System and method for high-performance, low-power data center interconnect fabric

Information

  • Patent Grant
  • 9454403
  • Patent Number
    9,454,403
  • Date Filed
    Friday, July 18, 2014
    10 years ago
  • Date Issued
    Tuesday, September 27, 2016
    8 years ago
Abstract
A system and method are provided that support a routing using a tree-like or graph topology that supports multiple links per node, where each link is designated as an Up, Down, or Lateral link, or both, within the topology. The system may use a segmented MAC architecture which may have a method of re-purposing MAC IP addresses for inside MACs and outside MACs, and leveraging what would normally be the physical signaling for the MAC to feed into the switch.
Description
BACKGROUND OF THE INVENTION

The disclosure relates generally to a switching fabric for a computer-based system.


SUMMARY OF THE INVENTION

With the continued growth of the internet, web-based companies and systems and the proliferation of computers, there are numerous data centers that house multiple server computers in a location that is temperature controlled and can be externally managed as is well known.



FIGS. 1A and 1B show a classic data center network aggregation as is currently well known. FIG. 1A shows a diagrammatical view of a typical network data center architecture 100 wherein top level switches 101a-n are at the tops of racks 102a-n filled with blade servers 107a-n interspersed with local routers 103a-f. Additional storage routers and core switches. 105a-b and additional rack units 108a-n contain additional servers 104e-k and routers 106a-g FIG. 1b shows an exemplary physical view 110 of a system with peripheral servers 111a-bn arranged around edge router systems 112a-h, which are placed around centrally located core switching systems 113. Typically such an aggregation 110 has 1-Gb Ethernet from the rack servers to their top of rack switches, and often 10 Gb Ethernet ports to the edge and core routers.


However, what is needed is a system and method for packet switching functionality focused on network aggregation that reduces size and power requirements of typical systems while reducing cost all at the same time and it is to this end that the disclosure is directed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B illustrate a typical data center system;



FIG. 2 is an overview of a network aggregation system;



FIG. 3 illustrates an overview of an exemplary data center in a rack system;



FIG. 4 illustrates a high-level topology of a network aggregating system;



FIG. 5A illustrates a block diagram of an exemplary switch of the network aggregation system;



FIG. 5B illustrates the MAC address encoding;



FIG. 6 illustrates a first embodiment of a broadcast mechanism of the network aggregation system;



FIG. 7 illustrates an example of unicast routing of the network aggregation system;



FIG. 8 illustrates an example of fault-resistant unicast routing of the network aggregation system; and



FIG. 9 illustrates a second embodiment of a broadcast mechanism of the network aggregation system.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The disclosure is particularly applicable to a network aggregation system and method as illustrated and described below and it is in this context that the disclosure will be described. It will be appreciated, however, that the system and method has greater utility since the system and method can be implemented using other elements and architectures that are within the scope of the disclosure and the disclosure is not limited to the illustrative embodiments described below.


The system and method also supports a routing using a tree-like or graph topology that supports multiple links per node, where each link is designated as an Up, Down, or Lateral link, or both, within the topology. In addition, each node in the system maybe be a combination computational/switch node, or just a switch node, and input/output (I/O) can reside on any node as described below in more detail. The system may also provide a system with a segmented Ethernet Media Access Control (MAC) architecture which may have a method of re-purposing MAC IP addresses for inside MACs and outside MACs, and leveraging what would normally be the physical signaling for the MAC to feed into the switch. The system may also provide a method of non-spoofing communication, as well as a method of fault-resilient broadcasting, which may have a method of unicast misrouting for fault resilience. In the context of network security, a spoofing attack is a situation in which one person or program successfully masquerades as another by falsifying data and thereby gaining an illegitimate advantage.


The system may also provide a rigorous security between the management processors, such that management processors can “trust” one another. In the example system shown in FIG. 5A (which is described below in more detail), there is a management processor within each SoC (the M3 microcontroller, block 906, FIG. 5A). The software running on the management processor is trusted because a) the vendor (in this case Smooth-Stone) has developed and verified the code, b) non-vendor code is not allowed to run on the processor.


Maintaining a Trust relationship between the management processors allow them to communicate commands (e.g. reboot another node) or request sensitive information from another node without worrying that a user could spoof the request and gain access to information or control of the system.


The system may also provide a network proxy that has an integrated microcontroller in an always-on power domain within a system on a chip (SOC) that can take over network proxying for the larger onboard processor, and which may apply to a subtree. The system also provide a multi-domaining technique that can dramatically expand the size of a routable fat tree like structure with only trivial changes to the routing header and the routing table.



FIG. 2 illustrates a network aggregation system 300. The network aggregation supports one or more high speed links 301 (thick lines), such as a 10-Gb/sec Ethernet communication, that connect an aggregation router 302 and one or more racks 303, such as three racks 303a-c as shown in FIG. 3. In a first rack 303a, the network aggregation system provides multiple high-speed 10 Gb paths, represented by thick lines, between one or more Smooth-Stone computing unit 306a-d, such as server computers, on shelves within a rack. Further details of each Smooth-Stone computing unit are described in more detail in U.S. Provisional Patent Application Ser. No. 61/256,723 filed on Oct. 30, 2009 and entitled “System and Method for Enhanced Communications in a Multi-Processor System of a Chip (SOC)” which is incorporated herein in its entirety by reference. An embedded switch 306a-d in the Smooth-Stone computing units can replace a top-of-rack switch, thus saving a dramatic amount of power and cost, while still providing a 10 Gb Ethernet port to the aggregation router 302. The network aggregation system switching fabric can integrate traditional Ethernet (1 Gb or 10 Gb) into the XAUI fabric, and the Smooth-Stone computing units can act as a top of rack switch for third-party Ethernet connected servers.


A middle rack 303b illustrates another configuration of a rack in the network aggregation system in which one or more Smooth-Stone computing units 306e, f can integrate into existing data center racks that already contain a top-of-rack switch 308a. In this case, the IT group can continue to have their other computing units connected via 1 Gb Ethernet up to the existing top-of-rack switch and the internal Smooth-Stone computing units can be connected via 10 Gb XAUI fabric and they can integrate up to the existing top-of-rack switch with either a 1 Gb or 10 Gb Ethernet interconnects as shown in FIG. 2. A third rack 303c illustrates a current way that data center racks are traditionally deployed. The thin lines in the third rack 303c represent 1 Gb Ethernet. Thus, the current deployments of data center racks is traditionally 1 Gb Ethernet up to the top-of-rack switch 308b, and then 10 Gb (thick line 301) out from the top of rack switch to the aggregation router. Note that all servers are present in an unknown quantity, while they are pictured here in finite quantities for purposes of clarity and simplicity. Also, using the enhanced SS servers, no additional routers are needed, as they operate their own XAUI switching fabric, discussed below.



FIG. 3 shows an overview of an exemplary “data center in a rack” 400 according to one embodiment of the system. The “data center in a rack” 400 may have 10-Gb Ethernet PHY 401a-n and 1-Gb private Ethernet PHY 402. Large computers (power servers) 403a-n support search; data mining; indexing; Apache Hadoop, a Java software framework; MapReduce, a software framework introduced by Google to support distributed computing on large data sets on clusters of computers; cloud applications; etc. Computers (servers) 404a-n with local flash and/or solid-state disk (SSD) support search, MySQL, CDN, software-as-a-service (SaaS), cloud applications, etc. A single, large, slow-speed fan 405 augments the convection cooling of the vertically mounted servers above it. Data center 400 has an array 406 of hard disks, e.g., in a Just a Bunch of Disks (JBOD) configuration, and, optionally, Smooth-Stone computing units in a disk form factor (for example, the green boxes in arrays 406 and 407), optionally acting as disk controllers. Hard disk servers or SS disk servers may be used for web servers, user applications, and cloud applications, etc. Also shown are an array 407 of storage servers and historic servers 408a, b (any size, any vendor) with standard Ethernet interfaces for legacy applications.


The data center in a rack 400 uses a proprietary system interconnect approach that dramatically reduces power and wires and enables heterogeneous systems, integrating existing Ethernet-based servers and enabling legacy applications. In one aspect, a complete server or storage server is put in a disk or SSD form factor, with 8-16 SATA interfaces with 4 ServerNodes™ and 8 PCIe ×4 interfaces with 4 ServerNodes™. It supports disk and/or SSD+ServerNode™, using a proprietary board paired with a disk(s) and supporting Web server, user applications, cloud applications, disk caching, etc.


The Smooth-Stone XAUI system interconnect reduces power, wires and the size of the rack. There is no need for high powered, expensive Ethernet switches and high-power Ethernet Phys on the individual servers. It dramatically reduces cables (cable complexity, costs, significant source of failures). It also enables a heterogeneous server mixture inside the rack, supporting any equipment that uses Ethernet or SATA or PCIe. It can be integrated into the system interconnect.


The herein presented aspects of a server-on-a-chip (SOC) with packet switch functionality are focused on network aggregation. The SOC is not a fully functionally equivalent to an industry-standard network switch, such as, for example, a Cisco switch or router. But for certain applications discussed throughout this document, it offers a better price/performance ratio as well as a power/performance ratio. It contains a layer 2 packet switch, with routing based on source/destination MAC addresses. It further supports virtual local area network (VLAN), with configurable VLAN filtering on domain incoming packets to minimize unnecessary traffic in a domain. The embedded MACs within the SOC do have complete VLAN support providing VLAN capability to the overall SOC without the embedded switch explicitly having VLAN support. It can also wake up the system by management processor notifying the management processor on link state transitions to reprogram routing configurations to route around faults. Such functionality does not require layer3 (or above) processing (i.e., it is not a router). It also does not offer complete VLAN support, support for QoS/CoS, address learning, filtering, spanning tree protocol (STP), etc.



