System and method for host-initiated firewall discovery in a network environment

Information

  • Patent Grant
  • 8800024
  • Patent Number
    8,800,024
  • Date Filed
    Monday, October 17, 2011
    13 years ago
  • Date Issued
    Tuesday, August 5, 2014
    10 years ago
Abstract
A method is provided in one example embodiment that includes intercepting a network flow to a destination node having a network address and sending a discovery query based on a discovery action associated with the network address in a firewall cache. A discovery result may be received and metadata associated with the flow may be sent to a firewall before releasing the network flow. In other embodiments, a discovery query may be received from a source node and a discovery result sent to the source node, wherein the discovery result identifies a firewall for managing a route to a destination node. Metadata may be received from the source node over a metadata channel. A network flow from the source node to the destination node may be intercepted, and the metadata may be correlated with the network flow to apply a network policy to the network flow.
Description
TECHNICAL FIELD

This specification relates in general to the field of network security, and more particularly, to a system and method for host-initiated firewall discovery in a network environment.


BACKGROUND

The field of network security has become increasingly important in today's society. The Internet has enabled interconnection of different computer networks all over the world. However, the Internet has also presented many opportunities for malicious operators to exploit these networks. Certain types of malicious software can be configured to receive commands from a remote operator once the software has infected a host computer. The software can be instructed to perform any number of malicious actions, such as sending out spam or malicious emails from the host computer, stealing sensitive information from a business or individual associated with the host computer, propagating to other host computers, and/or assisting with distributed denial of service attacks. In addition, the malicious operator can sell or otherwise give access to other malicious operators, thereby escalating the exploitation of the host computers. Thus, the ability to effectively protect and maintain stable computers and systems continues to present significant challenges for component manufacturers, system designers, and network operators.





BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts, in which:



FIG. 1 is a simplified block diagram illustrating an example embodiment of a network environment in which a firewall may be discovered by a host according to this specification;



FIG. 2 is simplified block diagram illustrating additional details that may be associated with potential embodiments of the network environment;



FIG. 3 is a simplified table illustrating example entries in a firewall cache that may be associated with some embodiments of the network environment;



FIG. 4 is a simplified interaction diagram illustrating potential operations that may be associated with example embodiments of the network environment that transport firewall discovery messages in ICMP packets;



FIG. 5 is a simplified interaction diagram illustrating potential operations that may be associated with other example embodiments of the network environment that transport firewall discovery messages in ICMP packets;



FIG. 6 is a simplified interaction diagram illustrating potential operations that may be associated with example embodiments of the network environment that transport firewall discovery messages in UDP packets;



FIG. 7 is a simplified interaction diagram illustrating potential operations that may be associated with other example embodiments of the network environment that transport firewall discovery messages in UDP packets; and



FIG. 8 is an example packet data unit format that may be associated with exchanging metadata in example embodiments of the network environment.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

A method is provided in one example embodiment that includes intercepting a network flow to a destination node having a network address and sending a discovery query based on a discovery action associated with the network address in a firewall cache. A discovery result may be received, which can identify a firewall responsible for managing a route to the destination node, and metadata associated with the flow may be sent to the firewall before releasing the network flow.


In other embodiments, a discovery query may be received from a source node and a discovery result sent to the source node, wherein the discovery result identifies a firewall for managing a route to a destination node. Metadata may be received from the source node over a metadata channel. A network flow from the source node to the destination node may be intercepted, and the metadata may be correlated with the network flow to apply a network policy to the network flow.


Example Embodiments

Turning to FIG. 1, FIG. 1 is a simplified block diagram of an example embodiment of a network environment 10 in which a firewall may be discovered through host redirection. In the embodiment illustrated in FIG. 1, network environment 10 can include Internet 15, a user host 20a and a user host 20b, a firewall 25, a policy server 30, a mail server 35, and a web server 40. In general, user hosts 20a-20b may be any type of termination node in a network connection, including but not limited to a desktop computer, a server, a laptop, a mobile telephone, or any other type of device that can receive or establish a connection with another node, such as mail server 35 or web server 40. Firewall 25 may control communications between user hosts 20a-20b and other nodes attached to Internet 15, such as by blocking unauthorized access while permitting authorized communications. In some instances, firewall 25 may be coupled to or integrated with an intrusion prevention system, network access control device, web gateway, email gateway, or any other type of gateway between Internet 15 and user hosts 20a-20b. Moreover, the location of firewall 25 close to user hosts 20a-20b in the network topology of FIG. 1 is arbitrary. Policy server 30 may be coupled to or integrated with firewall 25, and may be used to manage user hosts 20a-20b and to administer and distribute network policies. Thus, in this example embodiment, user hosts 20a-20b may communicate with servers attached to Internet 15 or another network, such as mail server 35 or web server 40, by establishing a connection through firewall 25 if permitted by policies implemented in firewall 25 and managed by policy server 30.


Each of the elements of FIG. 1 may couple to one another through simple interfaces or through any other suitable connection (wired or wireless), which provides a viable pathway for network communications. Additionally, any one or more of these elements may be combined or removed from the architecture based on particular configuration needs. Network environment 10 may include a configuration capable of transmission control protocol/Internet protocol (TCP/IP) communications for the transmission or reception of packets in a network. Network environment 10 may also operate in conjunction with a user datagram protocol/IP (UDP/IP) or any other suitable protocol where appropriate and based on particular needs.


For purposes of illustrating the techniques for providing network security in example embodiments, it is important to understand the activities occurring within a given network. The following foundational information may be viewed as a basis from which the present disclosure may be properly explained. Such information is offered earnestly for purposes of explanation only and, accordingly, should not be construed in any way to limit the broad scope of the present disclosure and its potential applications.


Typical network environments used in organizations and by individuals include the ability to communicate electronically with other networks using the Internet, for example, to access web pages hosted on servers connected to the Internet, to send or receive electronic mail (i.e., email) messages, or to exchange files. However, malicious users continue to develop new tactics for using the Internet to spread malware and to gain access to confidential information. Malware generally includes any software designed to access and/or control a computer without the informed consent of the computer owner, and is most commonly used as a label for any hostile, intrusive, or annoying software such as a computer virus, bot, spyware, adware, etc. Once compromised, malware may subvert a host and use it for malicious activity, such as spamming or information theft. Malware also typically includes one or more propagation vectors that enable it to spread within an organization's network or across other networks to other organizations or individuals. Common propagation vectors include exploiting known vulnerabilities on hosts within the local network and sending emails having a malicious program attached or providing malicious links within the emails.


One way in which malware may operate is to deceive a user by using a different network protocol exchange than the user expects. The malware may be packaged so as to convince the user to allow access to run it in some innocuous way, thus allowing it access to the network, which often may require passing through a firewall or other security measure. The malware may then exploit the access to engage in alternative or additional activities not contemplated by the user. For example, a game may send email messages or a word processor may open a web connection, using standard protocols to deceive the firewall into permitting the malware to establish remote connections.


Botnets, for example, use malware and are an increasing threat to computer security. In many cases they employ sophisticated attack schemes that include a combination of well-known and new vulnerabilities. Botnets generally use a client-server architecture where a type of malicious software (i.e., a bot) is placed on a host computer and communicates with a command and control (C&C) server, which may be controlled by a malicious user (e.g., a botnet operator). Usually, a botnet is composed of a large number of bots that are controlled by the operator using a C&C protocol through various channels, including Internet Relay Chat (IRC) and peer-to-peer (P2P) communication. The bot may receive commands from the C&C server to perform particular malicious activities and, accordingly, may execute such commands. The bot may also send any results or pilfered information back to the C&C server.


A bot is often designed to initiate communication with the C&C server and to masquerade as normal web browser traffic. For example, a bot may use a port typically used to communicate with a web server. Such bots, therefore, may not be detected by existing technologies without performing more detailed packet inspection of the web traffic. Moreover, once a bot is discovered, the botnet operator may simply find another way to masquerade network traffic by the bot to continue to present as normal web traffic. More recently, botnet operators have crafted bots to use encryption protocols such as, for example, secure socket layer (SSL), thereby encrypting malicious network traffic. Such encrypted traffic may use a Hypertext Transfer Protocol Secure (HTTPS) port so that only the endpoints involved in the encrypted session can decrypt the data. Thus, existing firewalls and other network intrusion prevention technologies may be unable to perform any meaningful inspection of the web traffic, and bots may continue to infect host computers within networks.


Other software security technology focused on preventing unauthorized program files from executing on a host computer may have undesirable side effects for end users or employees of a business or other organizational entity. Network or Information Technology (IT) administrators may be charged with crafting extensive policies relevant to all facets of the business entity to enable employees to obtain software and other electronic data from desirable and trusted network resources. Without extensive policies in place, employees may be prevented from downloading software and other electronic data from network resources that are not specifically authorized, even if such software and other data facilitate legitimate and necessary business activities. Such systems may be so restrictive that if unauthorized software is found on a host computer, any host computer activities may be suspended pending network administrator intervention. Moreover, at the network level there may simply be too many applications to effectively track and incorporate into policies. Large whitelists or blacklists can be difficult to maintain and may degrade network performance, and some applications may not be susceptible to easy identification.


Information may be shared between a host and a firewall to collectively and mutually achieve better security, though. For example, a host may understand an application as an executable file that is running a process with specific authentication, while the firewall may understand the application as a protocol in a TCP connection, which may also be correlated to a particular user authentication. The host may share session descriptors and other metadata with the firewall, and the firewall may share network policy with the host as needed to correlate application activities with expected network behavior. Network policy may include elements of security policy as well as other network specific parameters, such as quality of service (QoS) and routing. A host may also be associated with a universally unique identifier (UUID), which can be used to correlate connections and activities originating behind network address translators.


