System and method for electronic prepaid account replenishment

Information

  • Patent Grant
  • 8967464
  • Patent Number
    8,967,464
  • Date Filed
    Monday, June 10, 2013
    11 years ago
  • Date Issued
    Tuesday, March 3, 2015
    9 years ago
Abstract
A method for crediting a customer account maintained by a vendor of services in response to payment received from a customer is disclosed herein. The method includes issuing, to the customer, a membership account number associated with at least the customer account. A membership account number and a payment corresponding to a requested amount of a service offered by the vendor are received from the customer at a point-of-sale. The method further includes generating, at the point-of-sale, an authorization message including at least the membership account number and embedded transaction information identifying the service offered by the vendor and the requested amount. The embedded transaction information is then communicated from the point-of-sale to a database server. The customer account is credited, in response to the embedded transaction information, based upon an amount of the payment. The method also includes electronically transferring funds based upon the amount of the payment from a first account associated with the point-of-sale to a second account associated with the vendor.
Description
FIELD OF THE INVENTION

The present invention relates generally to methods and apparatus for effecting payment for goods and services. More particularly, the present invention is directed to a system and method for electronically crediting or otherwise replenishing an account for prepaid services in substantially real-time following receipt of a payment at a point-of-sale or other convenient location.


BACKGROUND OF THE INVENTION

There currently exist “pre-paid” telephone cards that allow a customer to purchase a desired amount of long-distance telephone time from a particular telephone service provider. These pre-paid telephone cards are often sold by dealers such as convenience stores or wireless phone stores. Pre-paid telephone cards are also often sold in airports. Vending machines for selling pre-paid telephone cards also have been developed. Each of these pre-paid telephone cards has a specific monetary denomination. For example, a customer could purchase a $10 card, a $20 card, or a $100 card. These pre-paid telephone cards are sold by particular telephone service providers such as AT&T, MCI, Sprint, etc. A customer could, for example, buy a $20 MCI card, which would entitle him or her to $20 worth of long-distance calling service provided by MCI. These cards are referred to as “pre-paid” because the customer purchases the long-distance time before he or she actually places the call. This is in contrast to the more typical post-pay service that most telephone customers use with the telephone in their residence or office. With post-pay service, customers are sent a bill on a periodic basis. The customer pays for calls that have already been made, rather than calls that will be made in the future.


Frequently, the pre-paid telephone cards that are sold by dealers or vending machines are of the “scratch-off” type. After the customer purchases a card, he or she can scratch off a layer of material which reveals a personal identification number (PIN). The layer of scratch-off material hides the PIN from customers browsing in the store who have not purchased the card. After a customer purchases a card and scratches off the layer of material, the customer can then use the card to place a long-distance call. When the customer wishes to place a long-distance call, he or she dials a special number provided by the telephone service provider. The customer then enters the PIN written on the card. The long distance provider automatically debits the charge of the call from an account associated with the PIN.


As an example, a customer could purchase a $10 MCI card. After the customer rubs off the layer of material, a PIN number 129384348764 is revealed. When the customer wishes to place a long-distance call, the customer dials an MCI access number. The customer then enters PIN 129384348764. The long-distance carrier, MCI, identifies the PIN and recognizes that there is $10 worth of credit in this account. If the customer places a call which lasts 5 minutes and costs 4$, MCI will debit the account so that $6 remains. The next time the customer places a call using that PIN number, the system will find that $6 remains in the account associated with that PIN.


One problem with these pre-paid phone cards is that the cards present a major inventory headache for dealers. There is a lot of work and expense associated with maintaining a filled inventory of cards. First, the dealer or vending machine operator has to predict which cards will be in demand and determine how many cards of each denomination to order for each of various providers. The dealer then has to pay for the desired inventory of cards up front, which requires a significant cash outlay. The dealer then has to keep track of how many cards are left in stock for each service provider and of each different monetary denomination, and determine when to order a new batch of cards. All of these costs associated with filled inventory can be time consuming and expensive for dealers.


Another problem is that these pre-paid telephone cards are especially vulnerable to theft, loss, and other inventory “shrinkage.” Because the cards are small, it is easy for a shoplifter to pocket a card unnoticed. Since these cards have a high value to them and are so easy to pocket, dealers which sell these cards are extremely vulnerable to inventory shrinkage.


Vending card machines have been proposed which store personal identification numbers (PINs) in a memory in the machine. A customer can then purchase a pre-paid telephone PIN by inserting cash into the machine. Once the cash has been inserted, a PIN and usage instructions stored within the machine memory are printed upon a blank card that is dispensed to the customer. The machine can replenish its stock of PINs when the memory runs out of PINs or on a periodic basis by accessing a remote store of PINs via a modem.


The problem with these vending machines is that there are still significant costs associated with inventorying the PINs. The PINs are retained in a memory in the machine which has a similar effect to storing cards. Once a PIN has been stored in the memory of a particular machine, that PIN becomes unavailable to be used by any other dealer, even if the PIN is never purchased. Additionally, if the machine were to break, or the memory were to be erased, there is a problem determining who is responsible for paying for the PINs that were contained in the memory. Additionally, decisions must still be made how many PINs to store in memory, what monetary denominations to store in memory, and for which providers to store PINs in memory. Therefore, there are still significant inventory costs associated with storing the PINs in the vending machine. Additionally, these proposed vending machines do not provide consumers the ability to obtain a PIN from the convenience of their homes or offices.


Another system which has been proposed is a web site which is accessed over the Internet. A customer can go to this web site and purchase pre-paid telephone service. A PIN is then e-mailed to the customer's e-mail address. The problem with this service is that a customer must be able to access his or her email account in order to obtain the PIN. Additionally, e-mail is often insecure. If a computer hacker is “listening in” on an individual's email, then the hacker can steal the PIN and use it for his own purposes. Additionally, if a customer is purchasing a PIN in a convenience store or an airport, the customer will probably not have access to his or her e-mail account. The customer may have to wait to return to his or her home or office to access the PIN. Additionally, e-mail can sometimes be slow and it may take hours or days to retrieve the message from the customers Internet Service Provider (ISP).


A system addressing these shortcomings is described in U.S. Pat. No. 6,526,130 (the “130 patent”), which is assigned to the assignee of the present invention. The '130 patent describes a secure system capable of providing PINs for pre-paid goods and services conveniently to customers. The system of the '130 patent advantageously relieves dealers such as convenience stores and vending machine operators from the costs associated with maintaining a filled inventory of pre-paid cards and PINs. In addition, the system allows consumers to select from a wide-range of providers and monetary denominations without requiring the dealer to maintain a large filled inventory of cards or predict which type of cards or PINs to order. Specifically, after a customer purchases a pre-paid amount of a good or service, the customer receives a personal identification number (PIN) capable of being downloaded in real-time over a network such as the Internet. After the customer receives the PIN, the customer can then use this PIN at any convenient time to access the desired good or service.


Although the system of the '130 patent provides a convenient mechanism for establishing a pre-paid account, it would also be desirable to conveniently be able to “recharge” or otherwise replenish an account for pre-paid services prior to or upon exhaustion of the initial allocation of services. For example, considering again the case in which $10 of pre-paid long distance service has been purchased from a telecommunications carrier, it is usually possible to replenish this type of account by calling an 800 number and providing a credit card number to a service representative or automated system. However, this approach tends to be burdensome to the customer and requires expenditures on the part of the telecommunications carrier. Perhaps more significantly, many users of pre-paid telecommunications services accounts have experienced credit difficulties and thus may not have a valid credit card available for such replenishment purposes.


At least one pre-paid account replenishment scheme has been proposed which utilizes the existing financial network for credit card transactions, but which does not require the account holder to actually possess a valid credit card. That is, the account holder is provided the opportunity to make payments in the form of cash or the equivalent at a merchant point-of-sale. These payments are then posted to an intermediary account, from which payment may subsequently be made on behalf of the account holder to the applicable pre-paid services vendor. Unfortunately, this approach disadvantageously requires the establishment of an “intermediary” account for the account holder distinct from the account maintained with the pre-paid services vendor. Moreover, this approach does not contemplate the establishment of a single account through which pre-paid accounts with multiple vendors of pre-paid services could be conveniently replenished.


SUMMARY OF THE INVENTION

In summary, the present invention relates to a method for crediting a customer account maintained by a vendor of services in response to payment received from a customer. The method includes issuing, to the customer, a membership account number associated with at least the customer account. A membership account number and a payment corresponding to a requested amount of a service offered by the vendor are received from the customer at a point-of-sale. The method further includes generating, at the point-of-sale, an authorization message including at least the membership account number and embedded transaction information identifying the service offered by the vendor and the requested amount. The embedded transaction information is then communicated from the point-of-sale to a database server. In response to the embedded transaction information, the customer account is credited based upon an amount of the payment. The method also includes electronically transferring funds based upon the amount of the payment from a first account associated with the point-of-sale to a second account associated with the vendor.


