This invention relates generally to a system and method of promoting tissue growth, and more specifically, a method for detecting and correcting fluid leaks at a drape positioned at a tissue site being treated by a reduced pressure delivery system.
Tissue growth and wound healing of patients has been shown to be accelerated through the use of applying reduced pressure to a tissue site. Reduced pressure delivery systems operate to form such a reduced pressure at a tissue site of a patient. This form of wound healing can be readily integrated into a clinician's wound healing procedures. Reduced pressure tissue therapy optimizes patient care and decreases costs associated with treatment of patients having traumatic and chronic wounds. Reduced pressure therapy can be administered in hospitals, community settings, such as assisted living complexes and convalescences homes, or homes of patients.
Reduced pressure delivery to a wound or tissue site promotes wound healing and/or tissue growth, in part, by removing infectious materials and other fluids from the wound or tissue site. Reduced pressure treatment further promotes tissue growth by imposing forces on the tissue, thereby causing micro-deformation of the tissue, which is believed to contribute to the development of granulation tissue at the tissue site. The forces imposed on the tissue site by the delivery of reduced pressure further encourages improved blood flow at the tissue site, which further assists in the growth of new tissue.
Reduced pressure delivery systems generally use a vacuum pump to apply a reduced pressure via a reduced pressure conduit to a tissue site. A manifold is often used at the tissue site to help evenly distribute the reduced pressure. A drape is typically used to cover the manifold and form a seal with surrounding tissue of the tissue site to which the reduced pressure is being applied. So that the reduced pressure remains constant and accurate, thereby providing optimum tissue growth and/or therapy, the drape is to be interfaced and maintained with the surrounding tissue of the tissue site to prevent fluid leaks, such as air leaks. In the event that a fluid leak results during installation of the drape or during treatment, clinicians often find it difficult to isolate the precise location of the fluid leak. If the fluid leak is not corrected, then the performance of the reduced pressure delivery system is reduced and full treatment potential is not realized.
To overcome the problem of locating fluid leaks at an interface between a drape and tissue of a patient, the principles of the present invention provide for detecting location of and correcting fluid leaks at the drape of reduced pressure delivery systems. By being able to locate fluid leaks at the drape and tissue interface, optimum therapeutic results may be produced.
One embodiment of a system for performing tissue therapy may include a processing unit. The system may include a reduced pressure source, a conduit fluidly connected between said reduced pressure source and a tissue site of a patient, where the conduit may be configured to apply a reduced pressure produced by the reduced pressure source to the tissue site. A drape may be configured for positioning over the tissue site to maintain the reduced pressure at the tissue site. A fluid sensor may be in fluid communication with the conduit and electrical communication with the processing unit. The fluid sensor may be configured to sense a fluid parameter within the conduit, and to generate a fluid sensor signal in response to sensing the fluid parameter. The fluid sensor may alter the fluid sensor signal in response to sensing that the fluid parameter within the conduit changes. An electronic display may be in communication with the processing unit. The processing unit may be configured to enter a fluid leak location mode that causes a graphical user interface that provides for fluid leak location functionality to be displayed on the electronic display. In one embodiment, the fluid leak location mode may be automatically entered in response to the fluid sensor signal crossing a threshold value. Additionally, an alarm signal may be generated in response to determining that the fluid sensor signal crosses the threshold value.
One embodiment of a method for performing tissue therapy may include applying a reduced pressure to a tissue site, sensing a fluid parameter being applied to the tissue site, generating a fluid sensor signal in response to sensing the fluid parameter, and altering the fluid sensor signal in response to sensing that the fluid parameter changes. A fluid leak location mode may be entered. In response to the fluid leak location mode being entered, a graphical user interface that provides for fluid leak location functionality may be displayed. In one embodiment, the fluid leak location mode may be automatically entered in response to the sensor signal crossing a threshold value. Additionally, an alarm signal may be generated in response to determining that the fluid sensor signal crosses the threshold value.
