The present patent disclosure generally relates to communications networks. More particularly, and not by way of any limitation, the present patent disclosure is directed to a system and method for establishing reliable data connectivity with a network node by a user equipment (UE) device while the network node is rendered in a non-digitally addressable condition.
Cellular telephony networks such as the Global System for Mobile Communications (GSM) network are designed to support various mobile user equipment (UE) devices having different capabilities. For instance, some UE devices have the capability to engage in voice calls only. On the other hand, there may be devices having voice and data capabilities but not concurrently, as well as devices that can support simultaneous voice and data connections. However, due to certain inherent design considerations, UE devices that have non-concurrent voice and data capabilities are generally more prevalent than the devices with simultaneous voice and data capability. This situation gives rise to a drawback in that while in a voice call over a circuit-switched connection, the device is unable to send data.
To address such behavior, current 3rd Generation Partnership Project (3GPP) standards provide a solution that emulates pseudo-simultaneous voice and data capability with respect to the UE devices. Nevertheless, this solution has not been widely implemented since it requires expensive additional software and hardware in the UE device as well as the network infrastructure. As a consequence, for a system that wishes to offer enterprise-related data connectivity (e.g., in order to effectuate call control) to a UE device that is engaged in a voice call, the system enterprise server is no longer a digitally addressable network node, and thus conventional choice has been the use of Dual Tone Multi-Frequency (DTMF) signaling, which uses command signals in either in-band (audible to the user) or out-of-band (inaudible to the user) mode. Even this approach is not without attendant shortcomings, however. For example, the DTMF signaling is usually reliable only one way and requires the enterprise server to have expensive audio processing hardware and software in order to receive and process the tones. Further, as multiple systems also use the same tones, it is possible that a wrong system may process the received tones that are targeted to a different system. Yet another conventional option involving the implementation of alternative speech/data such as used for Telecommunications Device for the Deaf (TDD) technology has also been found to be deficient.
A more complete understanding of the embodiments of the present patent disclosure may be had by reference to the following Detailed Description when taken in conjunction with the accompanying drawings wherein:
The present patent disclosure is broadly directed to a scheme for effectuating reliable data connectivity with a network node that has been rendered non-digitally addressable for some reason. In one example, the non-digitally addressable network node may comprise an enterprise server operable to host a variety of applications or services. Preferably, the data connectivity can be established by a UE device while engaged in a circuit-switched call or otherwise unavailable for establishing a packet-switched connection. A message relating to an enterprise service feature is constructed and wrapped in a wrapper, which is then transmitted to the enterprise server via an out-of-band control channel over a network infrastructure including a dedicated network portion and a trusted network portion for invoking the requested service feature. In an exemplary implementation, the wrapper may be comprised of, but not limited to, a Short Message Service (SMS)-based message, an Unstructured Supplementary Service Data (USSD)-based message, and a User-to-User Signaling (UUS)-based message, and the like. Further, certain network elements in the dedicated network and trusted network portions may be co-located with respect to effectuating a reliable data connectivity path for receiving the message-based wrapper request from the UE device and processing it for upward transmission to the network node.
In one aspect, disclosed herein is an embodiment of a method for establishing reliable data connectivity with a network node in operation with a UE device. The UE device can communicate with the network node in at least one of a first connection and a second connection, the first and second connections being effectuable over two different networks. The claimed embodiment comprises: determining that the network node is not accessible via a first network using the first connection; constructing a message (e.g., relating to an application service feature) that is to be executed at the network node; and wrapping the message in a wrapper belonging to a second network and directing the wrapper to a dedicated network portion operable to forward the message to the network node over a trusted network portion.
In another aspect, disclosed herein is an embodiment of a UE device operable to establish reliable data connectivity with a network node, wherein the UE device can communicate with the network node in at least one of a first connection and a second connection, the first and second connections being effectuable over two different networks. The claimed embodiment comprises: means for constructing a message (e.g., relating to an application service feature) that is to be executed at the network node, the means operating responsive to determining that the network node is not accessible via a first network using the first connection; and means for wrapping the message in a wrapper belonging to a second network and directing the wrapper to a dedicated network portion operable to forward the message to the network node over a trusted network portion.
