System and method for management of an automatic OLAP report broadcast system

Information

  • Patent Grant
  • 8321411
  • Patent Number
    8,321,411
  • Date Filed
    Monday, February 11, 2008
    16 years ago
  • Date Issued
    Tuesday, November 27, 2012
    11 years ago
Abstract
A system, method and processor medium that manages automatic generation of output from an on-line analytical processing (OLAP) system. Scheduled services are processed in an OLAP system and output from the OLAP system is then automatically forwarded to one or more subscriber output devices specified for that service. The system manages the operation of the service processing system to increase throughput, increase speed, and improve the administrator control over the processing. The system enables administrator control over processing by enabling administrators to view all services and all subscribers of the system, by maintaining an address book containing entries for subscribers of the service and by scheduling processing of services. The system governs the volume of services being processed, the number of subscribers to a particular service, and the number of output devices to which a service may be broadcast.
Description
FIELD OF THE INVENTION

This invention relates to a system and method for managing automatic broadcasting of information derived from on-line analytical processing system reports to subscriber devices, including electronic mail, personal digital assistants, pagers, facsimiles, printers, mobile phones, and telephones, based on subscriber-specified criteria.


BACKGROUND OF THE INVENTION

The ability to act quickly and decisively in today's increasingly competitive marketplace is critical to the success of any organization. The volume of data that is available to organizations is rapidly increasing and frequently overwhelming. The availability of large volumes of data presents various challenges. One challenge is to avoid inundating an individual with unnecessary information. Another challenge is to ensure all relevant information is available in a timely manner.


One known approach to addressing these and other challenges is known as data warehousing. Data warehouses, relational databases, and data marts are becoming important elements of many information delivery systems because they provide a central location where a reconciled version of data extracted from a wide variety of operational systems may be stored. As used herein, a data warehouse should be understood to be an informational database that stores shareable data from one or more operational databases of record, such as one or more transaction-based database systems. A data warehouse typically allows users to tap into a business's vast store of operational data to track and respond to business trends that facilitate forecasting and planning efforts. A data mart may be considered to be a type of data warehouse that focuses on a particular business segment.


Decision support systems have been developed to efficiently retrieve selected information from data warehouses. One type of decision support system is known as an on-line analytical processing system (“OLAP”). In general, OLAP systems analyze the data from a number of different perspectives and support complex analyses against large input data sets.


There are at least three different types of OLAP architectures—ROLAP, MOLAP, and HOLAP. ROLAP (“Relational On-Line Analytical Processing”) systems are systems that use a dynamic server connected to a relational database system. Multidimensional OLAP (“MOLAP”) utilizes a proprietary multidimensional database (“MDDB”) to provide OLAP analyses. The main premise of this architecture is that data must be stored multidimensionally to be viewed multidimensionally. A HOLAP (“Hybrid On-Line Analytical Processing”) system is a hybrid of these two.


ROLAP is a three-tier, client/server architecture comprising a presentation tier, an application logic tier and a relational database tier. The relational database tier stores data and connects to the application logic tier. The application logic tier comprises a ROLAP engine that executes multidimensional reports from multiple end users. The ROLAP engine integrates with a variety of presentation layers, through which users perform OLAP analyses. The presentation layers enable users to provide requests to the ROLAP engine. The premise of ROLAP is that OLAP capabilities are best provided directly against a relational database, e.g., the data warehouse.


In a ROLAP system, data from transaction-processing systems is loaded into a defined data model in the data warehouse. Database routines are run to aggregate the data, if required by the data model. Indices are then created to optimize query access times. End users submit multidimensional analyses to the ROLAP engine, which then dynamically transforms the requests into SQL execution plans. The SQL is submitted to the relational database for processing, the relational query results are cross-tabulated, and a multidimensional result set is returned to the end user. ROLAP is a fully dynamic architecture capable of utilizing pre-calculated results when they are available, or dynamically generating results from atomic information when necessary.


The ROLAP architecture directly accesses data from data warehouses, and therefore supports optimization techniques to meet batch window requirements and to provide fast response times. These optimization techniques typically include application-level table partitioning, aggregate inferencing, denormalization support, and multiple fact tablejoins.


MOLAP is a two-tier, client/server architecture. In this architecture, the MDDB serves as both the database layer and the application logic layer. In the database layer, the MDDB system is responsible for all data storage, access, and retrieval processes. In the application logic layer, the MDDB is responsible for the execution of all OLAP requests. The presentation layer integrates with the application logic layer and provides an interface through which the end users view and request OLAP analyses. The client/server architecture allows multiple users to access the multidimensional database.


Information from a variety of transaction-processing systems is loaded into the MDDB System through a series of batch routines. Once this atomic data has been loaded into the MDDB, the general approach is to perform a series of batch calculations to aggregate along the orthogonal dimensions and fill the MDDB array structures. For example, revenue figures for all of the stores in a state would be added together to fill the state level cells in the database. After the array structure in the database has been filled, indices are created and hashing algorithms are used to improve query access times.


Once this compilation process has been completed, the MDDB is ready for use. Users request OLAP reports through the presentation layer, and the application logic layer of the MDDB retrieves the stored data.


The MOLAP architecture is a compilation-intensive architecture. It principally reads the pre-compiled data, and has limited capabilities to dynamically create aggregations or to calculate business metrics that have not been pre-calculated and stored.


The hybrid OLAP (“HOLAP”) solution is a mix of MOLAP and relational architectures that support inquiries against summary and transaction data in an integrated fashion. The HOLAP approach enables a user to perform multidimensional analysis on data in the MDDB. However, if the user reaches the bottom of the multidimensional hierarchy and requires more detailed data, the HOLAP engine generates an SQL to retrieve the detailed data from the source relational database management system (“RDBMS”) and returns it to the end user. HOLAP implementations rely on simple SQL statements to pull large quantities of data into the mid-tier, multidimensional engine for processing. This constrains the range of inquiry and returns large, unrefined result sets that can overwhelm networks with limited bandwidth.


As described above, each of these types of OLAP systems are typically client-server systems. The OLAP engine resides on the server side and a module is typically provided at a client-side to enable users to input queries and report requests to the OLAP engine. Current client-side modules are typically stand alone software modules that are loaded on client-side computer systems. One drawback of such systems is that a user must learn how to operate the client-side software module in order to initiate queries and generate reports.


Although various user interfaces have been developed to enable users to access the content of data warehouses through server systems, many such systems experience significant drawbacks. All of these systems require that the user connect via a computer system to the server system to initiate reports and view the contents of the reports.


Moreover, current systems require that the user initiate a request for a report each time the user desires to have that report generated. A particular user may desire to run a particular report frequently to determine the status of the report.


Further, reports may be extensive and may contain a large amount of information for a user to sort through each time a report is run. A particular user may only be interested in knowing if a particular value or set of values in the report has changed over a predetermined period of time. Current systems require the user to initiate the new report and then scan through the new report to determine if the information has changed over the time period specified.


These and other drawbacks exist with current OLAP interface systems.


SUMMARY OF THE INVENTION

An object of the invention is to overcome these and other drawbacks in existing systems.


Another object of the present invention is to provide a system that manages and controls the automatic broadcast of messages to subscribers based on criteria established by the subscriber when those criteria are determined to be satisfied by an on-line analytical processing system.


Another object of the present invention is to provide a subscriber-based system for automatic broadcast of OLAP reports that enables a system administrator to monitor performance and output of the system.


Another object of the present invention is to provide a subscriber-based system for automatic broadcast of OLAP reports that enables a system administrator to view subscribers to various services of the system.


Another object of the present invention is to provide a subscriber-based system for automatic broadcast of OLAP reports that enables a system administrator to manage the scheduling of services to output reports.


Another object of the present invention is to provide a subscriber-based system for automatic broadcast of OLAP reports that stores an address book for subscribers of the system and enables a system administrator to modify and maintain the address book.


Another object of the present invention is to provide a subscriber-based system for automatic broadcast of OLAP reports that enables use of dynamic recipient lists that are rendered to determine who receives output from the system.


These and other objects are realized by a system and method according to the present invention as described below. Such a system and method comprises a broadcast module that connects to an on-line analytical processing (OLAP) system comprising a server system for accessing information in one or more data warehouses to perform report analysis. The broadcast module may enable the defining of a service. A “service” as used herein should be understood to include one or more reports that are scheduled to be run against one or more data warehouses, relational databases, files in a directory, information from web or file transfer protocol sites, information provided by a custom module, by a server system. These services may be subscribed to by users or user devices to enable the broadcast module to determine who should receive the results of a service. The broadcast module enables the creation of a service, the scheduling of the service, subscription of users to the defined services, generation of reports for the service, formatting of outputs of the service and broadcasting of messages based on the output for the service, among other functions.