A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:
With regard to
As used herein, the term “flexible” refers to an object or material that is able to be bent or flexed. Elastomer materials are typically flexible, but reference to flexible materials herein does not necessarily limit material selection to only elastomers. The use of the term “flexible” in connection with a material or reduced pressure delivery apparatus in accordance with the principles of the present invention generally refers to the material's ability to conform to or closely match the shape of a tissue site. For example, the flexible nature of a reduced pressure delivery apparatus used to treat a bone defect may allow the apparatus to be wrapped or folded around the portion of the bone having the defect.
The term “fluid” as used herein generally refers to a gas or liquid, but may also include any other flowable material, including but not limited to gels, colloids, and foams. One example of a gas is air.
The term “impermeable” as used herein generally refers to the ability of a membrane, cover, sheet, or other substance to block or slow the transmission of either liquids or gas. Impermeable may be used to refer to covers, sheets, or other membranes that are resistant to the transmission of liquids, while allowing gases to transmit through the membrane. While an impermeable membrane may be liquid type, the membrane may simply reduce the transmission rate of all or only certain liquids. The use of the term “impermeable” is not meant to imply that an impermeable membrane is above or below any particular industry standard measurement for impermeability, such as a particular value of water vapor transfer rate (WVTR).
The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site. A manifold typically includes a plurality of flow channels or pathways that interconnect to improve distribution of fluids provided to and removed from the area of tissue around the manifold. Examples of manifolds may include, without limitation, devices that have structural elements arranged to form slow channels, cellular foams, such as open-desk cell foam, porous tissue collections, and liquids, gels and foams that include or cure to include flow channels.
The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmosphere pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure of tissue at the tissue site. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be significantly less than the pressure normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the tube or conduit in the area of the tissue site. As the hydrostatic pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressures stated herein are gage pressures.
The term “scaffold” as used herein refers to a substance or structure used to enhance or promote the growth of cells and/or the formation of tissue. A scaffold is typically a three dimensional porous structure that provides a template for cell growth. The scaffold may be infused with, coated with, or comprised of cells, growth factors, or other nutrients to promote cell growth. A scaffold may be used as a manifold in accordance with the embodiments described herein to administer reduced pressure tissue treatment to a tissue site.
The term “tissue site” as used herein refers to a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, neuro tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. The term “tissue site” may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue. For example, reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.
The term “clinician” is used herein as meaning any medical professional, user, family member of a patient, or patient who interacts or interfaces with a reduced pressure delivery system.
With regard to
In establishing a dressing, which may include the distribution manifold and drape 208, at the tissue site 200, a clinician may apply the dressing and apply a force to the drape 208 during operation of the reduced pressure delivery system. By applying a force along outer edges of the drape 208, the clinician may create or otherwise alter a seal at an intersection 212 of the drape 208 and tissue 214 surrounding the tissue site 200. In the event that the seal is not completely formed or a fluid leak develops at the drape 208, the clinician may press his or her finger 216 along the outer edges 212 of the drape 208 to improve or re-establish the seal. Because locating a fluid leak at the drape 208 is often difficult in practice, the principles of the present invention provide a system and method for determining location of the fluid leak, as further described herein with respect to
With regard to
The drape 208 that extends over the healthy tissue 302 forms a seal at an intersection 318 where the healthy tissue 302 and drape 208 contact one another. If a fluid leak develops at the intersection 318 (i.e., at the tissue site 200), then a fluid leak sensor (not shown) may generate and communicate a fluid leak signal. The fluid leak signal may be indicative of a fluid parameter indicative of or responsive to the fluid leak crossing a predetermined threshold level. A processing unit (not shown) may respond by generating a fluid leak alarm in an audible and/or visual manner. For example, a buzzer, bell, recorded message, or other audible sound may be generated to alert a clinician that a fluid leak has occurred at the drape 208. To locate the fluid leak at the drape 208, a fluid leak location mode may be automatically or manually entered at the reduced pressure delivery system 308. The fluid leak location mode may be used to enable the clinician to apply a force, such as pressing a finger along the drape 208, such as pressing at the intersection 318. As the clinician applies the force, in response to the clinician applying a force to the location of the fluid leak, the reduced pressure delivery system 308 may generate an audible sound that changes. The audible sound may be decreased in pitch or volume, for example, to enable the clinician to identify a location at the drape 208 at which a fluid leak exists.