A host may also notify the firewall of additional network connections to the host. If a host has both wireless and wired connections active simultaneously, for example, there may be a risk of data received on one connection being transmitted on the other, so it may be desirable to restrict access to sensitive data. A host may also notify the firewall if the connection is associated with a virtual machine, or if the host has mountable read/write media, such as a USB stick attached.


In some embodiments of network environment 10, a host may include multiple attachment points, causing it to have multiple IP addresses. In other embodiments, a host may use the IP version 6 (IPv6), perhaps including Privacy Extensions (RFC4941), causing it to have one or more registered and known IPv6 addresses and one or more hidden or private IPv6 addresses. In these embodiments, an interlocked firewall may readily use dynamic information sharing to discover the user-to-host mapping for all the addresses on a host.


This dynamic information sharing between an interlocked host and firewall in network environment 10 may provide several benefits over conventional architectures. For example, by coordinating firewall policy with a host, a firewall can manage routes differently, such as by allowing or denying traffic depending on which of multiple users on a host may be attempting to establish a connection. Moreover, only applications that may need to be granularly controlled need to be controlled by the firewall. Thus, the firewall may control arbitrary or evasive applications, provide higher effective throughput, and control mobile-user traffic. In addition, traffic that does not need to be completely allowed or denied can be rate-limited. Arbitrary or evasive applications can also be rate-limited with process information available on a firewall, and differentiated services can be provided for managed and unmanaged hosts.


Many hosts may only use a single firewall for all routes, and an agent running on a host may maintain a firewall cache that can identify this firewall. In a more complex scenario, a host may use more than one firewall, in which case it is important to understand which firewall can process a given flow. The firewall cache can provide routes through more than one firewall by mapping a given network route to a particular firewall, or it may provide discovery actions for dynamic mapping. Routes are generally managed or unmanaged. A “managed route” generally refers to a route to a network through a firewall configured to accept metadata and apply network policy to network flows, while an “unmanaged route” is a route to a network through a firewall not configured to accept metadata or apply network policy. A firewall cache may identify a managed route by associating a destination network with a firewall designated for managing flows to the network, for example, or may identify an unmanaged route by associating a destination network with a null value, for example. The firewall cache may be initialized or configured by an administrator, providing separate configurations for each named network and/or default configurations for the first time a network is used. Some configurations may define one firewall for Internet addresses, initially based on an assumption that all global IP addresses are on the Internet.


Session descriptors generally include information about a host and an application associated with a given network session. For example, a session descriptor may include a UUID associated with the host and the user credentials of a process owner. Since a user can run separate processes with different user credentials, such information may be particularly advantageous for Citrix and terminal services. A session descriptor may additionally include a filename, pathname or other unique identifier of an application file (e.g., C:\ . . . \WINWORD.EXE) that corresponds to the process attempting to establish a network connection. For example, in some embodiments the application may be identified by a hash function of the application's executable file, so as to make it more difficult for a malicious user to spoof the application name. A firewall may correlate this information with an application identifier or protocol to ensure that the application is performing as expected.


A session descriptor may also contain information about the host environment, such as software installed on the host and the current configuration and state of the software, permitting the firewall to act as a network access control device. For example, a session descriptor may indicate whether the local anti-virus system is up to date and running. If Host-based Data Loss Prevention (HDLP) software is available, a session descriptor may also include file-typing information for file transfer. HDLP normally determines the type of file being transmitted out of the network (e.g., PDF, Word, etc.). The firewall may have additional policies about certain file types being transmitted over particular protocols, which may not be visible directly to an HDLP program.


Session descriptors and other metadata may be exchanged over an out-of-band communication channel (a “metadata channel”) in some embodiments of network environment 10, which may be implemented with a protocol that provides authentication and/or encryption for communication privacy. In more particular embodiments, a Datagram Transport Layer Security (DTLS) protocol may be used to provide a metadata channel with communication privacy, and a host and a firewall may use certificates based on a common certificate authority. A policy server may distribute certificates to a host and firewall in some embodiments, while an external certificate authority may be used in other embodiments. Some protocols, including DTLS, may also be used to establish a back channel from a firewall to a host, which may be used for error messages and diagnostics, for example.


A host can send metadata to a firewall before opening a new network flow such that, in general, metadata arrives at the firewall before the first packet of a new flow. More particularly, a firewall agent on the host may intercept the first packet of a new flow and send a session descriptor and other metadata associated with the flow, such as source IP address and port, destination IP address and port, and protocol. The firewall may maintain a metadata cache and correlate a network flow with metadata if the firewall agent releases the flow. More particularly, the firewall may correlate metadata with network flow data, which broadly refers to information that associates a given network flow with a source node (i.e., a node sending or attempting to send a packet) and a destination node (i.e., a node to which a packet is addressed) or destination nodes (e.g., broadcast or multicast address). Flow data may also include other information about the flow, such as a protocol family or protocol, for example.


For example, TCP generally opens a new flow (generally referred to as a “connection” in the context of a TCP flow) with a handshake—a host sends the first packet with one of the TCP flag bits (i.e., the SYN bit) set to indicate that a three-way handshake is in progress. Thus, an agent on a source node may intercept a new TCP connection by detecting an application on the source node sending a SYN packet (i.e., a packet with the SYN bit set) and holding the SYN packet. The agent may be able to identify a firewall for managing the route to a destination node associated with the new connection, such as by locating the route and its associated firewall in a firewall cache, and send metadata to the firewall (which the firewall can cache) over a secure metadata channel. The connection request may then be released by sending the SYN packet to the firewall, and the firewall may correlate the source IP, destination IP, protocol, etc.


Flows are not limited to communications using a reliable protocol such as TCP; a flow may also provide communications using an unreliable protocol such as UDP or IP. In other embodiments, an agent may track flows that use an unreliable protocol and intercept a new flow by holding the first packet of a flow while it transmits metadata. The agent may also be able to retransmit the metadata by caching a hash of the first packet of a flow and comparing the hash to the hash of subsequent packets to determine if the first packet is being retransmitted by an application. In yet other embodiments, a firewall may track flows and cache the first packet until metadata arrives. In still yet other embodiments, metadata may be sent with every packet in a flow using an unreliable protocol, or never sent. Caches of first packet data can be very short-lived (e.g. less than one second to five seconds).


In accordance with embodiments disclosed herein, network environment 10 may provide a system and method for host-initiated discovery of an interlocked firewall. For example, a firewall agent may consult a firewall cache if it detects a new flow to determine which firewall should receive metadata for the flow. If no cache entry is found, the firewall agent may consult a discovery table to determine if the address is local or lies along the Internet path. Alternatively, the firewall cache may include discovery actions for certain routes. The firewall agent may send a firewall discovery query based on an appropriate entry in the discovery table or firewall cache. A firewall along the route may receive the firewall discovery query and return a firewall discovery result, which can provide the firewall address.


Managed hosts and firewalls may also maintain a shared secret (e.g., a password, key, etc.) for authentication of discovery messages. The shared secret may be distributed by a policy server or manually configured, for example, and a firewall may share the same secret with more than one host, including all hosts within a site. In certain embodiments, the shared secret may be a function of time. In yet other embodiments, managed hosts and firewalls may use asymmetric key cryptography (i.e., public key cryptography) to secure discovery messages. Key pairs may also be distributed by a policy server in some embodiments, or manually configured in others, and the same key pair may be shared with more than one firewall.


In more particular embodiments, firewall discovery messages may be implemented with protocol data units (PDUs) packaged in an Internet Control Message Protocol (ICMP) or UDP packet. For example, a firewall discovery query PDU may include the IP address of the firewall agent host, the IP address of the discovery target (which may be retrieved from the firewall cache), a firewall query (e.g., a magic number, subtype code, and discovery target address), and a message authentication code (MAC), which may be packaged in an ICMP echo message and sent to the discovery target address. A firewall discovery result PDU in an ICMP echo reply message may return the IP address of the host and the IP address of the discovery target, along with firewall information (e.g., magic number, subtype code, firewall IP address, host manager port) and a message authentication code. In such embodiments, the magic number may be a 32-bit identifier (e.g., 0x46484131 or “FHA1”), for example, which may also act as a protocol version number. A discovery target may be a globally known address designated for discovery queries in ICMP echo messages, such that it may be used to discover an Internet route, for example, or it may be a node within a given network designated for discovery of internal or external routes.


In certain example embodiments, each MAC may be a hash-based message authentication code (HMAC). In general, an HMAC is a MAC involving a cryptographic hash function, such as MD5 or SHA-1, in combination with a shared secret (e.g., a secret key), which can be used to verify data integrity and authenticity of a message. For example, a firewall discovery query PDU may provide an HMAC-SHA1 based on a key shared with the host initiating discovery and data in the firewall query, while a firewall discovery result PDU may provide an HMAC-SHA1 based on the shared key and firewall information.


In other embodiments, a firewall may have a public/private key pair that it can use to establish a metadata channel (e.g., a DTLS connection). A host may also use the firewall's public key to encrypt a hash of a discovery query message (using RSA for example), and the firewall's private key may be used to encrypt a hash of a discovery reply message. The encrypted hashes can be inserted into the discovery query or reply, and the discovery messages can be validated with the appropriate key. For example, an ICMP DU packet may be used as described above, but replacing the HMAC with the encrypted hash.


In example embodiments, a firewall agent on a host may send a firewall discovery query, tracking a discovery rule and target. A host manager of the firewall may intercept what appears to be an innocuous ICMP echo message from the firewall agent if it detects a firewall discovery query PDU and can validate the query by computing a MAC for the query using the shared secret. If the query is valid, the host manager may construct a firewall discovery result and send it to the firewall agent in an ICMP echo reply. The firewall agent on the host may receive the ICMP echo reply and process it if it detects a firewall discovery result PDU, and can authenticate the query based on its MAC. For example, if the message is authentic, a host may update its firewall cache to reflect the firewall information in the result.


