System and method for managing media and signaling in a communication platform

Information

  • Patent Grant
  • 11973835
  • Patent Number
    11,973,835
  • Date Filed
    Monday, January 28, 2019
    5 years ago
  • Date Issued
    Tuesday, April 30, 2024
    7 months ago
Abstract
Systems and methods for communicating media between a client and a media server. Responsive to a communication initiation received by a signaling controller from a client system, the signaling controller invites a media server by providing an invitation to the media server. The media server is bridged with the client system by controlling a media proxy service to establish a media proxy between the client system and the media server by using client media parameters of the first communication initiation and media server media parameters provided by the media server responsive to the invitation. Media is communicated between the external client system and the media server by using the established media proxy.
Description
TECHNICAL FIELD

This invention relates generally to the communication platform field, and more specifically to a new and useful system and method for managing media and signaling in a communication platform in the communication platform field.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is schematic diagram of a system of a preferred embodiment;



FIG. 2 is a process block diagram of a method of a preferred embodiment;



FIG. 3 is schematic diagram of a system of a preferred embodiment;



FIG. 4 is a process block diagram of a method of a preferred embodiment;



FIG. 5 is a communication sequence diagram of a method of a preferred embodiment;



FIG. 6 is an architecture diagram of a system of a preferred embodiment; and



FIG. 7 is an architecture diagram of a system of a preferred embodiment.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.


1. SYSTEM FOR MANAGING MEDIA AND SIGNALING

As shown in FIG. 1, a system for managing media and signaling in a communication platform can include a media proxy service 110, a media server cluster 120, and at least one signaling controller 130. The system functions to separate signaling and media into two services that cooperatively support media communications. The system is a platform architecture that can offer flexibility in media-processing related technology, in scaling capacity of the platform, and improved tolerance to system failure. As opposed to depending on a monolithic signaling and media stack, media and signaling can operate in cooperation but independently. Further the architecture of the media and signaling can provide benefits relating to multi-tenancy, security, per account/per-subaccount metering and billing, scalability, programmatic integration, regionally distributed availability, and/or other suitable benefits.


The system is preferably used within a communication platform. The communication platform can support synchronous voice communication (e.g., IP calls, PSTN calls, conference calls, etc.), synchronous video communication (e.g., video chat, video conferencing, screen sharing, etc.), immersive media experiences (e.g., virtual reality, 3D imagery), and/or other suitable types of communication. The system may additionally be used in combination with application specific logic. In one variation, account directed application logic could be used to direct control logic of a communication session such as in the application communication platform described in U.S. Pat. No. 8,306,021, issued on 6 Nov. 2012, which is incorporated in its entirety by this reference. The system may additionally or alternatively be used in a SIP trunking service or other suitable VoIP communication service such as a system employing the signaling and media functionality of the system of U.S. patent application Ser. No. 14/208,920 filed 13 Mar. 2014, which is incorporated in its entirety by this reference. The system is preferably used in a multi-tenant communication system, where multiple accounts/users share use of common infrastructure. The system may have particular benefits to use in a multi-tenant system as the system can support dynamic scaling, interfacing with outside client infrastructure, and supporting a variety of media service variations, but the system may alternatively be used in a single-tenant communication system. In one preferred use-case, the system can be used to provide more resilient and flexible media services within a communication platform. In another preferred use-case, the system can be used to provide a media service as a platform offering to outside applications and services. A media service as a platform system can allow out side applications or services to utilize media and signaling related infrastructure offered within the platform without having build out custom solutions. The media service as a platform system preferably addresses issues related to offering such a service.


The media proxy service 110 of a preferred embodiment functions as the interface to the media services (e.g., media services of the media server cluster 120). The media proxy service 110 is preferably a proxy to the actual media processing services of the media server cluster 120. Other services and consumers of the media service preferably communicate with the media server cluster through the media server cluster 120. The media proxy service 110 can be a single component but is preferably a plurality of proxy services that can be used interchangeably. The media proxy service 110 may additionally include a hierarchy of media proxy servers. The media proxy servers can be regionally distributed to serve different geographic regions, and relay media through a base media proxy server (e.g., a main region which contains a media server cluster 120). The base media proxy server can be instantiated in a main regional computing infrastructure location, and may include additional capabilities to interface with central or region specific resources such as canonical database systems.