With regard to
The reduced pressure delivery system 402 may further include a pump 410, such as a vacuum pump, that may be driven by a motor 412. The motor 412 may be in electrical communication with the PCB 406 and respond to control signals 414 generated by the PCB 406. The pump 410 may be fluidly connected to a reduced pressure conduit 416. The reduced pressure conduit 416 may include an orifice 418 that operates as a relief valve. In parallel with the orifice is a flow transducer 420 that may be configured to determine flow rate of fluid passing through the reduced pressure conduit 416. The flow transducer 420 is fluidly connected to the reduced pressure conduit 416 and configured to generate a flow rate signal 422 including information indicative of flow rate of a fluid within the reduced pressure conduit 416. The flow rate signal 422 may be digital or analog.
A pump pressure transducer 424 may be connected to reduced pressure conduit 416 to convert pressure in the reduced pressure conduit 416 and communicate a pump pressure signal 426 including information indicative of fluid pressure in the reduced pressure conduit 416 to the PCB 406. The pump pressure signal 426 may be digital or analog. A pump release valve 428 may also be connected to the reduced pressure conduit 416 and be configured to release pressure from the reduced pressure conduit 416 in case of an emergency situation or otherwise.
The reduced pressure delivery system 402 may further include one or more filters 430a-430n (collectively 430) that are in fluid communication with the reduced pressure conduit 416. The filters 430 may be in fluid communication with container 432, which is used to collect fluids from tissue site 404. The filters 430 may be configured to prevent fluids collected in the container 432 from entering the reduced pressure conduit 416. The container 432 may further be in fluid communication with reduced pressure conduit 434. Although shown as separate conduits, the reduced pressure conduits 416 and 434 may be the same or different material and have the same or different dimensions. The reduced pressure conduit 434 may connect to or be in fluid communication with an adapter 436, which may be connected to a distribution manifold 438 to evenly distribute reduced pressure across the tissue site 404. Drape 440, which extends over the tissue site and onto tissue 442 surrounding the tissue site 404 being treated by the reduced pressure is used to form a seal to form and maintain reduced pressure at the tissue site 404.
A feedback reduced pressure conduit 444 may pass through container 432. A tissue release valve 446 may be connected to the feedback reduced pressure conduit 444 to enable pressure to be released at the tissue site 404 in response to a command signal 448 generated by the processing unit 408. The command signal 448 may be generated by the processing unit 408 in response to the processing unit 408 receiving a sensor signal, such as flow rate signal 422, crossing a threshold level. Alternatively, the command signal 448 may be generated in response to a clinician selectively stopping the reduced pressure delivery system 402 via a user interface (not shown). Other events, such as a treatment cycle completing, may cause the processing unit to generate the command signal 448 to activate the tissue release valve 446. In another example, a tissue pressure transducer 450 may be used to convert pressure sensed at the tissue site 404 and provide a feedback signal 452 to the processing unit 408 on the PCB 406. In response to the processing unit 408 determining that pressure at the tissue site 404 sensed by the tissue pressure transducer 450 is above a threshold value, the processing unit 408 may communicate command signal 448 to the tissue release valve 446 for release of tissue pressure.