In other embodiments, a firewall agent may send a firewall discovery query in a UDP packet. A host manager of the firewall may be configured to inspect UDP packets from the firewall agent and to block UDP-based firewall discovery queries from leaving the network to prevent inadvertent leakage. If the host manager detects a firewall discovery query PDU, it can validate the query by computing a MAC for the query using the shared secret. If the query is valid, the host manager may construct a firewall discovery result and send it to the firewall agent in a UDP packet. The firewall agent on the host may receive the UDP packet and process it if it detects a firewall discovery result PDU, and can authenticate the query based on its MAC. For example, if the message is authentic, a host may update its firewall cache to reflect the firewall information in the result.


Turning to FIG. 2, FIG. 2 is a simplified block diagram illustrating additional details that may be associated with potential embodiments of network environment 10. FIG. 2 includes Internet 15, user host 20a, firewall 25, and a server 45. Each of user host 20a and firewall 25 may include a respective processor 50a-50b, a respective memory element 55a-55b, and various hardware and/or software modules. More particularly, user host 20a may include an application 60, a configuration database 65, a client certificate 70, and a firewall agent 75, which may maintain a firewall cache 77. Firewall 25 may include a host manager 80 and a policy module 85, as well as a log 90, a metadata cache 95, and a server certificate 97.


In one example implementation, user hosts 20a-20b, firewall 25, and/or policy server 30 are network elements, which are meant to encompass network appliances, servers, routers, switches, gateways, bridges, loadbalancers, processors, modules, or any other suitable device, component, element, or object operable to exchange information in a network environment. Network elements may include any suitable hardware, software, components, modules, or objects that facilitate the operations thereof, as well as suitable interfaces for receiving, transmitting, and/or otherwise communicating data or information in a network environment. This may be inclusive of appropriate algorithms and communication protocols that allow for the effective exchange of data or information. However, user hosts 20a-20b may be distinguished from other network elements, as they tend to serve as a terminal point for a network connection, in contrast to a gateway or router that tends to serve as an intermediate point in a network connection. User hosts 20a-20b may also be representative of wireless network nodes, such as an i-Phone, i-Pad, Android phone, or other similar telecommunications devices.


In regards to the internal structure associated with network environment 10, each of user hosts 20a-20b, firewall 25, and/or policy server 30 can include memory elements for storing information to be used in the operations outlined herein. Each of user hosts 20a-20b, firewall 25, and/or policy server 30 may keep information in any suitable memory element (e.g., random access memory (RAM), read-only memory (ROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), application specific integrated circuit (ASIC), etc.), software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs. Any of the memory items discussed herein (e.g., memory elements 55a-55b) should be construed as being encompassed within the broad term ‘memory element.’ The information being used, tracked, sent, or received by user hosts 20a-20b, firewall 25, and/or policy server 30 could be provided in any database, register, queue, table, cache, control list, or other storage structure, all of which can be referenced at any suitable timeframe. Any such storage options may be included within the broad term ‘memory element’ as used herein.


In certain example implementations, the functions outlined herein may be implemented by logic encoded in one or more tangible media (e.g., embedded logic provided in an ASIC, digital signal processor (DSP) instructions, software (potentially inclusive of object code and source code) to be executed by a processor, or other similar machine, etc.), which may be inclusive of non-transitory media. In some of these instances, memory elements (as shown in FIG. 2) can store data used for the operations described herein. This includes the memory elements being able to store software, logic, code, or processor instructions that are executed to carry out the activities described herein.


In one example implementation, user hosts 20a-20b, firewall 25, and/or policy server 30 may include software modules (e.g., firewall agent 75 and/or host manager 80) to achieve, or to foster, operations as outlined herein. In other embodiments, such operations may be carried out by hardware, implemented externally to these elements, or included in some other network device to achieve the intended functionality. Alternatively, these elements may include software (or reciprocating software) that can coordinate in order to achieve the operations, as outlined herein. In still other embodiments, one or all of these devices may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.


Additionally, each of user hosts 20a-20b, firewall 25, and/or policy server 30 may include a processor that can execute software or an algorithm to perform activities as discussed herein. A processor can execute any type of instructions associated with the data to achieve the operations detailed herein. In one example, the processors (as shown in FIG. 2) could transform an element or an article (e.g., data) from one state or thing to another state or thing. In another example, the activities outlined herein may be implemented with fixed logic or programmable logic (e.g., software/computer instructions executed by a processor) and the elements identified herein could be some type of a programmable processor, programmable digital logic (e.g., a field programmable gate array (FPGA), an EPROM, an EEPROM) or an ASIC that includes digital logic, software, code, electronic instructions, or any suitable combination thereof. Any of the potential processing elements, modules, and machines described herein should be construed as being encompassed within the broad term ‘processor.’



FIG. 3 is a simplified table illustrating example entries in a firewall cache 300 that may be associated with some embodiments of network environment 10. Table 300 includes a discovery target column 305 and a discovery action column 310. Discovery target column 305 generally identifies target hosts or subnets (e.g., by destination address and network mask), and discovery action column 310 associates a discovery action with the host or subnet in the corresponding entry of discovery target column 305. In certain embodiments, a discovery action may indicate that the target is exempt from discovery, that a discovery query should be sent directly to the target, that discovery should be sent directly to the target and the result should be associated with the default (e.g., Internet) route, or that the default path in the cache should be used. In general, no discovery queries are sent for exempt targets. If the discovery action is direct discovery, a discovery query may be addressed to the target, but the intervening firewall may intercept and reply, allowing a host to update the firewall cache accordingly.


For example, rows 315 and 320 indicate that targets in the 10.0.0.0 or 192.168.0.0 subnets are exempt from firewall discovery action. Row 325 associates hosts in the 172.17.0.0 subnet with a direct discovery action, such that a host opening a connection to a server with an address of 172.17.2.100, for example, may send a firewall discovery query addressed to that server. Row 330 indicates that a host opening a connection to example.com should send a firewall discovery query to example.com, and to use any returned firewall discovery result as the default Internet firewall. The last entry, in row 335, indicates that all other addresses should use the default Internet firewall.


In general, rules (i.e., discovery targets and associated discovery actions) are evaluated in order. In a typical small network environment, private address space may be exempt when a single firewall to the Internet is available and there are no internal interlocked firewalls. In the example of table 300, however, a firewall may be involved for anything in the 172.0.0.0 subnet. In some embodiments, a prefix length parameter (e.g., /24 for IPv4 and /64 for IPv6) may be added to control the granularity of the cache entry.



FIG. 4 is a simplified interaction diagram illustrating potential operations that may be associated with example embodiments of network environment 10 that transport firewall discovery messages in ICMP packets. FIG. 4 includes application 60, firewall agent 75, and firewall cache 300, which may be installed in a user host, such as user host 20a, for example. FIG. 4 also illustrates host manager 80, metadata cache 95, and policy module 85, which may be installed in a firewall such as firewall 25, for example. An intranet 78, Internet 15, and server 45 are also depicted in FIG. 4.


An application such as application 60 may attempt to open a new TCP connection at 405, with a server such as server 45, for example. In this scenario, server 45 is in the example.com domain. Firewall agent 75 may intercept and hold the new connection, consulting firewall cache 300 at 410 to identify a firewall or discovery action associated with the route to server 45. Based on the example entry 330 in cache 300, firewall agent 75 may send a firewall discovery query in an ICMP echo message addressed to example.com at 415. Such a discovery query may, for example, include the IP address of user host 20a, the address of server 45 (i.e., example.com or the IP address of server 45), a firewall query (FHA1 | 0| ::example.com | 0), and an HMAC-SHA1 (shared key, firewall query). In this example, the first field of the firewall query (“FHA1”) is a literal that may be used to identify the protocol and version number, the second field (0) indicates the message is a query, the third field (::example.com) represents the IPv6 address or the IPv4 mapped form of example.com, and the fourth field (0) is a constant placeholder that can be used to keep the structure of query and result messages the same, which allows the protocol to be reflective and efficient.


Host manager 80 may receive and inspect the ICMP echo message in route to server 45. In this example, host manager 80 recognizes the ICMP echo message payload as a firewall discovery query PDU, validates the MAC by computing an HMAC-SHA1 on the shared key and the firewall query, and constructs a firewall discovery result at 420. Such a discovery result may, for example, include the IP address of user host 20a, the address of server 45 (i.e., example.com or the IP address of server 45), firewall information (FHA1 | 1| firewall address | host manager port), and an HMAC-SHA1 (shared key, firewall information). Host manager 80 may send the discovery result in an ICMP echo reply to firewall agent 75 at 425.


Firewall agent 75 may receive and inspect the ICMP echo reply from host manager 80. In this example, firewall agent 75 may recognize the ICMP echo reply payload as a firewall discovery result PDU and update firewall cache 300 at 430, such as by substituting the discovery action in row 330 with the firewall address and port for host manager 80. Moreover, in this particular example the discovery action in row 330 specifies that the discovered firewall should also be used as the default Internet firewall, so firewall agent may also substitute any discovery action in row 335 with the firewall address and port for host manager 80.


Firewall 75 may then open a connection (e.g., a DTLS connection) to the firewall at 435, using a certificate (e.g., client certificate 70) distributed by a policy server, for example. The connection may also be added to firewall cache 300 at 440 for future connections. Firewall agent 75 may send metadata for the connection initiated by application 60 to host manager 80 at 445a via a DTLS packet, for example. Host manager 80 may store the metadata in metadata cache 95 at 445b. Firewall agent 75 may release the connection at 450a, allowing data from application 60 to flow to host manager 80. Host manager 80 may provide connection data (i.e., TCP flow data, such as source IP address/port, destination IP address/port, protocol, etc.) to policy module 85 at 450b, and policy module 85 may correlate the connection data with metadata from metadata cache 95 at 455 to apply appropriate network policy at 460. In the example of FIG. 4, network policy permits the connection, so the connection may be released to server 45 at 465 and data may flow between server 45 and application 60 at 470.



