System and method for identification of large-data flows

Information

  • Patent Grant
  • 10516612
  • Patent Number
    10,516,612
  • Date Filed
    Tuesday, October 24, 2017
    6 years ago
  • Date Issued
    Tuesday, December 24, 2019
    4 years ago
Abstract
Apparatus, systems and methods may be used to monitor data flows and to select and track particularly large data flows. A method of tracking data flows and identifying large-data (“elephant”) flows comprises extracting fields from a packet of data to construct a flow key, computing a hash value on the flow key to provide a hashed flow signature, entering and/or comparing the hashed flow signature with entries in a flow hash table. Each hash table entry includes a byte count for a respective flow. When the byte count for a flow exceeds a threshold value, the flow is added to a large-data flow (“elephant”) table and the flow is then tracked in the large-data flow table.
Description
TECHNICAL FIELD

Aspects of the present technology pertains to detection of large-volume data flows, and more specifically pertains to detection of large-volume data flows in a network device.


BACKGROUND

In a network device, such as a router or a switch, a small number of connections (aka “flows”) between two hosts may typically consume large amounts of bandwidth, and it may be desirable to identify and analyze such flows, which are sometimes called “elephant flows.” Such analysis may be useful, e.g., for analytics and/or load-balancing.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 illustrates an example embodiment of an aspect of the present disclosure;



FIG. 2 illustrates an example embodiment of an overall system flow;



FIG. 3 illustrates an example embodiment of a method for identifying large-data flows;



FIG. 4 illustrates an example embodiment of a method for adding large-data flows into a large-data flow “elephant” table;



FIG. 5 illustrates an example embodiment of a method for evicting large-data (elephant) flows from the large-data flow (elephant flow) table;



FIG. 6 illustrates an example of a network device in which various aspects of the present disclosure may be implemented; and



FIG. 7 illustrates an example of a system embodiment.





DESCRIPTION OF EXAMPLE EMBODIMENTS

Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the spirit and scope of the disclosure.


Overview


A method of tracking data flows and identifying large-data (“elephant”) flows comprises extracting fields from a packet of data to construct a flow key, computing a hash value on the flow key to provide a hashed flow signature, entering and/or comparing the hashed flow signature with entries in a flow hash table. Each hash table entry includes a byte count for a respective flow. When the byte count for a flow exceeds a threshold value, the flow is added to a large-data flow (elephant) table and the flow is then tracked in the large-data flow table.


Description


As used herein, the term “network device” refers generally to components used to connect computers or other electronic devices together so they can share files or resources. Examples of network devices include routers, switches and hubs. A “network host” or “host” as used herein refers to a computer or other device connected to a computer network that may offer resources, services and applications to users or other nodes on the network. A network host is a network node that is assigned a network layer host address. Computers participating in networks that use the Internet Protocol Suite may be called IP hosts, and have one or more IP addresses assigned to their network interfaces. A routing table or more generally “table” as used herein refers to a table used by network devices to generate and/or analyze destinations of packets of data. A routing table is utilized by network routers to evaluate the destinations of the data packets to be forwarded. It can, for example, be a small in-memory database controlled by the router's built-in software and hardware that contains the necessary data to forward a packet to its destination. Each packet transmitted across a network generally contains information about its origin (aka “source”) and its destination. A routing table is used by all IP-enabled devices, like routers and switches, and can include, for example, the destination IP address, the source IP address, the destination port and the source port.


As used herein, the term “flow” refers generally to one or more packets of data that travel from a source computer (“host”) to a destination, which may be another host. A flow is a sequence of packets sent from a particular source to a particular destination, and may be observed as a set of IP packets passing an observation point (such as a network device) in the network during a certain time interval. A “packet” as used herein refers to a formatted unit carried by a network, such as a packet-switched network. A packet generally consists of two types of data, including control (or “header”) information and user information (sometimes called “payload”). The control information provides the network with the appropriate data in order to deliver the user data to the appropriate destination. The user data in an example embodiment is data carried on behalf of an application, and is usually of variable length.


A “hash table” as used herein refers generally to a data structure that uses a hash function to implement an associative array, a structure that can map keys to values. For example, the hash table can implement a hash function to compute an index into an array of “buckets” or “slots”, from which a select value, associated with a key (identifier) can be found. It should also be understood that, although hash tables are shown and described in some exemplary embodiments, other tables and data structures having functionalities and features in accordance with the disclosures herein, can be employed in accordance with ordinary skill.


The disclosed technology addresses the need in the art for techniques and systems that may be used for identifying relatively large (elephant) flows from among mixed flows (a plurality of relatively large and relatively small flows, i.e., elephants and mice) in an efficient fashion. Disclosed are systems, methods, machines, and computer-readable storage media for identifying and tracking large-data flows. An aspect of the present disclosure is shown in FIG. 1, an example embodiment of overall system flow is shown in FIG. 2, an example embodiment of flow for identifying large-data flows is shown in FIG. 3, an example embodiment of flow for adding large-data (elephant) flows to a large-flow (elephant) table is shown in FIG. 4, and an example embodiment for evicting elephant flows from the large-data (elephant) flow table is shown in FIG. 5. A brief description of exemplary systems and networks, as illustrated in FIGS. 1 and 4, is disclosed herein. These embodiments and related variations shall be described herein as the various embodiments are set forth. The disclosure now turns to FIG. 1.



FIG. 1 illustrates a conceptual block diagram of an aspect of the disclosed subject matter. An apparatus may include two tables: flow hash table 10 and a large-data flow (elephant) table 11. Processing logic 12 may be provided, which may be coupled to both flow hash table 10 and large-data flow table 11. Processing logic 12, which may be implemented in hardware, software, firmware, or combinations thereof, may perform various operations discussed below.


Reference is now made to FIG. 2 showing an example system. Reference can also be made to FIG. 3 which is a flow chart showing an example embodiment of a method for identifying large-data (“elephant”) flows in a network. With reference to FIG. 2, a packet 210 arrives at a network device and relevant flow data is computed for the packet. To define a flow, a flow key is determined from a select number of fields in the header of the packet. In this example, five fields are selected: source IP address, destination IP address, source port, destination port and IP protocol; the resulting flow key comprises 300 bits. To avoid having to store and process such a large (300 bit) flow key value for every flow, a hash of the flow key is computed, generating a hashed flow signature, which is stored in a hash table.