Also, an administrator module may be provided that manages automatic generation of output from the on-line analytical processing system. The administrator module manages the operation of the service processing system to increase throughput, increase speed, and improve the administrator control over the processing. The system may maintain dynamic recipient lists that are resolved by system. The system enables administrator control over processing by enabling administrators to view all services and all subscribers of the system, by maintaining an address book containing entries for subscribers of the service and enabling the administrator to view the contents of the address book, and by scheduling processing of services. The system also governs the volume of services being processed, the number of subscribers to a particular service, and the number of output devices to which a service may be broadcast.


According to one embodiment of the present invention, a system for automatically generating output from an on-line analytical processing system based on scheduled services specified by subscribers of the system is provided. The system processes scheduled services in an on-line analytical processing system with each service comprising at least one query to be performed by the on-line analytical processing system. The system then automatically forwards output from the services to one or more subscriber output devices specified for that service. The system may also provide management of the output devices. Users may define new services, including the schedule of the services and the type, such as alert services or scheduled services, and may also subscribe to the services provided by the system. If an alert service is processed, the system may forward output only when one or more alert criteria are satisfied. Subscribers may be specified by a dynamic recipient list that is resolved each time the service is processed to determine recipients of the service output. A dynamic recipient list may be, for example, a list that determines the recipients of a service based on dynamically resolved criteria. For example, a bank may generate a list every month that identifies customers who have an account balance greater than $100,000 and who have not made a transaction within the last three months. The output devices the system may forward output to may comprise electronic mailbox, facsimile, printer, mobile phone, telephone, pager, PDA or web pages.


According to another embodiment of the present invention, a system that enables subscribers to personalize services used for automatically generating output from an on-line analytical processing system is provided. In addition to enabling subscribers to specify the content and schedule of one or more services, the system enables subscribers to personalize various other parameters relating to the service. For example, subscribers may specify the format of service output, filters to be applied to the service, and a variety of other personalization options described in greater detail below.


According to another embodiment of the invention, the system utilizes static recipient lists (“SRL”) and dynamic recipient lists (“DRL”) for determining subscribers to a service. SRLs may be a list of manually entered subscriber names of a particular service. DRLs, however, may be a report generated by the system listing subscriber names that meet a predetermined criteria for a service. DRLs enable lists of subscribers to change according to certain criteria applied to contents of a database. For example, a DRL may be used to broadcast a sales report to only those subscribers who are managers of stores who have not met a predetermined sales goal.


Other objects and advantages of the present invention will be apparent to one of ordinary skill in the art upon reviewing the detailed description of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic block diagram of a system in accordance with an embodiment of the present invention.



FIG. 2 is a schematic block diagram of a method for automatic transmission of OLAP report information.



FIG. 3 is a schematic block diagram of a method for creating a service according to an embodiment of the present invention.



FIG. 4 is a schematic block diagram of an overall system in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

According to one embodiment of the present invention, a system is provided for automatic transmission of OLAP report output to one or more of a plurality of user output devices. FIG. 1 depicts an embodiment of a system 100 according to the present invention. System 100 may comprise a data warehouse 12, a server system 14, a broadcast module 20, an object creation module 24, an agent module 28, and one or more user devices 40. User devices 40 may comprise a facsimile 40a, pager 40b, mobile telephone 40c, electronic mail 40d, and web page output 40e.


Broadcast module 20 may comprise a module that broadcasts personalized information derived from the OLAP system (e.g., data warehouse 12 and sever system 14) to users via one or more user devices 40 such as electronic mail, PDA, facsimile, printer, pager, mobile phone, telephone, and multiple other types of user information devices. Broadcast module 20 enables users to define services (e.g., queries and reports) that are to be run against an OLAP system such as server system 14 and data warehouse 12 based on a predetermined schedule. A “service” as used herein should be understood to include one or more reports that are scheduled to be run against data warehouse 12 by server system 14. Broadcast module 20 also enables users on the system to subscribe to one or more services and then broadcast module 20 outputs the results of these services to subscribers according to criteria established by the subscribers.


Data warehouse 12 may comprise any data warehouse or data mart as is known in the art, including a relational database management system (“RDBMS”), a multidimensional database management system (“MDDBMS”) or a hybrid system. Server system 14 may comprise an OLAP server system for accessing and managing data stored in data warehouse 12. Server system 14 may comprise a ROLAP engine, MOLAP engine or a HOLAP engine according to different embodiments. Specifically, server system 14 may comprise a multithreaded server for performing analysis directly against data warehouse 12. One embodiment of server system 14 may comprise a ROLAP engine known as DSS Server™ offered by MicroStrategy. Accordingly, data warehouse 12 and server system 14 comprise an OLAP system that connects to broadcast module 20 for broadcast of user-specified reports from data maintained by data warehouse 12.


Broadcast module 20 may also be connected to an agent module 28 which may also be connected to server system 14. Agent module 28 may be provided to define reports and queries that may be selected as part of one or more services by broadcast module 20. Agent module 28 may be used to define queries to be performed against the data contained in data warehouse 12 using components, templates, filters, reports, agents, etc. Components may include dimensions, attributes, attribute elements, and metrics—in other words, the building blocks for templates, filters, and reports. Templates generally define a report format and specify the attributes, dimensions, metrics, and display properties comprising a report. Filters generally qualify report content and identify a subset of data warehouse 12 to be included in a report. For example, filters may be used with set math, multidimensional qualifications, and metric qualifications. Using set math, users can define and embed any set of limiting criteria (e.g., union, intersect, exclude). Multidimensional qualifications enable users to indicate general subject areas or perspectives on data (e.g., time, geography, product). Metric qualifications may be used to compute mathematical calculations of various numerical data (e.g., total sales, profit, cost, percent change, profit). Metrics may be displayed in a variety of formats (e.g., percentages, currency, fonts indicating predetermined values). Reports are generally understood to be a data analysis created by combining a template (the format) with a filter (the content). Agents may be a group of reports cached on a time- or event-based schedule for rapid retrieval and batch processing. According to one embodiment of the invention, agent module 28 may comprise a software package known as DSS Agent™ offered by MicroStrategy.


Agent module 28 may operate on any user system 26 including personal computers, network workstations, laptop computers or any other electronic device connected to server system 14 or may comprise an object connected to broadcast module 20.


Broadcast module 20 therefore, cooperates with server system 14 and agent module 28 to send personalized information to users at predefined intervals or when criteria specified in reports defined through either broadcast module 20 or agent module 28 exceed predefined thresholds. To provide this functionality, broadcast module 20 enables users of the system to create services that run against the OLAP system to generate information and subscriptions that specify the recipients of the information derived from a service. A service may comprise one or more reports that are processed by the OLAP system and may be a specific report, series of reports or elements within a report. Also, subscribers may include users, groups of users or only specific user devices 40 for a particular user. Services may be based on predefined reports from broadcast module 20 or agent module 28 or may be based on filter/template combinations set up through broadcast module 20 and/or agent module 28.


Once services have been defined and subscribers to that services are established, broadcast module 20 continually monitors the schedules for the services, runs the scheduled reports, and automatically generates outputs where conditions specified in the service are satisfied using push technology. Outputs from broadcast module 20 may be personalized to subscriber demands and/or formatted to meet a subscriber's user device requirements to ensure that users see only that portion of a report that is relative to that user and in a manner that is most useful for the user. Accordingly, a user can thus have up-to-date information about the contents of data warehouse 12 without having to submit a query or log-in to a software module on the user system.


To provide the functionality described above, broadcast module 20 may comprise a plurality of modules that perform certain functions. Although described as separate modules, it should be understood that such modules may be combined or separated further. In an embodiment of the present invention, as depicted in FIG. 1, broadcast module 20 may comprise a service definition module 42, a service schedule module 44, a service generation module 46, a service format module 48, a personalization module 50, a subscription interface module 52, and a service administration module 54.


Service definition module 42 of broadcast module 20 may comprise a module for enabling a user to create or modify a service. In an embodiment, the services may be defined based on reports or workbooks specified in agent module 28. Users may then subscribe to services defined in service definition module to enable broadcast module 20 to determine who should receive the results of a service.


At least two types of services may be provided—scheduled services and alert services. A schedule service may comprise a service that generates information to subscribers at a given time interval. An alert service may comprise a service that provides information to all subscribers if an alert condition is true.


Service schedule module 44 may provide the functionality to enable selection of when a service should be run. Service schedule module 44 may enable a user, administrator or other person having access thereto to specify the frequency that the service should be performed. The schedule may be based on an interval (such as every several hours, days, weeks, months, years, etc.) or on one or more specified days (such as March 15th and September 15th). Other methods of scheduling events to be processed may also be used.


Service generation module 46 may comprise a module for following a schedule set by service schedule module 44 and completing the operation specified in service definition module 42. For example, if a service were specified to run the monthly sales totals for the Midwest region of a company every weekend and generate an alert to the supervisor on Monday morning if sales drop below 5%, then service generation module 46 would be responsible to monitor the schedule of this service to ensure that the report contained therein was processed over the weekend and then generate an alert report if the criteria set in the service is satisfied. To monitor the schedule of all services specified by broadcast module 20, service generation module 46 may operate constantly to ensure that every scheduled service is completed.