FIG. 5 is a simplified interaction diagram illustrating potential operations that may be associated with other example embodiments of network environment 10 that transport firewall discovery messages in ICMP packets. FIG. 5 includes application 60, firewall agent 75, and firewall cache 300, which may be installed in a user host, such as user host 20a, for example. FIG. 5 also illustrates host manager 80, metadata cache 95, and policy module 85, which may be installed in a firewall such as firewall 25, for example. Intranet 78, a network 88, and server 45 are also depicted in FIG. 5.


An application such as application 60 may attempt to open a new flow at 505, with a server such as server 45, for example. In this scenario, server 45 is in the 172.17.0.0 subnet, with an IP address of 172.17.2.100, for example. Firewall agent 75 may intercept and hold the new flow, consulting firewall cache 300 at 510 to identify a firewall or discovery action associated with the route to server 45. Based on the example entry 325 in cache 300, firewall agent 75 may send a firewall discovery query in an ICMP echo message addressed to server 45 at 515. Such a discovery query may, for example, include the IP address of user host 20a, the IP address of server 45, a firewall query (FHA1 | 0 | ::172.17.2.100 | 0), and an HMAC-SHA1 (shared key, firewall query).


Host manager 80 may receive and inspect the ICMP echo message in route to server 45. In this example, host manager 80 recognizes the ICMP echo payload as a firewall discovery query PDU, and may validate the MAC by computing an HMAC-SHA1 on the shared key and the firewall query before constructing a firewall discovery result at 520. Such a discovery result may, for example, include the IP address of user host 20a, the address of server 45 (e.g., 172.17.2.100), firewall information (FHA1 | 1| firewall address | host manager port), and an HMAC-SHA1 (shared key, firewall information). Host manager 80 may send the discovery result in an ICMP echo reply to firewall agent 75 at 525.


Firewall agent 75 may receive and inspect the ICMP echo reply from host manager 80. In this example, firewall agent 75 may recognize the ICMP echo reply payload as a firewall discovery result PDU and update firewall cache 300 at 530, such as by substituting the discovery action in row 330 with the firewall address and port for host manager 80.


Firewall 75 may then open a flow (e.g., a DTLS connection) to the firewall at 535, using a certificate (e.g., client certificate 70) distributed by a policy server, for example. The flow may also be added to firewall cache 300 at 540 for future flows. Firewall agent 75 may send metadata for the flow initiated by application 60 to host manager 80 at 545a via a DTLS packet, for example. Host manager 80 may store the metadata in metadata cache 95 at 545b. Firewall agent 75 may release the flow at 550a, allowing data from application 60 to flow to host manager 80. Host manager 80 may provide flow data (e.g., source IP address/port, destination IP address/port, protocol, etc.) to policy module 85 at 550b, and policy module 85 may correlate the connection data with metadata from metadata cache 95 at 555 to apply appropriate network policy at 560. In the example of FIG. 5, network policy permits the flow, so the flow may be released to server 45 at 565 and data may flow between server 45 and application 60 at 570.



FIG. 6 is a simplified interaction diagram illustrating potential operations that may be associated with example embodiments of network environment 10 that transport firewall discovery messages in UDP packets. FIG. 6 includes application 60, firewall agent 75, and firewall cache 300, which may be installed in a user host, such as user host 20a, for example. FIG. 6 also illustrates host manager 80, metadata cache 95, and policy module 85, which may be installed in a firewall such as firewall 25, for example. Intranet 78, Internet 15, and server 45 are also depicted in FIG. 6.


An application such as application 60 may attempt to open a new flow at 605, with a server such as server 45, for example. In this scenario, server 45 is in the example.com domain. Firewall agent 75 may intercept and hold the new flow, consulting firewall cache 300 at 610 to identify a firewall or discovery action associated with the route to server 45. Based on the example entry 330 in cache 300, firewall agent 75 may send a firewall discovery query in a UDP packet to a preconfigured UDP port on server 45 at 615. Such a discovery query may, for example, include the IP address of user host 20a, the address of server 45 (i.e., example.com or the IP address of server 45), a firewall query (FHA1 | 0| ::example.com | 0), and an HMAC-SHA1 (shared key, firewall query).


Host manager 80 may receive and inspect the UDP packet in route to the preconfigured UDP port. In this example, host manager 80 recognizes the UPD payload as a firewall discovery query PDU, validates the MAC by computing an HMAC-SHA1 on the shared key and the firewall query, and constructs a firewall discovery result at 620. Such a discovery result may, for example, include the IP address of user host 20a, the address of server 45 (i.e., example.com or the IP address of server 45), firewall information (FHA1 | 1| firewall address | host manager port), and an HMAC-SHA1 (shared key, firewall information). Host manager 80 may send the discovery result in a UDP packet to firewall agent 75 at 625.


Firewall agent 75 may receive and inspect the UDP packet from host manager 80. In this example, firewall agent 75 may recognize the UDP payload as a firewall discovery result PDU and update firewall cache 300 at 630, such as by substituting the discovery action in row 330 with the firewall address and port for host manager 80. Moreover, in this particular example the discovery action in row 330 specifies that the discovered firewall should also be used as the default Internet firewall, so firewall agent may also substitute any discovery action in row 335 with the firewall address and port for host manager 80.


Firewall 75 may then open a connection (e.g., a DTLS connection) to the firewall at 635, using a certificate (e.g., client certificate 70) distributed by a policy server, for example. The connection may also be added to firewall cache 300 at 640 for future connections. Firewall agent 75 may send metadata for the flow initiated by application 60 to host manager 80 at 645a via a DTLS packet, for example. Host manager 80 may store the metadata in metadata cache 95 at 645b. Firewall agent 75 may release the flow at 650a, allowing data from application 60 to flow to host manager 80. Host manager 80 may provide flow data (e.g., source IP address/port, destination IP address/port, protocol, etc.) to policy module 85 at 650b, and policy module 85 may correlate the flow data with metadata from metadata cache 95 at 655 to apply appropriate network policy at 660. In the example of FIG. 6, network policy permits the flow, so the flow may be released to server 45 at 665 and data may flow between server 45 and application 60 at 670.



FIG. 7 is a simplified interaction diagram illustrating potential operations that may be associated with other example embodiments of network environment 10 that transport firewall discovery messages in UDP packets. FIG. 7 includes application 60, firewall agent 75, and firewall cache 300, which may be installed in a user host, such as user host 20a, for example. FIG. 7 also illustrates host manager 80, metadata cache 95, and policy module 85, which may be installed in a firewall such as firewall 25, for example. Intranet 78, network 88, and server 45 are also depicted in FIG. 7.


An application such as application 60 may attempt to open a new TCP connection at 705, with a server such as server 45, for example. In this scenario, server 45 is in the 172.17.0.0 subnet, with an IP address of 172.17.2.100, for example. Firewall agent 75 may intercept and hold the new connection, consulting firewall cache 300 at 710 to identify a firewall or discovery action associated with the route to server 45. Based on the example entry 325 in cache 300, firewall agent 75 may send a firewall discovery query in a UDP packet to a preconfigured port on server 45 at 715. Such a discovery query may, for example, include the IP address of user host 20a, the IP address of server 45, a firewall query (FHA1 | 0 | ::172.17.2.100 | 0), and an HMAC-SHA1 (shared key, firewall query).


Host manager 80 may receive and inspect the UDP packet in route to server 45. In this example, host manager 80 recognizes the UDP payload as a firewall discovery query PDU, validates the MAC by computing an HMAC-SHA1 on the shared key and the firewall query, and constructs a firewall discovery result at 720. Such a discovery result may, for example, include the IP address of user host 20a, the address of server 45 (e.g., 172.17.2.100), firewall information (FHA1 | 1| firewall address | host manager port), and an HMAC-SHA1 (shared key, firewall information). Host manager 80 may send the discovery result in an UDP packet to firewall agent 75 at 725.


Firewall agent 75 may receive and inspect the UDP packet from host manager 80. In this example, firewall agent 75 may recognize the UDP payload as a firewall discovery result PDU and update firewall cache 300 at 730, such as by substituting the discovery action in row 330 with the firewall address and port for host manager 80.


Firewall 75 may then open a flow (e.g., a DTLS connection) to the firewall at 735, using a certificate (e.g., client certificate 70) distributed by a policy server, for example. The flow may also be added to firewall cache 300 at 740 for future connections. Firewall agent 75 may send metadata for the connection initiated by application 60 to host manager 80 at 745a via a DTLS packet, for example. Host manager 80 may store the metadata in metadata cache 95 at 745b. Firewall agent 75 may release the connection at 750a, allowing data from application 60 to flow to host manager 80. Host manager 80 may provide connection data (e.g., source IP address/port, destination IP address/port, protocol, etc.) to policy module 85 at 750b, and policy module 85 may correlate the connection data with metadata from metadata cache 95 at 755 to apply appropriate network policy at 760. In the example of FIG. 7, network policy permits the connection, so the connection may be released to server 45 at 765 and data may flow between server 45 and application 60 at 770.



FIG. 8 is an example packet data unit (PDU) format 800 that may be associated with exchanging metadata over a metadata channel in example embodiments of network environment 10. PDU format 800 may include, for example, network flow data 805 and session descriptor data 810. Network flow data 805 may provide information associated with a new flow from a source, such as an application on a managed host. In PDU format 800, for instance, network flow data 805 may identify a protocol (short protocol) (e.g., TCP, UDP, ICMP, GRE, IPSec, etc.), the IP address of the source node (IPaddress source_address), the port number of the process opening the connection (short source_port), the IP address of the destination node (IPaddress dest_address), and the port number of the process receiving the connection on the destination node (short dest_port). Session descriptor 810 may provide information about a user associated with the application opening the connection, such as a secure ID (string sid), a domain associated with the user (string domain), and a user name (string user), as well as information about the application, such as the full path of the application (string application_path). Other information in session descriptor 810 may provide data about the state of the source node (e.g., a host), including the state of a host firewall (boolean FW_enabled) and antivirus software running on the host (boolean AV_enabled), and information about interfaces on the source node (Interface interfaces[ ]). PDU format 800 is merely illustrative, though, and may be readily adapted to provide alternative or additional metadata, such as information about an intrusion prevention system, routing information, additional vendor information, etc.