In the example of FIG. 2, two hash functions are used. A first function “H0212 applied to the flow key provides an index value that identifies a row number 214, which can be an 8-entry (per row) flow hash table 10. In one example, the hashing function h0 randomly identifies a row in the flow hash table. A second hash function “H1216 is applied to the flow key to produce a hashed flow signature 218. The hashed flow signature contains a lesser number of bits than the flow key, here for example 26 bits, compared to the larger 300 bit flow key. The term “hashed flow signature” as used herein generally refers to a computed flow signature that is generated by implementing a hash function on a flow key to reduce the number of bits for storage in a flow hash table. The hashed flow signature is used in the flow hash table to track and locate flows having matching flow signatures. As an example, the hashed flow signature can comprise 26 bits, while the flow key comprises 300 bits.


A byte count 219 for the incoming packet 210 is also obtained and added to a total byte count for the relevant flow in the flow hash table 10 as shown by dashed-line arrow 225.


In accordance with the example embodiment, each entry 230 in the flow hash table 10 has a valid bit 232, a flow signature 234, a total byte count 236 and a tracked bit 238. In the example embodiment the byte count includes the total byte count for the packet, including both header and payload number of bytes. However, in some embodiments the byte count can include the byte count for just the payload alone. The valid bit 232 notifies processing logic whether it is a valid entry or not. The flow signature 234 comprises the hashed flow signature produced by the hashing function h1 and is compared to other flow signatures in the hash table as they are computed to determine whether they match, as described in greater detail with reference to FIG. 3. The byte count 236 is tracked, incremented as appropriate, and continuously tracked so that the relevant entry (data flow) can be moved to a large-data flow (elephant) table when the total byte count for a flow exceeds a predetermined threshold value. The tracked bit 238 is used once an entry has been moved to the large-data flow table to indicate that the entry is being tracked in the large-data flow table. Once the tracked bit 238 is set, the processing logic can determine that this entry has been identified as a large-data “elephant” flow and has been moved to the large-data flow table. The byte count value 236 is then replaced with a pointer to the appropriate entry in the large-data flow table 11 where the flow is now located (for tracking). As shown by the dashed-line arrow 270, the pointer to the row is placed in byte count field 236.


When the byte count 236 for a particular flow becomes greater than a threshold at 240, then the flow is considered to be an elephant and is moved to large-data flow table 11. The threshold 240 above which a flow is considered to be an elephant can be, for example, approximately 1 megabyte (MB) of data. However, this threshold can be variable, and those of ordinary skill in the art will recognize that other appropriate thresholds can be used, and the appropriate threshold can depend upon the particular application. Each entry in the large-data (elephant) flow table 11 includes a valid or “occupied” bit 252 (to let the system know that entry in the row is occupied), the 300 bit flow key 254, the total byte count 256 for the flow, the packet count 258, the bandwidth 260, the byte count for the current period 262, the first timestamp 264 and the last timestamp 266 of the flow. Each large-data flow entry in the large-data flow table includes the valid bit 252 that is initialized to be “empty” (i.e. the column in the row does not have a value associated with it) by initializing to a value of 0. When each new large-data flow entry is added to the large-data flow table, the first empty bit is located and a new large-data flow is inserted there and the bit is then given a value of 1, meaning the column is “filled”. This entry is written in the flow hash table as a pointer. The tracked bit is set in the flow hash table so that when the large-data flow entry ages out, the “filled” value becomes an “empty” value. The large-data flows are tracked in the large-data flow table 11 until they are evicted. Refer to FIG. 4 for an example flow chart of adding large-data flows to the large-data flow table. Refer to FIG. 5 for an example flow chart of evicting large-data flows from the large-data flow table when appropriate.


Reference is now made to FIG. 3 showing an example embodiment of a flow chart for identifying large-data flows. When a packet enters the network device at 310, fields may be extracted from the packet header to construct a flow key at 320. More particularly, values may be extracted from header fields of a data packet received on a network device to derive a flow key. This may be performed, e.g., by processing logic 12. The flow key may be further processed, e.g., by masking various bits of the flow key. Such masking may permit flows to be aggregated into single flows. For example, if a flow key consists of {source_IP, destination_IP, source_port, destination_port, IP_protocol}, and if source_IP is masked, the new flow definition will be {destination_IP, source_port, destination_port, IP_protocol}. In this case, different keys having different source_IP addresses but the same values of the other fields may be considered to be a single flow, thus aggregating flows across source_IP.


After masking, the resulting masked flow key may be used for further processing. Two hash values may be computed on the flow at 330, of which one may be used as an index 335 to read a row in flow hash table 10, and the other may be used as a hashed flow signature 340. Each row in flow hash table 10 may be N-way set-associative. In a non-limiting example, N may be 8; in this example, a row of flow hash table 10 may thus have 8 entries. Each entry of flow hash table 10 may include a flow signature, a flow byte count, a valid flag, and a “tracked” flag.


At 342, the row indexed by the computed index 335 is read. The row, for example, can have 8 entries, each in its own column in the row.


At 345, the hashed flow signature may be compared with each of the flow signatures of the (e.g., 8 in the example above) entries in a row of flow hash table 10. At 347 it is determined if the compared values match. If one of the flow signatures in the row of the flow hash table 10 matches the newly hashed flow signature, the corresponding entry may be considered to be a “hit” at 348. Then at 350, the incoming packet length of the flow under consideration may be added to the byte count of the matching entry in the row of flow hash table 10, and at 352 this entry may be marked as the “Most Recently Used” (MRU) entry for that row. The entire corresponding row of flow hash table 10 may then be written back to flow hash table 10 at the same index. (With reference to FIG. 2, the entire row of the flow hash table 10 may then be written back to flow hash table 10 at the same index).