The present invention is also directed to a method for crediting a customer account maintained by a vendor of prepaid services in response to payment received from a customer. The method includes issuing, to the customer, a membership card containing a membership account number. The membership account number and a payment corresponding to a requested amount of a prepaid service offered by the vendor are then received from the customer at a point-of-sale. The method further includes maintaining, within a database server, a database associating the membership account number with identifying information pertaining to the customer account. An association between a merchant account number applicable to the point-of-sale and a list of approved prepaid services authorized to be purchased at the point-of-sale is also maintained within the database. At the point-of-sale, an authorization message including at least the membership account number and embedded transaction information identifying the prepaid service offered by the vendor and the requested amount is generated. The method also includes maintaining, within the database, an association between virtual payment amounts and monetary amounts of prepaid services offered by a plurality of vendors, the embedded transaction information including a first of the virtual payment amounts. The embedded transaction information is then communicated from the point-of-sale to the database server. Subsequent to receipt of the embedded transaction information at the database server, the customer account is credited based upon an amount of the payment. The method further includes electronically transferring funds based upon the amount of the payment from a first account associated with the point-of-sale to a second account associated with the vendor.


In another aspect, the present invention relates to a method for crediting a customer account maintained by a vendor of services in response to payment received from a customer at a point-of-sale. The method includes receiving, at a database server, an authorization message including at least a membership account number associated with the customer account, embedded transaction information identifying an offered service, and a requested amount corresponding to the payment. The method further includes crediting, in response to the embedded transaction information, the customer account based upon an amount of the payment. Funds are then electronically transferred, from a first account associated with the point-of-sale to a second account associated with the vendor, based upon the amount of the payment.


In yet another aspect the present invention is directed to a method for providing authorization to credit a customer account maintained by a vendor of services in response to payment received from a customer. The method includes receiving, from the customer at a point-of-sale, a membership account number associated with at least the customer account and a payment corresponding to a requested amount of a service offered by the vendor. The method further includes generating, at the point-of-sale, an authorization message including at least the membership account number and embedded transaction information identifying the service offered by the vender and the requested amount. The embedded transaction information, which is capable of being used to facilitate crediting of the customer account based upon an amount of the payment, is then transmitted from the point-of-sale to a database server.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the nature of the features of the invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings, in which:



FIG. 1 provides a simplified illustrative representation of a system for electronic prepaid account replenishment in accordance with the present invention.



FIG. 2 provides a block diagrammatic representation of a prepaid transaction processor within the system of FIG. 1.



FIGS. 3A-3B illustratively represent the organization of a virtual payment identifier database disposed within the prepaid transaction processor of FIG. 2.



FIGS. 4A-4B illustratively represent alternative physical embodiments of a point-of-sale (POS) terminal incorporated within the system of FIG. 1.



FIGS. 5A-5C are flowcharts comprised of a sequence of events and operations consistent with the account replenishment method of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 provides a simplified illustrative representation of the system for electronic prepaid account replenishment 100 of the present invention. As is described herein, the present invention allows a customer to replenish a prepaid account relating to any good or service, such as telephone service, gasoline, electricity, dry-cleaning, bus service, subway service, magazines, newspapers, or bundled goods and services. The system 100 includes a merchant point-of-sale (POS) terminal 110 configured to read information incorporated within membership cards issued to customers by an issuing bank or similar financial institution. Each membership card 114 may be an actual credit card, a debit card, a stored value (prepaid credit) card, or other machine-readable card capable of storing a membership account number.


When a customer desires to replenish the value of one or more prepaid accounts associated with the membership card 114, the customer presents the card 114 to the merchant operating the POS terminal 110 and specifies a particular prepaid service (e.g., prepaid wireless services from Cingular Wireless) and the amount by which the customer's account for such service is to be replenished (e.g., $20). Using the membership card 114, and the prepaid service and value information provided by the customer, the merchant uses the POS terminal 110 to create an account replenishment transaction message. Specifically, the merchant “swipes” the membership card 114 through the POS terminal 110, which reads the membership account number from the membership card 114. The merchant also enters a “virtual” payment amount into the terminal 110 corresponding to the specified prepaid account and replenishment value. This results in generation of the account replenishment transaction message, which appears to a card association network 130 (e.g., VisaNet) as a standard credit card authorization transaction. This message contains embedded transaction information (i.e., membership account number, virtual payment amount, and merchant account number associated with the merchant operating the POS terminal 110) which enables the applicable prepaid service account associated with the membership card 114 to be credited in the manner described below. In typical implementations the account replenishment transaction message is relayed by an acquiring bank processor 120 to the card association network 130, within which it is routed to an issuing bank processor 140 operated by the bank or institution responsible for issuing the customer's membership card 114.


The issuing bank processor 140 examines the virtual payment amount within the account replenishment transaction message and determines that such transaction does not in fact correspond to a standard credit card authorization transaction. In the exemplary embodiment the issuing bank processor 140 is configured to distinguish between virtual payment amounts and amounts associated with standard credit card authorization transactions. For example, in cases in which the membership card 114 functions as a stored value card, a limit on the amount of funds permitted to be stored in the account (e.g., $500) could be established. In this case if all virtual payment amounts are within a range which exceeds this funds limit (e.g., $9xx.OO), then such virtual payment amounts will always be distinguishable from the payment amounts associated with conventional transactions involving the stored value card.


Referring again to FIG. 1, the issuing bank processor 140 forwards the embedded transaction information within the account replenishment transaction message to a prepaid transaction processor 160 via a data network 164 (e.g., the Internet). Within the transaction processor 160, customer information specific to the service provider 170 with which the customer's prepaid account is maintained is retrieved from a customer account database 216 (FIG. 2), which is indexed as a function of membership account number. For example, in the case in which the customer's account to be replenished is for prepaid wireless services, the phone number associated with such account could be retrieved from the database 216. As is discussed below, in alternate implementations the account replenishment transaction message may be routed by the card association network 130 directly to the transaction processor 160; that is, the transaction processor 160 may alternately be directly connected to the card association network 130, thereby enabling the account replenishment transaction message to bypass the issuing bank processor 140.


The prepaid transaction processor 160 automatically contacts a server operated by the appropriate service provider 170 and requests it to credit the customer's prepaid account by an amount encoded by the virtual payment amount within the embedded transaction information. After submitting this request to the service provider 170 via the data network 164, the prepaid transaction processor 160 awaits a response as to the outcome of the request. If the request is accepted by the service provider 170, the success of the request may be communicated to the customer other than via the card association network 130. For example, if the customer is a user of wireless services, an SMS message or the equivalent confirming the success of the replenishment transaction may be sent to the customer's wireless communication device. In addition, in the event the replenishment transaction is successfully completed, the transaction processor 160 sends a predefined response over the card association network 130 for display on the screen of the POS terminal 110. The merchant will then typically inform the customer the replenishment transaction has been successfully completed. If for some reason the replenishment transaction is not completed, the transaction processor 160 sends a different predefined response over the card association network 130 for display on the screen of the POS terminal 110.


The type of predefined response communicated over the card association network 130 in response to successful completion or failure of the replenishment transaction will generally be dependent upon whether final settlement of a successfully completed transaction (i.e., transfer of funds from a bank account of the merchant operating the POS terminal 110 to a bank account of the service provider 170) is effected using the card association network 130 or by some other means. For example, if such final settlement is not to be carried out using the card association network 130, it will generally be desired to send a “decline” response over the card association network 130 to the POS terminal 110 in the event the replenishment transaction is successfully completed (i.e., the service provider 170 credits the customer's account by the requested amount). As a consequence, funds will not be transferred due to successful completion of the account replenishment transaction via a settlement operation of the type generally performed upon successful consummation of a transaction using the card association network 130. In this case a “processing error” response or the equivalent is communicated via the card association network 130 to the POS terminal if for some reason the account replenishment transaction is not successfully completed. On the other hand, if final settlement between the merchant operating the POS terminal 110 and the service provider 170 in connection with successful completion of the account replenishment transaction is to be performed via the card association network 130, then the card association network 130 may opt to permit the POS terminal to generate a specialized “fulfillment” transaction. In contrast to the account replenishment transaction message described above, such a fulfillment transaction would not be processed by the card association network 130 as a standard credit card authorization transaction. Specifically, approval of this type of fulfillment transaction would constitute authorization to transfer funds from the bank account associated with the acquiring processor bank processor 120 to the account associated with the issuing bank processor 140, rather than vice-versa.


Referring now to FIG. 2, a block diagrammatic representation is provided of the prepaid transaction processor 160. As shown, the prepaid transaction processor 160 includes a CPU 202 connected to RAM 204, ROM 208, and a data storage device 212. The prepaid transaction processor 160 further includes one or more network communication modules (not shown) for effecting communication with the card association network 130 and the data network 164. Included within secondary data storage 212 are a customer accounts database 216, a merchant database 220, and a virtual payment identifier database 222. Secondary data storage 212 also includes a copy of the operating system (not shown) executed by the CPU 202 during operation of the transaction processor 160.