An electronic speaker 454 may be in electrical communication with the PCB 406 to generate an audible sound. In the event that the processing unit 408 determines that a fluid parameter, such as pressure at the tissue site 404 or flow rate of fluid through the reduced pressure conduit 416, crosses a threshold value, a signal 456 may be generated by the PCB 406 and communicated to the electronic speaker 454 to create an audible sound. For example, the processing unit 408 may determine that a fluid leak exists at the tissue site 404 by a fluid rate increasing above a flow rate threshold level. In response to determining that the flow rate level sensed by a flow transducer, such as flow transducer 420, the processing unit 408 may generate the signal 456, such as an alert signal, and communicate the alert signal to the electronic speaker 454 to notify a clinician that a problem exists. In another example, a sensor, such as tissue pressure transducer 450, may sense a fluid parameter at the tissue site 404 and the processing unit 408 may determine that the pressure at the tissue site 404 decreases. Still yet, rather than directly sensing a fluid parameter, an indirect measurement may be performed by measuring duty cycle or power of the pump 410 to determine approximate fluid flow. The processing unit 408 may be selectively programmed or commanded into a fluid leak location mode to enable the clinician to locate the fluid leak at the drape 440 by applying a force on the edges of the drape 440. The processing unit 408 may generate a continuous or discontinuous fluid leak location signal and drive the electronic speaker 454 to enable the clinician to determine a location of the fluid leak at the drape 440.
Although the fluid leak location mode is helpful for locating a fluid leak at the drape, it should be understood that the fluid leak location mode may enable the clinician or technician to locate a fluid leak at the reduced pressure delivery system. For example, should a leak occur at a conduit connection or at a seal, the fluid leak location may help in locating such a fluid leak. In one embodiment, an adapter (not shown) may be provided to cause reduced pressure conduits to simulate operation with a complete drape seal to enable locating a fluid leak at or within the reduced pressure delivery system.
With respect to
An information region 516 on the GUI 504 may include selectable graphical elements and display other information in which the user may be interested. For example, a “help” soft-button 518 may be displayed to enable the user to receive help about the reduced pressure delivery system 500 or particular functions currently being displayed on the GUI 504. An “on-off” soft-button 520 may enable a user to selectively turn the reduced pressure delivery system 500 on and off, and information 522 may notify the user of current status of the reduced therapy delivery system 500. For example, the status information 522 may indicate that the reduced therapy delivery system 500 is (i) operating in a continuous therapy mode, (ii) is on, and (iii) is operating to provide a reduced pressure of 200 mmHg. A “lock” soft-button 524 may enable the user to lock the GUI 504 to prevent an inadvertent contact with the GUI 504 to cause the reduced therapy delivery system 500 to respond.
With regard to
So that the clinician may more easily locate the fluid leak at the drape, the reduced pressure delivery system 500 may generate an audible sound indicative of a level of a fluid parameter sensed by a sensor of the reduced pressure delivery system 500. The clinician may select a “seal audio” soft-button 608 to toggle or mute and unmute an audible fluid leak location sound off and on (i.e., mute and unmute). The audible fluid leak location sound may be altered in response to the fluid parameter being sensed changing. For example, if pressure at the tissue site increases in response to the clinician pressing on the drape, the audible fluid leak location sound may be altered to indicate to the clinician that the fluid leak is being or has been sealed and, therefore, located. The audible fluid leak location sound may change in frequency, volume, or pitch. Alternatively, a “Geiger counter” sound may be produced during the seal check, where a tone speed increases or decreases depending upon the change of fluid parameter. For example, if the clinician is “cold” with respect to the location of the fluid leak, the Geiger counter sound may beep slowly. When the clinician presses at or near the fluid leak of the drape, then the Geiger counter sound may increase as the pressure at the tissue site as the fluid leak is sealed until a continuous tone occur when the drape is completely sealed and a maximum pressure or pressure above a seal pressure threshold level is achieved. In another embodiment, the audible fluid leak location sound may be a recorded message, such as “cold,” “warmer,” and “hot.” In another example, a “water dripping” sound may be generated to represent that a fluid leak (e.g., air leak) exists. It should be understood that nearly any sound may be utilized to indicate to the clinician that a fluid leak exists or is being sealed to help the clinician locate the fluid leak. Because a human ear is more sensitive than human eyes, the use of an audible sound to indicate status of a fluid parameter may enable the clinician to more easily determine location of the fluid leak at the drape than a graphical indicator. As understood in the art, gas (e.g., air) is primarily the fluid that is leaked at the drape.