Service format module 48 may be responsible for taking the results of a service and formatting it to a proper format corresponding to each of the subscribers of a particular service. Service format module 48 may be responsible for formatting service results for generation to user devices 40a-40e.


Personalization module 50 may be provided to enable subscribers to specify the content for a service in which they are interested. Users may input personalized choices for personalization module 50 through subscription interface module 52 by selecting personalization filters from filters available in the service. Personalization module 50 captures the criteria selected by the user and creates a subscription based on the selected criteria which may be multidimensional based on the data structure in the data warehouse, relational database, etc. Because personalization module 50 enables subscribers to specify the content of a service, this reduces the amount of data output to a subscriber by providing the subscriber with data that the subscriber is interested in.


Personalization may also be set in an address book module maintained by broadcast module 20. The address book may comprise an entry for each subscriber of any service on the system. That subscriber may define global personalization filters to be applied to all services to which the subscriber applies rather than providing personalization on only a service by service basis. For a chosen user, personalization may also be set on a project level basis. For example, a project may comprise multiple reports. Each report within a project may have different personalized filters applied according to user desires. Personalization module 50, however, also enables subscribers to personalize the entire rather than doing so for each. For example, subscribers may assign particular operations to be performed for each of the reports within a project. This enables subscribers to personalize multiple reports simultaneously.


Additionally, subscribers may personalize style parameters using, for example, personalization module 50. Styles may be used to tailor a display format of a report to a particular device (e.g., pager, electronic mail, facsimile). Styles may be designed according to the needs of each subscriber depending on the characteristics and properties of a recipient. For example, a user may desire to have pages generated from the report sent in a particular format and may set up that format using styles.


Further, in the address book, the data warehouse login and password may also be stored to enable access to the data warehouse. Each subscriber may have multiple addresses in the address book, each address assigned to a different output device. Thereby, a subscriber may have multiple addresses, each of which may be assigned to receive different services based on different filters, etc. This provides for the ultimate in customization for receipt of information. For example, a user may desire to get stock information via pager but sales information via e-mail. By setting up two separate addresses and applying different services and/or filters, that may be accomplished according to the present invention.


Through the address book module, administrators may also be able to add subscribers to the address book, import subscribers from other applications into the address book, create groups and add subscribers to those grounds and delete or edit information, including personalization features for subscribers. This enables administrators to also determine who all of the subscribers are and to view personalization features for each subscriber.


Subscription interface module 52 may be provided to enable users or administrators of the system to monitor and update subscriptions to various services provided by broadcast module 20. Service administration module 54 may be provided to provide administrative functions to monitor a queue to schedule services and to provide throughput of services to ensure efficient completion of those services by broadcast module 20.


Subscription interface module 52 may be used to create a subscriber list by adding one or more subscribers to a service. Users or system administrators having access to broadcast module 20 may add multiple types of subscribers to a service such as a subscriber from either a static recipient list (SRL) (e.g., addresses and groups) or a dynamic recipient list (DRL) (described in further detail below). The subscribers may be identified, for example, individually, in groups, or as dynamic subscribers in a DRL. Subscription interface module 52 permits a user to specify particular criteria (e.g., filters, metrics, etc.) by accessing data warehouse 12 and providing the user with a list of available filters, metrics, etc. The user may then select the criteria desired to be used for the service.


A SRL is a list of manually entered names of subscribers of a particular service. The list may be entered using service administration module 54 or subscription interface module 52. SRL entries may be personalized such that for any service, a personalization filter (other than a default filter) may be specified. A SRL enables different personalizations to apply for a login alias as well. For example, a login alias may be created using personalization module 50. Personalization module 50 enables subscribers to set preferred formats, arrangements, etc. for displaying service content. The login alias may be used to determine a subscriber's preferences and generate service content according to the subscriber's preferences when generating service content for a particular subscriber.


A DRL may be a report which returns lists of valid user names based on predetermined criteria that are applied to the contents of a database such as data warehouse 12. Providing a DRL as a report enables the DRL to incorporate any filtering criteria desired, thereby allowing a list of subscribers to be derived by an application of a filter to the data in data warehouse 12. In this manner, subscribers of a service may be altered simply by changing the filter criteria so that different user names are returned for the DRL. Similarly, subscription lists may be changed by manipulating the filter without requiring interaction with service administration module 54. Additionally, categorization of each subscriber may be performed in numerous ways. For example, subscribers may be grouped via agent filters. In one specific embodiment, a DRL is created using DSS Agent™ offered by Microstrategy.


Service administration module 54 enables monitoring of reports (e.g., ability to see who is using system, what reports they are generating, etc.), scheduling of reports, address book and dynamic recipient list maintenance, subscriber management, and statistics tracking. Subscriber management involves enabling system administrators to review, access, and generate information about subscribers to the system through the maintenance of detailed subscriber lists including the DRL's and SRL's. This list may track information on which subscribers subscribe to which services and vise-versa.


The present invention provides an administration console that enables organizations to rapidly implement and fully administer enterprise broadcast deployments. As briefly described above, service administration module 54 may comprise the administration console.


Service administration module 54 enables monitoring of reports (e.g., ability to see who is using system, what reports they are generating, etc.), scheduling of reports, address book and dynamic recipient list maintenance, and subscriber management. Subscriber management involves enabling system administrators to review, access, and generate information about subscribers to the system through the maintenance of detailed subscriber lists. This list may track information on which subscribers subscribe to which services and vise-versa.


According to one aspect of the present invention, service administration module 54 may comprise a service queue management system that creates and presents a service queue. The service queue may comprise a listing of all services that the system is to be running within a predetermined period of time (which may be modified by the user, for example, to extend from seconds to years). The service queue may comprise a list of upcoming service initiation times for each active service. The service queue management system monitors the services to ensure that they initiate on a predefined schedule.


The service queue management module may also present this information by subscriber to enable an administrator or a user to view the services to which that user subscribes. This enables the administrator to gain an understanding of what information that user finds helpful. The administrator may use that information to interest the user in additional information. The service queue may also be viewed by service or with all services as desired.


Further, according to one embodiment, upon selecting a service in the queue, the system may display the specifics of the service to enable the administrator to view the information sought in that service, the subscribers to that service, and modify various parameters for that service.


Service administration module 54 may also maintain the address book and dynamic recipient lists to enable administrators to review subscriber information contained in those lists. The address book may contain the name and specific settings of all valid subscribers and may interact with other address book programs for importing and exporting names.


Personalization may also be set in the address book. For a chosen user, personalization may be set for each project which is currently loaded. A personalization filter may be selected for the project. The data warehouse login and password may also be stored to enable access to the data warehouse. One or more display styles may be set up. Each subscriber may have multiple addresses in the address book, each address assigned to a different output device. Thereby, a subscriber may have multiple addresses, each of which may be assigned to receive different services based on different filters, etc. This provides for the ultimate in customization for receipt of information. For example, a user may desire to get stock information via pager but sales information via e-mail. By setting up two separate addresses and applying different services and/or filters, that may be accomplished according to the present invention.


Service administration module 54 may also be responsible for governing services to ensure that the server system does not become overloaded with the number of services being performed and that broadcast module 20 does not become overloaded with the number of messages to be broadcast. This may be performed by setting a maximum numbers of jobs that may be performed by each of these systems, a maximum number of subscribers per service or a maximum number of recipient user systems per service, for example. Other governing techniques may also be used.


Further, service administration module 54 may comprise a job reduction component that functions to limit the number of jobs submitted to server system 14. This component generates a distinct list of jobs to send to server system 14 to satisfy all services and all personalization filters for all subscribers for each service. This component may remove duplicate subscribers using the report name, login identification and personal filter values for the subscribers to the service. For example, this module may operate as follows. First, the system may associate each subscriber with a login identification and a personalization filter for that subscriber (a blank filter may be used if the user did not specify either a default or subscription level personalization filter). Duplicates may then be eliminated by comparing the personalization filters provided and grouping all subscribers requesting the same personalization filter together to generate a single report for that group and using the login identification for those subscribers to later generate individual outputs for the subscribers having that personalization filter from the single report.


A method 200 of operation of system 100 is provided in FIG. 3. Method 200 comprises several steps for generating information to a plurality of user systems using “push” technology. In step 100, one or more services are defined by users or system administrators for broadcast module 20 to monitor, as described in more detail below with respect to FIG. 4, such as through service definition module 42. In step 102, subscribers for each of these various services are provided, such as through subscription interface module 52. In step 104, the system monitors and processes services according to their defined schedules. Step 104 may be performed by service schedule module 44, and/or service generation module 46, for example.


In step 106, the system determines whether an alert criteria has been met or if a scheduled service has been completed, such as through service generation module 46. If an alert criteria has not been satisfied or a scheduled service has not completed, the system continues to monitor and process services. If an alert condition has been met, or if a scheduled service has been completed, in step 108, the system, such as through service generation module 46, builds the service output and the subscription list for that particular service. Building the subscription list for a service may involve using a recipient list resolution method. For example, a recipient list resolution (RLR) may be used to build a list of all of the subscribers to a service in step 108. This may be performed by resolving and merging all DRLs with all SRLs for a given service. All DRLs are generated and the resulting list is merged with the SRL. Typically, there is only one SRL (although additional SRLs may be used) and none to numerous DRLs per service. The list that results from merging all of the DRLs and SRLs produces a list which consolidates all subscribers of a given service.