Network environment 10 may provide significant advantages, some of which have already been discussed. For example, network environment 10 can provide authentication of host/firewall interlock data with low protocol overhead and minimal configuration. Network environment 10 may be readily adapted to reuse standard code packages, leveraging configuration data, protocols such as DTLS, and timers in TCP and application layer protocols, while co-existing within existing network policy and security infrastructure.


Network environment 10 may also operate seamlessly with unmanaged routes. For example, a firewall agent may intercept a new flow from an application to a server and determine from a firewall cache that the route is unmanaged. The firewall agent may release the flow and the flow with the server may be established with no additional packet overhead.


In the examples provided above, as well as numerous other potential examples, interaction may be described in terms of two, three, or four network elements. However, the number of network elements has been limited for purposes of clarity and example only. In certain cases, it may be easier to describe one or more of the functionalities of a given set of operations by only referencing a limited number of network elements. It should be appreciated that network environment 10 is readily scalable and can accommodate a large number of components, as well as more complicated/sophisticated arrangements and configurations. Accordingly, the examples provided should not limit the scope or inhibit the broad teachings of network environment 10 as potentially applied to a myriad of other architectures. Additionally, although described with reference to particular scenarios, where a particular module, such as policy module 85, is provided within a network element, these modules can be provided externally, or consolidated and/or combined in any suitable fashion. In certain instances, such modules may be provided in a single proprietary unit.


It is also important to note that the steps in the appended diagrams illustrate only some of the possible scenarios and patterns that may be executed by, or within, network environment 10. Some of these steps may be deleted or removed where appropriate, or these steps may be modified or changed considerably without departing from the scope of teachings provided herein. In addition, a number of these operations have been described as being executed concurrently with, or in parallel to, one or more additional operations. However, the timing of these operations may be altered considerably. The preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by network environment 10 in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings provided herein.


Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims. In order to assist the United States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent issued on this application in interpreting the claims appended hereto, Applicant wishes to note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless the words “means for” or “step for” are specifically used in the particular claims; and (b) does not intend, by any statement in the specification, to limit this disclosure in any way that is not otherwise reflected in the appended claims.