With regard to
With regard to
With regard to
With regard to
With regard to
At step 706, an audible fluid leak location sound may be generated in response to sensing the fluid parameter. The audible fluid leak location sound may be one of a variety of different sounds. Continuous tones with varying frequency, pitch or volume, for example, may be utilized. Alternatively, discrete tones with varying length or frequency may be utilized. Still yet, recorded messages, sounds, or otherwise may be utilized. It should be understood that any sound or combination of sounds may be utilized as an audible fluid leak location sound. At step 708, the audible fluid leak location sound may be altered in response to sensing fluid parameter changes. The altered audible fluid leak location sound may be altered in frequency, pitch, volume, or otherwise. By altering the audible fluid leak location sound, the clinician attempting to locate a fluid leak at the drape may more easily determine the location of the fluid leak, thereby enabling the fluid leak to be sealed.
With regard to
Regarding
At step 910, the clinician may select a fluid leak located tool or function of the tissue treatment system. An audible and visual representation of leak magnitude may be activated at step 912 to show a fluid leak level, or indication thereof from flow rate or pressure being sensed in the tissue treatment system. At step 914, the clinician may use his or her hands or fingers to cover possible fluid leak locations at a drape covering a tissue site. During this time, a time-out determination may be performed at step 916. If the system is not timed-out, then the process repeats step 914. Alternatively, if the system is determined to time-out, then the process continues at step 918, where reduced pressure therapy is interrupted. The process continues at step 920 after step 914 where the fluid leak is at least partially occluded or otherwise stopped. In response to the fluid leak being partially occluded, the audible and visual representation of the fluid leak is altered to indicate the decreased fluid leak at step 922. At step 924, the fluid leak is fixed by the clinician as he or she has been able to locate the fluid leak at the drape. At step 926, in response to the fluid leak being fixed, the audible and visual representation is altered to indicate fluid leakage dropping below a threshold level. At step 928, the reduced pressure therapy is continued.
The previous description is of preferred embodiments for implementing the invention, and the scope of the invention should not necessarily be limited by this description. The scope of the present invention is instead defined by the following claims.
This Application is a continuation of U.S. patent application Ser. No. 15/275,008, entitled “SYSTEM AND METHOD FOR LOCATING FLUID LEAKS AT A DRAPE OF A REDUCED PRESSURE DELIVERY SYSTEM,” filed Sep. 23, 2016; which is a continuation of U.S. patent application Ser. No. 13/948,757, entitled “SYSTEM AND METHOD FOR LOCATING FLUID LEAKS AT A DRAPE OF A REDUCED PRESSURE DELIVERY SYSTEM,” filed Jul. 23, 2013, now U.S. Pat. No. 9,474,679; which is a continuation of U.S. patent application Ser. No. 13/274,951, entitled “SYSTEM AND METHOD FOR LOCATING FLUID LEAKS AT A DRAPE OF A REDUCED PRESSURE DELIVERY SYSTEM,” filed Oct. 17, 2011, now U.S. Pat. No. 8,500,718; which is a divisional of U.S. patent application Ser. No. 11/901,657, entitled “SYSTEM AND METHOD FOR LOCATING FLUID LEAKS AT A DRAPE OF A REDUCED PRESSURE DELIVERY SYSTEM,” filed on Sep. 18, 2007, now U.S. Pat. No. 8,061,360, which claims priority to Provisional Patent Application Ser. No. 60/845,993, entitled “REDUCED PRESSURE DELIVERY SYSTEM FOR ADMINISTERING A REDUCED PRESSURE TISSUE TREATMENT TO A TISSUE SITE,” filed Sep. 19, 2006; all of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
1885926 | Lewis | Nov 1932 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2696113 | Prescott | Dec 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3012772 | Gunzner | Dec 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
3902495 | Weiss et al. | Sep 1975 | A |