FIG. 4 shows a high-level topology 800 of the network system that illustrates XAUI connected SoC nodes connected by the switching fabric. The 10 Gb Ethernet ports Eth0 801a and Eth1 801b come from the top of the tree. Ovals 802a-n are Smooth-Stone nodes that comprise both computational processors as well as the embedded switch. The nodes have five XAUI links connected to the internal switch. The switching layers use all five XAUI links for switching. Level 0 leaf nodes 802d, e (i.e., N0n nodes, or Nxy, where x=level and y=item number) only use one XAUI link to attach to the interconnect, leaving four high-speed ports that can be used as XAUI, 10 Gb Ethernet, PCIe, SATA, etc., for attachment to I/O. The vast majority of trees and fat trees have active nodes only as leaf nodes, and the other nodes are pure switching nodes. This approach makes routing much more straightforward. Topology 800 has the flexibility to permit every node to be a combination computational and switch node, or just a switch node. Most tree-type implementations have I/O on the leaf nodes, but topology 800 let the I/O be on any node. In general, placing the Ethernet at the top of the tree minimizes the average number of hops to the Ethernet.


In more detail, the ovals shown in the tree-oriented topology in FIG. 6 represent independent nodes within a computing cluster. FIG. 5A illustrates one example implementation of an individual node of the cluster. When looking at a conventional implementation of a topology e.g. in FIG. 6, usually computing nodes are found in the lower level leaf nodes (e.g. N00-N08), and the upper level nodes don't have computing elements but are just network switching elements (N10-N21). With the node architecture shown in FIG. 5A, the A9 Cores (905) may be optionally enabled, or could be just left powered-off. So the upper level switching nodes (N10-N21) in FIG. 6 can be used as pure switching elements (like traditional implementations), or we can power on the A9 Cores module and use them as complete nodes within the computing cluster.


The switch architecture calls for a routing frame to be prepended to the Ethernet frame. The switch operates only against fields within the routing frame, and does not inspect the Ethernet frame directly. FIG. 5a shows a block diagram of an exemplary switch 900 according to one aspect of the system and method disclosed herein. It has four areas of interest 910a-d. Area 910a corresponds to Ethernet packets between the CPUs and the inside MACs. Area 910b corresponds to Ethernet frames at the Ethernet physical interface at the inside MACs, that contains the preamble, start of frame, and inter-frame gap fields. Area 910c corresponds to Ethernet frames at the Ethernet physical interface at the outside MAC, that contains the preamble, start of frame, and inter-frame gap fields. Area 910d corresponds to Ethernet packets between the processor of routing header 901 and outside MAC 904. This segmented MAC architecture is asymmetric. The inside MACs have the Ethernet physical signaling interface into the routing header processor, and the outside MAC has an Ethernet packet interface into the routing header processor. Thus the MAC IP is re-purposed for inside MACs and outside MACs, and what would normally be the physical signaling for the MAC to feed into the switch is leveraged. MAC configuration is such that the operating system device drivers of A9 cores 905 manage and control inside Eth0 MAC 902 and inside ETH1 MAC 903. The device driver of management processor 906 manages and controls Inside Eth2 MAC 907. Outside Eth MAC 904 is not controlled by a device driver. MAC 904 is configured in Promiscuous mode to pass all frames without any filtering for network monitoring. Initialization of this MAC is coordinated between the hardware instantiation of the MAC and any other necessary management processor initialization. Outside Eth MAC 904 registers are visible to both A9 905 and management processor 906 address maps. Interrupts for Outside Eth MAC 904 are routable to either the A9 or management processor. The XGMAC supports several interruptible events that the CPUs may want to monitor, including any change in XGMII link fault status, hot-plugging or removal of PHY, alive status or link status change, and any RMON counter reaching a value equal to the threshold register.


In some cases, there may be Preamble, Start of Frame, and Inter-Frame gap fields across XAUI, depending on the specific micro-architecture. The routing frame header processor may standardize these fields. The XAUI interface may need some or all of these fields. In this case, the routing header processor at area 910d needs to add these going into the switch, and to remove them leaving the switch. To reduce the number of bytes that need to be sent over XAUI, these three fields may be removed (if the XAUI interface allows it). In this case, the routing header processor at area 910b will need to strip these going into the switch, and add them back leaving the switch.


The routing frame header processor receives an Ethernet frame from a MAC, sending a routing frame to the switch. It also standardizes the preamble, start of frame, and inter-frame gap fields, prepends a routing header, and receives a routing frame from the switch, sending the Ethernet frame into a MAC. This processor then strips the routing header and standardizes the preamble, start of frame, and inter-frame gap fields. Note that all frames that are flowing within the fabric are routing frames, not Ethernet frames. The Ethernet frame/routing frame conversion is done only as the packet is entering or leaving the fabric via a MAC. Note also that the routing logic within the switch may change fields within the routing frame. The Ethernet frame is never modified (except the adding/removing of the preamble, start of frame, and inter-frame gap fields).


The routing frame is composed of the routing frame header plus the core part of the Ethernet frame, and is structured as shown in Table 1, below:










TABLE 1





Routing



Frame Header
Ethernet Frame Packet




















RF
MAC
MAC
Ethertype/
(data and
CRC32


Header
destination
Source
Length
padding)









Note that the implementation assumptions for bit sizing are 4096 nodes.fwdarw.12 bit node IDs. These fields may be resized during implementation as needed.


The routing frame header consists of the fields shown in Table 2, below:











TABLE 2






Width



Field
(Bits)
Notes

















Domain
5
Domain ID associated with this packet. 0 indicates


ID

that no domain has been specified.


Mgmt
1
Specifies that the packet is allowed on the private


Domain

management domain.


Source
12
Source node ID


Node


Source
2
0 = MAC0, 1 = MAC1, 2 = MAC_management


Port

processor, 3 = MAC_OUT


Dest Node
12
Destination node ID


Dest Port
2
0 = MAC0, 1 = MAC1, 2 = MAC_management




processor, 3 = MAC_OUT


RF Type
2
Routing Frame Type (0 = Unicast, 1 = Multicast,




2 = Neighbor Multicast, 3 = Link Directed)


TTL
6
Time to Live - # of hops that this frame has existed.




Switch will drop packet if the TTL threshold is




exceeded (and notify management processor of




exception).


Broadcast
5
Broadcast ID for this source node for this broadcast


ID

packet.


Checksum

Checksum of the frame header fields.


Total
46
+checksum









If a switch receives a packet that fails the checksum, the packet is dropped, a statistic counter is incremented, and the management processor is notified.


The routing frame processor differentiates between several destination MAC address encodings. As a reminder, MAC addresses are formatted as shown in FIG. 5b. The following table describes the usage of the 3 byte OUI and 3 byte NIC specific field within the MAC address. One of the novel aspects of the system and method disclosed herein is the use of additional address bits to encode an internal to external MAC mapping, as shown also in the Table 3, below, in the second entry under “Fabric Internal Node local address Hits MAC Lookup CAM”.












TABLE 3





MAC Address





Type
3 bytes OUI
3 bytes NIC Specific
Operation







External
Multicast bit
Arbitrary
Packet unicast


Misses MAC
not set

routed to


Lookup CAM


gateway node #.


Fabric Internal
Arbitrary
Node local address (meaning
Packet unicast


Node local

low 2 bits - port unit
routed to


address

ID) are not present. MAC
fabric node #


Hits MAC

Lookup CAM for entry
obtained from


Lookup CAM

marked as Node Local.
MAC Lookup CAM


Fabric Internal
Arbitrary
Arbitrary
Packet unicast


Arbitrary MAC


routed to


address


fabric node #


Hits MAC


obtained from


Lookup CAM


MAC Lookup CAM


Node Encoded
Unicast
10 bits:
Packet


Unicast
Locally
SS_MAC_NODE_ENCODED_MAGIC
unicast



administered
12 bits: Node ID
routed to



OUI == Switch
2 bits: Port ID
Node ID.



OUI


Link Encoded
Unicast
12 bits:
Packet sent


Unicast
Locally
SS_MAC_LINK_ENCODED_MAGIC
down specific



administered
7 bits: Reserved
Link #.



OUI == Switch
3 bits: Link # (0-4)



OUI
2 bits: Port


Multicast/
Multicast bit
Arbitrary
Packet


Broadcast
set

broadcast





routed through





fabric and





gateways.


Neighbor
Multicast bit
12 bits:
Packet sent


Multicast
set
SS_NEIGHBOR_MCAST_MAGIC
through all



Locally
12 bits: Reserved
XAUI links to



administered

neighboring



OUI = Switch

nodes and not



OUI

rebroadcast





to other nodes









Further, other novel aspects can be found in Table 3 under “Node Encoded Unicast” as well as “Link Encoded Unicast,” allowing one internal node or link to address all external MAC sections, and the “Neighbor Multicast” entry, allowing a multicast to neighboring nodes.


Note that the values SS_MAC_NODE_ENCODED_MAGIC and SS_MAC_LINK_ENCODED_MAGIC are constant identifiers used for uniquely identifying these MAC address types. The term “magic number” is a standard industry term for a constant numerical or text value used to identify a file format or protocol. These magic numbers are configured in two registers (magicNodeEncodedMAC and magicLinkEncodedMAC that default to standard values during hardware initialization, but allow the management processor software to change them if necessary.


The header processor contains a MAC Lookup CAM (Content Addressable Memory), macAddrLookup, that maps from 6 byte MAC addresses to 12-bit Node IDs, as shown in Table 4, below.














TABLE 4











MAC Lookup




MAC Lookup CAM Input

CAM Output












Node Local
MAC Address
Node ID
Port ID







1 bit
6 bytes
12 bits
2 bits










The number of rows in this CAM is implementation dependent, but would be expected to be on the order of 256-1024 rows. The management processor initializes the CAM with Node ID mappings for all the nodes within the SS fabric. There are two types of rows, depending upon the setting of the Node Local bit for the row. The Node Local field allows a 4:1 compression of MAC addresses in the CAM for default MAC addresses, mapping all four MACs into a single row in the CAM table, which is Table 5, below.












TABLE 5





MAC





Address
Node


Type
Local
MAC Address
Port ID







Node
1
A Node Encoded Address refers to
Taken from


Local

a Smooth Stone assigned MAC
low 2 bits of




address for a node. It encodes the
MAC




port # (MAC0, MAC1, management
Address




processor, Rsvd) into a 2- bit Port
Input




ID in the lowest two bits of the NIC




address field. Ignores low 2 bits during




match.