Next, in step 110, the system, such as through personalization module 50, applies personalization filters to services that are scheduled to be output to the subscribers. Personalization filters may modify the output of a service according to the subscriber's desired criteria. The personalized outputs may then be formatted for the user device 40 selected by the user for output. Additionally, personalization module 50 may also be used to personalize the contents of one or more services as described above. In step 114, broadcast module 20 broadcasts the formatted and personalized services to subscribers at user devices 40a-40e.


As described above, step 100 defines the service or services to be monitored by broadcast module 20. FIG. 4 depicts a method 210 according to one embodiment of the present invention for performing step 100. According to one embodiment, in step 116, a user may name and provide a description of the service or services to be monitored. By providing a name and description, users may be able to uniquely identify the services from an object browser or in a service queue.


Next, in step 118, the user selects the type for the service. As described above, at least two types of services may be provided. A first type, a scheduled service, is a service that is run according to a predetermined schedule and output is generated each time the service is run. An alert service is one that is run periodically as well, however, output is only generated when certain alert criteria is satisfied. If an alert service is selected by the user, the user may then specify a report or a template/filter combination upon which the alert is based. According to one embodiment, reports and template/filter combinations may be predefined by other objects in the system including agent module 28 or object creation module 24. For example, agent module 28 such as the DSS Agent™ offered by MicroStrategy, may be used to create and define reports with filters and template combinations, and to establish the alert criteria that are to be used for an alert service.


Next, in step 120, the duration of the service is input by the user. Service duration indicates the starting and stopping dates for the service. The start date is the base line for the scheduled calculation, while the end date indicates when the broadcast will cease to be sent. The user has the option of starting the service immediately or waiting until some time in the future. Various calendaring features may be provided to enable the user to easily select these start and stop dates. For example, a calendar that specifies a date with pull-down menus that allow the users to select a month and year may be provided according to known methods of selecting dates in such programs as electronic calendaring programs and scheduling programs used in other software products. One specific aid that may be provided is to provide a calendar with a red circle indicating the present date and a blue ellipse around the current numerical date in each subsequent month to more easily allow the user to identify monthly intervals. Other methods may also be used.


Next, in step 122, the user selects the schedule for the service. According to one embodiment, predefined schedules for services may be provided or the user may choose to customize the schedule for the service. If the user desires to create a new schedule, a module may be opened to enable the user to name the schedule and to set the parameters for the schedule. Schedules may be run on a several-minute, hourly, daily, monthly, semi-annual or annual basis, all depending upon what frequency is desired.


The next step, step 123, may be performed to enable the user to specify the content of a service. The content of a service is the various information reports and template/filter combinations that the server system 14 processes using the data in data warehouse 12 in order to provide the output requested for that particular service. The content of a service may comprise many different items or combination of items to suit the user's needs. For example, the user may be able to include a text grid, an agent alert, a web uniform resource location (URL), a spreadsheet container, a new sheet container, a text container, a text message, contents from a text file, or a file attachment. According to one embodiment, the system may organize these various contents into containers. A broadcast container may comprise the highest level container under which all content pieces reside. A grid may comprise an element that is associated with a report or a template/filter combination. The grid may be bound via a macro to a report/filter and template combination. An agent alert may be associated with a particular report that is therefore incorporated within the service. Any report available on agent module 28 may be selected. The web URL item may be associated with the report through network output module 22 that specified that URL for the particular report. A spreadsheet container may be the parent of an embedded spreadsheet attachment. When created, a particular spreadsheet may be included as a child. Additionally, markup language (e.g., XML and/or HTML) documents may also be included.


After the user has named the service, selected the type, duration, and schedule for the service, the user may select the personalization type in step 124. For example, the user may select an option to either prevent personalization, require personalization, or allow personalize optionally. Upon completion of these steps, the service may be stored by service definition module 42 in a database structure to enable users to retrieve predefined services to subscribe to these services through subscription interface module 52.


Method 210 may also comprise an error condition step. An error condition step may be used to enable users to specify “error” conditions and actions. For example, an “error” condition may be a user notification that a server is “down” or that there is no data to be returned. A user may specify particular actions to be performed by the system in response to one or more error conditions. For example, a user may specify a “server” error (e.g., not responding) and indicate a particular action to be performed in response to a “server not responding” error (e.g., reattempt in a predetermined time). Various other conditions and actions may be specified.


The system described may also comprise a portion of a larger decision support system 10 as depicted in FIG. 4. System 10 may comprise a data warehouse 12, a server system 14, an architect module 16, an administrator module 18, a broadcast module 20, a network output module 22, a plurality of user systems 26, and an object creation module 24. User systems 26 may comprise an agent module 28 as described above.


Agent module 28 may enable a user access to the contents of data warehouse 12 to provide detailed analysis on an ad hoc basis. One of the advantages of DSS Agent™ includes its use of a ROLAP architecture on server system 14 and a RDBMS in data warehouse 12 to provide a more scaleable environment. Through DSS Agent™, a user can “drill down.” Drilling down allows the user to dynamically change the level of detail in a report to a lower level attribute so that the resulting report displays data with a greater level of detail. For example, one can drill down from year to month to week to day. DSS Agent™ also enables users to “drill up” to a higher level attribute. Drilling up summarizes the selected data to a higher level total. For example, one can drill from day to week to month to year. DSS Agent™ also enables a user to “drill within.” Drilling within allows a user to go to a different hierarchy within the same dimension. Drilling within is often used to examine the characteristics of selected data. For example, drilling within enables a user to drill from item to color when looking at a particular retail item such as an automobile, clothing or the like. Drilling across allows the user to drill to an altogether different dimension. For example, one can drill across from a region to a month. Accordingly, through use of agent module 28, server system 14, and data warehouse 12, drilling is a powerful tool that is easily implemented using a ROLAP architecture which is not as easily accessible in MOLAP.


Architect module 16 may comprise a module that enables developers to create and maintain data and metadata in data warehouse 12. Metadata may be considered to be data about data, such as data element descriptions, data type descriptions, attributes/property descriptions, range/domain descriptions, and process/method descriptions. Data and metadata stored in data warehouse 12 may thus be modified and organized by architect module 16. According to one embodiment of the invention, architect module 16 may comprise a software package known as DSS Architect™ offered by MicroStrategy.


Administrator module 18 may comprise a module for facilitating the development, deployment, and management of data warehouse applications supporting large volumes of users over various distribution mechanisms. Administrator module 18 may comprise an object manager and a warehouse monitor. The object manager allows objects to be shared across databases for easy migration from development to production. The warehouse monitor provides performance monitoring and management tools to support thousands of users across a distributive database environment. The warehouse monitor collects statistics for the purpose of identifying performance bottlenecks, warehouse tuning, cost analysis and various other purposes. According to one embodiment of the invention, administrator module 18 may comprise a module known as DSS Administrator™ offered by MicroStrategy.


Server system 14 may also connect to an object creation module 24. Object creation module 24 may comprise an open object linking and embedding (“OLE”) application program interface (“API”) for custom decision support development. According to one embodiment of the invention, object creation module 24 may comprise a software module known as DSS Objects™ offered by MicroStrategy. Additionally, custom applications may interface with object creation module 24 including Delphi, Visual Basic, and C++ programming modules.


User systems 26 may also include a report writing module 30, an executive module 32, and a spreadsheet module 34. Report writing module 26 may comprise an OLAP report writer. Executive module 32 may comprise a module design tool for developing custom EIS applications. This module is a design tool for developing briefing books that provide high level users with a series of views that describe their business. Once created, end users can access briefing books through agent module 28 in EIS mode. Such a system is easily implemented with agent module 28 by compiling sets of analyses into dynamic pages that immediately focus users on their key business drivers. One embodiment of executive module 32 may comprise software known as DSS Executive™ offered by MicroStrategy.


Spreadsheet module 34 may comprise an add-on to existing spreadsheet programs or may comprise an entirely new spreadsheet program. Spreadsheet module 34 may enable reports and analyses generated from agent module 28 to be presented in a traditional spreadsheet program format to enable users to view results in preexisting front-end interfaces. Spreadsheet module 34 may comprise the Microsoft Excel™ spreadsheet program offered by Microsoft and/or an Excel™ Add-in program offered by MicroStrategy.