The customer accounts database 216 serves to map an account number on the membership card 114 to a record identifying the prepaid services used by the customer associated with the card 114. For example, a record within the database 216 could establish that the customer associated with membership account number “WWWW XXXX YYYY ZZZZ” is an existing customer of Cingular Wireless for prepaid wireless services.


The merchant database 220 is configured to map merchant account numbers to records identifying the prepaid services which each merchant is authorized to sell. For example, a record within the database 220 could indicate that the merchant identified by the account number “AAAA BBBB CCCC DDDD” is authorized to sell prepaid wireless services provided by Cingular Wireless.



FIG. 3 illustratively represents the organization of the virtual payment identifier database 222. In the exemplary embodiment the virtual payment identifier database 222 functions to establish a correspondence between the “virtual” payment amounts entered into the POS terminal 110 and the type and denomination of the prepaid service purchased. As shown in FIG. 3, the database 222 includes a listing of an exemplary set of virtual payment amounts 310 and the prepaid service category 320, service provider 330, prepaid product 340, and product denomination or purchase amount 312 associated with each. For example, in the embodiment of FIG. 3 the virtual payment amount 310 of “990.82” is used to encode a purchase amount 312 of $100 of prepaid wireless services furnished by T-Mobile.


In operation, the transaction processor 160 extracts the virtual payment amount from the embedded transaction information provided by the issuing bank processor 140 for a particular account replenishment transaction. The transaction processor 160 then uses this virtual payment amount as an index into database 222 in order to determine which of the service providers 170 should be contacted and the amount which should be requested to be added to the applicable customer account. Once the service provider 170 associated with the virtual payment amount has been identified, information identifying the specific customer account to be replenished may be retrieved from the customer accounts database 216 using the membership account number included within the embedded transaction information as an index. For example, if a virtual payment amount of “990.65” is included within the embedded transaction information, then the wireless phone number pertinent to prepaid wireless services from AT&T Wireless that corresponds to the extracted membership account number is retrieved from the customer accounts database 216. As mentioned above, information identifying more than a single customer account may be associated in the database 216 with a given membership account number.



FIGS. 4A-4B illustratively represent alternative physical embodiments of the POS terminal 110. Specifically, FIG. 4A depicts a physical embodiment of a POS terminal 400 which is used in a typical checkout counter of a store, such as a convenience store. As shown, POS terminal 400 includes a touch-screen 404. Various options appear on touch-screen 404, which a customer may activate by touching an appropriate location on touch-screen 404. A customer makes payment for replenishment of the applicable prepaid account by paying cash to a store clerk operating cash register 402. Alternatively, a customer can pay with a credit card by swiping a credit card through credit card slot 408. Buttons 206 can be used by the customer in addition to touch-screen 204 to make additional selections, such as choosing a particular type of credit card.


It should be understood that any “standard” credit card transaction generated by the POS terminal 400 in connection with replenishment of the value of the applicable prepaid account will be distinct from the account replenishment transaction generated by the POS terminal 400 in accordance with the invention. In the example of FIG. 4A, the membership card 114 of the purchasing customer may also be swiped through credit card slot 408 in connection with generation of an account replenishment transaction message. In addition, a numeric keypad (not shown) rendered by touch-screen 404 may be used to enter the virtual payment amount corresponding to the requested provider and monetary denomination. Based upon these inputs, the POS terminal 400 generates an account replenishment transaction in the manner described above.



FIG. 4B depicts an alternative physical embodiment of a POS terminal 450 in the form of an automated kiosk. As shown, POS terminal includes a touch-screen 452. Credit card receptor 454 allows a consumer to submit payment for replenishment of the applicable prepaid services account by inserting a credit card, and also may be used in connection with reading of the customer's membership card 114. Alternatively, the customer can insert bills into bill receptor 458, or coins into coin receptor 460. Virtual payment amounts may be entered via keypad 466 or through a keypad (not shown) rendered by touch-screen 452.


Turning now to FIG. 5, a flowchart 500 comprised of a sequence of events and operations consistent with the account replenishment method of the present invention will now be described. In the exemplary embodiment the inventive method is initiated upon a customer visiting an authorized merchant or retailer in order to request a membership card. To this end the customer informs the dealer of the identity of one or more of the customer's prepaid services providers (e.g., a prepaid wireless carrier) and information uniquely identifying the customer's account with each such provider (e.g., wireless phone number) (step 504). The merchant then “swipes” the membership card to be issued to the customer through a POS terminal, which reads a membership account number associated with the card. The merchant also enters the customer's wireless phone number or other account-identifying information supplied by the customer into the POS terminal (step 508).


When a customer desires to add value to one or more prepaid accounts associated with the membership card, the customer presents the card to a merchant and specifies a particular prepaid service and the amount to be added to such customer's account. (step 512). The merchant swipes the membership card through a POS terminal, which reads the customer's membership account number from the membership card (step 516). The merchant also enters the virtual payment amount into the POS terminal corresponding to the specified prepaid account and the value to be added to such account (step 520). An account replenishment transaction message containing embedded transaction information (i.e., membership account number, virtual payment amount, merchant account number) is then created by the POS terminal and transmitted to a card association network via an acquiring bank processor (step 524). Within the card association network, the account replenishment transaction message is routed in accordance with a bank identification number (BIN) read from the membership card. Specifically, the BIN is a number uniquely identifying the bank or financial institution issuing the membership card, and the account replenishment transaction message is routed to a processor of this issuing bank (step 526).


Within the issuing bank processor, the virtual payment amount within the account replenishment transaction message is examined in order to determined whether or not a standard credit card authorization transaction has been received (step 532). Once the issuing bank processor has examined the virtual payment amount and determined that a standard credit card authorization transaction has not been received, it forwards the embedded transaction information within the received account replenishment transaction message via a data network to the prepaid transaction processor (step 536). It is observed that in certain embodiments the prepaid transaction processor and the issuing bank processor may comprise a single entity, thus obviating the need for separate transmittal of the embedded transaction information via a data network. The prepaid transaction processor verifies that the membership account number, virtual payment amount, and merchant account number correspond to a valid account replenishment transaction (step 537). For example, it could be determined that the virtual payment amount corresponds to $20 of prepaid wireless services from Cingular Wireless, that the customer has an account with Cingular Wireless, and that the merchant is authorized to sell prepaid wireless products offered by Cingular Wireless. If this verification fails, then a failure procedure 548 (described below) is executed.


In alternate implementations the account replenishment transaction message is routed directly from the card association network to the prepaid transaction processor in accordance with the BIN read from the membership card; that is, the BIN is associated with the prepaid transaction processor itself rather than with a processor of an issuing bank. Once received at the prepaid transaction processor, the account replenishment transaction message and the embedded transaction information therein is processed in the manner described above and hereinafter.


Once the embedded transaction information has been successfully verified for accuracy, the prepaid transaction processor retrieves customer account information specific to the customer's prepaid account to be replenished from the customer accounts database (step 540). The prepaid transaction processor then automatically contacts a server operated by the appropriate service provider and requests it to credit the customer's prepaid account by an amount based upon or equivalent to the value of the payment originally made by the customer to the merchant initiating the account replenishment transaction (step 544).


If for some reason the service provider cannot be contacted (step 546), then a failure procedure 548 is carried out. Specifically, the prepaid transaction processor sends a predefined response (e.g., a “processing error” response) over the card association network (step 552). This predefined response is then displayed on the POS terminal initiating the account replenishment transaction (step 554). At this point the merchant operating the POS terminal typically informs the customer that a prepaid service may not be purchased at the present time (step 556).


After submitting the prepaid account replenishment request to the service provider pursuant to step 544, the prepaid transaction processor awaits a response as to the outcome of the request. If no response is received from the service provider or if a negative response is received, then the failure procedure 548 is executed (step 558). If the request is accepted by the service provider, the success of the request may be communicated to the customer via a secondary communication channel (i.e., other than via the card association network) (step 560). In addition, in the event the replenishment transaction is successfully completed (step 561), the transaction processor sends the appropriate predefined response over the card association network for display on the screen of the POS terminal initiating the account replenishment transaction (step 562). In this case the merchant will then typically inform the customer that the replenishment transaction has been successfully completed (step 564). If for some reason the account replenishment transaction is not completed (step 561), then the failure procedure 548 is executed.


As mentioned above, financial settlement between the merchant accepting payment for the prepaid services being purchased and the applicable prepaid services provider may be carried out using conventional means (e.g., using standard batch processing techniques). For example, when settlement is to be accomplished without relying upon a specialized fulfillment transaction processed by the card association network, the merchant may aggregate (e.g. at the end of a given processing period) into a file various information concerning all account replenishment operations initiated by such merchant during the relevant period. The resulting batch file is communicated to an automated clearing house (ACH) gateway. In tum, the ACH gateway transmits the information within the batch file to the Federal Reserve, which effectively transfers funds from the merchant's bank account to the service provider's bank account. It may be appreciated that this transfer of funds is all that is required to achieve settlement of account replenishment transactions among a given merchant and service provider. That is, it is unnecessary to transfer funds to or from any intermediary account associated with a customer in order to effect such settlement. Moreover, it is similarly unnecessary to void or “reverse” one or more credit card transactions to achieve such settlement, since in the exemplary embodiment a “decline” response is transmitted through the card association network in order to signal successful completion of an account replenishment operation. That is, it appears to the card association network and issuing bank as if a proposed credit transaction has been simply declined, and consequently funds transfers which would subsequently need to be reversed do not occur.