Arbitrary
0
Matches against all 6 bytes
Taken from





CAM Output





field









The arbitrary rows in the CAM allow mapping of the MAC address aliases to the nodes. Linux (and the MACs) allow the MAC addresses to be reassigned on a network interface (e.g., with ifconfig eth0 hw ether 00:80:48:BA:d1:30). This is sometime used by virtualization/cloud computing to avoid needing to re-ARP after starting a session.


The switch architecture provides for a secondary MAC Lookup CAM that only stores the 3 bytes of the NIC Specific part of the MAC address for those addresses that match the Switch OUI. The availability of this local OUI CAM is determined by the implementation. See Table 6, below.













TABLE 6









MAC Lookup CAM Input
MAC Lookup CAM Output












MAC Address NIC Specific
Node ID
Port ID







3 bytes
12 bits
2 bits










The maximum number of nodes limitation for three types of MAC address encodings may be evaluated as follows:


1. Default MAC Addressees—management processor sets Node Local mappings for each of the nodes in the fabric. There is one entry in the CAM for each node. Max # of nodes is controlled by maximum # of rows in the MAC Address Lookup CAM.


2. Node Encoded Addresses—All the MACs are reprogrammed to use Node Encoded Addresses. In this way the Node IDs are directly encoded into the MAC addresses. No entries in the MAC Lookup CAM are used. Max # of nodes is controlled by maximum # of rows in the Unicast lookup table (easier to make big compared to the Lookup CAM). Note that this also gives us some risk mitigation in case the MAC Lookup CAM logic is busted. Provides use case for the node encoded addresses idea.


3. Arbitrary MAC Address Aliases—Takes a row in the CAM. As an example, a 512-row CAM could hold 256 nodes (Node local addresses)+1 MAC address alias per node.


Since the Lookup CAM is only accessed during Routing Header creation, the management processor actually only needs to populate a row if the MAC address within the fabric is being used as a source or destination MAC address within a packet. In other words, if two nodes never will talk to each other, a mapping row does not need to be created. But usually the management processor won't have that knowledge, so it's expected that mappings for all nodes are created in all nodes. Also note that even if an entry is not created in the Lookup CAM, the routing will actually still succeed by routing the packet out the Ethernet gateway, through an external router, back into the Fabric, to the destination node.


Table 7 defines how to set fields within the Routing Header for all the fields except for destination node and port.












TABLE 7







Field
Set To









Domain ID
Set to the macDomainID field for the MAC that




the packet came from.



Mgmt
Set to the macMgmtDomain field for the MAC that



Domain
the packet came from.



Source Node
Switch Node ID



Source Port
Source MAC Port ID



RF Type
Multicast (if dstMAC multicast and not Neighbor




Multicast format)




Neighbor Multicast (if dstMAC multicast and is




Neighbor Multicast format)




Link Directed (is Link Encoded format)




Unicast (if not one of the above)



TTL
0



Broadcast
If dstMAC is unicast - Set to 0



ID
If dstMAC is multicast - Set to incremented local




broadcast ID (bcastIDNext++ & 0xf)










Table 8 defines how to set destination node and port for addresses within the fabric:











TABLE 8






Field:
Field:



Destination
Destination


Case
Node
Port







Node Encoded Dest Address
Dest Node
Dest Port


Link Encoded Dest Address
Encoded Link
Dest Port


Hits Lookup CAM (node local)
CAM Dest Node
Dest MAC




(low 2 bits)


Hits Lookup CAM (not node local)
CAM Dest Node
CAM Dest Port









Table 9 defines how to set destination node and port for addresses outside the fabric:











TABLE 9






Field:
Field:



Destination
Destination


Case
Node
Port







Came in an OUT Ethernet, but no
Drop packet, update



secondary gateway defined
statistics counter


Came in an OUT Ethernet, and
secondaryEthGateway-
OUT


secondary gateway defined
Node[OUT]


From an Inside MAC, but no
Drop packet, update


primary gateway defined
statistics counter, and



notify management



processor


From an Inside MAC, and
primaryEthGateway-
OUT


primary gateway defined
Node[fromPort]









Additionally, the management processor software architecture of the system and method disclosed here currently depends on the ability of management processor nodes to “trust” each other. This more rigorous security on management processor to management processor communication is desirable, as well a better security on private management LANs across the fabric. This fabric issue may be mitigated by simply defining, for environments that require multiple “hard” security domains, that customers simply don't mix security domains within a fabric. In such cases, it may be possible to connect 14-node boards to the top of rack switch, allowing customers to have VLAN granularity control of each 14-node board.


The multi-domain fabric architecture that has been described addresses the lack of VLAN support by creating secure “tunnels” and domains across the fabric, and it can interoperate with VLAN protected router ports on a 1:1 basis.


The approach to domain management in the system and method disclosed here is as follows: Support multiple domain IDs within the fabric. Allow each of the MACs within a node (management processor, MAC0, MAC1, Gateway) to be assigned to a domain ID individually (and tagged with domain 0 if not set). Allow each of the MACs within a node to have a bit indicating access to the management domain. The domain IDs associated with a MAC could only be assigned by the management processor, and could not be altered by the A9. For frames generated by MACs (both inside and outside), the routing frame processor would tag the routing frame with the domain ID and management domain state associated with that MAC. Domains would provide the effect of tunnels or VLANs, in that they keep packets (both unicast and multicast) within that domain, allowing MACs outside that domain to be able to neither sniff or spoof those packets. Additionally, this approach would employ a five-bit domain ID. It would add options to control domain processing, such as, for example, a switch with a boolean per MAC that defines whether packets are delivered with non-defined (i.e., zero) domain ID, or a switch that has a boolean per MAC that defines whether packets are delivered with defined (non-zero) but non-matching domain IDs. A further option in the switch could turn off node encoded MAC addresses per MAC (eliminating another style of potential attack vector).


To keep management processor to management processor communication secure, the management domain bit on all management processor MACs could be marked. Generally, the management processor should route on domain 1 (by convention). Such a technique allows all the management processor's to tunnel packets on the management domain so that they cannot be inspected or spoofed by any other devices (inside or outside the fabric), on other VLANs or domains. Further, to provide a secure management LAN, a gateway MAC that has the management domain bit set could be assigned, keeping management packets private to the management processor domain. Additionally, the switch fabric could support “multi-tenant” within itself, by associating each gateway MAC with a separate domain. For example, each gateway MAC could connect to an individual port on an outside router, allowing that port to be optionally associated with a VLAN. As the packets come into the gateway, they are tagged with the domain ID, keeping that traffic private to the MACs associated with that domain across the fabric.


The switch supports a number of registers (aka CSRs, aka MMRs) to allow software or firmware to control the switch. The actual layout of these registers will be defined by the implementation. The fields listed in Table 10 are software read/write. All these registers need to have a mechanism to secure them from writing from the A9 (could be secure mode or on a management processor private bus).











TABLE 10





Field
Size
Notes







Adaptive
1 bit
Adaptive unicast routing enabled.


broadcastLateral
1 bit
Enable to have broadcasts go through lateral




links, rather than just Up and Down links.




Turning this off will work for most topologies




and will reduce # duplicate broadcast packets.


intPortBroadcastVec
4 bits
Vector of ports to send internally generated




broadcast packet into.


extPortBroadcastVec
4 bits
Vector of ports to send externally generated




broadcast packet into.


linkDir[LINKS]
Array [LINKS] ×
Specifies link direction for each link



2 bits
(0 = DOWN, 1 = LATERAL, 2 = UP, 3 = Rsvd)


linkState
5 bits
Link state vector for each of the 5 links. Bit




set indicates that link is active (trained and




linked).


linkType[LINKS]
Array [LINKS] ×
Specifies type of each link



2 bits
(0 = No Link, 1 = XAUI, 2 = Ethernet}


localBroadcastM3Snoop
1 bit
When set, then we'll always send a copy of




the locally initiated broadcast into the




management processor. The use case here is




where the management processor wants to see




the gratuitous ARPs that are locally initiated




so that it can communicate across the




management processor fabric and add




corresponding entries into the local unicast




routing tables.


macAddrLookup
Lookup CAM which is
MAC address lookup CAM to convert MAC



described elsewhere in
addresses to Node IDs.



the document


macAcceptOtherDomain[MAC]
1 bit[MAC]
Defines that the MAC accepts packets that are




tagged with a non-zero, non-matching domain




ID.


macAcceptZeroDomain[MAC]
1 bit[MAC]
Defines that the MAC accepts packets that are




not tagged with a domain (i.e. 0 domain)


macDomainID[MAC]
5 bits[MAC]
Defines the Domain ID for each of the 4




MACs. A value of 0 indicates that the domain




ID for that MAC is not set.


macMgmtDomain[MAC]
1 bit[MAC]
Defines that the MAC may access the




management domain. Setting this tags the




management domain in the routing frame, as




well as allows the switch to route




management frame packets into this MAC.


magicNodeEncodedMAC
10 bits
Magic number for Node Encoded MAC




addresses


magicLinkEncodedMAC
12 bits
Magic number for Link Encoded MAC




addresses


maxTTL
6 bits
Maximum TTL count allowed in a routing




header. Exceeding this number of hops causes




the switch to drop the packet, update a




statistic counter, and inform the management




processor.


myNodeID
12 bits
Need not be contiguous. Subtree's should




ideally be numbered within a range to




facilitate subtree network proxying.


myOUI
3 bytes
3 upper bytes of MAC addresses in fabric.




Should be the same for all nodes in the fabric.


nodeRangeEnable
1 bit
Enables the expanded Node ID matching of




[nodeRangeLo, nodeRangeHi]. Used for




Network Proxying through a subtree. When




enabled, a packet will be routed into the node




(rather than through the node) if either




DstNode == myNodeID OR (nodeRangeLo <=




DstNode <= nodeRangeHi).


nodeRangeHi
12 bits
Enabled with nodeRangeEnable. Specifies




high node ID of node range match.


nodeRangeLo
12 bits
Enabled with nodeRangeEnable. Specifies




low node ID of node range match.


noFlowControl
1 bit
When enabled, there will be no flow control.


portRemap[INT_PORTS];
Array [INT_PORTS] ×
Allows remapping of incoming destination



2 bits
port IDs to the internal port where it'll be




delivered. This register defaults to an




equivalence remapping. An example of where




this will get remapped is during Network




Proxy where the management processor will




remap MAC0 packets to be sent to the




management processor.