Another module for accessing content of server system 14 may comprise a network output module 22. Network output module 22 enables user system 26 access to server system 14 and data warehouse 12 without requiring an additional agent module 28 to be stored on user system 26. Instead, user system 26 may have a user interface module 38 residing thereon. User interface module 38 may comprise any module that enables a user system, such as user system 26, to interface with network output module 22 over a network 36. According to one embodiment of the invention, network 36 may comprise an intranet, the Internet or other developed Internet-type networks. Further, user interface module 38 may comprise any standard browser module such as Microsoft Internet Explorer™, Netscape Navigator™ or other. As many user systems 26 already have a user interface module 38 stored and operating thereon, network output module 22 offers the advantage of enabling users access to server system 14 and data warehouse 12 without learning to operate a new module such as agent module 28. One embodiment of network output module 22 may comprise a web-based module called DSS Web™ offered by MicroStrategy. Accordingly, in one embodiment, a user can access server system 14 through a standard web browser, such as Microsoft Internet Explorer™, or over the Internet through network output module 22, such as DSS Web™.


In this embodiment, network output module 22 may comprise a World Wide Web tool used in conjunction with server system 14 for allowing users to deploy data warehouse/decision support applications over the Internet using industry standard World Wide Web browsers as a client. As a result, a user can access the data warehouse with little or no client maintenance, little or no software to install, and only a small amount of additional training while still maintaining all of the capabilities of agent module 28. One embodiment of network output module 22 comprises DSS Web™ offered by MicroStrategy. This embodiment provides a broad array of options for viewing information sets, such as spreadsheet grids and a wide variety of graphs. Through this module's reporting capabilities, users receive key elements of a report in easily interpretable, plain language messages. This module also allows users to “drill” dynamically to a lower level of detail to view the underlying information or to create and save new analyses. For sensitive information, this module provides security plug-ins that allow the user to extend the standard security functionality with additional user authentication routines. This module may also provide an API that allows users to customize, integrate, and imbed this functionality into other applications. For example, a data syndicator for health care information may utilize this module with a customized interface to sell access to health care information to Health Maintenance Organizations, hospitals, pharmacies, etc.


Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and examples should be considered exemplary only. The scope of the invention is only limited by the claims appended hereto.

Claims
  • 1. A method of managing a system that automatically generates output from an on-line analytical processing system, the method comprising: creating a service to be processed via the on-line analytical processing system according to a schedule;receiving from a subscriber to the service, during a subscription process, a specified output device to which service output is to be delivered, and specified personalization criteria for personalizing service output;creating an address book entry for the subscriber in an address book, the address book entry including an address associated with the specified output device, and one or more personalization filters based on the specified personalization criteria;processing the service via the on-line analytical processing system according to the schedule to generate service output, wherein the service comprises at least one query to be performed against the on-line analytical processing system;personalizing the service output for the subscriber via the one or more personalization filters included in the address book entry for the subscriber;forwarding personalized service output to the specified output device of the subscriber; andmanaging the processing of the service based on predetermined performance criteria specified by an administrator.
  • 2. The method of claim 1, wherein the on-line analytical processing system comprises a relational on-line analytical processing system.
  • 3. The method of claim 1, further comprising: enabling the administrator to edit the address book entry for the subscriber.
  • 4. The method of claim 1, further comprising: monitoring the service processing and the forwarding steps to increase throughput and processing speed.
  • 5. The method of claim 1, further comprising: enabling the administrator to view any service record.
  • 6. The method of claim 1, wherein the service output comprises one or more reports.
  • 7. The method of claim 1, wherein the service output comprises multiple reports, and wherein the address book entry for the subscriber includes multiple personalization filters, the method further comprising: applying a different personalization filter to each report.
  • 8. The method of claim 1, wherein the service output comprises multiple reports, the method further comprising: applying the same personalization filter to each of the multiple reports.
  • 9. A system for managing automatic generation of output from an on-line analytical processing system, the system including one or more computer devices configured to: create a service to be processed via the on-line analytical processing system according to a schedule;receive from a subscriber to the service a specified output device to which service output is to be delivered, and specified personalization criteria for personalizing service output;create an address book entry for the subscriber in an address book, the address book entry including an address associated with the specified output device, and one or more personalization filters based on the specified personalization criteria;process the service via the on-line analytical processing system according to the schedule to generate service output, wherein the service comprises at least one query to be performed against the on-line analytical processing system;personalize the service output for the subscriber via the one or more personalization filters included in the address book entry for the subscriber;forward personalized service output to the specified output device of the subscriber; andmanage the processing of the service based on predetermined performance criteria specified by an administrator.
  • 10. The system of claim 9, wherein the on-line analytical processing system comprises a relational on-line analytical processing system.
  • 11. The system of claim 9, wherein the one or more computer devices are further configured to: enable the administrator to edit the address book entry for the subscriber.
  • 12. The system of claim 9, wherein the one or more computer devices are further configured to: increase throughput and processing speed.
  • 13. The system of claim 9, wherein the one or more computer devices are further configured to: enable the administrator to view any service record.
  • 14. The system of claim 9, wherein the service output comprises one or more reports.
  • 15. The system of claim 9, wherein the service output comprises multiple reports, the address book entry for the subscriber includes multiple personalization filters, and wherein the one or more computer devices are further configured to: apply a different personalization filter to each report.
  • 16. The system of claim 9, wherein the service output comprises multiple reports, and wherein the one or more computer devices are further configured to: apply the same personalization filter to each of the multiple reports.
RELATED APPLICATION

This application is continuation of U.S. patent application Ser. No. 10/339,579, filed 10 Jan. 2003, entitled “SYSTEM AND METHOD FOR MANAGEMENT OF AN AUTOMATIC OLAP REPORT BROADCAST SYSTEM,” now U.S. Pat. No. 7,330,847 (issued 12 Feb. 2008), which is a continuation of U.S. patent application Ser. No. 09/345,440, filed 1 Jul. 1999, entitled “SYSTEM AND METHOD FOR MANAGEMENT OF AN AUTOMATIC OLAP REPORT BROADCAST SYSTEM,” now U.S. Pat. No. 6,567,796 (issued 20 May 2003), which claims priority from U.S. Provisional Application No. 60/126,055, filed, 23 Mar. 1999, entitled “SYSTEM AND METHOD FOR AUTOMATIC TRANSMISSION OF ON-LINE ANALYTICAL PROCESSING SYSTEM REPORT OUTPUT.” This application is also related by subject matter to the following U.S. patent applications: U.S. patent application Ser. No. 09/597,689, filed 19 Jun. 2000, entitled “SYSTEM AND METHOD FOR AUTOMATIC TRANSMISSION OF PERSONALIZED OLAP REPORT OUTPUT,” now U.S. Pat. No. 6,269,393 (issued 31 Jul. 2001), which is a continuation of U.S. patent application Ser. No. 09/343,562, filed 30 Jun. 1999 entitled “SYSTEM AND METHOD FOR AUTOMATIC TRANSMISSION OF PERSONALIZED OLAP REPORT OUTPUT,” now U.S. Pat. No. 6,154,766 (issued 28 Nov. 2000); U.S. patent application Ser. No. 09/345,439, filed 1 Jul. 1999, entitled “SYSTEM AND METHOD FOR SUBSCRIPTION INTERFACING IN AN AUTOMATIC BROADCAST OLAP SYSTEM,” now abandoned; U.S. patent application Ser. No. 09/773,516, filed 2 Feb. 2001, entitled “SYSTEM AND METHOD OF ADAPTING AUTOMATIC OUTPUT OF SERVICE RELATED OLAP REPORTS TO DISPARATE OUTPUT DEVICES,” now abandoned, which is a continuation of U.S. patent application Ser. No. 09/343,561, filed 30 Jun. 1999, entitled “SYSTEM AND METHOD OF ADAPTING AUTOMATIC OUTPUT OF SERVICE RELATED OLAP REPORTS TO DISPARATE OUTPUT DEVICES,” now U.S. Pat. No. 6,260,050 (issued 10 Jul. 2001); U.S. patent application Ser. No. 09/460,708, filed 14 Dec. 1999, entitled “SYSTEM AND METHOD FOR AUTOMATIC TRANSMISSION OF AUDIBLE ON-LINE ANALYTICAL PROCESSING SYSTEM REPORT OUTPUT,” now U.S. Pat. No. 7,082,422 B1 (issued 25 Jul. 2006); which is a continuation-in-part of U.S. patent application Ser. No. 09/343,561(referenced above); and U.S. patent application Ser. No. 09/343,563, filed 30 Jun. 1999, entitled “SYSTEM AND METHOD FOR AUTOMATIC TRANSMISSION OF ON-LINE ANALYTICAL PROCESSING SYSTEM REPORT OUTPUT,” now U.S. Pat. No. 6,173,310 (issued 9 Jan. 2001).