Claims
  • 1. A method, comprising: intercepting, on a source node, a network flow to a destination node having a network address;determining a discovery action associated with the network address in a firewall cache;sending, from the source node, a discovery query to identify a firewall to be used in a route for sending the network flow to the destination node, wherein the discovery query is based on the discovery action associated with the network address in the firewall cache;receiving, at the source node, a discovery result from the firewall, the discovery result including a firewall address and a firewall port of the firewall;authenticating the discovery result;updating the discovery action in the firewall cache with the firewall address and the firewall port when the discovery result is authenticated;sending metadata associated with the network flow to the firewall; andreleasing the network flow from the source node.
  • 2. The method of claim 1, wherein the discovery query is sent in an Internet Control Message Protocol packet.
  • 3. The method of claim 1, wherein the discovery query is sent in an Internet Control Message Protocol echo message.
  • 4. The method of claim 1, wherein the discovery query is sent in a User Datagram Protocol.
  • 5. The method of claim 1, wherein the metadata is sent using a Datagram Transport Layer Security protocol.
  • 6. The method of claim 1, wherein the discovery query comprises a message authentication code.
  • 7. The method of claim 1, wherein the discovery query comprises a hash-based message authentication code.
  • 8. The method of claim 1, further comprising authenticating the discovery result with a message authentication code.
  • 9. The method of claim 1, wherein the discovery query comprises a hash-based message authentication code with a shared secret.
  • 10. The method of claim 1, wherein the discovery query comprises a public key encryption of a hash of the discovery query.
  • 11. The method of claim 1, further comprising authenticating the discovery result with a public key decryption of a hash of the discovery result.
  • 12. The method of claim 1, further comprising correlating the metadata with the network flow to apply a network policy to the network flow.
  • 13. At least one non-transitory computer readable medium having instructions stored thereon for discovering a firewall, the instructions when executed by at least one processor cause the processor to: intercept, on a source node, a network flow to a destination node having a network address;determine a discovery action associated with the network address in a firewall cache;send, from the source node, a discovery query to identify a firewall to be used in a route to send the network flow to the destination node, wherein the discovery query is based on the discovery action associated with the network address in the firewall cache;receive, at the source node, a discovery result from the firewall, the discovery result including a firewall address and a firewall port of the firewall;authenticate the discovery result;update the discovery action in the firewall cache with the firewall address and the firewall port when the discovery result is authenticated;send metadata associated with the network flow to the firewall; andrelease the network flow from the source node.
  • 14. The at least one non-transitory computer readable medium of claim 13, wherein the discovery query is sent in an Internet Control Message Protocol packet.
  • 15. The at least one non-transitory computer readable medium of claim 13, wherein the discovery query is sent in an Internet Control Message Protocol echo message.
  • 16. The at least one non-transitory computer readable medium of claim 13, wherein the discovery query is sent in a User Datagram Protocol.
  • 17. The at least one non-transitory computer readable medium of claim 13, wherein the metadata is sent using a Datagram Transport Layer Security protocol.
  • 18. The at least one non-transitory computer readable medium of claim 13, wherein the discovery query comprises a message authentication code.
  • 19. The at least one non-transitory computer readable medium of claim 13, wherein the discovery query comprises a hash-based message authentication code.
  • 20. The at least one non-transitory computer readable medium of claim 13, wherein the instructions, when executed by the at least one processor, further cause the processor to authenticate the discovery result with a message authentication code.
  • 21. The at least one non-transitory computer readable medium of claim 13, wherein the discovery query comprises a hash-based message authentication code with a shared secret.
  • 22. The at least one non-transitory computer readable medium of claim 13, wherein the discovery query comprises a public key encryption of a hash of the discovery query.
  • 23. The at least one non-transitory computer readable medium of claim 13, wherein the instructions, when executed by the at least one processor, further cause the processor to authenticate the discovery result with a public key decryption of a hash of the discovery result.
  • 24. The at least one non-transitory computer readable medium of claim 13, wherein the instructions, when executed by the at least one processor, further cause the processor to correlate the metadata with the network flow to apply a network policy to the network flow.
US Referenced Citations (308)
Number Name Date Kind
4688169 Joshi Aug 1987 A
4982430 Frezza et al. Jan 1991 A
5155847 Kirouac et al. Oct 1992 A
5222134 Waite et al. Jun 1993 A
5390314 Swanson Feb 1995 A
5521849 Adelson et al. May 1996 A
5560008 Johnson et al. Sep 1996 A
5699513 Feigen et al. Dec 1997 A
5778226 Adams et al. Jul 1998 A
5778349 Okonogi Jul 1998 A
5787427 Benantar et al. Jul 1998 A
5842017 Hookway et al. Nov 1998 A
5907709 Cantey et al. May 1999 A
5907860 Garibay et al. May 1999 A
5926832 Wing et al. Jul 1999 A
5944839 Isenberg Aug 1999 A
5974149 Leppek Oct 1999 A
5987610 Franczek et al. Nov 1999 A
5987611 Freund Nov 1999 A
5991881 Conklin et al. Nov 1999 A
6064815 Hohensee et al. May 2000 A
6073142 Geiger et al. Jun 2000 A
6141698 Krishnan et al. Oct 2000 A
6192401 Modiri et al. Feb 2001 B1
6192475 Wallace Feb 2001 B1
6256773 Bowman-Amuah Jul 2001 B1
6275938 Bond et al. Aug 2001 B1
6321267 Donaldson Nov 2001 B1
6338149 Ciccone, Jr. et al. Jan 2002 B1
6356957 Sanchez, II et al. Mar 2002 B2
6393465 Leeds May 2002 B2
6442686 McArdle et al. Aug 2002 B1
6449040 Fujita Sep 2002 B1
6453468 D'Souza Sep 2002 B1
6460050 Pace et al. Oct 2002 B1
6496477 Perkins et al. Dec 2002 B1
6587877 Douglis et al. Jul 2003 B1
6611925 Spear Aug 2003 B1
6658645 Akuta et al. Dec 2003 B1
6662219 Nishanov et al. Dec 2003 B1
6748534 Gryaznov et al. Jun 2004 B1
6769008 Kumar et al. Jul 2004 B1
6769115 Oldman Jul 2004 B1
6795966 Lim et al. Sep 2004 B1
6832227 Seki et al. Dec 2004 B2
6834301 Hanchett Dec 2004 B1
6847993 Novaes et al. Jan 2005 B1
6907600 Neiger et al. Jun 2005 B2
6918110 Hundt et al. Jul 2005 B2
6930985 Rathi et al. Aug 2005 B1
6934755 Saulpaugh et al. Aug 2005 B1
6988101 Ham et al. Jan 2006 B2
6988124 Douceur et al. Jan 2006 B2
7007302 Jagger et al. Feb 2006 B1
7010796 Strom et al. Mar 2006 B1
7024548 O'Toole, Jr. Apr 2006 B1
7039949 Cartmell et al. May 2006 B2
7054930 Cheriton May 2006 B1
7065767 Kambhammettu et al. Jun 2006 B2
7069330 McArdle et al. Jun 2006 B1
7082456 Mani-Meitav et al. Jul 2006 B2
7093239 van der Made Aug 2006 B1
7096500 Roberts et al. Aug 2006 B2
7124409 Davis et al. Oct 2006 B2
7139916 Billingsley et al. Nov 2006 B2
7152148 Williams et al. Dec 2006 B2
7159036 Hinchliffe et al. Jan 2007 B2
7177267 Oliver et al. Feb 2007 B2
7203864 Goin et al. Apr 2007 B2
7251655 Kaler et al. Jul 2007 B2
7290266 Gladstone et al. Oct 2007 B2
7302558 Campbell et al. Nov 2007 B2
7330849 Gerasoulis et al. Feb 2008 B2
7340684 Ramamoorthy et al. Mar 2008 B2
7346781 Cowle et al. Mar 2008 B2
7349931 Horne Mar 2008 B2
7350204 Lambert et al. Mar 2008 B2
7353501 Tang et al. Apr 2008 B2
7363022 Whelan et al. Apr 2008 B2
7370360 van der Made May 2008 B2
7385938 Beckett et al. Jun 2008 B1
7406517 Hunt et al. Jul 2008 B2
7441265 Staamann et al. Oct 2008 B2
7464408 Shah et al. Dec 2008 B1
7506155 Stewart et al. Mar 2009 B1
7506170 Finnegan Mar 2009 B2
7506364 Vayman Mar 2009 B2
7546333 Alon et al. Jun 2009 B2
7546594 McGuire et al. Jun 2009 B2
7552479 Conover et al. Jun 2009 B1
7577995 Chebolu et al. Aug 2009 B2
7603552 Sebes et al. Oct 2009 B1
7607170 Chesla Oct 2009 B2
7657599 Smith Feb 2010 B2
7669195 Qumei Feb 2010 B1
7685635 Vega et al. Mar 2010 B2
7698744 Fanton et al. Apr 2010 B2
7703090 Napier et al. Apr 2010 B2
7739497 Fink et al. Jun 2010 B1
7757269 Roy-Chowdhury et al. Jul 2010 B1
7765538 Zweifel et al. Jul 2010 B2
7783735 Sebes et al. Aug 2010 B1
7809704 Surendran et al. Oct 2010 B2
7818377 Whitney et al. Oct 2010 B2
7823148 Deshpande et al. Oct 2010 B2
7836504 Ray et al. Nov 2010 B2
7840968 Sharma et al. Nov 2010 B1
7849507 Bloch et al. Dec 2010 B1
7853643 Martinez et al. Dec 2010 B1
7856661 Sebes et al. Dec 2010 B1
7865931 Stone et al. Jan 2011 B1
7870387 Bhargava et al. Jan 2011 B1
7873955 Sebes et al. Jan 2011 B1
7895573 Bhargava et al. Feb 2011 B1
7908653 Brickell et al. Mar 2011 B2
7937455 Saha et al. May 2011 B2
7950056 Satish et al. May 2011 B1
7966659 Wilkinson et al. Jun 2011 B1
7996836 McCorkendale et al. Aug 2011 B1
8015388 Rihan et al. Sep 2011 B1
8015563 Araujo et al. Sep 2011 B2
8028340 Sebes et al. Sep 2011 B2
8195931 Sharma et al. Jun 2012 B1
8205188 Ramamoorthy et al. Jun 2012 B2
8234709 Viljoen et al. Jul 2012 B2
8234713 Roy-Chowdhury et al. Jul 2012 B2
8307437 Sebes et al. Nov 2012 B2
8321932 Bhargava et al. Nov 2012 B2
8332929 Bhargava et al. Dec 2012 B1
8352930 Sebes et al. Jan 2013 B1
8381284 Dang et al. Feb 2013 B2
8515075 Saraf et al. Aug 2013 B1
8539063 Sharma et al. Sep 2013 B1
8544003 Sawhney et al. Sep 2013 B1
8549003 Bhargava et al. Oct 2013 B1
8549546 Sharma et al. Oct 2013 B2
8555404 Sebes et al. Oct 2013 B1
8561051 Sebes et al. Oct 2013 B2
8561082 Sharma et al. Oct 2013 B2
8713668 Cooper et al. Apr 2014 B2
20020056076 van der Made May 2002 A1
20020069367 Tindal et al. Jun 2002 A1
20020083175 Afek et al. Jun 2002 A1
20020099671 Mastin et al. Jul 2002 A1
20020114319 Liu et al. Aug 2002 A1
20030014667 Kolichtchak Jan 2003 A1
20030023736 Abkemeier Jan 2003 A1
20030033510 Dice Feb 2003 A1
20030065945 Lingafelt et al. Apr 2003 A1
20030073894 Chiang et al. Apr 2003 A1
20030074552 Olkin et al. Apr 2003 A1
20030115222 Oashi et al. Jun 2003 A1
20030120601 Ouye et al. Jun 2003 A1
20030120811 Hanson et al. Jun 2003 A1
20030120935 Teal et al. Jun 2003 A1
20030145232 Poletto et al. Jul 2003 A1
20030163718 Johnson et al. Aug 2003 A1
20030167292 Ross Sep 2003 A1
20030167399 Audebert et al. Sep 2003 A1
20030200332 Gupta et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030220944 Schottland et al. Nov 2003 A1