INT_PORTS = 4. Array elements are the Ports




enumeration (management processor, MAC0,




MAC1, OUT).




2 bits contents is the Ports enumeration.


primaryEthGatewayNode[INT_PORTS]
Array [INT_PORTS]
Specifies Node ID of primary Ethernet



of 12-bit
gateway for this node. Packets destined to




node IDs that aren't within the fabric will get




routed here.


promiscuousPortVec
4 bits
Can be configured for Promiscuous Mode




allowing traffic on one or more links to be




snooped by the management processor or A9s




in order to collect trace data or to implement




an Intruder Detection System (IDS). This




causes all traffic passing through the switch to




be copied to the internal ports defined by this




port vector.


routeForeignMACsOut
1 bit
When enabled, a MAC address that does not




contain a myOUI address, will not check the




MAC lookup CAM, and will get treated as a




MAC lookup CAM miss, thus getting routed




to the gateway port. This saves latency in the




common case of not populating the CAM




with foreign MAC aliases.


secondaryEthGatewayNode[INT_PORTS]
Array [INT_PORTS]
Specifies Node ID of secondary Ethernet



of 12-bit
gateway. Incoming (from OUT) packets




routing through the fabric will be sent here.


unicastPortsFromOtherExt
1 bit
An incoming unicast from an external


Gateways

gateway will get the gateway node put into




the source node field of the routing header.




Upon reaching the destination node, this bit




will be checked. When the bit is clear, the




external ateway node must match the




destination gateway node for it to be delivered




to internal ports. This is to handle the case




where the fabric is connected to an external




learning switch that hasn't yet learned the




mac/port relationship, and floods the unicast




packet down multiple ports. This will prevent




a fabric node from getting the unicast packet




multiple times.


unicastRoute[NODES]
Array [NODES] of
Link vector of unicast next route. 10 bits is 2-



10 bits
bit weight for each of 5 links.









The registers shown in Table 11 are contained within the Switch implementation, but need not be software accessible.











TABLE 11





Field
Size
Notes







bcastIDNext
5 bits
Next broadcast sequence ID to issue




next. Hardware will increment this




for each broadcast packet initiated




by this node.


bcastIDSeen[BCAST_ID_LEN]
Array[BCAST_ID_LEN]
FIFO list of broadcast tags seen by



of 5 bits.
this node.


bcastIDSeenNext
# bits to index into
Next array position into



BCAST_ID_LEN
bcastIDSeen[ ] to insert a broadcast




tag.









Note that software should be able to update the routing tables (unicastRoute) and the macAddrLookup CAM atomically with respect to active packet routing. One implementation will be to hold off routing access to these tables during an update operation.


Broadcast/Multicast Routing



FIG. 6 shows an exemplary broadcast mechanism 1000 according to one aspect of the system and method disclosed herein. The link between nodes N10 1001 and N21 1002 is down, as indicated by the dashed line 1003. During routing header generation of multicast packets, the source node puts an incremented broadcast ID for that source node in the routing frame (rframe.bcastID). When a node receives a multicast routing frame (i.e. rframe.rfType==Multicast.parallel.rframe.rfType==NeighborMulticast)-, it checks to see whether it has already seen this broadcast packet. The check is done by accessing the bcastIDSeen CAM with a tag formed with the broadcast source node and the broadcast ID. If it has already been seen (i.e. CAM hit), no action is be performed. If the broadcast frame has not been seen before, it broadcasts it to appropriate internal ports and external gateways (intPortBroadcastVec register) and rebroadcasts it through all outward XAUI links except for the link it came in on. Note that it only broadcasts through laterals if the broadcastLateral register is set. It is unnecessary to broadcast laterals on most topologies, and doing so may reduce the number of duplicated broadcast packets by disabling it. It then adds this broadcast tag to the bcastIDSeen CAM in FIFO order. In FIG. 7, N04 1004 initiates a broadcast to all neighbors, i.e., N11 1105. N11 has not seen the packet, so it broadcasts to all non-incoming neighbors, which, in this example, are N21 1002, N20 1006, N03 1007, and N05 1008, and accepts the packet internally. Nodes N03 and N05 haven't seen the packet, so they accept the broadcast internally and are done. N21 hasn't seen the packet, so it broadcasts the packet to all active, non-incoming links (e.g., N10, N12 1009), and accepts the packet internally. N20 broadcasts the packet to all active, non-incoming links (i.e., N12), and accepts the packet internally. N10 broadcasts down to N00 1010, N01 1011, and N02 1012. N12 rebroadcasts to N06 1013, N07 1014, N08 1015 and to one of N21 and N20 (the one it didn't get the broadcast packet from). Note that one of N20 and N21, and N12, see the packet twice. They take action only on their first instance, the secondary times it hits the broadcast CAM as a duplicate, and the packet is ignored.


Unicast Routing


Unicast to Other Node


Unicast routing (as shown in FIG. 7) is responsible for routing non-multicast (i.e. unicast) packets to the next node. This is done by utilizing a software computed unicastRoute[ ] next node routing table that provides a vector of available links to get to the destination node.


Condition


rframe.rfType=Unicast


Routing


There are substantial complexities related to routing around faults. Fault free routing and routing around faults will be discussed separately.


Traditionally in tree routing, the packet will be routed upward until a common parent of (source, destination) is reached. This upward routing can be deterministic, oblivious, or adaptive. The packet is then routed downward to the destination using deterministic routing.


As an example, FIG. 7 illustrates a packet routing from node N00 1010 to N08 1015. The packet is routed in the upward phase to the common ancestor (N21) through node N10 1001, and then a descent phase to the destination.


Note that during the upward phase at node N10, there are two candidate links (N10,N21) and (N10,N20). The first candidate link could be chosen deterministically, or an adaptive algorithm could dynamically select either of the links. But, once the node reaches the common ancestor and turns downward, there are no redundant paths (in general) for the node to reach the destination.


Unicast Routing in the Presence of No Faults


Each link is annotated within this unicastRoute table with a 2-bit linkWeight where software can express the relative cost/distance to the destination node via this link. By convention, link weights should represent:


0=No route


3=Direct next-hop connection


1 and 2=Software computed relative costs. As an example if there are routes across 3 links with costs of 2 hops, 3 hops, and 6 hops, the first two links could be assigned weight=2 and the 6 hops path could be assigned weight=1.


Algorithm for Fault-Free Unicast Routing:














Get link weight vector from the unicast routing table


linkWeightVector=unicastRoute[rframe.dstNode]


Remove link that it came in on to remove possibility of sending it back


Remove any links that are not up


At this point, have a candidate list of links with associated link weights.









Iterate through link weights, starting with highest priority (3) down through 1. Gather candidate list of links at this priority, stopping once the candidate list has at least one link. The result is a candidate list of links at the highest priority. As an example, if there are 2 links at weight=2, and 2 links at weight=1, the prioritized candidate list will contain the two links at weight=2.


The adaptive register is checked to determine whether to do adaptive or deterministic routing.


adaptive==0 indicates that deterministic routing is to be used, so the first link is chosen from the prioritized candidate list.


adaptive==1 indicates that adaptive routing is to be used. The switch implementation will choose an algorithm for adaptively choosing the target link from the prioritized candidate list. This adaptive algorithm could be as simple as round-robin around the list. Alternatively, may choose to factor in other attributes e.g. FIFO free depth, link speed, . . . .


An implementation option could be to add a register option to allow the router to adaptively choose from all non-zero weights, or to only adaptively choose from the highest priority candidate lists.


The packet is sent out the selected link.


Fault-Resilient Unicast Routing


A couple of issues contribute to the complexity of fault-resilient unicast routing:


The desire to do fault routing with only localized knowledge. A node implicitly knows that a link is down to a neighbor node. We choose a design to avoid having to communicate that a link (or node) goes down elsewhere in the fabric due to the complexities of maintaining a global, unified state in the presence of failures.


The nature of routing in a tree. During the ascent phase of packet routing, links can be adaptively chosen from redundant links so it can be straightforward to avoid a link with the normal adaptive link selection.


But, once the packet starts descending, traditionally there is not redundant paths for the descent path (that follow the routing rules), so fault routing can become challenging.



FIG. 8 illustrates a link failure (N10,N21) and unicast routing selected the (N10, N20) link using the normal adaptive routing algorithm previously described. But note, if the packet is routed up to N20 and link (N20,N12) is down, it has no easy path to get to the destination.


We have two approaches to handling routing around failures:


Software can compose alternative but non-desirable routes with weight=1. We'll call these escape routes. These are low priority routes that may violate the strict routing rules used during routing around faults. As an example, if the link (N20, N12) was down, the unicastRoute[N08] entry for N20 could contain link to N12 with weight=2 and a link to N11 with weight=1. In this way, the normal adaptive routing algorithms will automatically do the N20→N11→N21→N12→N08 path.


The fabric architecture includes a technique that we refer to as “misrouting”. Misrouting provides for iterative backtracking


Both of these techniques will provide substantial unicast fault-resilience.


Unicast Misrouting


As an example, consider the following topology, with 3 links 1101, 1102 and 1103 that have failed (shown in dashed lines in FIG. 9). Consider a unicast route from N0 to N3. We'll consider the following routing to understand the misrouting technique, understanding that this is only one of several routes that could have been chosen adaptively.


Packet routed N0 to N6.


Packet routed N6 to N10


N10 sees that it has no paths to get to N3, other than the link it came in on. N10 sets the misrouting bit in the routing header, and sends it back to N6.


N6 sees that the packet is being misrouted, sets the bit for the N10 link in the misrouteVector in the routing header, chooses an alternative link that has not been misrouted, and sends the packet to N11.


N11 sees that it has no path to N3, other than the link it came in on. misrouting bit is already on, and sends it back to N6.