4018908 | Gross | Apr 1977 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4338945 | Kosugi et al. | Jul 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4509959 | McCombs | Apr 1985 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4547092 | Vetter et al. | Oct 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4553431 | Nicolai | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4569674 | Phillips et al. | Feb 1986 | A |
4583546 | Garde | Apr 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4608857 | Mertens et al. | Sep 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4651743 | Stoller | Mar 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4673272 | Suzuki et al. | Jun 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4785659 | Rose et al. | Nov 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4835522 | Andrejasich | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5073172 | Fell | Dec 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5108213 | Shields | Apr 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5195995 | Walker | Mar 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5310524 | Campbell et al. | May 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5343878 | Scarberry et al. | Sep 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5407310 | Kassouni | Apr 1995 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5658322 | Fleming | Aug 1997 | A |
5690815 | Krasnoff et al. | Nov 1997 | A |
5718562 | Lawless et al. | Feb 1998 | A |
5749842 | Cheong et al. | May 1998 | A |
5752688 | Campbell et al. | May 1998 | A |
5852675 | Matsuo et al. | Dec 1998 | A |
5862803 | Besson et al. | Jan 1999 | A |
5911687 | Sato et al. | Jun 1999 | A |
5986163 | Augustine | Nov 1999 | A |
6032678 | Rottem | Mar 2000 | A |
6036296 | Axtell et al. | Mar 2000 | A |
6047259 | Campbell et al. | Apr 2000 | A |
6057689 | Saadat | May 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6091981 | Cundari et al. | Jul 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6142982 | Hunt et al. | Nov 2000 | A |
6208749 | Gutkowicz-Krusin et al. | Mar 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6292866 | Zaiki et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6378826 | Knaub et al. | Apr 2002 | B1 |
6447537 | Hartman | Sep 2002 | B1 |
6453247 | Hunaidi | Sep 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6471197 | Denk et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6529006 | Hayes | Mar 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6568282 | Ganzi | May 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6663586 | Verkaart et al. | Dec 2003 | B2 |
6733537 | Fields et al. | May 2004 | B1 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6915950 | Legerstee | Jul 2005 | B1 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7100244 | Qin et al. | Sep 2006 | B2 |
7198046 | Argenta et al. | Apr 2007 | B1 |
7770855 | Locke et al. | Aug 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7857271 | Lees | Dec 2010 | B2 |
7876546 | Locke et al. | Jan 2011 | B2 |
8000777 | Jaeb et al. | Aug 2011 | B2 |
8057449 | Sanders et al. | Nov 2011 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8216198 | Heagle et al. | Jul 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8366690 | Locke et al. | Feb 2013 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8500718 | Locke et al. | Aug 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8551060 | Schuessler et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8679081 | Heagle et al. | Mar 2014 | B2 |
8690845 | Long et al. | Apr 2014 | B2 |
8696662 | Eder et al. | Apr 2014 | B2 |
8786999 | Locke et al. | Jul 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9019681 | Locke et al. | Apr 2015 | B2 |
9198801 | Weston | Dec 2015 | B2 |
9211365 | Weston | Dec 2015 | B2 |
9289542 | Blott et al. | Mar 2016 | B2 |
9320673 | Locke et al. | Apr 2016 | B2 |
20020019751 | Rothschild et al. | Feb 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020095198 | Whitebook et al. | Jul 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020198503 | Risk et al. | Dec 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030022645 | Runzo | Jan 2003 | A1 |
20030085908 | Luby | May 2003 | A1 |
20030088371 | Parker | May 2003 | A1 |
20030182806 | Luebke et al. | Oct 2003 | A1 |