The media proxy service 110 is preferably hosted in a distributed computing platform but may alternatively be hosted in a central site. The set of proxy servers supporting the media proxy service 110 are preferably referenced through one or more static networking addresses, more preferably a static IP address and/or port. The static address functions to enable client applications to reliably set networking restrictions to allow communication with the media proxy service no. As opposed to a system with a cluster of media servers that constantly is updated, the media proxy service 110 can provide a reliable entry portal of media communication. The machines of the media proxy service no can have Enterprise Integration Patterns (EIPs). A client service, which preferably communicates over internet protocol, may whitelist a set of IPs and ports to which a media proxy service no will operate over. More preferably, the EIPs can be used by customers to enable whitelisting and/or prioritization of RTP traffic between clients and the system. Additionally, particular entities (e.g., account, sub-accounts, and the like) can be assigned particular sub-sets of networking addresses, which can work in combination with security policy engine. Addition al security can further be used in communication such as including of authentication tokens to validate inbound/outbound communication. The clients can be web application systems, native applications for a desktop computer, native applications for mobile computing devices, or any suitable client application instance (e.g., a client application in stance of the external application client 170).


The media proxy service 110 preferably facilitates communicating a media stream between a least one client endpoint (e.g., 170) and at least a media server (e.g., 180) of the media service cluster 120. A media stream of a media session may further be routed through multiple media servers (e.g., media servers of the media server cluster 120), a communication application service (e.g., 140 of FIG. 1) (which can control state of a media session), and/or outside communication channels (e.g., external SIP services, PSTN, Over The Top (OTT) communication services, and the like). The media proxy service 110 is preferably a high performance proxy with operational capacity to handle tens of thousands of concurrent media sessions, but any suitable capacity may be used. The media proxy service 110 can be a SIP-based proxy such as OpenSIPS, a STUN/TURN server, or any suitable configured proxy. However, the media proxy service 110 may use any suitable signaling protocol. The media proxy service 110 can be configured to provide load balancing across the media server cluster 120. The media proxy service no may track the number of media sessions concurrently handled by media servers and, optionally, track the functional capabilities of the types of available media service. The media proxy service 110 may be configured to route newly routed media sessions to a media server node in the media server cluster 120 according to capacity and capabilities of the media server cluster 120. In alternative embodiments the media proxy service 110 can be an optional element.


The media server cluster 120 of a preferred embodiment functions to provide the media processing services. The media server cluster 120 is preferably a set of media servers (e.g., 180) that run on machines, virtual machines, containers, or other computing environments inside a distributed computing infrastructure. The media server cluster 120 may alternatively be hosted in any suitable manner. In one variation, there is one media server cluster 120 for the entire system. In another variation, there are multiple media server clusters 120 where each media server cluster 120 is located in a different geographically distinct region.


The media servers (e.g., 180) of the media server cluster 120 function to operate on the media stream—analyzing/processing the stream and/or augmenting the stream. In one preferred implementation, the media server cluster 120 includes a plurality of media servers that provide media transcoding services. Immutable media servers preferably inspect, analyze, log, and/or process media streams. A recording media service may be an example of an immutable media server. A mutable media server preferably alters, manipulates, and/or augments the communicated stream. The transcoding media can convert between media formats. As an example, a transcoding media server may convert between various codecs such as Speex used in mobile operating system applications (e.g., iOS and Android), Opus used in web and WebRTC applications, and PCMU used in PSTN and other media services. Any suitable codec or media transformation may alternatively be performed. The media server can additionally translate between media mediums such as converting a pure audio stream to a video stream or pulling the audio from a video into an audio stream. Other suitable media server services can include mixing, recording, translating, audio or video processing, answering machine detection, Text to Speech services, Interactive voice response services, DTMF detection, and/or any suitable media services.


The media servers (e.g., 180) can additionally include metering and logging layers that operate in coordination with the provided media services. The metering and logging function to create a record of notable activities. The metering can be used in providing programmatic hooks (e.g., callback URI triggering, application execution, and the like), billing/crediting an associated entity (e.g., charging for services or controlling resource access), creation of an audit trail, and/or other suitable functionality.