In a still further aspect, disclosed herein is an embodiment of a system operable to facilitate reliable data connectivity between a UE device and a network node, wherein the network node is rendered inaccessible to the UE device via a packet-switched connection. The claimed embodiment comprises: means for receiving a message relating to a service feature activated from the UE device, the service feature to be executed on the network node, wherein the means for receiving operates to receive the message contained in a wrapper directed via a dedicated network portion; and means for processing the wrapper and packaging the message for transmission over a trusted network portion to the network node. As set forth below in additional detail, those skilled in the art should recognize that the various means recited herein may be implemented in software, firmware, hardware, or in any combination thereof, including suitable computer-executable instructions on media.
A system and method of the present patent disclosure will now be described with reference to various examples of how the embodiments can best be made and used. Like reference numerals are used throughout the description and several views of the drawings to indicate like or corresponding parts, wherein the various elements are not necessarily drawn to scale. Referring now to the drawings, and more particularly to
For purposes of further generalization, a UE device may be a cellular phone or mobile station, as well as any personal computer (e.g., desktops, laptops, palmtops, or handheld computing devices) equipped with a suitable wireless modem, or a dual-mode mobile UE device (e.g., cellular phones or data-enabled handheld devices capable of receiving and sending messages, IP datagrams containing applications such as but not limited to web browsing, et cetera). Accordingly, although not a requirement, a UE device for purposes of the present patent application may be capable of operating in both circuit-switched (CS) as well as packet-switched (PS) communications and may even be capable of effectuating an inter-technology handoff between both CS and PS domains.
One or more enterprise servers 122 may be operatively associated with the network 108 for hosting a number of services and/or service features that may be remotely controlled from a UE device, e.g., UE device 102A, while the device is still engaged in a CS connection with an endpoint. As will be set forth below in additional detail, in one exemplary embodiment, the enterprise server node(s) 122 may be provided with a suitable interface for receiving appropriate messages from a UE device that are transmitted in an out-of-band control channel with respect to an on-going CS connection. Furthermore, the enterprise server(s) 122 may be generalized to be a network node that has been rendered non-digitally addressable for some reason. By way of exemplary implementation, the embodiment of
With respect to the exemplary SMS implementation depicted in
Further, although not explicitly illustrated in
For purposes of the present disclosure, the services being controlled on the enterprise server 112 are virtually unlimited. By way of illustration, a number of telephony service features may be provided that may relate to an on-going CS call such as, e.g., direct inward calling service, call transfer service, customized abbreviated dialing service, voice mail service, follow-me service, call forwarding service, music on hold service, automatic ring back service, automatic call distribution service, call waiting service, call pickup service, conference service, call accounting service, voice paging service, customized greeting service, shared message box service, and automated directory service.
Those skilled in the art will recognize that the teachings set forth hereinabove may be generalized within the context of messaging-based remote call control, wherein an intermediary messaging-based network node may be employed as illustrated in
Moreover, the destination address of a serving messaging network node may be provisioned for a particular endpoint device using SMS, USSD, or via IP addressing, and the like, in addition to or in conjunction with known Over-The-Air (OTA) Device Management (DM) techniques. When the address is to be provisioned on the device, the appropriate code point in SMS may be required to be set, e.g., by setting the TP-Protocol Identifier (TP-PID) to a value that indicates wireless UE device data download.
Where USSD messaging is implemented for effectuating remote control, a specific “*#” sequence may need to be used in order to direct the data wrapper to the correct USSD server. Again, this sequence may be operator-specific, and may also be provisioned on the UE device. For instance, the sequence may be provisioned at the device manufacturer for a specific operator, for a group of operators, or for all operators. Accordingly, it should be appreciated that the “*#” sequence may be dependent on the carrier, and that a UE device could be configured with all “*#” sequences for all carriers or it may configured for a specific carrier providing the home service. The UE device may contain the carrier identity(ies) through appropriate means. For instance, the following table illustrates an exemplary embodiment:
where Operator ID is an identifier that uniquely identifies an operator based on the network technology. For instance, 3GPP/GSM networks may be identified with a Mobile Country Code (MCC) and Mobile Network Code (MNC) combination; SIP networks use Network Access Identifiers (NAI); CDMA networks use System Identification (SID) parameters; and WLAN networks use Service Set IDs (SSID).