US Referenced Citations (556)
Number Name Date Kind
4156868 Levinson May 1979 A
4554418 Toy Nov 1985 A
4667065 Baungerter May 1987 A
4757525 Matthews et al. Jul 1988 A
4775936 Jung Oct 1988 A
4785408 Britton et al. Nov 1988 A
4788643 Trippe et al. Nov 1988 A
4811379 Grandfield Mar 1989 A
4812843 Champion, III et al. Mar 1989 A
4837798 Cohen et al. Jun 1989 A
4868866 Williams, Jr. Sep 1989 A
4931932 Dalnekoff et al. Jun 1990 A
4941168 Kelly, Jr. Jul 1990 A
4942616 Linstroth et al. Jul 1990 A
4953085 Atkins Aug 1990 A
4972504 Daniel, Jr. et al. Nov 1990 A
4974252 Osborne Nov 1990 A
4989141 Lyons et al. Jan 1991 A
5021953 Webber et al. Jun 1991 A
5101352 Rembert Mar 1992 A
5128861 Kagami et al. Jul 1992 A
5131020 Liebesny et al. Jul 1992 A
5168445 Kawashima et al. Dec 1992 A
5187735 Herrero Garcia et al. Feb 1993 A
5189608 Lyons et al. Feb 1993 A
5195086 Baumgartner et al. Mar 1993 A
5204821 Inui et al. Apr 1993 A
5214689 O'Sullivan May 1993 A
5235680 Bijnagte Aug 1993 A
5237499 Garback Aug 1993 A
5255184 Hornick et al. Oct 1993 A
5270922 Higgins Dec 1993 A
5272638 Martin et al. Dec 1993 A
5283731 Lalonde et al. Feb 1994 A
5323452 Dickman et al. Jun 1994 A
5325465 Hung et al. Jun 1994 A
5331546 Webber et al. Jul 1994 A
5333180 Brown et al. Jul 1994 A
5347632 Filepp et al. Sep 1994 A
5367454 Kawamoto et al. Nov 1994 A
5371787 Hamilton Dec 1994 A
5404400 Hamilton Apr 1995 A
5406626 Ryan Apr 1995 A
5422809 Griffin et al. Jun 1995 A
5430792 Jesurum et al. Jul 1995 A
5444768 Lemaire et al. Aug 1995 A
5452341 Sattar Sep 1995 A
5457904 Colvin Oct 1995 A
5479491 Herrero Garcia et al. Dec 1995 A
5487132 Cheng Jan 1996 A
5493606 Osder et al. Feb 1996 A
5500793 Deming, Jr. et al. Mar 1996 A
5500920 Kupiec Mar 1996 A
5502637 Beaulieu et al. Mar 1996 A
5524051 Ryan Jun 1996 A
5539808 Inniss et al. Jul 1996 A
5548636 Bannister et al. Aug 1996 A
5555403 Cambot et al. Sep 1996 A
5559927 Clynes Sep 1996 A
5572643 Judson Nov 1996 A
5572644 Liaw et al. Nov 1996 A
5576951 Lockwood Nov 1996 A
5577165 Takebayashi et al. Nov 1996 A
5581602 Szlam et al. Dec 1996 A
5583922 Davis et al. Dec 1996 A
5590181 Hogan et al. Dec 1996 A
5594789 Seazholtz et al. Jan 1997 A
5594791 Szlam et al. Jan 1997 A
5604528 Edwards et al. Feb 1997 A
5610910 Focsaneanu et al. Mar 1997 A
5630060 Tang et al. May 1997 A
5636325 Farrett Jun 1997 A
5638424 Denio et al. Jun 1997 A
5638425 Meador, III et al. Jun 1997 A
5644624 Caldwell Jul 1997 A
5649186 Ferguson Jul 1997 A
5651117 Arbuckle Jul 1997 A
5652789 Miner et al. Jul 1997 A
5661781 DeJager Aug 1997 A
5664115 Fraser Sep 1997 A
5684992 Abrams et al. Nov 1997 A
5689650 McClelland et al. Nov 1997 A
5692181 Anand et al. Nov 1997 A
5694459 Backaus et al. Dec 1997 A
5701400 Amado Dec 1997 A
5701451 Rogers et al. Dec 1997 A
5701466 Yong et al. Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5710889 Clark et al. Jan 1998 A
5712668 Osborne et al. Jan 1998 A
5712901 Meermans Jan 1998 A
5715370 Luther et al. Feb 1998 A
5717923 Dedrick Feb 1998 A
5721827 Logan et al. Feb 1998 A
5724410 Parvulescu et al. Mar 1998 A
5724420 Torgrim Mar 1998 A
5724520 Goheen Mar 1998 A
5724525 Beyers, II et al. Mar 1998 A
5732216 Logan et al. Mar 1998 A
5732398 Tagawa Mar 1998 A
5737393 Wolf Apr 1998 A
5740429 Wang et al. Apr 1998 A
5740829 Jacobs et al. Apr 1998 A
5742775 King Apr 1998 A
5748959 Reynolds May 1998 A
5751790 Makihata May 1998 A
5751806 Ryan May 1998 A
5754858 Broman et al. May 1998 A
5754939 Herz et al. May 1998 A
5757644 Jorgensen et al. May 1998 A
5758088 Bezaire et al. May 1998 A
5758351 Gibson et al. May 1998 A
5761432 Bergholm et al. Jun 1998 A
5761662 Dasan Jun 1998 A
5764736 Shachar et al. Jun 1998 A
5764975 Taniguchi et al. Jun 1998 A
5765028 Gladden Jun 1998 A
5765143 Sheldon et al. Jun 1998 A
5771172 Yamamoto et al. Jun 1998 A
5771276 Wolf Jun 1998 A
5781735 Southard Jul 1998 A
5781886 Tsujiuchi Jul 1998 A
5781911 Young et al. Jul 1998 A
5787151 Nakatsu et al. Jul 1998 A
5787278 Barton et al. Jul 1998 A
5787411 Groff et al. Jul 1998 A
H1743 Graves et al. Aug 1998 H
5790935 Payton Aug 1998 A
5790936 Dinkins Aug 1998 A
5793980 Glaser et al. Aug 1998 A
5794207 Walker et al. Aug 1998 A
5794246 Sankaran et al. Aug 1998 A
5797124 Walsh et al. Aug 1998 A
5799063 Krane Aug 1998 A
5799156 Hogan et al. Aug 1998 A
5802159 Smolentzov et al. Sep 1998 A
5802488 Edatsune Sep 1998 A
5802526 Fawcett et al. Sep 1998 A
5806050 Shinn et al. Sep 1998 A
5806057 Gormley et al. Sep 1998 A
5809113 Lieuwen Sep 1998 A
5809415 Rossmann Sep 1998 A
5809483 Broka et al. Sep 1998 A
5812987 Luskin et al. Sep 1998 A
5819220 Sarukkai et al. Oct 1998 A
5819293 Comer et al. Oct 1998 A
5822405 Astarabadi Oct 1998 A
5825856 Porter et al. Oct 1998 A
5826269 Hussey Oct 1998 A
5828731 Szlam et al. Oct 1998 A
5832451 Flake et al. Nov 1998 A
5838252 Kikinis Nov 1998 A
5838768 Sumar et al. Nov 1998 A
5848396 Gerace Dec 1998 A
5848397 Marsh et al. Dec 1998 A
5850433 Rondeau Dec 1998 A
5852811 Atkins Dec 1998 A
5852819 Beller Dec 1998 A
5854746 Yamamoto et al. Dec 1998 A
5857181 Augenbraun et al. Jan 1999 A
5857191 Blackwell, Jr. et al. Jan 1999 A
5860064 Henton Jan 1999 A
5862325 Reed et al. Jan 1999 A
5864605 Keshav Jan 1999 A
5864827 Wilson Jan 1999 A
5864828 Atkins Jan 1999 A
5867153 Grandcolas et al. Feb 1999 A
5870454 Dahlen Feb 1999 A
5870724 Lawlor et al. Feb 1999 A
5870746 Knutson et al. Feb 1999 A
5872921 Zahariev et al. Feb 1999 A
5872926 Levac et al. Feb 1999 A
5873032 Cox et al. Feb 1999 A
5873057 Eves et al. Feb 1999 A
5878403 DeFrancesco et al. Mar 1999 A
5880726 Takiguchi et al. Mar 1999 A
5884262 Wise et al. Mar 1999 A
5884266 Dvorak Mar 1999 A
5884285 Atkins Mar 1999 A
5884312 Dustan et al. Mar 1999 A
5890140 Clark et al. Mar 1999 A
5893079 Cwenar Apr 1999 A
5893905 Main et al. Apr 1999 A
5897620 Walker et al. Apr 1999 A
5907598 Mandalia et al. May 1999 A
5907837 Ferrel et al. May 1999 A
5911135 Atkins Jun 1999 A
5911136 Atkins Jun 1999 A
5913195 Weeren et al. Jun 1999 A
5913202 Motoyama Jun 1999 A
5914878 Yamamoto et al. Jun 1999 A
5915001 Uppaluru Jun 1999 A
5915238 Tjaden Jun 1999 A
5918213 Bernard et al. Jun 1999 A