20030221190 Deshpande et al. Nov 2003 A1
20040003258 Billingsley et al. Jan 2004 A1
20040015554 Wilson Jan 2004 A1
20040051736 Daniell Mar 2004 A1
20040054928 Hall Mar 2004 A1
20040088398 Barlow May 2004 A1
20040139206 Claudatos et al. Jul 2004 A1
20040143749 Tajalli et al. Jul 2004 A1
20040167906 Smith et al. Aug 2004 A1
20040172551 Fielding et al. Sep 2004 A1
20040230963 Rothman et al. Nov 2004 A1
20040243678 Smith et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268149 Aaron Dec 2004 A1
20050005006 Chauffour et al. Jan 2005 A1
20050018651 Yan et al. Jan 2005 A1
20050086047 Uchimoto et al. Apr 2005 A1
20050091321 Daniell et al. Apr 2005 A1
20050108516 Balzer et al. May 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114672 Duncan et al. May 2005 A1
20050132346 Tsantilis Jun 2005 A1
20050198519 Tamura et al. Sep 2005 A1
20050228990 Kato et al. Oct 2005 A1
20050235360 Pearson Oct 2005 A1
20050257207 Blumfield et al. Nov 2005 A1
20050257265 Cook et al. Nov 2005 A1
20050260996 Groenendaal Nov 2005 A1
20050262558 Usov Nov 2005 A1
20050273858 Zadok et al. Dec 2005 A1
20050283823 Okajo et al. Dec 2005 A1
20050289538 Black-Ziegelbein et al. Dec 2005 A1
20060004875 Baron et al. Jan 2006 A1
20060015501 Sanamrad et al. Jan 2006 A1
20060037016 Saha et al. Feb 2006 A1
20060072451 Ross Apr 2006 A1
20060075478 Hyndman et al. Apr 2006 A1
20060080656 Cain et al. Apr 2006 A1
20060085785 Garrett Apr 2006 A1
20060101277 Meenan et al. May 2006 A1
20060133223 Nakamura et al. Jun 2006 A1
20060136910 Brickell et al. Jun 2006 A1
20060136911 Robinson et al. Jun 2006 A1
20060143713 Challener et al. Jun 2006 A1
20060195906 Jin et al. Aug 2006 A1
20060200863 Ray et al. Sep 2006 A1
20060230314 Sanjar et al. Oct 2006 A1
20060236398 Trakic et al. Oct 2006 A1
20060259734 Sheu et al. Nov 2006 A1
20060277603 Kelso et al. Dec 2006 A1
20070011746 Malpani et al. Jan 2007 A1
20070028303 Brennan Feb 2007 A1
20070033645 Jones Feb 2007 A1
20070039049 Kupferman et al. Feb 2007 A1
20070050579 Hall et al. Mar 2007 A1
20070050764 Traut Mar 2007 A1
20070074199 Schoenberg Mar 2007 A1
20070083522 Nord et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070136579 Levy et al. Jun 2007 A1
20070143851 Nicodemus et al. Jun 2007 A1
20070157303 Pankratov Jul 2007 A1
20070169079 Keller et al. Jul 2007 A1
20070192329 Croft et al. Aug 2007 A1
20070220061 Tirosh et al. Sep 2007 A1
20070220507 Back et al. Sep 2007 A1
20070253430 Minami et al. Nov 2007 A1
20070256138 Gadea et al. Nov 2007 A1
20070271561 Winner et al. Nov 2007 A1
20070300215 Bardsley Dec 2007 A1
20080005737 Saha et al. Jan 2008 A1
20080005798 Ross Jan 2008 A1
20080010304 Vempala et al. Jan 2008 A1
20080022384 Yee et al. Jan 2008 A1
20080034416 Kumar et al. Feb 2008 A1
20080034418 Venkatraman et al. Feb 2008 A1
20080052468 Speirs et al. Feb 2008 A1
20080082977 Araujo et al. Apr 2008 A1
20080120499 Zimmer et al. May 2008 A1
20080141371 Bradicich et al. Jun 2008 A1
20080163207 Reumann et al. Jul 2008 A1
20080163210 Bowman et al. Jul 2008 A1
20080165952 Smith et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080235534 Schunter et al. Sep 2008 A1
20080282080 Hyndman et al. Nov 2008 A1
20080294703 Craft et al. Nov 2008 A1
20080301770 Kinder Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20090007100 Field et al. Jan 2009 A1
20090038017 Durham et al. Feb 2009 A1
20090043993 Ford et al. Feb 2009 A1
20090055693 Budko et al. Feb 2009 A1
20090063665 Bagepalli et al. Mar 2009 A1
20090113110 Chen et al. Apr 2009 A1
20090144300 Chatley et al. Jun 2009 A1
20090150639 Ohata Jun 2009 A1
20090249053 Zimmer et al. Oct 2009 A1
20090249438 Litvin et al. Oct 2009 A1
20090328144 Sherlock et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20100049973 Chen Feb 2010 A1
20100071035 Budko et al. Mar 2010 A1
20100114825 Siddegowda May 2010 A1
20100138430 Gotou Jun 2010 A1
20100188976 Rahman et al. Jul 2010 A1
20100250895 Adams et al. Sep 2010 A1
20100281133 Brendel Nov 2010 A1
20100293225 Sebes et al. Nov 2010 A1
20100332910 Ali et al. Dec 2010 A1
20110029772 Fanton et al. Feb 2011 A1
20110035423 Kobayashi et al. Feb 2011 A1
20110047542 Dang et al. Feb 2011 A1
20110047543 Mohinder Feb 2011 A1
20110077948 Sharma et al. Mar 2011 A1
20110078550 Nabutovsky Mar 2011 A1
20110093842 Sebes Apr 2011 A1
20110093950 Bhargava et al. Apr 2011 A1
20110113467 Agarwal et al. May 2011 A1
20110119760 Sebes et al. May 2011 A1
20110138461 Bhargava et al. Jun 2011 A1
20110302647 Bhattacharya et al. Dec 2011 A1
20120030731 Bhargava et al. Feb 2012 A1
20120030750 Bhargava et al. Feb 2012 A1
20120110666 Ogilvie May 2012 A1
20120216271 Cooper et al. Aug 2012 A1
20120278853 Chowdhury et al. Nov 2012 A1
20120290827 Bhargava et al. Nov 2012 A1
20120290828 Bhargava et al. Nov 2012 A1
20120297176 Bhargava et al. Nov 2012 A1
20130024934 Sebes et al. Jan 2013 A1
20130091318 Bhattacharjee et al. Apr 2013 A1
20130097355 Dang et al. Apr 2013 A1
20130097356 Dang et al. Apr 2013 A1
20130097658 Cooper et al. Apr 2013 A1
20130117823 Dang et al. May 2013 A1
20130246044 Sharma et al. Sep 2013 A1
20130246393 Saraf et al. Sep 2013 A1
20130246423 Bhargava et al. Sep 2013 A1
20130246685 Bhargava et al. Sep 2013 A1
20130247016 Sharma et al. Sep 2013 A1
20130247027 Shah et al. Sep 2013 A1
20130247032 Bhargava et al. Sep 2013 A1
20130247181 Saraf et al. Sep 2013 A1
20130247192 Krasser et al. Sep 2013 A1
20130247226 Sebes et al. Sep 2013 A1
Foreign Referenced Citations (19)
Number Date Country
1383295 Dec 2002 CN
103283202 Sep 2013 CN
1 482 394 Dec 2004 EP
2 037 657 Mar 2009 EP
2599026 Jun 2013 EP
2599276 Jun 2013 EP
2004524598 Aug 2004 JP
WO 9844404 Oct 1998 WO
WO 0184285 Nov 2001 WO
WO 2006012197 Feb 2006 WO
WO 2006124832 Nov 2006 WO
WO 2007016478 Feb 2007 WO
WO 2008054997 May 2008 WO
WO 2011059877 May 2011 WO
WO 2012015485 Feb 2012 WO
WO 2012015489 Feb 2012 WO
2012116098 Aug 2012 WO
2013058940 Apr 2013 WO
2013058944 Apr 2013 WO
Non-Patent Literature Citations (101)
Entry
Narten et al., NFC 4861—Neighbor Discovery for IPv6, Sep. 2007, retrieved from http://tools.ietf.org/html/rfc4861, pp. 1-98.
International Search Report and Written Opinion, International Application No. PCT/US2012/026169, mailed Jun. 18, 2012, 11 pages.
U.S. Appl. No. 13/437,900, filed Apr. 2, 2012, entitled “System and Method for Interlocking a Host and a Gateway,” Inventors: Geoffrey Howard Cooper, et al.
USPTO Dec. 24, 2012 Nonfinal Office Action from U.S. Appl. No. 13/032,851.
International Search Report and Written Opinion, International Application No. PCT/US2012/057153, mailed Dec. 26, 2012, 8 pages.
International Search Report and Written Opinion, International Application No. PCT/US2012/057312, mailed Jan. 31, 2013, 10 pages.
Datagram Transport Layer Security Request for Comments 4347, E. Rescorla, et al., Stanford University, Apr. 2006, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc4347.pdf, 26 pages.
Internet Control Message Protocol Request for Comments 792, J. Postel, ISI, Sep. 1981, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/html/rfc792, 22 pages.
Mathew J. Schwartz, “Palo Alto Introduces Security for Cloud, Mobile Users,” retrieved Feb. 9, 2011 from http://www.informationweek.com/news/security/perimeter/showArticle.jhtml?articleID-22, 4 pages.
Requirements for IV Version 4 Routers Request for Comments 1812, F. Baker, Cisco Systems, Jun. 1995, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc1812.pdf, 176 pages.
The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198, Issued Mar. 6, 2002, Federal Information Processing Standards Publication, retrieved and printed on Oct. 17, 2011 from http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf, 20 pages.
U.S. Appl. No. 13/032,851, filed Feb. 23, 2011, entitled “System and Method for Interlocking a Host and a Gateway,” Inventors: Geoffrey Howard Cooper, et al.
U.S. Appl. No. 13/275,249, filed Oct. 17, 2011, entitled “System and Method for Redirected Firewall Discovery in a Network Environment,” Inventors: Geoffrey Cooper, et al.
USPTO Feb. 28, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,249.
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/437,900.
USPTO Mar. 25, 2013 Response to Dec. 24, 2012 Nonfinal Office Action from U.S. Appl. No. 13/032,851.
USPTO May 13, 2013 Response to Feb. 28, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,249.
USPTO Jun. 3, 2013 Response to Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/437,900.
Office Action received for the U.S. Appl. No. 13/032,851, mailed on Jul. 16, 2013, 15 pages.
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/024869 (6 pages).
Office Action received for U.S. Appl. No. 12/844,892, mailed on Jan. 17, 2013, 29 pages.
Office Action received for U.S. Appl. No. 12/844,892, mailed on Sep. 6, 2012, 33 pages.
Zhen Chen et al., “Application Level Network Access Control System Based on TNC Architecture for Enterprise Network,” In: Wireless communications Networking and Information Security (WCNIS), 2010 IEEE International Conference, Jun. 25-27, 2010 (5 pages).
USPTO Sep. 13, 2013 Final Office Action from U.S. Appl. No. 13/275,249.
International Preliminary Report on Patentability, International Application No. PCT/US2012/026169, mailed Aug. 27, 2013, 8 pages.
USPTO Oct. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,892.
USPTO Oct. 25, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,964.
U.S. Appl. No. 14/045,208, filed Oct. 3, 2013, entitled “Execution Environment File Inventory,” Inventors: Rishi Bhargava, et al.
PCT Application Serial No. PCT/US13/66690, filed Oct. 24, 2013, entitled “Agent Assisted Malicious Application Blocking In A Network Environment,”, 67 pages.
Patent Examination Report No. 1, Australian Application No. 2011283160, mailed Oct. 30, 2013, 3 pages.
USPTO Sep. 27, 2013, Notice of Allowance from U.S. Appl. No. 13/437,900.
PCT Application Serial No. PCT/US13/71327, filed Nov. 21, 2013, entitled “Herd Based Scan Avoidance System In A Network Environment,”, 46 pages.
USPTO Dec. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 13/032,851.
U.S. Appl. No. 14/127,395, entitled “Agent Assisted Malicious Application Blocking In A Network Environment,” filed Dec. 18, 2013, Inventors: Chandan CP et al., 76 pages.
USPTO Dec. 26, 2013 Notice of Allowance from U.S. Appl. No. 13/275,249.
USPTO Jan. 13, 2014 Notice of Allowance from U.S. Appl. No. 13/437,900.
Patent Examination Report No. 1, Australian Application No. 2011283164, mailed Jan. 14, 2014.
USPTO Dec. 30, 2013 Final Office Action from U.S. Appl. No. 13/629,765.
USPTO Feb. 24, 2014 Notice of Allowance from U.S. Appl. No. 13/629,765, 8 pages.
“Xen Architecture Overview,” Xen, dated Feb. 13, 2008, Version 1.2, http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+architecture—Q1+2008.pdf, printed Aug. 18, 2009 (9 pages).
Eli M. Dow, et al., “The Xen Hypervisor,” INFORMIT, dated Apr. 10, 2008, http://www.informit.com/articles/printerfriendly.aspx?p=1187966, printed Aug. 11, 2009 (13 pages).