A media service API can be provided. The media service API can be a REST API. The API is preferably a RESTful API but may alternatively be any suitable API such as SOAP or custom protocol. The RESTful API works according to an application layer request and response model. An application layer request and response model may use HTTP, HTTPS SPDY, or any suitable application layer protocol. Herein HTTP may be used, but should be interpreted as being limited to the HTTP protocol. HTTP requests (or any suitable request communication) to the communication platform preferably observe the principles of a RESTful design. RESTful is understood in this document to describe a Representational State Transfer architecture as is known in the art. The RESTful HTTP requests are preferably stateless, thus each message communicated contains all necessary information for processing the request and generating a response. The API service can include various resources, which act as endpoints that can act as a mechanism for specifying requested information or requesting particular actions. The resources can be expressed as URI's or resource paths. The RESTful API resources can additionally be responsive to different types of HTTP methods such as GET, Put, POST and/or DELETE. The media service API can be used to provide information about current state of media sessions, events, media, or related data. The media service API can additionally provide interactive control of one or more operation of a media service.


The media server cluster 120 can be a substantially homogeneous cluster of identical or similar instances of the same media server. For example, a system may provide only one media focused process in which case all the media servers may be substantially similar. The media server cluster 120 may alternatively be heterogeneous containing more than one type of service provided by the media servers. In one example, there may be a first type of transcoding server operating on a first software (such as the FreeSWITCH) stack inside of the operating system of a virtual machine, and then a second type of transcoding server built to run in the virtual machine. In this example, the first type of media server may be a legacy media service, and the second type may be a new version of the media service. The use of the first and second type may be interchangeable. Alternatively, two of the media servers may not be interchangeable where each is designed for a particular purpose. For example, a subset of media servers may be for audio processing and a second subset of media servers for video processing operations. The media proxy service 110 can preferably dynamically route media streams appropriately.


A signaling controller 130 functions as a distinct service that manages signaling of a media stream. The signaling controller 130 preferably handles the signaling messaging that directs media streams. The signaling controller 130 preferably maintains state of the Session Description Protocol (SDP) mechanism of a communication session. A communication session preferably includes the media session and the directing signaling messages. The signaling controller 130 can preferably communicate SDP information to relevant resources such as an outside client initiating or receiving a communication, or to an internal resource such as a communication application service (e.g., 140).


The signaling controller 130 is preferably a service on a computing device distinct from that of the media resources (e.g., the media proxy service 110 and the media server cluster 120). The signaling controller 130 may be on a different host or optionally a different virtual machine. Operating independently, a communication session can be recovered during a failure of a media or signaling resource. In particular, if a host of a media resource, either a media proxy server or a media server, goes down, the associated signaling controller 130 for that communication session can re-establish the media session with a different media resource. Additionally, as distinct elements, the signaling controller 130 can perform asynchronous operations relating to a communication session. For example, a signaling controller 130 may a synchronously call out to an authentication service, and later act on an authentication response from the authentication service.


The signaling controller 130 can additionally include a set of orchestration services and state managers that function to manage the orchestration, allocation, and state of related services. The configuration of orchestration services and/or states managers may be different depending on the type and function of the provided media services. The orchestration service preferably includes application logic to interface and direct one or more media service state managers. The communication signaling is preferably managed within the signaling controller 130 (i.e., orchestration service). For example, incoming SIP communication is directed to the signaling controller 130, the orchestration service 130 then communicates with a media service state manager that sets up media service infrastructure to support the communication, the media service state manager then transmits the information back to the orchestration service which then negotiates the communication session as specified by the media service state manager. A media state manager can include application logic and state information to determine the state of a particular type of media communication session such as a conferencing media session, a transcoding media session, and the like. A media state manager may additionally include application logic to control the state of related media servers. There can be multiple types or media state managers, which apply different levels of media service modeling.


The system can additionally include a communication application service (e.g., 140), which functions to supply control logic to the communication session. The communication application service can be a combined media and signaling element, but may alternatively be split media and signaling system.


The system can additionally or alternatively include communication interfaces, which function to bridge media and/or signaling to outside communication channels such as the PSTN, SIP services, OTTmedia communication services, and/or any suitable communication channel.


The system may additionally include other components that function to support a media service as a platform offering. For example the system can include a queuing system to rate limit, prioritize, order, and manage shared usage of media servers and other resource. The system can additionally include a policy engine that functions to regulate apply policy to system activities of account, sub-account, ephemeral users, and/or other entities. The system can include an identity system that functions to create an authentication model and identity ecosystem within different system scopes (e.g., identity within an account or identity across multiple accounts). The presence system can additionally be included. In one variation, the functionality of the presence system is offered in a combined identity-presence system. A presence system can function to provide information about availability, device destination, and communication preferences. A routing service can be used to dynamically determine and select routes within the system. The system may additionally or alternatively include any suitable support sub-system.