N6 sees that the packet is being misrouted, adds N11 link to the misrouteVector (now contains N10 and N11 link IDs), chooses an alternative link that has not been misrouted, and sends it N7.


N7 sees that the misrouting bit is set, but does have a valid link to N3 (to N12), and thus clears the misrouting bit in the header, and forwards the packet to N12.


N12 sends to N9.


N9 unicastRoute now likely contains link to N3 (weight=3) and link to N8 (weight=2). Normal adaptive routing will not choose the direct link to N3 since it's down, and will route the packet to N8, then finally to N3.


If N6 had exhausted its list of candidate links (meaning the misrouteVector masked them all), the implementation then has two choices:


drop the packet and inform the M3 of the failure to route.


clear the misrouteVector leaving misrouting set, and forward the packet through one of the downward facing links (if one exists). This will retry misrouting at one layer lower. The implementation may want to have a register bit (enableRecursiveMisrouting) to enable this retry at lower layer option.


There is a register enableMisrouting that allows software to control whether the switch will initiate the misrouting algorithm.


Multi-Domaining


Also known to the inventors is Multi-Domaining, whose goal is to increase the addressability of nodes to a large number of nodes (e.g., 64K nodes), without having to increase the size of the unicast routing table to 64K nodes.


As currently described, the unicast routing table is a single-dimension array indexed by node number (i.e. 0 to MAX_NODES−1), where a typical implementation will be between 256 and 4K nodes.


This section will now describe how the current architecture is altered to support multiple domains, with 64K max nodes.


The node namespace is changed from a node ID from 0 to MAX_NODES−1, to a 2-tuple of (domain ID, node ID), where both domain ID and node ID range from 0 to 255. So, there can effectively be 256 domains where each domain can contain up to 256 nodes.


The unicast routing table is changed from a single dimension table of size MAX_NODES, to a two-dimension table of size 256. The unicast routing table is now changed from a structure of unicastRoute[NODES] to unicastRoute[2][256].


Local domain routing: When routing to a node within this domain, the unicast routing table is accessed as unicastRoute[0] [node ID], and provides a weighted link vector to route to the specified node ID from the current node.


Remote domain routing: When routing to a node within a remote domain, the unicast routing table is accessed as unicastRoute[1][domain ID], and provides a weighted link vector to route to the specified domain ID from the current node.


Routing frame: One bit is added to the routing frame, dstRemote, which is set true when routing to a remote domain.


Locally administered MAC addresses: The section below describes the Node Encoded Unicast MAC address encoding as follows:
















Node
Unicast
10 bits:


Encoded
Locally
SS_MAC_NODE_ENCODED_MAGIC


Unicast
administered
12 bits: Node ID



OUI == Switch
2 bits: Port ID



OUI









This gets altered for multi-domaining as follows:
















Node
Unicast
6 bits:


Encoded
Locally
SS_MAC_NODE_ENCODED_MAGIC


Unicast
administered
8 bits: Domain ID



OUI == Switch
8 bits: Node ID



OUI
2 bits: Port ID









Creating the routing frame header: Table 2 describes the algorithms for creating the routing frame header. This is augmented in the multi-domaining case by:

















if ( dstDomain == myDomainID ) {
// Route to local domain









rframe.dstRemote = false;



rframe.dstNode = dstNode;









}










else [
// Route to remote domain









rframe.dstRemote = true



rframe.dstNode = dstDomain;










Network Proxy


The concept of network proxy is the ability of the main processors (FIG. 5A, 905) to maintain network presence while in a low-power sleep/hibernation state, and intelligently wake when further processing is required. There are several architectural features related to Network Proxy:


There is a CSR (portRemap) to allow the remapping of Port IDs. In effect, when the switch is to deliver a packet to an internal MAC0 port (e.g. FIG. 5A, 902), this Port Remapping CSR allows software to remap MAC0 to the management processor MAC (e.g. FIG. 5A, 907) and have the packet delivered to the management processor for Network Proxy processing. This remapping CSR could also be used to remap MAC1 traffic to MAC0, or MAC1 traffic to the management processor.


Normally, the switch looks at the destination node ID of the routing frame to decide whether the packet is delivered to an internal port within the node, or gets routed to other XAUI connected nodes. This is done by matching Destination Node ID to “My Node ID”. The Node ID Match register (nodeRangeLo, nodeRangeHi) causes the packet to be delivered to an internal port within the node if nodeRangeLo<=Destination_Node<=nodeRangeHi.parallel.myNodeID==Destination_Node. This allows a node to proxy for a subtree of nodes. A typical use sequence would be of the form:


Management processor maintains the IP to MAC address mappings for MAC0 and MAC1 on the node. This can be done via either explicit communication of these mappings from the main processor OS to the management processor, or can be done implicitly by having the management processor snoop local gratuitous ARP broadcasts.


The main processor coordinates with the management processor to go to a low power dormant state. During this transition, the management processor sets up the Port ID remapping CSR to route MAC0 and MAC1 traffic to the management processor.


The management processor processes any incoming MAC0/MAC1 packets. There are 3 categories of processing:


Respond to some classes of transactions that require simple responses (e.g. ARP responses and ICMP ping).


Dump and ignore some classes of packets, typically unicast or broadcast packets that are targeting other computers.


Decide that the main processor must be woken to process some classes of packets. The management processor will wake the main processor, undo the Port ID remapping register, and re-send the packets back through the switch where they will get rerouted back to MAC0/1.


Wake-On-LAN Magic Packet


In a traditional desktop computer, the computer to be woken is shut down (sleeping, hibernating, or soft off; i.e., ACPI state G1 or G2), with power reserved for the network card, but not disconnected from its power source. The network card listens for a specific packet containing its MAC address, called the magic packet, broadcast on the broadcast address for that particular subnet (or an entire LAN, though this requires special hardware or configuration). The magic packet is sent on the data link or layer 2 in the OSI model and broadcast to all NICs within the network of the broadcast address; the IP-address (layer 3 in the OSI model) is not used. When the listening computer receives this packet, the network card checks the packet for the correct information. If the magic packet is valid, the network card takes the computer out of hibernation or standby, or starts it up.


The magic packet is a broadcast frame containing anywhere within its payload: 6 bytes of ones (resulting in hexadecimal FF FF FF FF FF FF), followed by sixteen repetitions of the target computer's MAC address. Since the magic packet is only scanned for the string above, and not actually parsed by a full protocol stack, it may be sent as a broadcast packet of any network- and transport-layer protocol. It is typically sent as a UDP datagram to port 0, 7 or 9, or, in former times, as an IPX packet.


Using the Network Proxy architecture just described, the management processor can support these Wake-On-LAN packets. It will get these broadcast packets, will know the MAC addresses for the other MACs on the node, and be able to wake up the main processor as appropriate. No further functionality is needed in the switch to support these Wake-on-LAN packets.


While the foregoing has been with reference to a particular embodiment of the invention, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims.

Claims
  • 1. A switch fabric system, comprising: a plurality of nodes interconnected to form a switch fabric in a tree topology, wherein each of the plurality of nodes includes: an internal switch;a plurality of links connected to the internal switch, wherein at least one of the plurality of links is configured to interconnect to another node in the switch fabric; anda routing frame processor configured to tag a routing frame of a packet with a domain identifier of a media access control (MAC) associated with the packet;wherein the internal switch is configured to route the packet in the switch fabric via the plurality of links, and wherein the internal switch is further configured to define whether packets with non-defined domain identifiers are to be delivered.
  • 2. The switch fabric system of claim 1, wherein each of the plurality of nodes further comprises: a management processor;an application processor coupled to the management processor;a first media access control (MAC) associated with the management processor; anda second MAC associated with the application processor;wherein the management processor is configured to communicate with the internal switch via the first MAC, and wherein the application processor is configured to communicate with the internal switch via the second MAC.
  • 3. The switch fabric system of claim 1, wherein each of the plurality of nodes comprises at least five links.
  • 4. The switch fabric system of claim 1, further comprising a register configured to control the internal switch.
  • 5. The switch fabric system of claim 4, wherein the register comprises a control status register and a memory-mapped register.
  • 6. The switch fabric system of claim 1, wherein the plurality of links comprise 10 gigabit attachment unit interface (XAUI) links.
  • 7. The switch fabric system of claim 1, wherein the plurality of nodes comprise system on a chip (SoC) nodes.
  • 8. The switch fabric system of claim 1, wherein the tree topology comprises: a top level including first nodes;an upper level including second nodes; anda leaf level including third nodes.
  • 9. The switch fabric system of claim 8, wherein the plurality of links on each of the first nodes are configured to interconnect to another first node or to one of the second nodes, wherein the plurality of links on each of the second nodes are configured to interconnect to another second node, to one of the first nodes, or to one of the third nodes, and wherein the plurality of nodes on each of the third nodes are configured to interconnect to another third node or to one of the second nodes.
  • 10. The switch fabric system of claim 8, wherein each of the first nodes and each of the second nodes is a pure switching node, and wherein each of the third nodes is a combination of a switching node and a computing node.
  • 11. The switch fabric system of claim 9, wherein: one of the plurality of links on the first nodes is designated as: a lateral link if configured to interconnect to another first node; ora down link if configured to interconnect to one of the second nodes;one of the plurality of links on the second nodes is designated as: an up link if configured to interconnect to one of the first nodes;a lateral link if configured to interconnect to another second node; ora down link if configured to interconnect to one of the third nodes; andone of the plurality of links on the third nodes is designated as: an up link if configured to interconnect to one of the second nodes; ora lateral link if configured to interconnect to another third node.
  • 12. The switch fabric system of claim 8, wherein at least one of the plurality of links on each of the third nodes is configured to attach to an input/output (I/O) port.
  • 13. A method comprising: forming a switch fabric in a tree topology by interconnecting a plurality of nodes, wherein each of the plurality of nodes includes an internal switch and a plurality of links, and wherein said forming a switch fabric includes interconnecting at least one of the plurality of links on each of the plurality of nodes to another node in the switch fabric;tagging, by a routing frame processor, a routing frame of a packet with a domain identifier of a media access control (MAC) associated with the packet;routing, by the internal switch, the packet in the switch fabric system via the plurality of links; anddefining, by the internal switch, whether packets with non-defined domain identifiers are to be delivered.
  • 14. The method of claim 13, wherein each of the plurality of nodes comprises five links.
  • 15. The method of claim 13, wherein the plurality of nodes comprise system on a chip (SoC) nodes.
  • 16. The method of claim 13, wherein said forming a switch fabric comprises: forming a top level including first nodes;forming an upper level including second nodes; andforming a leaf level including third nodes.
  • 17. The method of claim 16, wherein said forming a switch fabric further comprises: interconnecting the plurality of links on each of the first nodes to another first node or to one of the second nodes;interconnecting the plurality of links on each of the second nodes to another second node, to one of the first nodes, or to one of the third nodes; andinterconnecting the plurality of links on each of the third nodes to another third node or to one of the second nodes.
  • 18. The method of claim 16, further comprising connecting at least one of the plurality of links on each of the third nodes to an input/output (I/O) port.
  • 19. The switch fabric system of claim 1, wherein the domain identifier comprises a five-bit domain identifier.
  • 20. The switch fabric system of claim 1, further comprising a Boolean that is accessible to the internal switch, wherein the Boolean is configured to define whether the packets with the non-defined domain identifiers are to be delivered.
  • 21. The switch fabric system of claim 20, wherein the Boolean is specific to a given MAC.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a Continuation of U.S. application Ser. No. 12/794,996, filed Jun. 7, 2010, which claims priority from Provisional Application U.S. Application 61/256,723, filed Oct. 30, 2009, both of which are incorporated herein by reference in its entirety.