20030226943 | Laisement et al. | Dec 2003 | A1 |
20040008523 | Butler | Jan 2004 | A1 |
20040070535 | Olsson et al. | Apr 2004 | A1 |
20040073151 | Weston | Apr 2004 | A1 |
20040078236 | Stoodley et al. | Apr 2004 | A1 |
20040122705 | Sabol et al. | Jun 2004 | A1 |
20040138632 | Bemis et al. | Jul 2004 | A1 |
20040143677 | Novak | Jul 2004 | A1 |
20040154379 | Enquist | Aug 2004 | A1 |
20040231414 | Delnevo | Nov 2004 | A1 |
20050051168 | DeVries et al. | Mar 2005 | A1 |
20050090787 | Risk et al. | Apr 2005 | A1 |
20050102009 | Costantino | May 2005 | A1 |
20050115314 | Meagher | Jun 2005 | A1 |
20050120792 | Merrild | Jun 2005 | A1 |
20050126265 | Herzog | Jun 2005 | A1 |
20050148913 | Weston | Jul 2005 | A1 |
20050203469 | Bobroff et al. | Sep 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20060027979 | Yang et al. | Feb 2006 | A1 |
20060072804 | Watson et al. | Apr 2006 | A1 |
20060074722 | Chu | Apr 2006 | A1 |
20060131350 | Schechter et al. | Jun 2006 | A1 |
20060189887 | Hassler et al. | Aug 2006 | A1 |
20060195625 | Hesse | Aug 2006 | A1 |
20060252991 | Kubach | Nov 2006 | A1 |
20070000310 | Yamartino et al. | Jan 2007 | A1 |
20070032763 | Vogel | Feb 2007 | A1 |
20070053554 | Fayad et al. | Mar 2007 | A1 |
20070125170 | Tenney | Jun 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20080008370 | Chio | Jan 2008 | A1 |
20080260218 | Smith et al. | Oct 2008 | A1 |
20080275409 | Kane et al. | Nov 2008 | A1 |
20080276692 | Wetzig | Nov 2008 | A1 |
20080281281 | Meyer et al. | Nov 2008 | A1 |
20090120165 | Lang et al. | May 2009 | A1 |
20140163491 | Schuessler et al. | Jun 2014 | A1 |
20150080788 | Blott et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
29920378 | Mar 2000 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0224367 | Jun 1987 | EP |
0358302 | Mar 1990 | EP |
0836831 | Apr 1998 | EP |
1018967 | Jul 2000 | EP |
1591713 | Nov 2005 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
2356148 | May 2001 | GB |
4129536 | Aug 2008 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
94020041 | Sep 1994 | WO |
9421312 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
97047235 | Dec 1997 | WO |
1998025122 | Jun 1998 | WO |
9913793 | Mar 1999 | WO |
9949775 | Oct 1999 | WO |
2000021586 | Apr 2000 | WO |
02080764 | Oct 2002 | WO |
2005060466 | Jul 2005 | WO |
2005061025 | Jul 2005 | WO |
2006052745 | May 2006 | WO |
Entry |
---|
Extended European Search Report for corresponding Application No. EP17159742.0, dated Aug. 1, 2017. |
Indian First Examination Report corresponding to Application No. 2076/CHENP/2009, dated Jul. 14, 2017. |
Extended European Search Report corresponding to Application No. 17157187.0 dated Jul. 21, 2017. |
European Examination Report for corresponding Application No. 078385614, dated May 25, 2016. |
Indian Exam Report for corresponding application 2074CHENP2009, dated Sep. 25, 2017. |
Extended European Search Report for corresponding Application No. 171794498, dated Nov. 8, 2017. |
Indian Hearing Notice for corresponding Application No. 2076/CHENP/2009, dated Jul. 30, 2018. |
Brazilian Technical Opinion for corresponding Application No. PI0714993-0, mailed Jun. 14, 2018. |
Extended European Search Report for corresponding EP07838545.7, dated Aug. 2, 2013. |
Brazilian Preliminary Examination Report for corresponding Application No. PI0714531-4, dated Feb. 26, 2019. |
Brazilian Preliminary Examination Report for Corresponding Application No. PI 0715020-2, dated Jun. 30, 2020. |
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Bjöm et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. Z̆ivadinovi?, V. ?uki?, Z̆. Maksimovi?, ?. Radak, and P. Pes̆ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96,167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
Number | Date | Country | |
---|---|---|---|
20190151516 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
60845993 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11901657 | Sep 2007 | US |
Child | 13274951 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15275008 | Sep 2016 | US |
Child | 16257999 | US | |
Parent | 13948757 | Jul 2013 | US |
Child | 15275008 | US | |
Parent | 13274951 | Oct 2011 | US |
Child | 13948757 | US |