The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. In other instances, well-known circuits and devices are shown in block diagram form in order to avoid unnecessary distraction from the underlying invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, obviously many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following Claims and their equivalents define the scope of the invention.

Claims
  • 1. A computer implemented method for crediting a customer account maintained by a vendor of prepaid services in response to payment received from a customer, the method comprising: receiving via a data network a transaction request with embedded transaction information, including a membership account number associated with a customer account, a payment amount corresponding to a requested amount of a prepaid service offered by the vendor, and a virtual payment amount;maintaining, within a database server, a database associating transaction information with identifying information pertaining to the customer account;maintaining, within the database, an association between virtual payment amounts and prepaid services offered by a plurality of vendors, the embedded transaction information including a first of the virtual payment amounts;determining, by a transaction processor configured for such determination, from the embedded transaction information, the vendor of the requested prepaid product;wherein, subsequent to a determination that the embedded transaction information defines a valid transaction, facilitating the electronic crediting of the customer account with an amount corresponding to the requested amount of prepaid service.
  • 2. The method of claim 1, wherein payment is transferred from a first account associated with the terminal to a second account associated with the vendor.
  • 3. The method of claim 1, wherein the terminal is a kiosk.
  • 4. The method of claim 3 wherein the merchant account number is included within the transaction information.
  • 5. The method of claim 1, wherein the terminal is a POS terminal.
  • 6. The method of claim 5 wherein the merchant account number is included within the transaction information.
  • 7. The method of claim 1 further including verifying that the embedded transaction information defines a valid transaction, and upon determination of a valid transaction, routing the transaction in accordance with information read from the membership card.
  • 8. The method of claim 7, further determining whether the embedded transaction information defines a valid transaction and, upon determination of a valid transaction, contacting via a data network the prepaid service provider and requesting crediting of customer's prepaid account.
  • 9. The method of claim 7, further transmitting a response to the transaction request to the requesting terminal from the service provider indicating whether the customer account was credited.
  • 10. The method of claim 9, wherein the response communicates the successful crediting of the customer account to the terminal.
  • 11. The method of claim 1, wherein the membership account number is received at the terminal from a membership card.
  • 12. The method of claim 1 wherein the membership account number is stored upon a membership card issued to a customer by an issuing entity.
  • 13. The method of claim 1, further retrieving account identifying information from a database that is specific to the customer account and verifying the account information.
  • 14. The method of claim 13, wherein customer account information specific to the customer account is received from the terminal.
  • 15. The method of claim 14, wherein the customer account information is a phone number associated with the customer account.
  • 16. A method for crediting a customer account maintained by a vendor of prepaid services in response to payment received from a customer, the method comprising: issuing a membership card containing a membership account number; receiving the membership account number and a payment corresponding to a requested amount of a prepaid service offered by the vendor;maintaining, within a database server, a database associating the membership account number with identifying information pertaining to the customer account;maintaining, within the database, an association between a merchant account number applicable to the point-of-sale and a list of approved prepaid services authorized to be purchased at the point-of-sale;generating, at the point-of-sale, an authorization message including at least the membership account number and embedded transaction information identifying the prepaid service offered by the vendor and the requested amount;maintaining, within the database, an association between virtual payment amounts and monetary amounts of prepaid services offered by a plurality of vendors, the embedded transaction information including a first of the virtual payment amounts;communicating the embedded transaction information from the point-of-sale to the database server;crediting, subsequent to receipt of the embedded transaction information at the database server, the customer account based upon an amount of the payment; and electronically transferring funds based upon the amount of the payment from a first account associated with the point-of-sale to a second account associated with the vendor.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of and claims priority to U.S. patent application Ser. No. 13/040,074 filed on Mar. 3, 2011, which is a continuation application of and claims priority to U.S. patent application Ser. No. 11/552,915, filed on Oct. 25, 2006, issued as U.S. Pat. No. 7,909,242, which is a continuation application of and claims priority to U.S. patent application Ser. No. 10/848,529 filed on May 17, 2004, issued as U.S. Pat. No. 7,131,578, which claims priority to U.S. Provisional Application No. 60/473,685 filed on May 28, 2003.