US Referenced Citations (350)
Number Name Date Kind
5451936 Yang et al. Sep 1995 A
5594908 Hyatt Jan 1997 A
5623641 Kadoyashiki Apr 1997 A
5781187 Gephardt et al. Jul 1998 A
5901048 Hu May 1999 A
5908468 Hartmann Jun 1999 A
5968176 Nessett et al. Oct 1999 A
5971804 Gallagher et al. Oct 1999 A
6055618 Thorson Apr 2000 A
6141214 Ahn Oct 2000 A
6181699 Crinion et al. Jan 2001 B1
6192414 Horn Feb 2001 B1
6198741 Yoshizawa Mar 2001 B1
6314487 Hahn et al. Nov 2001 B1
6314501 Gulick et al. Nov 2001 B1
6373841 Goh et al. Apr 2002 B1
6442137 Yu Aug 2002 B1
6446192 Narasimhan et al. Sep 2002 B1
6452809 Jackson et al. Sep 2002 B1
6507586 Satran et al. Jan 2003 B1
6556952 Magro Apr 2003 B1
6574238 Thrysoe Jun 2003 B1
6711691 Howard et al. Mar 2004 B1
6766389 Hayter et al. Jul 2004 B2
6813676 Henry et al. Nov 2004 B1
6816750 Klaas Nov 2004 B1
6842430 Melnik Jan 2005 B1
6857026 Cain Feb 2005 B1
6963926 Robinson Nov 2005 B1
6963948 Gulick Nov 2005 B1
6977939 Joy et al. Dec 2005 B2
6988170 Barroso et al. Jan 2006 B2
6990063 Lenoski et al. Jan 2006 B1
7020695 Kundu et al. Mar 2006 B1
7032119 Fung Apr 2006 B2
7080078 Slaughter et al. Jul 2006 B1
7080283 Songer et al. Jul 2006 B1
7095738 Desanti Aug 2006 B1
7119591 Lin Oct 2006 B1
7143153 Black et al. Nov 2006 B1
7165120 Giles et al. Jan 2007 B1
7170315 Bakker et al. Jan 2007 B2
7180866 Chartre Feb 2007 B1
7203063 Bash et al. Apr 2007 B2
7257655 Burney et al. Aug 2007 B1
7263288 Islam Aug 2007 B1
7274705 Chang et al. Sep 2007 B2
7278582 Siegel et al. Oct 2007 B1
7310319 Awsienko et al. Dec 2007 B2
7325050 O'Connor et al. Jan 2008 B2
7337333 O'Conner et al. Feb 2008 B2
7340777 Szor Mar 2008 B1
7353362 Georgiou et al. Apr 2008 B2
7382154 Ramos et al. Jun 2008 B2
7386888 Liang et al. Jun 2008 B2
7418534 Hayter et al. Aug 2008 B2
7437540 Paolucci et al. Oct 2008 B2
7447147 Nguyen et al. Nov 2008 B2
7447197 Terrell et al. Nov 2008 B2
7466712 Makishima et al. Dec 2008 B2
7467306 Cartes et al. Dec 2008 B2
7467358 Kang et al. Dec 2008 B2
7502884 Shah et al. Mar 2009 B1
7519843 Buterbaugh et al. Apr 2009 B1
7555666 Brundridge et al. Jun 2009 B2
7583661 Chaudhuri Sep 2009 B2
7586841 Vasseur Sep 2009 B2
7596144 Pong Sep 2009 B2
7599360 Edsall et al. Oct 2009 B2
7606225 Xie et al. Oct 2009 B2
7606245 Ma et al. Oct 2009 B2
7616646 Ma et al. Nov 2009 B1
7620057 Aloni et al. Nov 2009 B1
7657677 Huang et al. Feb 2010 B2
7657756 Hall Feb 2010 B2
7660922 Harriman Feb 2010 B2
7664110 Lovett et al. Feb 2010 B1
7673164 Agarwal Mar 2010 B1
7710936 Morales Barroso May 2010 B2
7719834 Miyamoto et al. May 2010 B2
7721125 Fung May 2010 B2
7751433 Dollo et al. Jul 2010 B2
7760720 Pullela et al. Jul 2010 B2
7761687 Blumrich et al. Jul 2010 B2
7783910 Felter et al. Aug 2010 B2
7791894 Bechtolsheim Sep 2010 B2
7792113 Foschiano et al. Sep 2010 B1
7796399 Clayton et al. Sep 2010 B2
7801132 Ofek et al. Sep 2010 B2
7802017 Uemura et al. Sep 2010 B2
7805575 Agarwal et al. Sep 2010 B1
7831839 Hatakeyama Nov 2010 B2
7840703 Arimilli et al. Nov 2010 B2
7865614 Lu et al. Jan 2011 B2
7925795 Tamir et al. Apr 2011 B2
7934005 Fascenda Apr 2011 B2
7970929 Mahalingaiah Jun 2011 B1
7975110 Spaur et al. Jul 2011 B1
7991817 DeHon et al. Aug 2011 B2
7991922 Hayter et al. Aug 2011 B2
7992151 Warrier et al. Aug 2011 B2
8019832 De Sousa et al. Sep 2011 B2
8060760 Shetty et al. Nov 2011 B2
8060775 Sharma et al. Nov 2011 B1
8082400 Chang et al. Dec 2011 B1
8108508 Goh et al. Jan 2012 B1
8122269 Houlihan et al. Feb 2012 B2
8132034 Lambert et al. Mar 2012 B2
8155113 Agarwal Apr 2012 B1
8156362 Branover et al. Apr 2012 B2
8165120 Maruccia et al. Apr 2012 B2
8170040 Konda May 2012 B2
8180996 Fullerton et al. May 2012 B2
8189612 Lemaire et al. May 2012 B2
8194659 Ban Jun 2012 B2
8199636 Rouyer et al. Jun 2012 B1
8205103 Kazama et al. Jun 2012 B2
8379425 Fukuoka et al. Feb 2013 B2
8397092 Karnowski Mar 2013 B2
8407428 Cheriton et al. Mar 2013 B2
8504791 Cheriton et al. Aug 2013 B2
8599863 Davis Dec 2013 B2
8684802 Gross et al. Apr 2014 B1
8738860 Griffin et al. May 2014 B1
8745275 Ikeya et al. Jun 2014 B2
8745302 Davis et al. Jun 2014 B2
8782321 Harriman et al. Jul 2014 B2
8812400 Faraboschi et al. Aug 2014 B2
8824485 Biswas et al. Sep 2014 B2
8854831 Arnouse Oct 2014 B2
8903964 Breslin Dec 2014 B2
9008079 Davis et al. Apr 2015 B2
20010046227 Matsuhira et al. Nov 2001 A1
20020004912 Fung Jan 2002 A1
20020040391 Chaiken et al. Apr 2002 A1
20020083352 Fujimoto et al. Jun 2002 A1
20020097732 Worster et al. Jul 2002 A1
20020107903 Richter et al. Aug 2002 A1
20020124128 Qiu Sep 2002 A1
20020159452 Foster et al. Oct 2002 A1
20020161917 Shapiro et al. Oct 2002 A1
20020172205 Tagore-Brage Nov 2002 A1
20020186656 Vu Dec 2002 A1
20020194412 Bottom Dec 2002 A1
20030007493 Oi et al. Jan 2003 A1
20030033547 Larson et al. Feb 2003 A1
20030041266 Ke et al. Feb 2003 A1
20030076832 Ni Apr 2003 A1
20030093255 Freyensee et al. May 2003 A1
20030093624 Arimilli et al. May 2003 A1
20030110262 Hasan et al. Jun 2003 A1
20030140190 Mahony et al. Jul 2003 A1
20030158940 Leigh Aug 2003 A1
20030159083 Fukuhara et al. Aug 2003 A1
20030172191 Williams Sep 2003 A1
20030188083 Kumar et al. Oct 2003 A1
20030193402 Post et al. Oct 2003 A1
20030202520 Witkowski et al. Oct 2003 A1
20030231624 Alappat et al. Dec 2003 A1
20040013113 Singh Jan 2004 A1
20040017806 Yazdy Jan 2004 A1
20040017808 Forbes Jan 2004 A1
20040030938 Barr et al. Feb 2004 A1
20040068676 Larson et al. Apr 2004 A1
20040111612 Choi et al. Jun 2004 A1
20040141521 George Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040210693 Zeitler et al. Oct 2004 A1
20040215864 Arimilli et al. Oct 2004 A1
20040215991 McAfee et al. Oct 2004 A1
20040267486 Percer et al. Dec 2004 A1
20050015378 Gammel et al. Jan 2005 A1
20050018604 Dropps et al. Jan 2005 A1
20050018606 Dropps et al. Jan 2005 A1
20050018663 Dropps et al. Jan 2005 A1
20050021606 Davies et al. Jan 2005 A1
20050030954 Dropps et al. Feb 2005 A1
20050033742 Kamvar et al. Feb 2005 A1
20050033890 Lee Feb 2005 A1
20050044195 Westfall Feb 2005 A1
20050077921 Percer et al. Apr 2005 A1
20050105538 Perera et al. May 2005 A1
20050141424 Lim et al. Jun 2005 A1
20050228852 Santos Oct 2005 A1
20050240688 Moerman et al. Oct 2005 A1
20060002311 Iwanaga et al. Jan 2006 A1
20060013218 Shore et al. Jan 2006 A1
20060029053 Roberts et al. Feb 2006 A1
20060090025 Tufford et al. Apr 2006 A1
20060136570 Pandya Jun 2006 A1
20060140211 Huang et al. Jun 2006 A1
20060174342 Zaheer et al. Aug 2006 A1
20060179241 Clark et al. Aug 2006 A1
20060236371 Fish Oct 2006 A1
20060248359 Fung Nov 2006 A1
20060259734 Sheu et al. Nov 2006 A1
20060265609 Fung Nov 2006 A1
20070006001 Isobe et al. Jan 2007 A1
20070076653 Park et al. Apr 2007 A1
20070094486 Moore et al. Apr 2007 A1
20070109968 Hussain et al. May 2007 A1
20070130397 Tsu Jun 2007 A1
20070174390 Silvain et al. Jul 2007 A1
20070180310 Johnson et al. Aug 2007 A1
20070209072 Chen Sep 2007 A1
20070226795 Conti et al. Sep 2007 A1