Additionally or alternatively, the provisioning may be effectuated when the user inputs a new set of credentials (Private User Identity) such as International Mobile Subscriber Identity (IMSI) on USIM, or Mobile Identification Number (MIN) or Personal Identification Number (PIN), or Public User Identity (e.g., E.164 number), or some other SIP-based ID or a combination thereof. Presentation of the credentials then triggers the UE device to request operator-specific provisioning information which contains the “*#” sequence to use. As may be appreciated by one of ordinary skill in the art, a similar mechanism may also be used to retrieve the destination address of an SMSC node.
In addition, where SMSC addressing information is utilized, such information may be changeable by the user, and/or operator, and/or the enterprise. Various configuration fields may be provided in order to indicate if the user, operator, or the enterprise can effect the change. Likewise, the USSD sequence information may also be changed by the operator and/or the enterprise, with appropriate configuration field settings to indicate the changeability features. For purposes of the present disclosure, the term “address information” therefore includes both intermediary node (e.g., SMSC node) destination address information as well as USSD sequence information, which may be stored or otherwise provisioned as set forth in detail above.
Although there are limitations to the length of a single message (e.g., SMS message), it is possible to segment a larger request message into smaller wrappers. The wrapper or wrapper segments are transmitted to one or more intermediary nodes 203 that process the wrapper message and forward the processed message 204 to the enterprise server 122. In one embodiment, the intermediary node 203 may comprise an SMSC that is provided by the carrier network. Alternatively, the SMSC node may be hosted by a third-party service. In another embodiment, the intermediary node 203 may comprise a USSD gateway. Those skilled in the art will recognize that while in a CS call in GSM, it is possible to send USSD messages from the UE device in a session-oriented mechanism, which offers shorter turnaround response times for interactive applications. Further, USSD messages may be routed to the UE device's home provisioning server (e.g., HLR or HSS) and then via a suitable gateway node to the enterprise server 122. In a still further embodiment, the intermediary node may also be a function based at the enterprise that receives UUS-based call control signaling and sends it out. The primary purpose of the function is to look for UUS messages which it will then extract and forward to the enterprise server. It will also inject any responses back to the originating UE.
Regardless of the exact implementation, accordingly, it should be appreciated that there may be other network elements that may be involved in effectuating the SMS/USS/USSD paths with respect to the message flow embodiment 200 of
Message routing from the intermediary node 203 to the enterprise server 122 may be achieved by means of a telephone number (e.g., E.164 numbering), IP addressing, and the like. Upon receiving the wrapped service feature message, service logic associated with the enterprise server 122 is executed to act on the message (illustrated as block 206), which performs the requested service feature. Thereafter, a confirmation or acknowledgement may be transmitted back to UE device 102A via response paths 208, 210. And, as alluded to previously, if a timer was started at the UE device, it may be terminated upon receipt of the confirmation message. One skilled in the art will recognize that the timer may either be hard-coded at manufacture or provisioned by the enterprise or the operator using mechanisms set forth in the present application. Further, one or more segments of the messaging flow described herein may be encrypted for purposes of security.
Although the foregoing embodiments advantageously provide data connectivity with a network node, e.g., for it its remote control, there are certain shortcomings that may arise in some exemplary implementations, however. For instance, in an SMS-based arrangement, the message delivery may be based on a store-and-forward mechanism, i.e., messages received at the SMSC node cannot be relied upon to reach the destination node within a strict time limit. In other words, a high Quality of Service (QoS) may not be feasible in such systems. On the other hand, employing the USSD-based embodiments described above require expensive outlays with respect to the requisite USSD-capable infrastructure, e.g., USSD gateway(s)-, suitable USSD interfaces operable with the network nodes, etc. These issues are particularly exacerbated where a carrier network is utilized for maintaining the various intermediary nodes described in detail above for appropriately routing the wrapper-based service requests.