If none of the signatures in the row of flow hash table 10 matches the hashed flow signature, then at 360 this may be deemed a “miss.” If this occurs, it is determined if there is a row without 8 entries (i.e. having an empty slot) at 362. If an empty entry in the row (e.g., among the 8 entries of the row of the example) is identified, the hashed flow signature may be written there at 364. This entry may be marked as the MRU at 366.


If none of the signatures match and there is no empty slot in the row, at 368 one of the existing (8) entries may then need to be “evicted,” so the new flow may be entered in the row. The “Least Recently Used” (LRU) entry may be chosen for eviction, and the new flow inserted may be inserted into its slot and may be marked MRU at 366.


In order to maintain the LRU to MRU order in a row, the entries of the row may be reordered each time an entry is matched (or newly-entered). For example, let 0 be the left-most entry of the row, and using the example of 8 entries, let 7 be the right-most entry in the row. It may be desirable to arrange the entries from LRU in entry 0 to MRU in entry 7. Suppose, for example, that a new hashed flow signature matches one of the entries, say, the ith entry. Entries i+1 to 7 may then be moved left by one entry (which, in effect, reduces the “age” of each of the shifted entries by one), and the ith entry may be moved to the 7th position, as it is the MRU (and the MRU should be placed in the 7th position).


Reference is now made to FIG. 4 showing an example embodiment of a flow chart for adding large-data flows into a large-data flow “elephant” table. If a hit occurs for a flow at 410, this means that the hashed flow signature matches another flow signature in the flow hash table, and the byte count of the flow in flow hash table 10 may be incremented at 420, as discussed above. If the byte count of a flow exceeds a predefined threshold value at 430, the corresponding flow may be declared an elephant at 440 and may then be tracked in large-data flow table 11. To insert the flow into large-data flow table 11, an empty slot may be located in large-data flow table 11 at 452, and the complete flow key corresponding to the flow may be written into that slot at 454. At 456, a pointer to the flow in the large-data flow table is written into the byte count field for the flow entry in the flow hash table 11 after clearing out the byte count value. The “tracked” flag, mentioned above, may also be set at 458, to indicate that the flow is being tracked in the large-data flow table and, accordingly, to indicate that the byte count of the flow in flow hash table 10 should be interpreted as a pointer to the flow in large-data flow table 11. That is, the byte count in flow hash table 10 need no longer be maintained or updated for a “tracked” flow because more-detailed information may be now found in large-data flow table 11, containing the detailed flow.


In large-data flow table 11, an entry corresponding to a flow may include detailed flow information such as the four values shown in FIG. 2, and may include one or more of the following:


(a) Flow key, which includes the 300 bits of data to identify the flow.


(b) Packet count (pkt_count), which may reflect how many packets have been seen on the flow since tracking began.


(c) Byte count (byte_count), which may reflect how many bytes have been seen on the flow since tracking began.


(d) Start time-stamp (T_start), which may be a time-stamp of the first packet detected on the flow since tracking began.


(e) Last packet seen time-stamp (T_last), which may be a time-stamp of the latest packet detected on the flow since tracking began.


(f) Forwarding information, which may reflect to which port the packets of the flow should be sent. This may help to avoid or reduce forwarding lookups and may reduce latency. This may also assist in load-balancing of large-data (elephant) flows so that the multiple elephants do not attempt to go out of the same network device port.


(g) Sticky bit, which may indicate that the flow entry should never be aged out (i.e., an indicator that the flow should always be tracked).


(h) Bytes seen in a current period (B): Every T nanoseconds, large-data flow table 11 may be examined for the numbers of bytes accumulated to that time. The byte count in a period T may be used as a bandwidth for period T. This may be used to update bandwidth measurements and may be cleared for a subsequent period.


(i) Bandwidth (Bw), which may be a running average of the values of B. For example, Bw may be determined by means of the following equation:

BWnext=f*BWpresent+(1−f)*B,

where f is a predefined weighting value between 0 and 1.


Reference is made to FIG. 5 showing an example embodiment of a flow chart for evicting large-data (elephant) flows from the large-data flow table. At 510, flow bandwidth may be compared with a predefined threshold value that may be used to set a minimum bandwidth for continued tracking. If the bandwidth falls below the threshold at 515, then at 520 the flow may be evicted from large-data flow table 11 as no longer being an elephant. A bitmap of valid bits for each elephant in large-data flow table 11 may be maintained, where each bit may indicate whether the elephant entry is occupied by a valid flow (see bit 252 of FIG. 2 for example). If an entry is evicted, the valid bit may be set to 0. When an entry is inserted into large-data flow table 11, the bitmap may be priority encoded, which may permit the determination of the first unoccupied entry in which to insert the new flow. Note that eviction from large-data flow table 11 does not invalidate the corresponding entry in flow hash table 10.


Thus, all flows may enter the flow hash table 10. If a flow does not keep sending packets (and, thus the bandwidth falls below the threshold bandwidth for continued tracking), it may quickly become the LRU and become eligible for eviction. An elephant flow results from sending packets quickly and generating hits in flow hash table 10. Every time the flow gets a hit, its status may be refreshed to MRU, so it may not be evicted easily.


Various sub-cases may arise. It may be possible that two different flows alias to a common location in flow hash table 10 and thus have the same hashed flow signature. If neither is being tracked, then the byte count associated with the hashed flow signature may account for bytes from both flows. If one of the two aliasing flows is being tracked, then the second flow may then mismatch with the flow key in large-data flow table 11, and consequently, this second flow may not be accounted for. If one of the two aliasing flows is being tracked, and if the corresponding large-data flow table entry says that the flow is not present (e.g., because it aged out), then the empty entry may be made available for either of the two aliasing flows. As a result, it is possible that a mouse may be tracked; however, this is likely to be short-lived, as the aging process should soon result in eviction of the mouse.


In some embodiments, an entry may be admitted to large-data flow table 11 on certain conditions. For instance, this condition may be “if packet dropped.” In this case, the packets that are dropped may be tracked, and this may assist in identifying affected flows and diagnosing any associated problem.


Also, this may permit the admission of an entry in large-data flow table 11 only if it matches a specific ternary content-addressable memory (TCAM) filter, which may assist in narrowing the tracking focus to certain flows.