US Referenced Citations (281)
Number Name Date Kind
4359631 Lockwood et al. Nov 1982 A
4567359 Lockwood Jan 1986 A
RE32115 Lockwood et al. Apr 1986 E
5220501 Lawlor et al. Jun 1993 A
5291017 Wang et al. Mar 1994 A
5309355 Lockwood May 1994 A
5350906 Brody et al. Sep 1994 A
5468958 Franzen et al. Nov 1995 A
5477038 Levine et al. Dec 1995 A
5500514 Veeneman et al. Mar 1996 A
5534683 Rankl et al. Jul 1996 A
5557516 Hogan Sep 1996 A
5569917 Buttrill, Jr. et al. Oct 1996 A
5576951 Lockwood Nov 1996 A
5577100 McGregor et al. Nov 1996 A
5577109 Stimson et al. Nov 1996 A
5578808 Taylor Nov 1996 A
5621787 McKoy et al. Apr 1997 A
5645434 Leung Jul 1997 A
5650604 Marcous et al. Jul 1997 A
5689100 Carrithers et al. Nov 1997 A
5693941 Barlow et al. Dec 1997 A
5696908 Muehlberger et al. Dec 1997 A
5701301 Weisser, Jr. Dec 1997 A
5714755 Wells et al. Feb 1998 A
5722067 Fougnies et al. Feb 1998 A
5744787 Teicher Apr 1998 A
5763878 Franzen Jun 1998 A
5778313 Fougnies Jul 1998 A
5796832 Kawan Aug 1998 A
5812773 Norin Sep 1998 A
5826185 Wise et al. Oct 1998 A
5828740 Khuc et al. Oct 1998 A
5845259 West et al. Dec 1998 A
5854975 Fougnies et al. Dec 1998 A
5868236 Rademacher Feb 1999 A
5884292 Baker et al. Mar 1999 A
5892827 Beach et al. Apr 1999 A
5897625 Gustin et al. Apr 1999 A
5903633 Lorsch May 1999 A
5915007 Klapka Jun 1999 A
5937396 Konya Aug 1999 A
5945653 Walker et al. Aug 1999 A
5953398 Hill Sep 1999 A
5969318 Mackenthun Oct 1999 A
5984180 Albrecht Nov 1999 A
5991380 Bruno et al. Nov 1999 A
5991381 Bouanaka et al. Nov 1999 A
5991413 Arditti et al. Nov 1999 A
5991749 Morrill, Jr. Nov 1999 A
5991809 Kriegsman Nov 1999 A
6000608 Dorf Dec 1999 A
6012048 Gustin et al. Jan 2000 A
6035025 Hanson Mar 2000 A
6044360 Picciallo Mar 2000 A
6049774 Roy Apr 2000 A
6058300 Hanson May 2000 A
6064990 Goldsmith May 2000 A
6081791 Clark Jun 2000 A
6081840 Zhao Jun 2000 A
6157823 Fougnies et al. Dec 2000 A
6169975 White et al. Jan 2001 B1
6182138 Aoki Jan 2001 B1
6185545 Resnick et al. Feb 2001 B1
6188752 Lesley Feb 2001 B1
6191699 Sawada Feb 2001 B1
6209032 Dutcher et al. Mar 2001 B1
6264104 Jenkins et al. Jul 2001 B1
6269343 Pallakoff Jul 2001 B1
6289319 Lockwood Sep 2001 B1
6289320 Drummond et al. Sep 2001 B1
6294780 Wells et al. Sep 2001 B1
6299062 Hwang Oct 2001 B1
6315195 Ramachandran Nov 2001 B1
6317754 Peng Nov 2001 B1
6320947 Joyce et al. Nov 2001 B1
6327363 Henderson et al. Dec 2001 B1
6330978 Molano et al. Dec 2001 B1
6386457 Sorie May 2002 B1
6453162 Gentry Sep 2002 B1
6467684 Fite et al. Oct 2002 B2
6510983 Horowitz et al. Jan 2003 B2
6526130 Paschini Feb 2003 B1
6526275 Calvert Feb 2003 B1
6574617 Immerman et al. Jun 2003 B1
6581827 Welton Jun 2003 B2
6596990 Kasten et al. Jul 2003 B2
6615189 Phillips et al. Sep 2003 B1
6628766 Hollis et al. Sep 2003 B1
6651885 Arias Nov 2003 B1
6742023 Fanning et al. May 2004 B1
6759899 Lennartson et al. Jul 2004 B2
6827260 Stoutenburg et al. Dec 2004 B2
6829596 Frazee Dec 2004 B1
6842749 Zara et al. Jan 2005 B2
6910053 Pauly et al. Jun 2005 B1
6934529 Bagoren et al. Aug 2005 B2
6941285 Sarcanin Sep 2005 B2
6965667 Trabandt et al. Nov 2005 B2
6973172 Bitove et al. Dec 2005 B1
7003499 Arditti et al. Feb 2006 B2
7006993 Cheong et al. Feb 2006 B1
7014108 Sorenson et al. Mar 2006 B2
7031693 Öhrström et al. Apr 2006 B2
7083084 Graves et al. Aug 2006 B2
7089209 Kolls Aug 2006 B1
7092916 Diveley et al. Aug 2006 B2
7093761 Smith et al. Aug 2006 B2
7103575 Linehan Sep 2006 B1
7106843 Gainsboro et al. Sep 2006 B1
7118030 Phillips et al. Oct 2006 B2
7127426 Coyle Oct 2006 B1
7131578 Paschini et al. Nov 2006 B2
7131582 Welton Nov 2006 B2
7181416 Arias Feb 2007 B2
7191939 Beck et al. Mar 2007 B2
7197662 Bullen et al. Mar 2007 B2
7209890 Peon et al. Apr 2007 B1
7210620 Jones May 2007 B2
7212976 Scheer May 2007 B2
7216091 Blandina et al. May 2007 B1
7248855 Joyce et al. Jul 2007 B2
7255268 Dentlinger Aug 2007 B2
7260557 Chavez Aug 2007 B2
7268901 Brewster et al. Sep 2007 B2
7280644 Tamari et al. Oct 2007 B2
7280645 Allen et al. Oct 2007 B1
7308087 Joyce et al. Dec 2007 B2
7325722 Hosnedl et al. Feb 2008 B2
7333955 Graves et al. Feb 2008 B2
7363265 Horgan Apr 2008 B2
7401049 Hobbs et al. Jul 2008 B2
7413117 Caven et al. Aug 2008 B2
7433212 Igarashi et al. Oct 2008 B2
7454200 Cai et al. Nov 2008 B2
7477731 Tamari et al. Jan 2009 B2
7483858 Foran et al. Jan 2009 B2
7522716 Paschini Apr 2009 B2
7529563 Pitroda May 2009 B1
7562051 Donner Jul 2009 B1
7577613 Tramontano et al. Aug 2009 B2
7578439 Graves et al. Aug 2009 B2
7580859 Economy et al. Aug 2009 B2
7581674 Cohen et al. Sep 2009 B2
7594855 Meyerhofer Sep 2009 B2
7607574 Kingsborough et al. Oct 2009 B2
7613284 New Nov 2009 B2
7614549 Hogg et al. Nov 2009 B2
7617152 Chai et al. Nov 2009 B2
7630926 Chakiris et al. Dec 2009 B2
7669758 Erikson Mar 2010 B2
7676030 New et al. Mar 2010 B2
7698231 Clinesmith et al. Apr 2010 B2
7739162 Pettay et al. Jun 2010 B1
7740170 Singh et al. Jun 2010 B2
7797233 Sobek Sep 2010 B2
7822640 Arthur et al. Oct 2010 B2
7865432 Doran et al. Jan 2011 B2
7890422 Hirka et al. Feb 2011 B1
7891563 Oder, II et al. Feb 2011 B2
7909242 Paschini et al. Mar 2011 B2
7922082 Muscato Apr 2011 B2
7925531 Cunningham et al. Apr 2011 B1
7945238 Baker et al. May 2011 B2
7945512 Scipioni et al. May 2011 B2
7966496 Ellmore Jun 2011 B2
7991694 Takayama Aug 2011 B2
8020754 Schwarz, Jr. Sep 2011 B2
8041338 Chen et al. Oct 2011 B2
8041642 Lenard et al. Oct 2011 B2
8060413 Castell et al. Nov 2011 B2
8086530 Resnick et al. Dec 2011 B2
8090792 Dubnicki et al. Jan 2012 B2
8095113 Kean et al. Jan 2012 B2
8135640 Bayne Mar 2012 B2
8245910 Sullivan et al. Aug 2012 B2
8271343 Schorr et al. Sep 2012 B2
8297498 Vriheas et al. Oct 2012 B2
8306912 Galit Nov 2012 B2
8321270 Antonucci Nov 2012 B2
8341045 Kravitz et al. Dec 2012 B2
8452880 Jain May 2013 B2
8458016 Medina, III et al. Jun 2013 B1
8472594 New et al. Jun 2013 B2
8479980 Paschini et al. Jul 2013 B2
8523054 Yankovich et al. Sep 2013 B2
8595074 Sharma et al. Nov 2013 B2
20020010659 Cruse et al. Jan 2002 A1
20020046122 Barber et al. Apr 2002 A1
20020077973 Ronchi et al. Jun 2002 A1
20020099667 Diamandis et al. Jul 2002 A1
20020152124 Guzman et al. Oct 2002 A1
20020156696 Teicher Oct 2002 A1
20020161650 Buchanan et al. Oct 2002 A1
20020165820 Anvekar et al. Nov 2002 A1
20020174034 Au et al. Nov 2002 A1
20030046231 Wu Mar 2003 A1
20030046249 Wu Mar 2003 A1
20030050041 Wu Mar 2003 A1
20030110104 King et al. Jun 2003 A1
20030126075 Mascavage, III et al. Jul 2003 A1
20030144910 Flaherty et al. Jul 2003 A1
20030177028 Cooper et al. Sep 2003 A1
20030191945 Keech Oct 2003 A1
20030200179 Kwan Oct 2003 A1
20030236755 Dagelet, Jr. Dec 2003 A1
20040011866 Saad Jan 2004 A1
20040049598 Tucker et al. Mar 2004 A1
20040078332 Ferguson et al. Apr 2004 A1
20040086098 Craft May 2004 A1
20040088250 Bartter et al. May 2004 A1
20040128508 Wheeler et al. Jul 2004 A1
20040153410 Nootebos et al. Aug 2004 A1
20040185827 Parks Sep 2004 A1
20040205023 Hafer et al. Oct 2004 A1
20040210489 Jackson et al. Oct 2004 A1
20040230489 Goldthwaite et al. Nov 2004 A1
20050008132 Paschini et al. Jan 2005 A1
20050027655 Sharma et al. Feb 2005 A1
20050038714 Bonet et al. Feb 2005 A1
20050080728 Sobek Apr 2005 A1
20050229003 Paschini et al. Oct 2005 A1
20060026073 Kenny, Jr. et al. Feb 2006 A1
20060043171 New et al. Mar 2006 A1
20060045244 New Mar 2006 A1
20060064344 Lidow Mar 2006 A1
20060074783 Agarwal et al. Apr 2006 A1
20060074799 Averyt et al. Apr 2006 A1
20060078100 Risafi et al. Apr 2006 A1
20060248017 Koka et al. Nov 2006 A1
20060253335 Keena et al. Nov 2006 A1
20070023504 Blankenship et al. Feb 2007 A1
20070272743 Christie et al. Nov 2007 A1
20080059302 Fordyce, III et al. Mar 2008 A1
20080059379 Ramaci et al. Mar 2008 A1
20080147546 Weichselbaumer et al. Jun 2008 A1
20080162360 Bantz et al. Jul 2008 A1
20080177655 Zalik Jul 2008 A1
20080195499 Meredith et al. Aug 2008 A1
20080208748 Ozment et al. Aug 2008 A1
20080223920 Duke Sep 2008 A9
20080255992 Lin Oct 2008 A1
20090106160 Skowronek Apr 2009 A1
20090254441 Ahlers et al. Oct 2009 A1
20090319348 Khosravy et al. Dec 2009 A1
20100036743 Tamari et al. Feb 2010 A1
20100043008 Marchand Feb 2010 A1
20100114731 Kingston et al. May 2010 A1
20100114773 Skowronek May 2010 A1
20100293093 Karpenko Nov 2010 A1
20100299195 Nix et al. Nov 2010 A1
20100299221 Paschini et al. Nov 2010 A1