The media service cluster 120 can include a variety of different specialized media services. Those media services may be combined into a monolithic media service, but the media services are preferably divided between more targeted media services such as transcoding services, recording services, text-to-speech services, speech recognition services, input detection services, conferencing services, and other suitable media services.


A transcoding service functions to convert between formats. The transcoding may convert an active media stream to another format. For example, a call with two endpoints may natively use two different codecs. The transcoding service may convert one or two of the legs of the communication to a common or compatible media stream format. Additionally, the transcoding service may work to convert accessed media resources that are or will be used in a communication session. For example, an MP3 file accessed from a URI may be converted to a wavefile for playback during a phone call. In another example, a web client may use an OPUS codec while a mobile app may use Speex codec. The transcoding service preferably accepts a media stream in a first format and outputs a media stream in a second format.


A recording service preferably enables recording of calls or communication sessions. Recording is preferably for audio recording, but may additionally or alternatively include video recording, screen-sharing recording, multimedia recording, or any suitable recording service. The recording service may have additional features that may or may not be integrated into the recording service of the local service. Transcription is one preferred feature of the recording service. Transcription may use algorithmic speech recognition techniques, automated manual transcription, semi-automated techniques, and/or any suitable approach.


A Text-to speech service preferably generates, plays, and/or converts text into audible speech. The audible speech is then played within a communication stream. For example, a phone call may connect to a telephony application that specifies a script that should be read to the caller. The script is preferably directed to the TTS service to be played during the phone call. The text-to-speech services are preferably for audio communication. However, a computer generated video simulation or rendering of a speaker may additionally be created for video communication. The text-to-speech service preferably takes text as an input and outputs an audio stream that can be played or mixed in with the communication session


A speech recognition service is preferably a service used in collecting spoken input and converting it into a format for transcription, natural language processing, or interpretation of responses. The speech recognition may use the transcription component described above, but may alternatively use an alternative approach. The input to the speech recognition is preferably an audio stream and parameters of speech recognition.


An input detection service functions to gather inputs of a communication device. Preferably the input detection service collects DTMF inputs from a user. In the DTMF input detection variation, an audio stream and parameters of detection are preferably an input to the service. The components of an answering machine detection service may alternatively be integrated into the input detection service or any suitable service.


Conferencing services preferably facilitate calls with more than two endpoints connected. Various features of conference calls may be enabled through components of conferencing services. The conferencing service preferably mixes audio for audio and/or video sessions.


2. METHOD FOR MANAGING MEDIA AND SIGNALING

As shown in FIG. 2, a method (e.g., 200) for managing media and signaling in a communication platform can include receiving a communication initiation S110, inviting a media server (e.g., the media server 180 of FIG. 1) S120, bridging the invited media server with the requesting client (e.g., the client 170 of FIG. 1) S130, and proxying media with a media server cluster (e.g., the media server 180 of the media server cluster 120) S140. The method functions to establish a media stream through media resources that are separate from the signaling resources. Additionally, the method can be applied to enable: scaling media resources independent from signaling resources; recovering a communication stream when a media resource fails; and providing a variety of media services.


Block S110, which includes receiving a communication initiation, functions to receive an invite from a client service (e.g., 170). Preferably, a signaling and media communication protocol is used in interfacing with external client devices such as communication endpoints, applications, or other external communication systems. More preferably, the protocol substantially conforms to the session initiation protocol (SIP), but any suitable protocol may be used. Alternatively, other communication approaches such as WebRTC, which may have a control channel and a media, real-time communication channel may alternatively or additionally be supported. Herein, SIP is used as the exemplary protocol, but it would be appreciated by one skilled in the art that alternative protocol communication may be used. The communication initiation preferably occurs as a result of an INVITE. In response, ‘100’ Trying response can be returned. The INVITE is preferably received from an external client (e.g., 170), and is received at a signaling controller (e.g., 130). As described above, the signaling controller (e.g., 130) preferably manages the control directives that orchestrate the communication (e.g., the non media communication). The external client (e.g., 170) is preferably a system operated by an account holder of the platform.


The communication initiation preferably initiates a set of asynchronous events within a signaling controller (e.g., 130). The asynchronous events can be passed off to any suitable number of handlers. The handler services can determine how the communication initiation is handled. In one variation, pluggable authentication services can be integrated into the communication process during the a synchronous events. The type of authentication can depend on particular situations such as the type of communication, the type of client device, and other suitable conditions.