FIG. 6 illustrates an example of a network device 110 in which various aspects of the present technology may be utilized. Network device 110 may include a master central processing unit (CPU) 162, interfaces 168, and a bus 115 (e.g., a PCI bus). When acting under the control of appropriate software or firmware, the CPU 162 may control and/or implement various functions described above, e.g., storage, monitoring, comparing, etc. It may accomplish such functions under the control of software including an operating system and any appropriate applications software. CPU 162 may include one or more processors 163, such as a processor from the Motorola family of microprocessors or the MIPS family of microprocessors. In an alternative embodiment, processor 163 may be specially-designed hardware for controlling the operations of router 110. In a specific embodiment, a memory 161 (such as non-volatile RAM and/or ROM) may also form part of CPU 162. However, there are many different ways in which memory could be coupled to the system.


The interfaces 168 may be provided as interface cards (sometimes referred to as “line cards”). Generally, they control the sending and receiving of data packets over the network and sometimes support other peripherals used with the router 110. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like. In addition, various very high-speed interfaces may be provided, such as fast token ring interfaces, wireless interfaces, Ethernet interfaces, Gigabit Ethernet interfaces, ATM interfaces, HSSI interfaces, POS interfaces, FDDI interfaces and the like. Generally, these interfaces may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile RAM. The independent processors may control such communications intensive tasks as packet switching, media control and management. By providing separate processors for the communications intensive tasks, these interfaces allow the master microprocessor 162 to efficiently perform routing computations, network diagnostics, security functions, etc.


Although the system shown in FIG. 6 is one specific network device in which the present technology may be implemented, it is by no means the only network device architecture on which the present technology can be implemented. For example, an architecture having a single processor that handles communications as well as routing computations, etc., may be used. Further, other types of interfaces and media could also be used with the router.


Regardless of the network device's configuration, it may employ one or more memories or memory modules (including memory 161) configured to store program instructions for the general-purpose network operations and mechanisms for roaming, route optimization and routing functions described herein. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store tables such as mobility binding, registration, and association tables, etc.



FIG. 7 illustrates exemplary possible system embodiments, such as a system making up network device 110. The more appropriate embodiment will be apparent to those of ordinary skill in the art when practicing the present technology. Persons of ordinary skill in the art will also readily appreciate that other system embodiments are possible.



FIG. 7 illustrates a conventional system bus computing system architecture 700 wherein the components of the system are in electrical communication with each other using a bus 705. Exemplary system 700 includes a processing unit (CPU or processor) 710 and a system bus 705 that couples various system components including the system memory 715, such as read only memory (ROM) 720 and random access memory (RAM) 725, to the processor 710. The system 700 can include a cache of high-speed memory connected directly with, in close proximity to, or integrated as part of the processor 710. The system 700 can copy data from the memory 715 and/or the storage device 730 to the cache 712 for quick access by the processor 710. In this way, the cache can provide a performance boost that avoids processor 710 delays while waiting for data. These and other modules can control or be configured to control the processor 710 to perform various actions. Other system memory 715 may be available for use as well. The memory 715 can include multiple different types of memory with different performance characteristics. The processor 710 can include any general purpose processor and a hardware module or software module, such as module 1732, module 2734, and module 3736 stored in storage device 730, configured to control the processor 710 as well as a special-purpose processor where software instructions are incorporated into the actual processor design. The processor 710 may essentially be a completely self-contained computing system, containing multiple cores or processors, a bus, memory controller, cache, etc. A multi-core processor may be symmetric or asymmetric.


The communications interface 740 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.


Storage device 730 is a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 725, read only memory (ROM) 720, and hybrids thereof.


The storage device 730 can include software modules 732, 734, 736 for controlling the processor 710. Other hardware or software modules are contemplated. The storage device 730 can be connected to the system bus 705. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as the processor 710, bus 705, display 735, and so forth, to carry out the function.


For clarity of explanation, in some instances the present technology may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.


In some embodiments the computer-readable storage devices, mediums, and memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.


Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.


Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.


The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.


Although a variety of examples and other information was used to explain aspects within the scope of the appended claims, no limitation of the claims should be implied based on particular features or arrangements in such examples, as one of ordinary skill would be able to use these examples to derive a wide variety of implementations. Further and although some subject matter may have been described in language specific to examples of structural features and/or method steps, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to these described features or acts. For example, such functionality can be distributed differently or performed in components other than those identified herein. Rather, the described features and steps are disclosed as examples of components of systems and methods within the scope of the appended claims. Moreover, claim language reciting “at least one of” a set indicates that one member of the set or multiple members of the set satisfy the claim.