20100299733 Paschini et al. Nov 2010 A1
20110035446 Goermer et al. Feb 2011 A1
20110041006 Fowler Feb 2011 A1
20110101093 Ehrensvärd May 2011 A1
20110125645 Benkert et al. May 2011 A1
20110161229 Mastrangelo et al. Jun 2011 A1
20110218911 Spodak Sep 2011 A1
20110226620 Tadayoni-Rebek et al. Sep 2011 A1
20110307377 Nelsen et al. Dec 2011 A1
20120259718 Miller et al. Oct 2012 A1
20120265681 Ross Oct 2012 A1
20120317028 Ansari Dec 2012 A1
20130010941 New et al. Jan 2013 A1
20130013510 Ansari Jan 2013 A1
20130018783 Ansari Jan 2013 A1
20130036019 Tamari et al. Feb 2013 A1
20130036048 Campos et al. Feb 2013 A1
20130041768 Llach Feb 2013 A1
20130054470 Campos et al. Feb 2013 A1
20130066735 Llach Mar 2013 A1
20130091060 Kundu Apr 2013 A1
20130304642 Campos Nov 2013 A1
20140019352 Shrivastava Jan 2014 A1
20140108170 Tamari et al. Apr 2014 A1
20140122331 Vaish et al. May 2014 A1
20140129436 New et al. May 2014 A1
20140143089 Campos et al. May 2014 A1
20140195425 Campos et al. Jul 2014 A1
20140214567 Llach et al. Jul 2014 A1
Foreign Referenced Citations (36)
Number Date Country
4017264 Dec 1991 DE
0863537 Sep 1998 EP
1286317 Feb 2003 EP
1829352 Sep 2007 EP
1829354 Sep 2007 EP
2521999 Nov 2012 EP
2215897 Sep 1989 GB
2287565 Sep 1995 GB
5225221 Sep 1993 JP
10155040 Jun 1998 JP
10174009 Jun 1998 JP
11259576 Sep 1999 JP
2003016368 Jan 2003 JP
20020020773 Mar 2002 KR
9641462 Dec 1996 WO
9746961 Dec 1997 WO
9847112 Oct 1998 WO
0111857 Feb 2001 WO
0116905 Mar 2001 WO
03071386 Aug 2003 WO
03083792 Oct 2003 WO
2004107280 Dec 2004 WO
2004107280 Dec 2004 WO
2006062832 Jun 2006 WO
2006062832 Jun 2006 WO
2006062842 Jun 2006 WO
2006062842 Jun 2006 WO
2011085241 Jul 2011 WO
2011159571 Dec 2011 WO
2011159579 Dec 2011 WO
2011159579 Dec 2011 WO
2012027664 Mar 2012 WO
2012166790 Dec 2012 WO
2013123438 Aug 2013 WO
2014107594 Jul 2014 WO
2014107594 Jul 2014 WO
Non-Patent Literature Citations (165)
Entry
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2011/039996, Dec. 14, 2012, 7 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2011/040055, Jan. 27, 2012, 12 pages.
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2011/040055, Dec. 14, 2012, 8 pages.
Foreign communication from a related counterpart application—Invitation to Pay Additional Fees, PCT/US2011/040055, Nov. 16, 2011, 2 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2011/049338, Jan. 24, 2012, 7 pages.
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2011/049338, Mar. 5, 2013, 6 pages.
Foreign communication from a related counterpart application—Invitation to Pay Additional Fees, PCT/US2013/026501, Apr. 16, 2013, 2 pages.
Foreign communication from a related counterpart application—Office Action, Mexican Patent Application No. MX/a/2007/006924, Jul. 28, 2010, 3 pages.
Gill, Lynn A., et al., “In Situ Optimization of the Electrode Geometry of the Quadrupole Ion Trap,” International Journal of Mass Spectrometry, 1999, pp. 87-93, vol. 188, Elsevier Science B.V.
Gralla, Preston, “How the Internet Works,” Millennium Edition, 1999, 35 pages, Que Corporation, A Division of Macmillan Computer Publishing, USA.
Harrop, Peter, “The Electronic Purse,” IEE Review, Jun. 1992, pp. 227-231, IEE.
“Innovative Telecom Corp. and Catalina Marketing Corporation to Make Prepaid Long Distance Certificates Available to 120 Million Shoppers,” Abstract, PR Newswire, Sep. 28, 1995, 3 pages, Section: Financial News, Ref. 4, Catalina Marketing, 1994-1997, Lexis/Nexis Database.
“Innovative Telecom Corporation Receives Contract from NYNEX to Provide Prepaid Phone Card Services,” Abstract, PR Newswire, Sep. 28, 1995, 1 page, Section: Financial News, Ref. 4, Innovative Telecom, 1994-1997, Lexis/Nexis Database.
Knowles, Francine, “ATMs to Dispense Calling Cards; Ameritech, Cash Station in Venture,” Abstract, Financial Section, Chicago Sun-Times, Oct. 18, 1995, 2 pages, Ref. 1, Ameritech & ATM, PINs, or Prepaid Cards, 1994-1997, Lexis/Nexis Database.
Kreyer, Nina, et al., “Standardized Payment Procedures as Key Enabling Factor for Mobile Commerce,” Preceedings of the Third International Conference on E-Commerce and Web Technologies, 2002, pp. 400-409, Springer-Verlag Berlin Heidelberg.
Levy, Steven, “E-Money (That's What I Want),” Wired, 1994, 11 pages, © The Condé Nast Publications Inc., © Wired Digital, Inc.
Lilge, Manfred, “Evolution of Prepaid Service Towards a Real-Time Payment System,” 2001, pp. 195-198, IEEE.
Lin, Yi-Bing, et al., “Mobile Prepaid Phone Services,” IEEE Personal Communications, Jun. 2000, pp. 6-14, IEEE.
“Loose Change,” Abstract, U.S. Banker, Sep. 1995, 1 page, National Edition, Section USB News, Industry, p. 12, Ref. 1, EDS (Electronic Data Systems), 1994-1997, Lexis/Nexis Database.
Marcous, Neil P., et al., Abstract, U.S. Patent No. 5,650,604, Jul. 22, 1997, 1 page, Ref. 10, EDS (Electronic Data Systems), 1994-1997, Lexis/Nexis Database.
“Model 5008C Eight Selection Card Vending Machine,” http://www.vendapin.com/5008.html, downloaded from Internet on May 9, 2013, 1 page.
Muller, Nathan J., “Desktop Encyclopedia of the Internet,” 1999, 51 pages, Artech House Inc., Norwood, MA.
Office Action (Final) dated Nov. 23, 2009 (21 pages), U.S. Appl. No. 10/821,405, filed Apr. 9, 2004.
Office Action dated Jan. 14, 2009 (19 pages), U.S. Appl. No. 10/821,405, filed Apr. 9, 2004.
Advisory Action dated Apr. 12, 2013 (3 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Advisory Action dated Apr. 19, 2012 (3 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Advisory Action dated Apr. 28, 2009 (3 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action (Final) dated Jan. 25, 2013 (15 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action dated Jul. 16, 2012 (15 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action (Final) dated Feb. 1, 2012 (15 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action dated May 9, 2011 (12 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action dated Aug. 4, 2010 (14 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action dated Aug. 5, 2009 (11 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action (Final) dated Feb. 4, 2009 (9 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action dated May 14, 2008 (10 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Advisory Action dated Apr. 11, 2013 (3 pages), U.S. Appl. No. 12/786,403, filed May 24, 2010.
Advisory Action dated May 8, 2012 (2 pages), U.S. Appl. No. 12/786,403, filed May 24, 2010.
Office Action (Final) dated Jan. 16, 2013 (15 pages), U.S. Appl. No. 12/786,403, filed May 24, 2010.
Office Action dated Jun. 6, 2012 (14 pages), U.S. Appl. No. 12/786,403, filed May 24, 2010.
Office Action (Final) dated Feb. 14, 2012 (13 pages), U.S. Appl. No. 12/786,403, filed May 24, 2010.
Office Action dated May 12, 2011 (15 pages), U.S. Appl. No. 12/786,403, filed May 24, 2010.
Advisory Action dated Jan. 8, 2013 (3 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Advisory Action dated Feb. 15, 2012 (3 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Office Action (Final) dated May 22, 2013 (12 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Office Action (Final) dated Oct. 26, 2012 (11 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Office Action dated Apr. 11, 2012 (11 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Office Action (Final) dated Dec. 8, 2011 (12 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Office Action dated Oct. 1, 2010 (10 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Advisory Action dated Mar. 12, 2013 (3 pages), U.S. Appl. No. 12/538,083, filed Aug. 7, 2009.
Office Action dated Mar. 14, 2013 (9 pages), U.S. Appl. No. 13/619,425, filed Sep. 14, 2012.
Office Action (Final) dated Dec. 28, 2012 (12 pages), U.S. Appl. No. 12/538,083, filed Aug. 7, 2009.
Office Action dated Apr. 9, 2012 (19 pages), U.S. Appl. No. 12/538,083, filed Aug. 7, 2009.
Office Action dated Jan. 16, 2013 (6 pages), U.S. Appl. No. 13/619,176, filed Sep. 14, 2012.
Advisory Action dated Jun. 6, 2013 (3 pages), U.S. Appl. No. 13/495,986, filed Jun. 13, 2012.
Office Action (Final) dated Mar. 25, 2013 (13 pages), U.S. Appl. No. 13/495,986, filed Jun. 13, 2012.
Office Action dated Dec. 11, 2012 (15 pages), U.S. Appl. No. 13/495,986, filed Jun. 13, 2012.
Advisory Action dated May 31, 2013 (3 pages), U.S. Appl. No. 13/619,226, filed Sep. 14, 2012.