20070280230 Park Dec 2007 A1
20070286009 Norman Dec 2007 A1
20070288585 Sekiguchi et al. Dec 2007 A1
20080013453 Chiang et al. Jan 2008 A1
20080040463 Brown et al. Feb 2008 A1
20080052437 Loffink et al. Feb 2008 A1
20080059782 Kruse et al. Mar 2008 A1
20080075089 Evans et al. Mar 2008 A1
20080089358 Basso et al. Apr 2008 A1
20080104264 Duerk et al. May 2008 A1
20080140771 Vass et al. Jun 2008 A1
20080140930 Hotchkiss Jun 2008 A1
20080159745 Segal Jul 2008 A1
20080162691 Zhang et al. Jul 2008 A1
20080183882 Flynn et al. Jul 2008 A1
20080186965 Zheng et al. Aug 2008 A1
20080199133 Takizawa et al. Aug 2008 A1
20080212273 Bechtolsheim Sep 2008 A1
20080212276 Bottom et al. Sep 2008 A1
20080217021 Lembcke et al. Sep 2008 A1
20080222434 Shimizu et al. Sep 2008 A1
20080235443 Chow et al. Sep 2008 A1
20080239649 Bradicich et al. Oct 2008 A1
20080243634 Dworkin et al. Oct 2008 A1
20080250181 Li et al. Oct 2008 A1
20080259555 Bechtolsheim et al. Oct 2008 A1
20080259788 Wang et al. Oct 2008 A1
20080266793 Lee Oct 2008 A1
20080270599 Tamir et al. Oct 2008 A1
20080288660 Balasubramanian et al. Nov 2008 A1
20080288664 Pettey et al. Nov 2008 A1
20080288683 Ramey Nov 2008 A1
20080301794 Lee Dec 2008 A1
20080313369 Verdoorn et al. Dec 2008 A1
20080320161 Maruccia et al. Dec 2008 A1
20090021907 Mann et al. Jan 2009 A1
20090044036 Merkin Feb 2009 A1
20090063443 Arimilli Mar 2009 A1
20090064287 Bagepalli et al. Mar 2009 A1
20090080428 Witkowski et al. Mar 2009 A1
20090097200 Sharma et al. Apr 2009 A1
20090113130 He et al. Apr 2009 A1
20090133129 Jeong et al. May 2009 A1
20090135751 Hodges et al. May 2009 A1
20090135835 Gallatin et al. May 2009 A1
20090158070 Gruendler Jun 2009 A1
20090172423 Song et al. Jul 2009 A1
20090198958 Arimilli et al. Aug 2009 A1
20090204834 Hendin et al. Aug 2009 A1
20090204837 Raval et al. Aug 2009 A1
20090219827 Chen et al. Sep 2009 A1
20090222884 Shaji et al. Sep 2009 A1
20090225751 Koenck et al. Sep 2009 A1
20090235104 Fung Sep 2009 A1
20090248943 Jiang et al. Oct 2009 A1
20090251867 Sharma et al. Oct 2009 A1
20090259863 Williams et al. Oct 2009 A1
20090259864 Li et al. Oct 2009 A1
20090265045 Coxe, III Oct 2009 A1
20090271656 Yokota et al. Oct 2009 A1
20090276666 Haley et al. Nov 2009 A1
20090279518 Falk et al. Nov 2009 A1
20090282274 Langgood et al. Nov 2009 A1
20090282419 Mejdrich et al. Nov 2009 A1
20090313390 Ahuja et al. Dec 2009 A1
20100005331 Somasundaram et al. Jan 2010 A1
20100008038 Coglitore Jan 2010 A1
20100008365 Porat Jan 2010 A1
20100026408 Shau Feb 2010 A1
20100040053 Gottumukkula et al. Feb 2010 A1
20100049822 Davies et al. Feb 2010 A1
20100051391 Jahkonen Mar 2010 A1
20100106987 Lambert et al. Apr 2010 A1
20100118880 Kunz et al. May 2010 A1
20100125742 Ohtani May 2010 A1
20100125915 Hall et al. May 2010 A1
20100138481 Behrens Jun 2010 A1
20100158005 Mukhopadhyay Jun 2010 A1
20100161909 Nation et al. Jun 2010 A1
20100165983 Aybay et al. Jul 2010 A1
20100169479 Jeong et al. Jul 2010 A1
20100198972 Umbehocker Aug 2010 A1
20100218194 Dallman et al. Aug 2010 A1
20100220732 Hussain et al. Sep 2010 A1
20100250914 Abdul et al. Sep 2010 A1
20100265650 Chen et al. Oct 2010 A1
20100281246 Bristow et al. Nov 2010 A1
20100299548 Chadirchi et al. Nov 2010 A1
20100308897 Evoy et al. Dec 2010 A1
20100312910 Lin et al. Dec 2010 A1
20100312969 Yamazaki et al. Dec 2010 A1
20100318812 Auradkar et al. Dec 2010 A1
20110023104 Franklin Jan 2011 A1
20110026397 Saltsidis et al. Feb 2011 A1
20110029652 Chhuor et al. Feb 2011 A1
20110058573 Balakavi Mar 2011 A1
20110075369 Sun et al. Mar 2011 A1
20110090633 Rabinovitz Apr 2011 A1
20110103391 Davis et al. May 2011 A1
20110113115 Chang et al. May 2011 A1
20110119344 Eustis May 2011 A1
20110123014 Smith May 2011 A1
20110138046 Bonnier et al. Jun 2011 A1
20110185370 Tamir et al. Jul 2011 A1
20110191514 Wu et al. Aug 2011 A1
20110191610 Agarwal et al. Aug 2011 A1
20110197012 Liao et al. Aug 2011 A1
20110210975 Wong et al. Sep 2011 A1
20110239014 Karnowski Sep 2011 A1
20110271159 Ahn et al. Nov 2011 A1
20110273840 Chen Nov 2011 A1
20110295991 Aida Dec 2011 A1
20110296141 Daffron Dec 2011 A1
20110320690 Petersen et al. Dec 2011 A1
20120011500 Faraboschi et al. Jan 2012 A1
20120020207 Corti et al. Jan 2012 A1
20120050981 Xu et al. Mar 2012 A1
20120054469 Ikeya et al. Mar 2012 A1
20120054511 Brinks et al. Mar 2012 A1
20120081850 Regimbal et al. Apr 2012 A1
20120096211 Davis et al. Apr 2012 A1
20120099265 Reber Apr 2012 A1
20120131201 Matthews et al. May 2012 A1
20120155168 Kim et al. Jun 2012 A1
20120198252 Kirschtein et al. Aug 2012 A1
20120207165 Davis Aug 2012 A1
20120297042 Davis et al. Nov 2012 A1
20130010639 Armstrong et al. Jan 2013 A1
20130024645 Cheriton et al. Jan 2013 A1
20130031331 Cheriton et al. Jan 2013 A1
20130058250 Casado Mar 2013 A1
20130094499 Davis et al. Apr 2013 A1
20130097448 Davis et al. Apr 2013 A1
20130111107 Chang et al. May 2013 A1
20130148667 Hama et al. Jun 2013 A1
20130163605 Chandra et al. Jun 2013 A1
20130290643 Lim et al. Oct 2013 A1
20130290650 Chang et al. Oct 2013 A1
20130318269 Dalal et al. Nov 2013 A1
20140122833 Davis et al. May 2014 A1
20140359044 Davis et al. Dec 2014 A1
20140365596 Kanevsky et al. Dec 2014 A1
20150039840 Chandra et al. Feb 2015 A1
20150103826 Davis Apr 2015 A1
Foreign Referenced Citations (4)
Number Date Country
WO2004021641 Mar 2004 WO
WO-2005013143 Feb 2005 WO
WO-2008000193 Jan 2008 WO
WO-2012037494 Mar 2012 WO
Non-Patent Literature Citations (96)
Entry
Hossain, H.; Akbar, M.M.; Islam, M.M., “Extended-butterfly fat tree interconnection (EFTI) architecture for network on chip,” Aug. 24-26, 2005, 2005 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 613,616.
Pande, P.P.; Grecu, C.; lvanov, A.; Saleh, R., “Design of a switch for network on chip applications,” May 25-28, 2003, Proceedings of the 2003 International Symposium on Circuits and Systems vol. 5, pp. V-217,V-220.
Grecu, C.; Pande, P.P.; lvanov, A.; Saleh, R., “A scalable communication-centric SoC interconnect architecture,” 2004, Proceedings. 5th International Symposium on Quality Electronic Design, 2004 pp. 343,348.
el ghany, M.; El-Moursy, M.A.; Ismail, M., “High Throughput High Performance NoC Switch,” Nov. 16-17, 2008, NORCHIP 2008 pp. 237,240.
Grecu et. al. “A Scalable Communication-Centric SoC Interconnect Architecture,” Proceeding of 5th International Symposium on Quality Electronic Design, pp. 343,348, 2004.
Grecu et. al. “A Scalable Communication-Centric SoC Interconnect Architecture,” Proceeding of 5th International Symposium on Quality Electronic Design, pp. 343,348, 2004.
Final Office Action on U.S. Appl. No. 13/475,713, mailed Oct. 17, 2014.
Final Office Action on U.S. Appl. No. 13/475,722, mailed Oct. 20, 2014.
Non-Final Office Action on U.S. Appl. No. 13/234,054, mailed Oct. 23, 2014.
Non-Final Office Action on U.S. Appl. No. 13/662,759, mailed Nov. 6, 2014.
Advanced Switching Technology Tech Brief, published 2005, 2 pages.