Claims
  • 1. A method of tracking data flows, comprising: computing a hashed flow signature on values extracted from a data packet received on a network device, the hashed flow signature being used to locate a position for the hashed flow signature in a flow hash table;adding a flow key of a respective entry in the flow hash table to a large-data flow table when a byte count for an entry in the flow hash table exceeds a predetermined byte count threshold, wherein the entry in the flow hash table includes the byte count for the respective flow; andreplacing the byte count in the flow hash table for the entry added to the large-data flow table with a pointer to the entry in the large-data flow table.
  • 2. The method of claim 1 further comprising: reading a row in the flow hash table indexed by the hashed index value; andcomparing the hashed flow signature with each signature in the row read from the flow hash table to determine if the hashed flow signature matches at least one existing flow signature in a column of the row to locate the hashed flow signature in the flow hash table.
  • 3. The method of claim 2 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises:when the hashed flow signature matches the at least one existing flow signature in a column of the row of the flow hash table, locating the column in the flow hash table and adding a length of the packet to a byte counter in the flow hash table.
  • 4. The method of claim 2 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises: when the hashed flow signature does not match the at least one existing flow signature in the flow hash table, entering the hashed flow signature into a column in the row by:locating an empty column in the row and inserting the hashed flow in the empty column.
  • 5. The method of claim 2 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises: when the hashed flow signature does not match the at least one existing flow signature in the flow hash table, entering the hashed flow signature into a column in the row by evicting an entry when there is not an empty column in the row, and inserting the hashed flow signature in the evicted column.
  • 6. The method of claim 1 further comprising tracking a bandwidth of each flow entry in the large-data flow table based on the byte count, and aging out entries from the large-data flow table.
  • 7. A non-transitory computer readable medium containing program instructions for causing a computer to perform operations, comprising: computing a hashed flow signature on values extracted from a data packet received on a network device, the hashed flow signature being used to locate a position for the hashed flow signature in a flow hash table;adding a flow key of a respective entry in the flow hash table to a large-data flow table when a byte count for an entry in the flow hash table exceeds a predetermined byte count threshold, wherein the entry in the flow hash table includes the byte count for the respective flow; andreplacing the byte count in the flow hash table for the entry added to the large-data flow table with a pointer to the entry in the large-data flow table.
  • 8. The method of claim 7 the operations further comprising: reading a row in the flow hash table indexed by the hashed index value; andcomparing the hashed flow signature with each signature in the row read from the flow hash table to determine if the hashed flow signature matches at least one existing flow signature in a column of the row to locate the hashed flow signature in the flow hash table.
  • 9. The media of claim 8 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises: when the hashed flow signature matches the at least one existing flow signature in a column of the row of the flow hash table, locating the column in the flow hash table and adding a length of the packet to a byte counter in the flow hash table.
  • 10. The media of claim 8 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises: when the hashed flow signature does not match the at least one existing flow signature in the flow hash table, entering the hashed flow signature into a column in the row by:locating an empty column in the row and inserting the hashed flow in the empty column.
  • 11. The media of claim 7 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises: when the hashed flow signature does not match the at least one existing flow signature in the flow hash table, entering the hashed flow signature into a column in the row by evicting an entry when there is not an empty column in the row, and inserting the hashed flow signature in the evicted column.
  • 12. The media of claim 7, the operations further comprising tracking a bandwidth of each flow entry in the large-data flow table based on the byte count, and aging out entries from the large-data flow table.
  • 13. A system of tracking data flows, comprising: a memory;a processor, the processor being configured to perform operations comprising: computing a hashed flow signature on values extracted from a data packet received on a network device, the hashed flow signature being used to locate a position for the hashed flow signature in a flow hash table;adding a flow key of a respective entry in the flow hash table to a large-data flow table when a byte count for an entry in the flow hash table exceeds a predetermined byte count threshold, wherein the entry in the flow hash table includes the byte count for the respective flow; andreplacing the byte count in the flow hash table for the entry added to the large-data flow table with a pointer to the entry in the large-data flow table.
  • 14. The system of claim 13 the operations further comprising: reading a row in the flow hash table indexed by the hashed index value; andcomparing the hashed flow signature with each signature in the row read from the flow hash table to determine if the hashed flow signature matches at least one existing flow signature in a column of the row to locate the hashed flow signature in the flow hash table.
  • 15. The system of claim 14 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises: when the hashed flow signature matches the at least one existing flow signature in a column of the row of the flow hash table, locating the column in the flow hash table and adding a length of the packet to a byte counter in the flow hash table.
  • 16. The system of claim 14 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises: when the hashed flow signature does not match the at least one existing flow signature in the flow hash table, entering the hashed flow signature into a column in the row by:locating an empty column in the row and inserting the hashed flow in the empty column.
  • 17. The system of claim 14 wherein the comparing the hashed flow signature with each signature in the row read from the hash table further comprises: when the hashed flow signature does not match the at least one existing flow signature in the flow hash table, entering the hashed flow signature into a column in the row by evicting an entry when there is not an empty column in the row, and inserting the hashed flow signature in the evicted column.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/490,596, filed Sep. 18, 2014, which claims priority to U.S. Provisional Patent Application No. 61/900,314, filed Nov. 5, 2013, the contents of which are incorporated herein by reference in their entireties.