Office Action (Final) dated Mar. 25, 2013 (13 pages), U.S. Appl. No. 13/619,226, filed Sep. 14, 2012.
Office Action dated Dec. 11, 2012 (15 pages), U.S. Appl. No. 13/619,226, filed Sep. 14, 2012.
“Outsourcing the ATM business,” Abstract, Electronic Payments International No. 102, Nov. 1995, 1 page, Ref. 5, EDS (Electronic Data Systems), 1994-1997, Lexis/Nexis Database.
Panurach, Patiwat, “Money in Electronic Commerce: Digital Cash, Electronic Fund Transfer, and Ecash,” Communications of the ACM, Jun. 1996, pp. 45-50, vol. 39, No. 6, ACM.
Patent Application entitled “Systems and Methods for Distributing Personal Identification Numbers (PINs) Over Computer Networks,” by Miles Paschini, filed Apr. 16, 2009 as U.S. Appl. No. 12/425,259.
Patent application entitled “Prepaid Card with Saving Feature,” by Kellie D. Harper, filed Feb. 27, 2013 as U.S. Appl. No. 13/819,469.
Provisional patent application entitled “System and Method for Electronic Prepaid Account Replenishment,” by Miles Paschini, filed May 28, 2003 as U.S. Appl. No. 60/473,685.
Piskora, Beth, “EDS' inroads into ATMs give banks pause,” Abstract, American Banker, Jun. 29, 1995, 1 page, vol. 18, No. 1, Ref. 8, EDS (Electronic Data Systems), 1994-1995, Lexis/Nexis Database.
Q Comm International, Inc. product information entitled, “Q Comm's Qxpress System; On-Demand Retail Phone Cards,” http://web.archive.org/web/20000302140250/www.qcomm.com/products/ondemand.asp, Mar. 2000, 2 pages.
Smart Card Alliance Report PT-03002, “Contactless Payment and the Retail Point of Sale: Applications, Technologies and Transaction Models,” Mar. 2003, pp. 1-50.
Splendore, Maurizio, et al., “A new ion ejection method employing an asymmetric trapping field to improve the mass scanning performance of an electrodynamic ion trap,” International Journal of Mass Spectrometry, 1999, pp. 129-143, vol. 190/191, Elsevier Science B.V.
Ter Maat, Mike, “The economics of e-cash,” IEEE Spectrum, Feb. 1997, pp. 68-73, IEEE.
“The future of money: hearing before the Subcommittee on Domestic and International Monetary Policy of the Committee on Banking and Financial Services, House of Representatives, One Hundred Fourth Congress, first session,” The Future of Money, Part 4, http://www.archive.org/stream/futureofmoneyhea04unit/futureofmoneyhea04unit—djvu.txt, Jun. 11, 1996, 5 pages.
“US West Launches Christmas Prepaid Calling Card With Card Pioneer Innovative Telecom;—Sixty Minute Holiday Card Available Now—,” Abstract, PR Newswire, Dec. 5, 1997, 1 page, Section: Financial News, Ref. 1, Inovative Telecom, 1994-1997, Lexis/Nexis Database.
“VENDAPIN Model 5004 Four Selection Cellular and IP, Phone Calling Card, Lottery or Admissions Ticket Printer Vending Machine with Optional Two Selection Cellular Phone Dispenser Console,” http://www.vendapin.com/5008.html, Apr. 3, 2000, pp. 1-4, VENDAPIN.
Visa press release entitled “Visa Unveils Next Generation Electronic Payments and Services,” http://corporate.visa.com/newsroom/press-releases/press1124.jsp, May 11, 2011, 3 pages.
Wenninger, John, et al., “The Electronic Purse,” Current Issues in Economics and Finance, Apr. 1995, pp. 1-5 plus one information page, vol. 1, No. 1, Federal Reserve Bank of New York.
White, Ron, “How Computers Work,” Millennium Edition, 1999, 83 pages, Que Corporation, A Division of Macmillan Computer Publishing, USA.
Office Action dated Jul. 31, 2013 (13 pages), U.S. Appl. No. 13/520,849, filed Jul. 6, 2012.
Office Action dated Aug. 6, 2013 (37 pages), U.S. Appl. No. 12/538,083, filed Aug. 7, 2009.
AFX-Asia, Company News, “Tata Hydro-Electric Q2 to Sept net profit 265.8 min rupees vs 212.4,” Oct. 28, 1999, pp. 1-2, AFX News Limited.
Ameritech Corp., “Ameritech debuts its prepaid cellular,” Abstract, RCR Radio Communications Report 15, No. 31, Ref. 7, Aug. 5, 1996, 1 page, Ameritech & ATM, PINs, or Prepaid Cards, 1994-1997, Lexis/Nexis Database.
Ameritech Corp., et al., “Ameritech in Prepaid Card Venture,” Abstract, American Banker CLX, No. 205, Ref. 9, Oct. 24, 1995, 1 page, Ameritech & ATM, PINs, or Prepaid Cards, 1994-1997, Lexis/Nexis Database.
Ameritech Corp., “Phone Cards Meet ATMs,” Abstract, Bank Technology News 8, No. 12, Ref. 8, Dec. 1995, 2 pages, Ameritech & ATM, PINs, or Prepaid Cards, 1994-1997, Lexis/Nexis Database.
Beach, Kirk W., et al., U.S. Patent No. 5,892,827, Abstract, Ref. 7, Apr. 6, 1999, 1 page, Catalina Marketing International, Inc., 1994-1997, Lexis/Nexis Database.
Bernkopf, Mark, “Electronic Cash and Monetary Policy,” http://ojphi.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewFile/465/822, May 6, 1996, pp. 1-6, vol. 1, No. 1, First Monday.
Browne, F. X., et al., “Payments Technologies, Financial Innovation, and Laissez-Faire Banking,” The Cato Journal, http://www.cato.org/pubs/journal/cj15n1-6.html, Spring/Summer 1995, 12 pages, vol. 15, No. 1, Cato Institute.
Business Wire entitled “The Winner's Edge.com Announces Purchase Agreement,” Nov. 1, 1999, pp. 1-2, West.
Business Wire entitled “Easy Wireless Unveils Its New Internet Powered Accessory Express Kiosk Station,” Feb. 25, 2000, pp. 1-2, West.
Business Wire entitled “Easy Wireless Unveils Its Revolutionary Pre-Paid PIN Dispensing Kiosk,” Feb. 28, 2000, pp. 1-2, West.
“Card Briefs: Sprint is Using EDS for Phone-Card Plan,” Abstract, The American Banker, Section: Credit/Debit/ATMs: p. 19, Mar. 13, 1995, 1 page, Ref. 4, EDS (Electronic Data Systems), 1994-1997, Lexis/Nexis Database.
“Codax Activation System,” http://www.carkleen.co.nz/Products/Codax, Car Kleen—Leaders in Vehicle Wash Technology, 2 pages. (no date is available).
Congressional Budget Office Study entitled “Emerging Electronic Methods for Making Retail Payments,” Jun. 1996, 63 pages, The Congress of the United States.
Derfler, Jr., Frank J., et al., “How Networks Work,” Bestseller Edition, 1996, 69 pages, Ziff-Davis Press, an imprint of Macmillan Computer Publishing, USA.
Filing receipt and specification for provisional patent application entitled “System for Processing, Activating and Redeeming Value Added Prepaid Cards,” by Teri Llach, filed Jan. 8, 2010 as U.S. Appl. No. 61/293,413.
Filing receipt and specification for provisional patent application entitled “Efficient Stored-Value Card Transactions,” by Ansar Ansari, filed Jun. 14, 2010 as U.S. Appl. No. 61/354,469.
Filing receipt and specification for provisional patent application entitled “Efficient Stored-Value Card Transactions,” by Ansar Ansari, filed Jun. 14, 2010 as U.S. Appl. No. 61/354,470.
Filing receipt and specification for provisional patent application entitled “System and Method for Configuring Risk Tolerance in Transaction Cards,” by Arindam Kundu, filed Jun. 14, 2010 U.S. Appl. No. 61/354,474.
Filing receipt and specification for provisional patent application entitled “System and Method for Configuring Risk Tolerance in Transaction Cards,” by Arindam Kundu, filed Jun. 30, 2010 as U.S. Appl. No. 61/360,326.
Filing receipt and specification for provisional patent application entitled “Efficient Stored-Value Card Transactions,” by Ansar Ansari, filed Jun. 30, 2010 as U.S. Appl. No. 61/360,327.
Filing receipt and specification for provisional patent application entitled “Prepaid Card with Savings Feature,” by Kellie D. Harper, filed Aug. 27, 2010 as U.S. Appl. No. 61/377,800.
Filing receipt and specification for provisional patent application entitled “System for Payment via Electronic Wallet,” by Tomas Ariel Campos, filed May 31, 2011 as U.S. Appl. No. 61/491,791.
Filing receipt and specification for provisional patent application entitled “System for Payment via Electronic Wallet,” by Tomas Ariel Campos, filed May 31, 2011 as U.S. Appl. No. 61/491,813.
Filing receipt and specification for provisional patent application entitled “System, Method, and Apparatus for Creating and Distributing a Transaction Credit,” by Ansar Ansari, filed Jun. 13, 2011 as U.S. Appl. No. 61/496,397.
Filing receipt and specification for provisional patent application entitled “System, Method, and Apparatus for Creating and Distributing a Transaction Credit,” by Ansar Ansari, filed Jun. 13, 2011 as U.S. Appl. No. 61/496,404.
Filing receipt and specification for provisional patent application entitled “Stored-Value Card Transaction Systems and Methods,” by Ansar Ansari, filed Aug. 31, 2011 as U.S. Appl. No. 61/529,813.
