule, http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/De-identification/guidance.html printed Oct. 15, 2015 (14 pgs.). |
Anonymous: “Oauth—Wikipedia”, Sep. 23, 2013. Retrieved from the Internet URL:https://en.wikipedia.org/w/index.php?title+oAuth&oldid+574187532. |
Version 5010 and D.0, Center for Medicare and Medicaid Services (2 pgs.). |
Anonymous: “Oauth” Wikipedia—Retrieved from the Internet URL:https://en.wikipedia.org/wiki/Oauth (8 pgs.). |
Number | Date | Country | |
---|---|---|---|
20170351821 A1 | Dec 2017 | US |