Upon receipt of the wrapper-based request, the dedicated intermediary node 404 immediately processes the wrapper message and transmits the contained service request to another reliable third-party node, which may be operable as a trusted relay node 406 disposed in a trusted network portion 407. In one implementation, the dedicated intermediary node 404 and trusted relay node 406 may be disposed in separate network portions. In another implementation, both nodes 404 and 406 may be. co-located. A server-to-server protocol may be utilized for transporting the packets between the nodes irrespective of their location. The trusted node 406 processes the received service request for routing based on reliable methods for effectuating data transfer. Again depending on implementation, either proprietary and/or standard protocols may be utilized. For example, a General Message Envelope (GME) protocol may be effectuated over a trusted network pathway disposed between the trusted node 4046 and the network node 408.
As described previously, the network node 408 acts on the received message and performs the requested service(s). Thereafter, a confirmation response (e.g., ACK 208 in
During the foregoing operation, the user need not be aware that the signaling is being sent over an out-of-band control channel. In addition, the user may not even be aware of the third-party node configuration initially, as this information may be pushed to the device from the network (e.g., from the trusted network node 406) prior to engaging the out-of-band data connectivity process.
Based on the foregoing, it can be appreciated that the exemplary embodiments provide a scheme for controlling a network node in operation with a UE device, wherein the UE device can communicate with network node in a first connection and a second connection. As alluded to before, the first and second connections are effectuable over two different networks or technologies (e.g., a CS connection and a non-CS connection) The exemplary embodiment may involve one or more of the following: determining that the network node is not accessible via a first network using the first connection; constructing a message relating to a service feature that is to be executed at the network node; and wrapping the message in a wrapper belonging to a second network and directing the wrapper to a dedicated network portion operable to forward the message to the network node over a trusted network portion. Accordingly, appropriate logic blocks or modules are provided with the UE device to effectuate the foregoing operations.
Microprocessor 602 may also interface with further device subsystems such as auxiliary input/output (I/O) 618, serial port 620, display 622, keyboard/keypad 624, speaker 626, microphone 628, random access memory (RAM) 630, a short-range communications subsystem 632, and any other device subsystems, e.g., timer mechanisms, generally labeled as reference numeral 633. To control access, a USIM/RUIM interface 634 may also be provided in communication with the microprocessor 602. In one implementation, USIM/RUIM interface 634 is operable with a USIM/RUIM card having a number of key configurations 644 and other information 646 such as identification and subscriber-related data, as well as SMSC/intermediary node destination address information and USSD sequence information described in the foregoing sections.
Operating system software and applicable service logic software may be embodied in a persistent storage module (i.e., non-volatile storage) such as Flash memory 635. In one implementation, Flash memory 635 may be segregated into different areas, e.g., storage area for computer programs 636 (e.g., service processing logic), as well as data storage regions such as device state 637, address book 639, other personal information manager (PIM) data 641, and other data storage areas generally labeled as reference numeral 643. A transport stack 645 may be provided to effectuate one or more appropriate radio-packet transport protocols. In addition, suitable network service request logic and SMS/UUS/USSD messaging logic 648, including memory storage for storing pertinent address information, is provided for effectuating reliable data connectivity with a network node as set forth hereinabove.
It is believed that the operation and construction of the embodiments of the present patent application will be apparent from the Detailed Description set forth above. While the exemplary embodiments shown and described may have been characterized as being preferred, it should be readily understood that various changes and modifications could be made therein without departing from the scope of the present disclosure as set forth in the following claims.
This application discloses subject matter that is related to the subject matter of the following U.S. patent application(s): (i) “SYSTEM AND METHOD FOR EFFECTUATING REMOTE CONTROL OF A NETWORK NODE BY A USER EQUIPMENT (UE) DEVICE” (Docket No. 30745-US-PAT), Application No.: ______, filed ______, in the name(s) of Richard George, Brian Oliver, Jan John-Luc Bakker and Adrian Buckley, which is (are) hereby incorporated by reference.