US Referenced Citations (333)
Number Name Date Kind
4298770 Nishihara et al. Nov 1981 A
4636919 Itakura et al. Jan 1987 A
4700016 Hitchcock et al. Oct 1987 A
5115431 Williams et al. May 1992 A
5859835 Varma et al. Jan 1999 A
5926458 Yin et al. Jul 1999 A
6252876 Brueckheimer et al. Jun 2001 B1
6389031 Chao et al. May 2002 B1
6456624 Eccles et al. Sep 2002 B1
6650640 Muller Nov 2003 B1
6677831 Cheng et al. Jan 2004 B1
6714553 Poole et al. Mar 2004 B1
6757897 Shi et al. Jun 2004 B1
6876952 Kappler et al. Apr 2005 B1
6907039 Shen Jun 2005 B2
6941649 Goergen Sep 2005 B2
6952421 Slater Oct 2005 B1
6954463 Ma et al. Oct 2005 B1
6996099 Kadambi et al. Feb 2006 B1
7068667 Foster et al. Jun 2006 B2
7152117 Stapp et al. Dec 2006 B1
7177946 Kaluve et al. Feb 2007 B1
7372857 Kappler et al. May 2008 B1
7411915 Spain et al. Aug 2008 B1
7426604 Rygh et al. Sep 2008 B1
7516211 Gourlay et al. Apr 2009 B1
7539131 Shen May 2009 B2
7580409 Swenson et al. Aug 2009 B1
7630368 Tripathi et al. Dec 2009 B2
7729296 Choudhary Jun 2010 B1
7826400 Sakauchi Nov 2010 B2
7826469 Li et al. Nov 2010 B1
7848340 Sakauchi et al. Dec 2010 B2
8233384 Osterhout et al. Jul 2012 B2
8302301 Lau Nov 2012 B2
8325459 Mutnury et al. Dec 2012 B2
8339973 Pichumani et al. Dec 2012 B1
8378223 Shiue et al. Feb 2013 B1
8442063 Zhou et al. May 2013 B1
8514712 Aswadhati Aug 2013 B1
8687629 Kompella et al. Apr 2014 B1
8854972 Li Oct 2014 B1
8868766 Theimer et al. Oct 2014 B1
8908691 Biswas et al. Dec 2014 B2
9036481 White May 2015 B1
9106508 Banavalikar et al. Aug 2015 B2
9178715 Jain et al. Nov 2015 B2
9197551 DeCusatis et al. Nov 2015 B2
9203188 Siechen et al. Dec 2015 B1
9245626 Fingerhut et al. Jan 2016 B2
9258195 Pendleton et al. Feb 2016 B1
9325524 Banavalikar et al. Apr 2016 B2
9374294 Pani Jun 2016 B1
9402470 Shen et al. Aug 2016 B2
9407501 Yadav et al. Aug 2016 B2
9426060 Dixon et al. Aug 2016 B2
9433081 Xiong et al. Aug 2016 B1
9444634 Pani Sep 2016 B2
9502111 Dharmapurikar et al. Nov 2016 B2
9509092 Shen et al. Nov 2016 B2
9544185 Yadav et al. Jan 2017 B1
9544224 Chu et al. Jan 2017 B2
9590914 Attar et al. Mar 2017 B2
9627063 Dharmapurikar et al. Apr 2017 B2
9634846 Pani Apr 2017 B2
9635937 Shen et al. May 2017 B2
9654300 Pani May 2017 B2
9654385 Chu et al. May 2017 B2
9654409 Yadav et al. May 2017 B2
9655232 Saxena et al. May 2017 B2
9667431 Pani May 2017 B2
9667551 Edsall et al. May 2017 B2
9674086 Ma et al. Jun 2017 B2
9686180 Chu et al. Jun 2017 B2
9698994 Pani Jul 2017 B2
9716665 Attar et al. Jul 2017 B2
9742673 Banerjee et al. Aug 2017 B2
9755965 Yadav et al. Sep 2017 B1
9769078 Attar et al. Sep 2017 B2
9832122 Dharmapurikar et al. Nov 2017 B2
9876715 Edsall et al. Jan 2018 B2
20020126671 Ellis et al. Sep 2002 A1
20020136268 Gan et al. Sep 2002 A1
20020146026 Unitt et al. Oct 2002 A1
20030035385 Walsh et al. Feb 2003 A1
20030058837 Denney et al. Mar 2003 A1
20030058860 Kunze et al. Mar 2003 A1
20030067912 Mead et al. Apr 2003 A1
20030067924 Choe et al. Apr 2003 A1
20030097461 Barham et al. May 2003 A1
20030115319 Dawson et al. Jun 2003 A1
20030120884 Koob et al. Jun 2003 A1
20030137940 Schwartz et al. Jul 2003 A1
20030142629 Krishnamurthi et al. Jul 2003 A1
20030174650 Shankar et al. Sep 2003 A1
20030223376 Elliott et al. Dec 2003 A1
20030231646 Chandra et al. Dec 2003 A1
20040031030 Kidder et al. Feb 2004 A1
20040062259 Jeffries et al. Apr 2004 A1
20040073715 Folkes et al. Apr 2004 A1
20040100901 Bellows May 2004 A1
20040103310 Sobel et al. May 2004 A1
20040111507 Villado et al. Jun 2004 A1
20040160956 Hardy et al. Aug 2004 A1
20040249960 Hardy et al. Dec 2004 A1
20050007961 Scott et al. Jan 2005 A1
20050010685 Ramnath et al. Jan 2005 A1
20050013280 Buddhikot et al. Jan 2005 A1
20050073958 Atlas et al. Apr 2005 A1
20050083835 Prairie et al. Apr 2005 A1
20050091239 Ward et al. Apr 2005 A1
20050117593 Shand Jun 2005 A1
20050175020 Park et al. Aug 2005 A1
20050201375 Komatsu et al. Sep 2005 A1
20050207410 Adhikari et al. Sep 2005 A1
20050213504 Enomoto et al. Sep 2005 A1
20050232227 Jorgenson et al. Oct 2005 A1
20050240745 Iyer et al. Oct 2005 A1
20060013143 Yasuie et al. Jan 2006 A1
20060028285 Jang et al. Feb 2006 A1
20060031643 Figueira Feb 2006 A1
20060039364 Wright Feb 2006 A1
20060072461 Luong et al. Apr 2006 A1
20060075093 Frattura et al. Apr 2006 A1
20060083179 Mitchell Apr 2006 A1
20060083256 Mitchell Apr 2006 A1
20060182036 Sasagawa et al. Aug 2006 A1
20060193332 Qian et al. Aug 2006 A1
20060198315 Sasagawa et al. Sep 2006 A1
20060209688 Tsuge et al. Sep 2006 A1
20060209702 Schmitt et al. Sep 2006 A1
20060215572 Padhye et al. Sep 2006 A1
20060215623 Lin et al. Sep 2006 A1
20060221835 Sweeney Oct 2006 A1
20060221950 Heer Oct 2006 A1
20060227790 Yeung et al. Oct 2006 A1
20060239204 Bordonaro et al. Oct 2006 A1
20060250982 Yuan et al. Nov 2006 A1
20060268742 Chu et al. Nov 2006 A1