Filing receipt and specification for provisional patent application entitled “Universal Interactive eGift Registration Button aka The Digital Sticker,” by Tomas Ariel Campos, filed Feb. 15, 2012 as U.S. Appl. No. 61/599,249.
Filing receipt and specification for provisional patent application entitled “Universal Interactive eGift Registration Button aka the Digital Sticker,” by Tomas Ariel Campos, filed Feb. 22, 2012 as U.S. Appl. No. 61/601,911.
Filing receipt and specification for provisional patent application entitled “eWallet with QR Code,” by Tomas Ariel Campos, filed Apr. 4, 2012 as U.S. Appl. No. 61/620,173.
Filing receipt and specification for provisional patent application entitled System for Manging CVV Information in Electronic Wallet, by Tushar Vaish, filed Jan. 3, 2012 as U.S. Appl. No. 61/748,679.
Filing receipt and specification for provisional patent application entitled “System and Method for Providing a Security Code,” by Tushar Vaish, et al., filed Mar. 15, 2013 as U.S. Appl. No. 61/799,500.
Filing receipt and specification for provisional patent application entitled “System and Method for Using QR Codes in Conjunction with Electronic Stored-Value Cards,” by Tomas Ariel Campos, et al., filed Mar. 15, 2013 as U.S. Appl. No. 61/800,704.
Filing receipt and specification for patent application entitled “Transaction Processing Platform for Facilitating Electronic Distribution of Plural Prepaid Services,” by Roni Dolev Tamari, et al., filed Dec. 18, 2008 as U.S. Appl. No. 12/338,854.
Filing receipt and specification for patent application entitled “System and Method for Using Intelligent Codes to Add a Stored-Value Card to an Electronic Wallet,” by Tomas Ariel Campos, filed Apr. 4, 2013 as U.S. Appl. No. 13/857,048.
Foreign communication from a related counterpart application—Search Report, European Application No. 05825880.7, Jun. 8, 2011, 6 pages.
Foreign communication from a related counterpart application—Communication, European Application No. 05825880.7, Jun. 27, 2011, 1 page.
Foreign communication from a related counterpart application—Search Report, European Application No. 05852818.3, Jan. 22, 2009, 9 pages.
Foreign communication from a related counterpart application—Communication, European Application No. 05852818.3, May 11, 2009, 1 page.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2004/015658, Jun. 22, 2005, 8 pages.
Foreign communication from a related counterpart application—International Preliminary Examination Report, PCT/US2004/015658, Mar. 17, 2006, 6 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2005/043705, Aug. 10, 2006, 7 pages.
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2005/043705, Jun. 13, 2007, 6 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2005/043756, Oct. 3, 2006, 6 pages.
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2005/043756, Jun. 13, 2007, 6 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2011/020570, Mar. 7, 2011, 11 pages.
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2011/020570, Jul. 10, 2012, 8 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2012/039981, Nov. 5, 2012, 35 pages.
Foreign communication from a related counterpart application—Invitation to Pay Additional Fees, PCT/US2012/039981, Aug. 28, 2012, 2 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2011/039996, Oct. 24, 2011, 8 pages.
Office Action dated Sep. 15, 2014 (63 pages), U.S. Appl. No. 13/619,226, filed Sep. 14, 2012.
Filing receipt and specification for patent application entitled “System for Payment via Electronic Wallet,” by Tomas Ariel Compos, filed on Aug. 6, 2014 as U.S. Appl. No. 14/452,829.
Filing receipt and specification for provisional patent application entitled “Endless Endcap,” by Tomas Ariel Campos, filed Novemer 20, 2012 as U.S. Appl. No. 61/728,597.
Filing receipt and specification for provisional patent application entitled “Systems and Methods for Proxy Card and/or Wallet Redemption Card Transactions,” by Tushar Vaish, et al., filed Mar. 11, 2013 as U.S. Appl. No. 61/776,594.
Filing receipt and specification for provisional patent application entitled “Systems and Methods for Proxy Card and/or Wallet Redemption Card Transactions,” by Pranav Sheth, et al., filed Mar. 13, 2013 as U.S. Appl. No. 61/779,334.
Filing receipt and specification for provisional patent application entitled “Client Directed Pre-Paid Card,” by J. DuWayne Milner, filed Mar. 14, 2013 as U.S. Appl. No. 61/781,667.
Foreign communication from a related counterpart application—Examination Report, New Zealand Application No. 601208, Mar. 5, 2014, 2 pages.
Foreign communication from a related counterpart application—Examination Report, New Zealand Application No. 605666, Aug. 9, 2013, 2 pages.
Foreign communication from a related counterpart application—Australian Examination Report, Application No. 2011293250, Jun. 2, 2014, 3 pages.
Foreign communication from a related counterpart application—Examination Report, New Zealand Application No. 607755, Dec. 4, 2013, 2 pages.
Foreign communication from a related counterpart application—Invitation to Pay Additional Fees, PCT/US2014/010206, Mar. 27, 2014, 2 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2014/010206, Jun. 23, 2014, 10 pages.
Foreign communication from a related counterpart application—International Search Report, PCT/US2013/026501, Jun. 19, 2013, 4 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2013/070991, May 22, 2014, 11 pages.
Office Action (Final) dated Feb. 20, 2014 (61 pages), U.S. Appl. No. 13/520,849, filed Jul. 6, 2012.
Office Action dated Mar. 10, 2014 (64 pages), U.S. Appl. No. 13/617,751, filed Sep. 14, 2012.
Advisory Action dated Mar. 10, 2014 (3 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action (Final) dated Dec. 6, 2013 (16 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action dated Mar. 7, 2014 (15 pages), U.S. Appl. No. 12/786,403, filed May 24, 2010.
Advisory Action dated Sep. 30, 2013 (4 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Notice of Allowance dated Jul. 2, 2014 (41 pages), U.S. Appl. No. 14/065,189, filed Oct. 28, 2013.
Office Action dated Feb. 19, 2014 (9 pages), U.S. Appl. No. 14/065,189, filed Oct. 28, 2013.
Advisory Action dated Mar. 25, 2014 (3 pages), U.S. Appl. No. 12/538,083, filed Aug. 7, 2009.
Office Action (Final) dated Dec. 27, 2013 (19 pages), U.S. Appl. No. 12/538,083, filed Aug. 7, 2009.
Office Action (Final) dated Feb. 7, 2014 (51 pages), U.S. Appl. No. 13/619,176, filed Sep. 14, 2012.
Office Action dated Jul. 15, 2014 (19 pages), U.S. Appl. No. 13/619,176, filed Sep. 14, 2012.
Office Action dated May 19, 2014 (52 pages), U.S. Appl. No. 14/106,494, filed Dec. 13, 2013.
Office Action (Final) dated Mar. 31, 2014 (31 pages), U.S. Appl. No. 13/621,331, filed Sep. 17, 2012.
Office Action dated Jul. 31, 2014 (38 pages), U.S. Appl. No. 13/621,331, filed Sep. 17, 2012.
Office Action dated Oct. 23, 2013 (72 pages), U.S. Appl. No. 13/621,331, filed Sep. 17, 2012.
Office Action dated Mar. 3, 2014 (69 pages), U.S. Appl. No. 13/704,084, filed Dec. 13, 2012.
Office Action dated Aug. 6, 2014 (30 pages), U.S. Appl. No. 13/704,084, filed Dec. 13, 2012.
Examiner's Answer dated Oct. 22, 2013 (12 pages), U.S. Appl. No. 13/495,986, filed Jun. 13, 2012.
Cover sheet and specification for provisional patent application entitled “System and Method for Electronic Prepaid Account Replenishment,” by Miles Paschini, et al., filed May 28, 2003 as U.S. Appl. No. 60/473,685.
Foreign communication from a related counterpart application—Mexican Office Action, Application No. MX/a/2012/007926, Nov. 26, 2013, 14 pages.
Foreign communication from a related counterpart application—Mexican Office Action, Application No. MX/a/2012/007926, Apr. 25, 2014, 11 pages.
Office Action dated Sep. 26, 2014 (31 pages), U.S. Appl. No. 13/520,849, filed Jul. 6, 2012.
Office Action dated Oct. 1, 2014 (16 pages), U.S. Appl. No. 10/821,815, filed Apr. 9, 2004.
Office Action (Final) dated Sep. 9, 2014 (10 pages), U.S. Appl. No. 12/711,211, filed Feb. 23, 2010.
Related Publications (1)
Number Date Country
20140214575 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
60473685 May 2003 US
Continuations (3)
Number Date Country
Parent 13040074 Mar 2011 US
Child 13914360 US
Parent 11552915 Oct 2006 US
Child 13040074 US
Parent 10848529 May 2004 US
Child 11552915 US