5918217 Maggioncalda et al. Jun 1999 A
5918225 White et al. Jun 1999 A
5918232 Pouschine et al. Jun 1999 A
5920848 Schutzer et al. Jul 1999 A
5923736 Shachar Jul 1999 A
5924068 Richard et al. Jul 1999 A
5926789 Barbara et al. Jul 1999 A
5931900 Notani et al. Aug 1999 A
5931908 Gerba et al. Aug 1999 A
5933816 Zeanah et al. Aug 1999 A
5940818 Malloy et al. Aug 1999 A
5943395 Hansen Aug 1999 A
5943399 Bannister et al. Aug 1999 A
5943410 Shaffer et al. Aug 1999 A
5943677 Hicks Aug 1999 A
5945989 Freishtat et al. Aug 1999 A
5946485 Weeren et al. Aug 1999 A
5946666 Nevo et al. Aug 1999 A
5946711 Donnelly Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5950165 Shaffer et al. Sep 1999 A
5953392 Rhie et al. Sep 1999 A
5953406 LaRue et al. Sep 1999 A
5956693 Geerlings Sep 1999 A
5960437 Krawchuk et al. Sep 1999 A
5963625 Kawecki et al. Oct 1999 A
5963641 Crandall et al. Oct 1999 A
5970122 LaPorta et al. Oct 1999 A
5970124 Csaszar et al. Oct 1999 A
5970482 Pham et al. Oct 1999 A
5974398 Hanson et al. Oct 1999 A
5974406 Bisdikian et al. Oct 1999 A
5974441 Rogers et al. Oct 1999 A
5978766 Luciw Nov 1999 A
5978796 Malloy et al. Nov 1999 A
5983184 Noguchi Nov 1999 A
5987415 Breese et al. Nov 1999 A
5987586 Byers Nov 1999 A
5990885 Gopinath Nov 1999 A
5991365 Pizano et al. Nov 1999 A
5995596 Shaffer et al. Nov 1999 A
5995945 Notani et al. Nov 1999 A
5996006 Speicher Nov 1999 A
5999526 Garland et al. Dec 1999 A
6002394 Schein et al. Dec 1999 A
6003009 Nishimura Dec 1999 A
6006225 Bowman et al. Dec 1999 A
6009383 Mony Dec 1999 A
6009410 LeMole et al. Dec 1999 A
6011579 Newlin Jan 2000 A
6011844 Uppaluru et al. Jan 2000 A
6012045 Barzilai et al. Jan 2000 A
6012066 Discount et al. Jan 2000 A
6012083 Savitzky et al. Jan 2000 A
6014427 Hanson et al. Jan 2000 A
6014428 Wolf Jan 2000 A
6014429 LaPorta et al. Jan 2000 A
6016335 Lacy et al. Jan 2000 A
6016336 Hanson Jan 2000 A
6016478 Zhang et al. Jan 2000 A
6018710 Wynblatt et al. Jan 2000 A
6018715 Lynch et al. Jan 2000 A
6020916 Gerszberg et al. Feb 2000 A
6021181 Miner et al. Feb 2000 A
6021397 Jones et al. Feb 2000 A
6023714 Hill et al. Feb 2000 A
6026087 Mirashrafi et al. Feb 2000 A
6026157 Gulik et al. Feb 2000 A
6029195 Herz Feb 2000 A
6031836 Haserodt Feb 2000 A
6035336 Lu et al. Mar 2000 A
6038561 Snyder et al. Mar 2000 A
6038601 Lambert et al. Mar 2000 A
6041359 Birdwell Mar 2000 A
6044134 De La Huerga Mar 2000 A
6047264 Fisher et al. Apr 2000 A
6047327 Tso et al. Apr 2000 A
6055505 Elston Apr 2000 A
6055513 Katz et al. Apr 2000 A
6055514 Wren Apr 2000 A
6058166 Osder et al. May 2000 A
6061433 Polcyn et al. May 2000 A
6064980 Jacobi et al. May 2000 A
6067348 Hibbeler May 2000 A
6067535 Hobson et al. May 2000 A
6073109 Flores et al. Jun 2000 A
6073140 Morgan et al. Jun 2000 A
6078924 Ainsbury et al. Jun 2000 A
6078994 Carey Jun 2000 A
6081815 Spitznagel et al. Jun 2000 A
6094651 Agrawal et al. Jul 2000 A
6094655 Rogers et al. Jul 2000 A
6097791 Ladd et al. Aug 2000 A
6101241 Boyce et al. Aug 2000 A
6101443 Kato et al. Aug 2000 A
6101473 Scott et al. Aug 2000 A
6108686 Williams, Jr. Aug 2000 A
6115686 Chung et al. Sep 2000 A
6115693 McDonough et al. Sep 2000 A
6119095 Morita Sep 2000 A
6122628 Castelli et al. Sep 2000 A
6122636 Malloy et al. Sep 2000 A
6125376 Klarlund et al. Sep 2000 A
6128624 Papierniak et al. Oct 2000 A
6131184 Weeren et al. Oct 2000 A
6134548 Gottsman et al. Oct 2000 A
6134563 Clancey et al. Oct 2000 A
6144848 Walsh et al. Nov 2000 A
6144938 Surace et al. Nov 2000 A
6151572 Cheng et al. Nov 2000 A
6151582 Huang et al. Nov 2000 A
6151601 Papierniak et al. Nov 2000 A
6154527 Porter et al. Nov 2000 A
6154766 Yost et al. Nov 2000 A
6157705 Perrone Dec 2000 A
6163774 Lore et al. Dec 2000 A
6167379 Dean et al. Dec 2000 A
6167383 Henson Dec 2000 A
6169894 McCormick et al. Jan 2001 B1
6173266 Marx et al. Jan 2001 B1
6173310 Yost et al. Jan 2001 B1
6173316 De Boor et al. Jan 2001 B1
6178446 Gerszberg et al. Jan 2001 B1
6181935 Gossman et al. Jan 2001 B1
6182052 Fulton et al. Jan 2001 B1
6182053 Rauber et al. Jan 2001 B1
6182153 Hollberg et al. Jan 2001 B1
6185558 Bowman et al. Feb 2001 B1
6189008 Easty et al. Feb 2001 B1
6192050 Stovall Feb 2001 B1
6195689 Bahlmann Feb 2001 B1
6199082 Ferrel et al. Mar 2001 B1
6201948 Cook et al. Mar 2001 B1
6203192 Fortman Mar 2001 B1
6209026 Ran et al. Mar 2001 B1
6215858 Bartholomew et al. Apr 2001 B1
6219643 Cohen et al. Apr 2001 B1
6219654 Ruffin Apr 2001 B1
6223983 Kjonaas et al. May 2001 B1
6226360 Goldberg et al. May 2001 B1
6226656 Zawadzki et al. May 2001 B1
6233609 Mittal May 2001 B1
6236977 Verba et al. May 2001 B1
6240391 Ball et al. May 2001 B1
6243092 Okita et al. Jun 2001 B1
6243445 Begeja et al. Jun 2001 B1
6246672 Lumelsky Jun 2001 B1
6246981 Papineni et al. Jun 2001 B1
6253062 Leyendecker Jun 2001 B1
6253146 Hanson et al. Jun 2001 B1
6256659 McLain, Jr. et al. Jul 2001 B1
6256676 Taylor et al. Jul 2001 B1
6259443 Williams, Jr. Jul 2001 B1
6260050 Yost et al. Jul 2001 B1
6263051 Saylor et al. Jul 2001 B1
6266681 Guthrie Jul 2001 B1
6269151 Hanson Jul 2001 B1
6269336 Ladd et al. Jul 2001 B1
6269393 Yost et al. Jul 2001 B1
6275746 Leatherman et al. Aug 2001 B1
6279000 Suda et al. Aug 2001 B1
6279033 Selvarajan et al. Aug 2001 B1
6279038 Hogan et al. Aug 2001 B1
6286030 Wenig et al. Sep 2001 B1
6289352 Proctor Sep 2001 B1
6292811 Clancey et al. Sep 2001 B1
6295533 Cohen Sep 2001 B2
6301590 Siow et al. Oct 2001 B1
6304850 Keller et al. Oct 2001 B1
6311178 Bi et al. Oct 2001 B1
6313734 Weiss et al. Nov 2001 B1
6314094 Boys Nov 2001 B1
6314402 Monaco et al. Nov 2001 B1
6314533 Novik et al. Nov 2001 B1
6317750 Tortolani et al. Nov 2001 B1
6321190 Bernardes et al. Nov 2001 B1
6321198 Hank et al. Nov 2001 B1
6321221 Bieganski Nov 2001 B1
6324262 Tuttle Nov 2001 B1
6327343 Epstein et al. Dec 2001 B1
6334103 Surace et al. Dec 2001 B1
6334133 Thompson et al. Dec 2001 B1
6336124 Alam et al. Jan 2002 B1
6341271 Salvo et al. Jan 2002 B1
6349290 Horowitz et al. Feb 2002 B1
6360139 Jacobs Mar 2002 B1
6363353 Chen Mar 2002 B1
6363393 Ribitzky Mar 2002 B1
6366298 Haitsuka et al. Apr 2002 B1
6370542 Kenyon Apr 2002 B1
6385191 Coffman et al. May 2002 B1