20060274647 Wang et al. Dec 2006 A1
20060274657 Olgaard et al. Dec 2006 A1
20060280179 Meier Dec 2006 A1
20060285500 Booth, III et al. Dec 2006 A1
20070016590 Appleby et al. Jan 2007 A1
20070025241 Nadeau et al. Feb 2007 A1
20070047463 Jarvis et al. Mar 2007 A1
20070053303 Kryuchkov Mar 2007 A1
20070058557 Cuffaro et al. Mar 2007 A1
20070061451 Villado et al. Mar 2007 A1
20070076605 Cidon et al. Apr 2007 A1
20070091795 Bonaventure et al. Apr 2007 A1
20070097872 Chiu May 2007 A1
20070159987 Khan et al. Jul 2007 A1
20070160073 Toumura et al. Jul 2007 A1
20070165515 Vasseur Jul 2007 A1
20070171814 Florit et al. Jul 2007 A1
20070177525 Wijnands et al. Aug 2007 A1
20070183337 Cashman et al. Aug 2007 A1
20070211625 Liu et al. Sep 2007 A1
20070217415 Wijnands et al. Sep 2007 A1
20070223372 Haalen et al. Sep 2007 A1
20070233847 Aldereguia et al. Oct 2007 A1
20070258382 Foll et al. Nov 2007 A1
20070258383 Wada Nov 2007 A1
20070274229 Scholl et al. Nov 2007 A1
20070280264 Milton et al. Dec 2007 A1
20080031130 Raj et al. Feb 2008 A1
20080031146 Kwak et al. Feb 2008 A1
20080031247 Tahara et al. Feb 2008 A1
20080092213 Wei et al. Apr 2008 A1
20080123559 Haviv et al. May 2008 A1
20080147830 Ridgill et al. Jun 2008 A1
20080151863 Lawrence et al. Jun 2008 A1
20080177896 Quinn et al. Jul 2008 A1
20080212496 Zou Sep 2008 A1
20080219173 Yoshida et al. Sep 2008 A1
20080225853 Melman et al. Sep 2008 A1
20080259809 Stephan et al. Oct 2008 A1
20080259925 Droms et al. Oct 2008 A1
20080310421 Teisberg et al. Dec 2008 A1
20090052332 Fukuyama et al. Feb 2009 A1
20090067322 Shand et al. Mar 2009 A1
20090094357 Keohane et al. Apr 2009 A1
20090103566 Kloth et al. Apr 2009 A1
20090116402 Yamasaki May 2009 A1
20090122805 Epps et al. May 2009 A1
20090161567 Jayawardena et al. Jun 2009 A1
20090188711 Ahmad Jul 2009 A1
20090193103 Small et al. Jul 2009 A1
20090225671 Arbel et al. Sep 2009 A1
20090232011 Li et al. Sep 2009 A1
20090238196 Ukita et al. Sep 2009 A1
20090268614 Tay et al. Oct 2009 A1
20090271508 Sommers et al. Oct 2009 A1
20100020719 Chu et al. Jan 2010 A1
20100020726 Chu et al. Jan 2010 A1
20100128619 Shigei May 2010 A1
20100150155 Napierala Jun 2010 A1
20100161787 Jones Jun 2010 A1
20100189080 Hu et al. Jul 2010 A1
20100191813 Gandhewar et al. Jul 2010 A1
20100191839 Gandhewar et al. Jul 2010 A1
20100223655 Zheng Sep 2010 A1
20100260197 Martin et al. Oct 2010 A1
20100287227 Goel et al. Nov 2010 A1
20100299553 Cen Nov 2010 A1
20100312875 Wilerson et al. Dec 2010 A1
20110022725 Farkas Jan 2011 A1
20110110241 Atkinson et al. May 2011 A1
20110110587 Banner May 2011 A1
20110138310 Gomez et al. Jun 2011 A1
20110158248 Vorunganti et al. Jun 2011 A1
20110170426 Kompella et al. Jul 2011 A1
20110199891 Chen Aug 2011 A1
20110199941 Ouellette et al. Aug 2011 A1
20110203834 Yoneya et al. Aug 2011 A1
20110228795 Agrawal et al. Sep 2011 A1
20110239189 Attalla Sep 2011 A1
20110243136 Raman et al. Oct 2011 A1
20110249682 Kean et al. Oct 2011 A1
20110268118 Schlansker et al. Nov 2011 A1
20110273987 Schlansker et al. Nov 2011 A1
20110280572 Vobbilisetty et al. Nov 2011 A1
20110286447 Liu Nov 2011 A1
20110299406 Vobbilisetty et al. Dec 2011 A1
20110310738 Lee et al. Dec 2011 A1
20110321031 Dournov et al. Dec 2011 A1
20120007688 Zhou et al. Jan 2012 A1
20120030150 McAuley et al. Feb 2012 A1
20120030666 Laicher et al. Feb 2012 A1
20120057505 Xue Mar 2012 A1
20120063318 Boddu et al. Mar 2012 A1
20120102114 Dunn et al. Apr 2012 A1
20120147752 Ashwood-Smith et al. Jun 2012 A1
20120163396 Cheng et al. Jun 2012 A1
20120167013 Kaiser et al. Jun 2012 A1
20120195233 Wang et al. Aug 2012 A1
20120275304 Patel et al. Nov 2012 A1
20120281697 Huang Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120300787 Korger Nov 2012 A1
20120314581 Rajamanickam et al. Dec 2012 A1
20130055155 Wong et al. Feb 2013 A1
20130064246 Dharmapurikar et al. Mar 2013 A1
20130090014 Champion Apr 2013 A1
20130097335 Jiang et al. Apr 2013 A1
20130124708 Lee et al. May 2013 A1
20130151681 Dournov et al. Jun 2013 A1
20130182712 Aguayo et al. Jul 2013 A1
20130208624 Ashwood-Smith Aug 2013 A1
20130223276 Padgett Aug 2013 A1
20130227108 Dunbar et al. Aug 2013 A1
20130227689 Pietrowicz et al. Aug 2013 A1
20130250779 Meloche et al. Sep 2013 A1
20130250951 Koganti Sep 2013 A1
20130276129 Nelson et al. Oct 2013 A1
20130311663 Kamath et al. Nov 2013 A1
20130311991 Li et al. Nov 2013 A1
20130322258 Nedeltchev et al. Dec 2013 A1
20130322446 Biswas et al. Dec 2013 A1
20130322453 Allan Dec 2013 A1
20130329605 Nakil et al. Dec 2013 A1
20130332399 Reddy et al. Dec 2013 A1
20130332577 Nakil et al. Dec 2013 A1
20130332602 Nakil et al. Dec 2013 A1
20140006549 Narayanaswamy et al. Jan 2014 A1
20140016501 Kamath et al. Jan 2014 A1
20140043535 Motoyama et al. Feb 2014 A1
20140043972 Li et al. Feb 2014 A1
20140047264 Wang et al. Feb 2014 A1
20140050223 Foo et al. Feb 2014 A1