Desktop Management and Control, Website: http://www.vmware.com/solutions/desktop/, printed Oct. 12, 2009, 1 page.
Secure Mobile Computing, Website: http://www.vmware.com/solutions/desktop/mobile.html, printed Oct. 12, 2009, 2 pages.
Barrantes et al., “Randomized Instruction Set Emulation to Dispurt Binary Code Injection Attacks,” Oct. 27-31, 2003, ACM, pp. 281-289.
Gaurav et al., “Countering Code-Injection Attacks with Instruction-Set Randomization,” Oct. 27-31, 2003, ACM, pp. 272-280.
Check Point Software Technologies Ltd.: “ZoneAlarm Security Software User Guide Version 9”, Aug. 24, 2009, XP002634548, 259 pages, retrieved from Internet: URL:http://download.zonealarm.com/bin/media/pdf/zaclient91—user—manual.pdf.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority (1 page), International Search Report (4 pages), and Written Opinion (3 pages), mailed Mar. 2, 2011, International Application No. PCT/US2010/055520.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (6 pages), and Written Opinion of the International Searching Authority (10 pages) for International Application No. PCT/US2011/020677 mailed Jul. 22, 2011.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (3 pages), and Written Opinion of the International Search Authority (6 pages) for International Application No. PCT/US2011/024869 mailed Jul. 14, 2011.
Tal Garfinkel, et al., “Terra: A Virtual Machine-Based Platform for Trusted Computing,” XP-002340992, SOSP'03, Oct. 19-22, 2003, 14 pages.
IA-32 Intel® Architecture Software Developer's Manual, vol. 3B; Jun. 2006; pp. 13, 15, 22 and 145-146.
Notification of International Preliminary Report on Patentability and Written Opinion mailed May 24, 2012 for International Application No. PCT/US2010/055520, 5 pages.
Sailer et al., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems, IBM research Report, Feb. 2, 2005, 13 pages.
Kurt Gutzmann, “Access Control and Session Management in the HTTP Environment,” Jan./Feb. 2001, pp. 26-35, IEEE Internet Computing.
“Apache Hadoop Project,” http://hadoop.apache.org/, retrieved and printed Jan. 26, 2011, 3 pages.
“Cbl, composite blocking list,” http://cbl.abuseat.org, retrieved and printed Jan. 26, 2011, 8 pages.
A Tutorial on Clustering Algorithms, retrieved Sep. 10, 2010 from http://home.dei.polimi.it/matteucc/clustering/tutorial.html, 6 pages.
A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M. Voelker, V. Pason, N. Weaver, and S. Savage, “Botnet Judo: Fighting Spam with Itself,” in Proceedings of the 17th Annual Network and Distributed System Security Symposium (NDSS'10), Feb. 2010, 19 pages.
A. Ramachandran, N. Feamster, and D. Dagon, “Revealing botnet membership using DNSBL counter-intelligence,” in Proceedings of the 2nd USENIX Steps to Reducing Unwanted Traffic on the Internet, 2006, 6 pages.
A. Ramachandran, N. Feamster, and S. Vempala, “Filtering Spam with Behavioral Blacklisting,” in Proceedings of ACM Conference on Computer Communications Security, 2007, 10 pages.
B. Stone-Gross, M. Cova, L. Cavallor, B. Gilbert, M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is My Botnet: Analysis of a Botnet Takeover,” in Proceedings of the 16th ACM Conference on Computer and Communicatinos Security, 2009, 13 pages.
C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G.M. Voelker, V. Paxson, and S. Savage, “Spamalytics: An Empirical Analysis of Spam Marketing Conversion,” in Proceedings of the 15th ACM conference on Computer and Communications Security, 2008, 12 pages.
C.J. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” in Journal of Data Mining and Knowledge Discovery, 1998, 43 pages.
E-Mail Spamming Botnets: Signatures and Characteristics, Posted Sep. 22, 2008, http://www.protofilter.com/blog/email-spam-botnets-signatures.html, retrieved and printed Feb. 2, 2011, 4 pages.
G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command and Control Channels in Network Traffic,” in Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS'08), Feb. 2008, 24 pages.
G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter: Detecting Malware Infection Through IDS-Driven Dialog Correlation,” in Proceedings of the 16th USNIX Security Symposium, 2007, 34 pages.
G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering Analysis of Network Traffic for Protocol and Structure-Independent Botnet Detection,” in Proceedings of the 17th USENIX Security Symposium, 2008, 15 pages.
I. Jolliffe, “Principal Component Analysis,” in Springer Series in Statistics, Statistical Theory and Methods, 2nd ed.), 2002, 518 pages.
J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in Proceedings of Sixth Symposium on Operating System Design and Implementation, OSDI, 2004, 13 pages.
J. Goebel and T. Holz, “Rishi: Identify Bot Contaminated Hosts by IRC Nickname Evaluation,” in Proceedings of the USENIX HotBots, 2007, 12 pages.
J.B. Grizzard, V. Sharma, C. Nunnery, B.B. Kang, and D. Dagon, “Peer-to-Peer Botnets: Overview and Case Study,” in Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets, Apr. 2007, 14 pages.
J.P. John, A. Moshchuk, S.D. Gribble, and A. Krishnamurthy, “Studying Spamming Botnets Using Botlab,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, 2009, 16 pages.
K. Li, Z. Zhong, and L. Ramaswamy, “Privacy-Aware Collaborative Spam Filtering,” in Journal of IEEE Transactions on Parallel and Distributed Systems, vol. 29, No. 5, May 2009, pp. 725-739.
L. Zhuang, J. Dunagan, D.R. Simon, H.J. Wang, and J.D. Tygar, “Characterizing botnets from email spam records,” in Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats), 2008, 18 pages.
M. Frigo and S.G. Johnson, “The Design and Implementation of FFTW3,” in Proceedings of the IEEE 93(2), Invited paper, Special Issue on Program Generation, Optimization, and Platform Adaptation, 2005, 16 pages.
R. Perdisci, I. Corona, D. Dagon, and W. Lee, “Detecting Malicious Flux Service Networks through Passive Analysis of Recursive DNS Traces,” in Proceedings of the 25th Annual Computer Security Applications Conference (ACSAC 2009), Dec. 2009, 10 pages.
X. Jiang, D. Xu, and Y.-M. Wang, “Collapsar: A VM-Based Honeyfarm and Reverse Honeyfarm Architecture for Network Attack Capture and Detention,” in Journal of Parallel and Distributed Computing, Special Issue on Security in Grid and Distributed Systems, 2006, 16 pages.
Y. Tang, S. Krasser, P. Judge, and Y.-Q. Zhang, “Fast and Effective Spam Sender Detection with Granular SVM on Highly Imbalanced Mail Server Behavior Data,” in Proceedings of 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborativeCom), Nov. 2006, 6 pages.
Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum, “BotGraph: Large Scale Spamming Botnet Detection,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, 2009, 26 pages.
Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigraphy, Geoff Hulten, and Ivan Osipkov, “Spamming Botnets: Signatures and Characteristics,” SIGCOMM '08, Aug. 17, 22, 2008, http://ccr.sigcomm.org/online/files/p171-xie.pdf, pp. 171-182.
Z. Li, A. Goyal, Y. Chen, and V. Paxson, “Automating Analysis of Large-Scale Botnet probing Events,” in Proceedings of ACM Symposium on Information, Computer and Communications Security (ASIACCS)), 2009, 12 pages.
Myung-Sup Kim et al., “A load cluster management system using SNMP and web”, [Online], May 2002, pp. 367-378, [Retrieved from Internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/nem.453/pdf>.
G. Pruett et al., “BladeCenter systems management software”, [Online], Nov. 2005, pp. 963-975, [Retrieved from Internet on Oct. 24, 2012], <http://citeseerx.lst.psu.edu/viewdoc/download?doi=10.1.1.91.5091&rep=rep1&type=pdf>.
Philip M. Papadopoulos et al., “NPACI Rocks: tools and techniques for easily deploying manageable Linux clusters” [Online], Aug. 2002, pp. 707-725, [Retrieved from internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/cpe.722/pdf>.
Thomas Staub et al., “Secure Remote Management and Software Distribution for Wireless Mesh Networks”, [Online], Sep. 2007, pp. 1-8, [Retrieved from Internet on Oct. 24, 2012], <http://cds.unibe.ch/research/pub—files/B07.pdf>.
“What's New: McAfee VirusScan Enterprise, 8.8,” copyright 2010, retrieved on Nov. 23, 2012 at https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT—DOCUMENTATION/22000/PD22973/en—US/VSE%208.8%20-%20What's%20New.pdf, 4 pages.
“McAfee Management for Optimized Virtual Environments,” copyright 2012, retrieved on Nov. 26, 2012 at AntiVirushttp://www.mcafee.com/us/resources/data-sheets/ds-move-antivirus.pdf, 2 pages.
Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, Apr. 1992, retrieved on Dec. 14, 2012 from http://www.ietf.org/rfc/rfc1321.txt, 21 pages.
Hinden, R. and B. Haberman, “Unique Local IPv6 Unicast Addresses”, RFC 4193, Oct. 2005, retrieved on Nov. 20, 2012 from http://tools.ietf.org/pdf/rfc4193.pdf, 17 pages.
“Secure Hash Standard (SHS)”, Federal Information Processing Standards Publication, FIPS PUB 1804, Mar. 2012, retrieved on Dec. 14, 2012 from http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, 35 pages.
U.S. Appl. No. 13/728,705, filed Dec. 27, 2012, entitled “Herd Based Scan Avoidance System in a Network Environment,” Inventors Venkata Ramanan, et al.
An Analysis of Address Space Layout Randomization on Windows Vista™, Symantec Advanced Threat Research, copyright 2007 Symantec Corporation, available at http://www.symantec.com/avcenter/reference/Address—Space—Layout—Randomization.pdf, 19 pages.
Bhatkar, et al., “Efficient Techniques for Comprehensive Protection from Memory Error Exploits,” USENIX Association, 14th USENIX Security Symposium, Aug. 1-5, 2005, Baltimore, MD, 16 pages.
Dewan, et al., “A Hypervisor-Based System for Protecting Software Runtime Memory and Persistent Storage,” Spring Simulation Multiconference 2008, Apr. 14-17, 2008, Ottawa, Canada, (available at website: www.vodun.org/papers/2008—secure—locker—submit—v1-1.pdf, printed Oct. 11, 2011), 8 pages.
Shacham, et al., “On the Effectiveness of Address-Space Randomization,” CCS'04, Oct. 25-29, 2004, Washington, D.C., Copyright 2004, 10 pages.
International Search Report and Written Opinion mailed Dec. 14, 2012 for International Application No. PCT/US2012/055674, 9 pages.
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/020677 (9 pages).
International Search Report and Written Opinion, International Application No. PCT/US2013/071327, mailed Mar. 7, 2014, 12 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2012/057312, mailed Apr. 22, 2014, 5 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2012/057153, mailed Apr. 22, 2014, 4 pages.
U.S. Appl. No. 14/263,164, entitled “System and Method for Redirected Firewall Discovery in a Network Environment,” filed Apr. 28, 2014, Inventors: Geoffrey Cooper et al., 38 pages.
Related Publications (1)
Number Date Country
20130097692 A1 Apr 2013 US