6385301 Nolting et al. May 2002 B1
6385583 Ladd et al. May 2002 B1
6389398 Lustgarten et al. May 2002 B1
6393406 Eder May 2002 B1
6397387 Rosin et al. May 2002 B1
6400804 Bilder Jun 2002 B1
6400938 Biedermann Jun 2002 B1
6404858 Farris et al. Jun 2002 B1
6404877 Bolduc et al. Jun 2002 B1
6405171 Kelley Jun 2002 B1
6405211 Sokol et al. Jun 2002 B1
6411685 O'Neal Jun 2002 B1
6411961 Chen Jun 2002 B1
6412012 Bieganski et al. Jun 2002 B1
6415269 Dinwoodie Jul 2002 B1
6418450 Daudenarde Jul 2002 B2
6421571 Spriggs et al. Jul 2002 B1
6426942 Sienel et al. Jul 2002 B1
6430545 Honarvar et al. Aug 2002 B1
6434524 Weber Aug 2002 B1
6438217 Huna Aug 2002 B1
6442560 Berger et al. Aug 2002 B1
6442598 Wright et al. Aug 2002 B1
6445694 Swartz Sep 2002 B1
6449634 Capiel Sep 2002 B1
6456699 Burg et al. Sep 2002 B1
6456974 Baker et al. Sep 2002 B1
6457018 Rubin Sep 2002 B1
6459427 Mao et al. Oct 2002 B1
6459774 Ball et al. Oct 2002 B1
6466654 Cooper et al. Oct 2002 B1
6470335 Marusak Oct 2002 B1
6473612 Cox et al. Oct 2002 B1
6477549 Hishida et al. Nov 2002 B1
6480842 Agassi et al. Nov 2002 B1
6482156 Iliff Nov 2002 B2
6487277 Beyda et al. Nov 2002 B2
6487533 Hyde-Thomson et al. Nov 2002 B2
6490564 Dodrill et al. Dec 2002 B1
6490593 Proctor Dec 2002 B2
6493447 Goss et al. Dec 2002 B1
6493685 Ensel et al. Dec 2002 B1
6496568 Nelson Dec 2002 B1
6501832 Saylor et al. Dec 2002 B1
6507817 Wolfe et al. Jan 2003 B1
6513019 Lewis Jan 2003 B2
6519562 Phillips et al. Feb 2003 B1
6526399 Coulson et al. Feb 2003 B1
6526575 McCoy et al. Feb 2003 B1
6535866 Iwadate Mar 2003 B1
6539359 Ladd et al. Mar 2003 B1
6549612 Gifford et al. Apr 2003 B2
6567796 Yost et al. May 2003 B1
6567814 Bankier et al. May 2003 B1
6571281 Nickerson May 2003 B1
6574605 Sanders et al. Jun 2003 B1
6578000 Dodrill et al. Jun 2003 B1
6587547 Zirngibl et al. Jul 2003 B1
6587822 Brown et al. Jul 2003 B2
6591263 Becker et al. Jul 2003 B1
6594672 Lampson et al. Jul 2003 B1
6594682 Peterson et al. Jul 2003 B2
6600736 Ball et al. Jul 2003 B1
6604135 Rogers et al. Aug 2003 B1
6606596 Zirngibl et al. Aug 2003 B1
6611834 Aggarwal et al. Aug 2003 B1
6643639 Biebesheimer et al. Nov 2003 B2
6658093 Langseth et al. Dec 2003 B1
6658432 Alavi et al. Dec 2003 B1
6664897 Pape et al. Dec 2003 B2
6671716 Diedrichsen et al. Dec 2003 B1
6678674 Saeki Jan 2004 B1
6694326 Mayhew et al. Feb 2004 B2
6697824 Bowman-Amuah Feb 2004 B1
6697964 Dodrill et al. Feb 2004 B1
6701311 Biebesheimer et al. Mar 2004 B2
6707889 Saylor et al. Mar 2004 B1
6741967 Wu et al. May 2004 B1
6741995 Chen et al. May 2004 B1
6748066 Espejo et al. Jun 2004 B1
6751657 Zothner Jun 2004 B1
6754233 Henderson et al. Jun 2004 B1
6757362 Cooper et al. Jun 2004 B1
6760412 Loucks Jul 2004 B1
6760720 De Bellis Jul 2004 B1
6763300 Jones Jul 2004 B2
6765997 Zirngibl et al. Jul 2004 B1
6768788 Langseth et al. Jul 2004 B1
6782378 Leathers Aug 2004 B2
6785592 Smith et al. Aug 2004 B1
6785668 Polo et al. Aug 2004 B1
6785676 Oblinger Aug 2004 B2
6785710 Kikinis Aug 2004 B2
6788768 Saylor et al. Sep 2004 B1
6792086 Saylor et al. Sep 2004 B1
6798867 Zirngibl et al. Sep 2004 B1
6826593 Acharya et al. Nov 2004 B1
6829334 Zirngibl et al. Dec 2004 B1
6831668 Cras et al. Dec 2004 B2
6836537 Zirngibl et al. Dec 2004 B1
6850603 Eberle et al. Feb 2005 B1
6873693 Langseth et al. Mar 2005 B1
6885734 Eberle et al. Apr 2005 B1
6885736 Uppaluru Apr 2005 B2
6888929 Saylor et al. May 2005 B1
6895084 Saylor et al. May 2005 B1
6915308 Evans et al. Jul 2005 B1
6934687 Papierniak et al. Aug 2005 B1
6940953 Eberle et al. Sep 2005 B1
6964012 Zirngibl et al. Nov 2005 B1
6975835 Lake et al. Dec 2005 B1
6977992 Zirngibl et al. Dec 2005 B2
6993476 Dutta et al. Jan 2006 B1
7007029 Chen Feb 2006 B1
7020251 Zirngibl et al. Mar 2006 B2
7031952 Heumann et al. Apr 2006 B1
7065188 Mei et al. Jun 2006 B1
7080328 Sawyer Jul 2006 B1
7082422 Zirngibl et al. Jul 2006 B1
7103605 Hazi et al. Sep 2006 B1
7106843 Gainsboro et al. Sep 2006 B1
7110952 Kursh Sep 2006 B2
7111010 Chen Sep 2006 B2
7117172 Black Oct 2006 B1
7120628 Conmy et al. Oct 2006 B1
7130800 Currey et al. Oct 2006 B1
7143109 Nagral et al. Nov 2006 B2
7165098 Boyer et al. Jan 2007 B1
7197461 Eberle et al. Mar 2007 B1
7266181 Zirngibl et al. Sep 2007 B1
7272212 Eberle et al. Sep 2007 B2
7330847 Saylor et al. Feb 2008 B2
7340040 Saylor et al. Mar 2008 B1
7379540 Van Gundy May 2008 B1
7389355 Brown et al. Jun 2008 B2
7401046 Hollerman et al. Jul 2008 B2
7428302 Zirngibl et al. Sep 2008 B2
7440898 Eberle et al. Oct 2008 B1
7486780 Zirngibl et al. Feb 2009 B2
7519544 Bauer Apr 2009 B1
7552054 Stifelman et al. Jun 2009 B1
7571226 Partovi et al. Aug 2009 B1
7676368 Shizuka et al. Mar 2010 B2
7716055 McIntosh et al. May 2010 B1
7818212 Mesaros Oct 2010 B1
7881443 Langseth et al. Feb 2011 B2
7949728 Rivette et al. May 2011 B2
7962326 Tsourikov et al. Jun 2011 B2
7966328 Germeraad et al. Jun 2011 B2
8051369 Zirngibl et al. Nov 2011 B2
8065338 Harvey Nov 2011 B2
8094788 Eberle et al. Jan 2012 B1
20010012335 Kaufman et al. Aug 2001 A1
20010013004 Haris et al. Aug 2001 A1
20010020242 Gupta et al. Sep 2001 A1
20020006126 Johnson et al. Jan 2002 A1
20020026496 Boyer et al. Feb 2002 A1
20020035501 Handel et al. Mar 2002 A1
20020059373 Boys May 2002 A1
20020065752 Lewis May 2002 A1
20020065879 Ambrose et al. May 2002 A1
20020067808 Agraharam et al. Jun 2002 A1
20030009430 Burkey et al. Jan 2003 A1
20030088872 Maissel et al. May 2003 A1
20030101201 Saylor et al. May 2003 A1
20040128514 Rhoads Jul 2004 A1
20040133907 Rodriguez et al. Jul 2004 A1
20040153438 Rossiter et al. Aug 2004 A1
20040205045 Chen et al. Oct 2004 A1
20060129499 Combar et al. Jun 2006 A1
20060282408 Wisely et al. Dec 2006 A1
Foreign Referenced Citations (5)
Number Date Country
2153096 Dec 1996 CA
0878948 Nov 1998 EP
0889627 Jan 1999 EP
WO 9415294 Jul 1994 WO
WO 9858356 Dec 1998 WO
Related Publications (1)
Number Date Country
20080294713 A1 Nov 2008 US
Provisional Applications (1)
Number Date Country
60126055 Mar 1999 US
Continuations (2)
Number Date Country
Parent 10339579 Jan 2003 US
Child 12029004 US
Parent 09345440 Jul 1999 US
Child 10339579 US