20140056298 Vobbilisetty et al. Feb 2014 A1
20140064281 Basso et al. Mar 2014 A1
20140068750 Tjahjono et al. Mar 2014 A1
20140086097 Qu et al. Mar 2014 A1
20140086253 Yong et al. Mar 2014 A1
20140105039 Mcdysan Apr 2014 A1
20140105062 Mcdysan et al. Apr 2014 A1
20140105216 Mcdysan Apr 2014 A1
20140108489 Glines et al. Apr 2014 A1
20140122791 Fingerhut et al. May 2014 A1
20140146817 Zhang May 2014 A1
20140146824 Angst et al. May 2014 A1
20140149819 Lu et al. May 2014 A1
20140185348 Vattikonda et al. Jul 2014 A1
20140185349 Terzioglu et al. Jul 2014 A1
20140201375 Beereddy et al. Jul 2014 A1
20140219275 Allan et al. Aug 2014 A1
20140241353 Zhang et al. Aug 2014 A1
20140244779 Roitshtein et al. Aug 2014 A1
20140269705 DeCusatis et al. Sep 2014 A1
20140269712 Kidambi Sep 2014 A1
20140307744 Dunbar et al. Oct 2014 A1
20140321277 Lynn, Jr. et al. Oct 2014 A1
20140328206 Chan et al. Nov 2014 A1
20140334295 Guichard et al. Nov 2014 A1
20140341029 Allan et al. Nov 2014 A1
20140372582 Ghanwani et al. Dec 2014 A1
20150009992 Zhang Jan 2015 A1
20150010001 Duda et al. Jan 2015 A1
20150016277 Smith et al. Jan 2015 A1
20150052298 Brand et al. Feb 2015 A1
20150092551 Moisand et al. Apr 2015 A1
20150092593 Kompella Apr 2015 A1
20150113143 Stuart et al. Apr 2015 A1
20150124629 Pani May 2015 A1
20150124631 Edsall et al. May 2015 A1
20150124633 Banerjee et al. May 2015 A1
20150124640 Chu et al. May 2015 A1
20150124644 Pani May 2015 A1
20150124652 Dharmapurikar et al. May 2015 A1
20150124806 Banerjee et al. May 2015 A1
20150124817 Merchant et al. May 2015 A1
20150124821 Chu et al. May 2015 A1
20150124823 Pani et al. May 2015 A1
20150124824 Edsall et al. May 2015 A1
20150124833 Ma et al. May 2015 A1
20150127797 Attar et al. May 2015 A1
20150127900 Dharmapurikar et al. May 2015 A1
20150188771 Allan et al. Jul 2015 A1
20150236900 Chung Aug 2015 A1
20150378712 Cameron et al. Dec 2015 A1
20150378969 Powell et al. Dec 2015 A1
20160036697 DeCusatis et al. Feb 2016 A1
20160119204 Murasato et al. Apr 2016 A1
20160315811 Yadav et al. Oct 2016 A1
20170085469 Chu et al. Mar 2017 A1
20170207961 Saxena et al. Jul 2017 A1
20170214619 Chu et al. Jul 2017 A1
20170237651 Pani Aug 2017 A1
20170237678 Ma et al. Aug 2017 A1
20170250912 Chu et al. Aug 2017 A1
20170346748 Attar et al. Nov 2017 A1
Foreign Referenced Citations (2)
Number Date Country
WO 03067799 Aug 2003 WO
WO 2014071996 May 2014 WO
Non-Patent Literature Citations (14)
Entry
Aslam, Faisal, et al., “NPP: A Facility Based Computation Framework for Restoration Routing Using Aggregate Link Usage Information,” Proceedings of QoS-IP: quality of service in multiservice IP network, Feb. 2005, pp. 150-163.
Chandy, K. Mani, et al., “Distribution Snapshots: Determining Global States of Distributed Systems,” ACM Transaction on Computer Systems, Feb. 1985, vol. 3, No. 1, pp. 63-75.
Khasnabish, Bhumip, et al., “Mobility and Interconnection of Virtual Machines and Virtual Network Elements; draft-khasnabish-vmmi-problems-03.txt,” Network Working Group, Dec. 30, 2012, pp. 1-29.
Kodialam, Murali, et. al, “Dynamic Routing of Locally Restorable Bandwidth Guaranteed Tunnels using Aggregated Link Usage Information,” Proceedings of IEEE INFOCOM, 2001, vol. 1, pp. 376-385.
Li, Li, et. al, “Routing Bandwidth Guaranteed Paths with Local Restoration in Label Switched Networks,” IEEE Journal on Selected Areas in Communications, Feb. 7, 2005, vol. 23, No. 2, pp. 1-11.
Mahalingam, M., et al. “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks,” VXLAN, Internet Engineering Task Force, Internet Draft, located at https://tools.ietf._org/html/draft-mahalingam-dutt-dcops-vxlan-06, Oct. 2013, pp. 1-24.
Moncaster, T., et al., “The Need for Congestion Exposure in the Internet”, Oct. 26, 2009, Internet-Draft, pp. 1-22.
Narten, T., et al., “Problem Statement: Overlays for Network Virtualization,” draft-ietf-nvo3-overlay-problem-statement-04, Internet Engineering Task Force, Jul. 31, 2013, pp. 1-24.
Pan, P., et. al, “Fast Reroute Extensions to RSVP-TE for LSP Tunnels,” RFC-4090. May 2005, pp. 1-38.
Raza, Saqib, et al., “Online Routing of Bandwidth Guaranteed Paths with Local Restoration using Optimized Aggregate Usage Information,” IEEE-ICC '05 Communications, May 2005, vol. 1, 8 pages.
Sinha, Shan, et al., “Harnessing TCP's Burstiness with Flowlet Switching,” Nov. 2004, 6 pages.
Zhang et al., “Optimizing Network Performance using Weighted Multipath Routing,” Aug. 27, 2012, 7 pages.
Author Unknown, “Subset—Wikipedia, the free encyclopedia,” Dec. 25, 2014, pp. 1-3.
Whitaker et al., “Forwarding Without Loops in Icarus,” IEEE OPENARCH 2002, pp. 63-75.
Related Publications (1)
Number Date Country
20180048571 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
61900314 Nov 2013 US
Continuations (1)
Number Date Country
Parent 14490596 Sep 2014 US
Child 15792587 US