Block S120, which includes inviting media server (e.g., 180), functions to dispatch the communication initiation to media related systems. Dispatchers can be services that distribute a communication initiation to a media service. A session description protocol (SDP) message or any suitable communication descriptor is transparently passed to the media services. The media services (e.g., the media proxy service 110, the media server 180) are preferably distinct from the signaling controller (e.g., 130). A smart media control function may sit in front of a media server cluster (e.g., 120). The media control function can provide basic traffic forwarding to media services, but may additionally provide smart load balancing. The capacity of media servers can be monitored and traffic routed to different media instances according to the capacity.


Block S130, which includes bridging invited media server (e.g., 180) with a requesting client (e.g., 170), functions to connect the media communication of the client with that of the media server. Preferably, the media server system (e.g., 180) will issue an INVITE back to the signaling controller (e.g., 130). The INVITE from the media server is preferably correlated with the initial INVITE sent to the media server. In response, the session description information (e.g., the SDP received from the media server), is used to INVITE the media proxy (e.g., the media proxy service 110) and establish a back-to-back user agent from the original INVITE from the client control signaling is executed to establish the media proxy (e.g., 110) in the media communication flow between the client (e.g., 170) and the media server cluster (e.g., 120). The media proxy (e.g., 110) preferably exists as an edge node of the communication platform. The media proxy will preferably have standard EIPs such that a client can whitelist and/or prioritize real time protocol traffic between the client and the media proxy. With a standardized IP address of the media proxy, a client system (e.g., 170) can rely on a consistent set of components with which they will interface.


Block S140, which includes proxying media with the media server cluster (e.g., the media server 180 of the cluster 120), functions to communicate media between the client and the media server cluster. Preferably a media proxy (e.g., 110) is established as an intermediary component between the client and at least the used media services in the media server cluster. The media proxy can preferably support numerous concurrent media channels. As one example, tens of thousands of media sessions can be proxied by a proxying media server. The media proxy servers can additionally be scaled to support more concurrent media sessions. The media proxy could be a SIP-based proxy but may alternatively be a TURN server, or any suit able proxying system.


During, the communication, the signaling controller (e.g., 130) can preferably augment and modify the media services. Media services may receive new instructions; media services can be added to the media route; media services can be removed from the media route; and other suitable actions can be directed from the signaling controller. If the media requirements change, then the signaling controller


Additionally the method can include recovering from a media service failure. The signaling controller or any suitable signaling resource can preferably re-establish media communication in the event of a media communication failure. For example, if a media server in the cluster fails, the signaling controller can re-negotiate a new media channel.


Similarly, the method may include recovering from a signaling service failure. In some cases signaling may involve multiple components, which can provide some redundancy in the state of the communication session. Since the media channel is distinct from the signaling channel, if a signaling component fails, the system can re-establish new signaling resources while maintaining the media channel. This may involve augmenting the media resources as well.


In one preferred variation, the signaling and media communication is used to support a communication application session. The method can be used to establish a media channel that substantially flows from the client device (e.g., 170), to a media proxy server (e.g., no), to the used media server instances (e.g., 180) and then to a communication application service (e.g., 140) (such as a call router which can process application instructions). The media channel may terminate within the communication platform, such as when a media player service is generating media for a connected endpoint. Alternatively, the media channel may be further connect out to a provider gateway (e.g., 150 of FIG. 1) to some external communication system (e.g., 160 of FIG. 1) such as a PSTN carrier network, a SIP network, an over-the-top communication platform, or any suitable external communication system. A signaling controller (e.g., 130) preferably maintains the signaling channel with some access to the involved media resources and the communication application service.


In one variation, the method and system can be applied to a media service platform. The method is preferably operated to facilitate providing media access and use to outside applications and services as a form of service. Outside entities can delegate media processing tasks, which otherwise may require considerable technical investment for the outside entities to develop and/or maintain. As a media service provider, the system and method can provide transcoding services, conferencing services, DTMF tone interpretations, scaling of picture in a video stream, or any suitable media service. The media services can originate through one service and be terminated in any suitable destination endpoint, but the media streams may alternatively originate and terminate in the same external service.


Additionally, the system and method can provide a dynamic architecture that can be scaled to meet demand and can be distributed across geographically distinct regions.


3. COMMUNICATION PLATFORM SYSTEM AND MEDIA SYSTEM

As shown in FIG. 3, a communication platform system 300, in accordance with an embodiment, includes a media system 301, a communication application service 350 and a provider gateway 360.