Chapter 1 Overview of the Origin Family Architecture from Origin and Onyx2 Theory of Operations Manual, published 1997, 18 pages.
Cisco MDS 9000 Family Multiprotocol Services Module, published 2006, 13 pages.
Comparing the I2C BUS to the SMBUS, Maxim Integrated, Dec. 1, 2000, p. 1.
Deering, “IP Multicast Extensions for 4.3BSD UNIX and related Systems,” Jun. 1999, 5 pages.
Extended European Search Report for EP 10827330.1, mailed Jun. 5, 2013.
Final Office Action on U.S. Appl. No. 12/889,721, mailed Apr. 17, 2014.
Final Office Action on U.S. Appl. No. 12/794,996, mailed Jun. 19, 2013.
Final Office Action on U.S. Appl. No. 13/624,725, mailed Nov. 13, 2013.
Final Office Action on U.S. Appl. No. 13/624,731, mailed Jul. 25, 2014.
Final Office Action on U.S. Appl. No. 13/705,340, mailed Aug. 2, 2013.
Final Office Action on U.S. Appl. No. 13/705,414, mailed Aug. 9, 2013.
Final Office Action on U.S. Appl. No. 13/624,731, mailed Nov. 12, 2013.
fpga4fun.com,“What is JTAG?”, 2 pages, Jan. 31, 2010.
From AT to BTX: Motherboard Form Factor, Webopedia, Apr. 29, 2005, p. 1.
HP Virtual Connect Traffic Flow—Technology brief, Jan. 2012, 22 pages.
International Preliminary Report on Patentability for PCT/US2009/044200, mailed Nov. 17, 2010.
International Preliminary Report on Patentability for PCT/US2012/038986 issued on Nov. 26, 2013.
International Preliminary Report on Patentability for PCT/US2012/061747, mailed Apr. 29, 2014.
International Preliminary Report on Patentability issued on PCT/US12/62608, issued May 6, 2014.
International Search Report and Written Opinion for PCT/US12/61747, mailed Mar. 1, 2013.
International Search Report and Written Opinion for PCT/US12/62608, mailed Jan. 18, 2013.
International Search Report and Written Opinion for PCT/US2011/051996, mailed Jan. 19, 2012.
International Search Report and Written Opinion on PCT/US09/44200, mailed Jul. 1, 2009.
International Search Report and Written Opinion on PCT/US2012/038986, mailed Mar. 14, 2013.
Jansen et al., “SATA-IO to Develop Specification for Mini Interface Connector” Press Release Sep. 21, 2009, Serial ATA3 pages.
Nawathe et al., “Implementation of an 8-Core, 64-Thread, Power Efficient SPARC Server on a Chip”, IEEE Journal of Solid-State Circuits, vol. 43, No. 1, Jan. 2008, pp. 6-20.
Non-Final Action on U.S. Appl. No. 13/728,362, mailed Feb. 21, 2014.
Non-Final Office Action on U.S. Appl. No. 12/889,721, mailed Jul. 2, 2013.
Non-Final Office Action on U.S. Appl. No. 13/475,722, mailed Jan. 17, 2014.
Non-Final Office Action on U.S. Appl. No. 12/794,996, mailed Sep. 17, 2012.
Non-Final Office Action on U.S. Appl. No. 12/889,721, mailed Oct. 11, 2012.
Non-Final Office Action on U.S. Appl. No. 12/889,721, mailed Sep. 29, 2014.
Non-Final Office Action on U.S. Appl. No. 13/284,855, mailed Dec. 19, 2013.
Non-Final Office Action on U.S. Appl. No. 13/453,086, mailed Mar. 12, 2013.
Non-Final Office Action on U.S. Appl. No. 13/475,713, mailed Apr. 1, 2014.
Non-Final Office Action on U.S. Appl. No. 13/527,505, mailed May 8, 2014.
Non-Final Office Action on U.S. Appl. No. 13/624,725, mailed Jan. 10, 2013.
Non-final office action on U.S. Appl. No. 13/624,731 mailed Jan. 29, 2013.
Non-Final Office Action on U.S. Appl. No. 13/692,741, mailed Sep. 4, 2014.
Non-Final Office Action on U.S. Appl. No. 13/705,286, mailed May 13, 2013.
Non-Final Office Action on U.S. Appl. No. 13/705,340, mailed Mar. 12, 2014.
Non-Final Office Action on U.S. Appl. No. 13/7053,40, mailed Mar. 29, 2013.
Non-Final Office Action on U.S. Appl. No. 13/705,414, mailed Apr. 9, 2013.
Non-Final Office Action on U.S. Appl. No. 13/705,428, mailed Jul. 10, 2013.
Notice of Allowance on U.S. Appl. No. 13/453,086, mailed Jul. 18, 2013.
Notice of Allowance on U.S. Appl. No. 13/284,855, mailed Jul. 14, 2014.
Venaas, “IPv4 Multicast Address Space Registry,” 2013, http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml.
Final Office Action on U.S. Appl. No. 13/527,498, mailed Nov. 17, 2014.
Final Office Action on U.S. Appl. No. 13/527,505, mailed Dec. 5, 2014.
Notice of Allowance on U.S. Appl. No. 13/705,340, mailed Dec. 3, 2014.
Final Office Action on U.S. Appl. No. 12/889,721, mailed May 22, 2015.
Non-Final Office Action on U.S. Appl. No. 13/728,428, mailed Jun. 12, 2015.
Final Office Action on U.S. Appl. No. 13/692,741, mailed Mar. 11, 2015.
Non-Final Office Action on U.S. Appl. No. 14/106,698, mailed Feb. 12, 2015.
Notice of Allowance on U.S. Appl. No. 13/475,722, mailed Feb. 27, 2015.
Notice of Allowance on U.S. Appl. No. 13/527,498, mailed Feb. 23, 2015.
Notice of Allowance on U.S. Appl. No. 13/527,505, mailed Mar. 6, 2015.
Notice of Allowance on U.S. Appl. No. 13/624,731, mailed Mar. 5, 2015.
Search Report on EP Application 10827330.1, mailed Feb. 12, 2015.
Final Office Action on U.S. Appl. No. 13/234,054, mailed Apr. 16, 2015.
Non-Final Office Action on U.S. Appl. No. 13/624,725, mailed Apr. 23, 2015.
Non-Final Office Action on U.S. Appl. No. 13/728,308, mailed May 14, 2015.
Non-Final Office Action on U.S. Appl. No. 14/052,723, mailed May 1, 2015.
Non-Final Office Action on U.S. Appl. No. 13/692,741, mailed Jul. 1, 2015.
Non-Final Office Action on U.S. Appl. No. 13/234,054, mailed Aug. 6, 2015.
Final Office Action on U.S. Appl. No. 14/106,698, mailed Aug. 19, 2015.
Non-Final Office Action on U.S. Appl. No. 14/106,697, mailed Aug. 17, 2015.
Notice of Allowance U.S. Appl. No. 13/728,308, mailed Oct. 7, 2015.
Final Office Action on U.S. Appl. No. 13/624,725, mailed Nov. 2, 2015.
Final Office Action on U.S. Appl. No. 14/052,723, mailed Dec. 3, 2015.
Notice of Allowance on U.S. Appl. No. 13/692,741 mailed Dec. 4, 2015.
Final Office Action on U.S. Appl. No. 13/234,054, mailed Jan. 26, 2016.
Final Office Action on U.S. Appl. No. 13/662,759, mailed Feb. 22, 2016.
Final Office Action on U.S. Appl. No. 14/106,697 mailed Feb. 2, 2016.
Non-Final Office Action on U.S. Appl. No. 12/889,721, mailed Feb. 24, 2016.
Das et al., “Unifying Packet and Circuit Switched Networks,” IEEE Globecom Workshops 2009, Nov. 30 2009, pp. 1-6.
Final Office Action on U.S. Appl. No. 13/624,725 mailed Mar. 10, 2016.
Non-Final Office Action on U.S. Appl. No. 14/725,543 mailed Apr. 7, 2016.
Notice of Allowance on U.S. Appl. No. 13/624,725, mailed Mar. 30, 2016.
Non-Final Office Action on U.S. Appl. No. 14/334,178 mailed Dec. 18, 2015.
Final Office Action on U.S. Appl. No. 13/728,428 mailed May 6, 2016.
Notice of Allowance on U.S. Appl. No. 13/662,759 mailed May 10, 2016.
Notice of Allowance on U.S. Appl. No. 14/334,178 mailed Jun. 8, 2016.
Notice of Allowance on U.S. Appl. No. 13/728,428 mailed Jul. 18, 2016.
Notice of Allowance on U.S. Appl. No. 14/725,543 mailed Jul. 21, 2016.
Related Publications (1)
Number Date Country
20150071113 A1 Mar 2015 US
Provisional Applications (1)
Number Date Country
61256723 Oct 2009 US
Continuations (1)
Number Date Country
Parent 12794996 Jun 2010 US
Child 14334931 US