In some implementations, the communication application service 350 is similar to the communication application service 140 of FIG. 1. In some implementations, the provider gateway 360 is similar to the provider gateway 150 of FIG. 1. In some implementations, the carrier network 370 is similar to the carrier network 160 of FIG. 1. In some implementations, the external application client system 340 is similar to the external application client system 170 of FIG. 1.


The media system 301 includes a media proxy service 310, a media server cluster 320, and a signaling controller 330. In some implementations, the media proxy service 310 includes at least one media proxy (e.g., the media proxy 312).


In some implementations, the media proxy (e.g., 312) includes a back-to-back user agent. In some implementations, the media proxy service 310 includes at least one of a SIP-based proxy, and a STUN (Session Traversal Utilities for NAT (Network Address Translator))/TURN (Traversal Using Relays a round NAT) server. In some implementations, the SIP-based proxy includes an Open SIPS proxy.


In some implementations, the media server cluster 320 includes at least one media server (e.g., the media server 321).


In some implementations, the media proxy service 310 is similar to the media proxy service no of FIG. 1. In some implementations, the media server cluster 320 is similar to the media server cluster 120 of FIG. 1. In some implementations, the signaling controller 330 is similar to the signaling controller 130 of FIG. 1.


In some implementations, the provider gateway 360 is communicatively coupled to a carrier network 370 and the communication application service 350. In some implementations, the media system 301 is communicatively coupled to an external application client system 340 and the communication application service 350. In some implementations, the media system is external to the communication platform system 300. In some implementations, the media system is external to the communication platform system 300, and the media system is communicatively coupled to an external application client system (e.g., 340).


3.1 Signaling Interfaces and Media Interfaces


In some implementations, the external application client system 340 includes a media interface 341 and a signaling interface 342. In some implementations, the signaling controller includes a signaling interface 331. In some implementations, the media server 321 includes the media interface 321a, and a signaling interface 321b. In some implementations, the media server 321 includes media interfaces 321a and 321c, and a signaling interface 321b. In some implementations, the media proxy service includes a signaling interface 311. In some implementations, the media proxy 312 includes a client proxy media interface 314 and a media server proxy media interface 313. In some implementations, the communication application service 350 includes a signaling interface 351 and a media interface 352. In some implementations, the communication application service 350 includes a signaling interface 351 and the media interfaces 352 and 353.


In some implementations, each media interface (e.g., 313, 314, 321a, 321c, 341, 352, and 354), corresponds to at least one of a media communication IP address, a media communication port, a media communication protocol, and a media processing codec. In some implementations, the media communication protocol is RTP (Real-time Transport Protocol). In some implementations, each signaling interface (e.g., 311, 321b, 331, 342, and 351), corresponds to at least one of a signaling IP address, a signaling communication port, and a signaling protocol.


3.2 Communication of Signaling Messages


In some implementations, the client system 340 and the signaling controller 330 communicate signaling messages by using the signaling interface 342 and the signaling interface 331, respectively. In some implementations, the client system 340 provides the signaling controller 330 with at least a first communication initiation from the signaling interface 342 (of the client system) to the signaling interface 331 (of the signaling controller).


In some implementations, the signaling controller 330 and the media server 321 communicate signaling messages by using the signaling interface 331 and the signaling interface 321b, respectively.


In some implementations, the signaling controller 330 and the media proxy service 310 communicate signaling messages by using the signaling interface 331 and the signaling interface 311, respectively.


In some implementations, the signaling controller 330 and the communication application service 350 communicate signaling messages by using the signaling interface 331 and the signaling interface 351, respectively.


In some implementations, the communication application service 350 and the provider gateway 360 communicate signaling messages by using the signaling interface 351 of the communication application service 350.


3.3 Media Communication


In some implementations, the media proxy service 110 and the media server 321 communicate media by using the media interface 313 and the media interface 321a, respectively.


In some implementations, the media proxy service 110 and the client system 340 communicate media by using the media interface 314 and the media interface 341, respectively.


In some implementations, the media server 321 and the communication application service 350 communicate media by using the media interface 321c and the media interface 352, respectively.


In some implementations, the communication application service 350 and the provider gateway 360 communicate media by using the media interface 354 of the communication application service 350.


In some implementations, media is communicated by using a Real-time Transport Protocol (RTP).


3.4 Computing Devices


In some implementations, the communication platform system 301 is implemented as a single server device. In some implementations, the communication platform system 301 is implemented as a distributed computing system that includes a plurality of server devices, and each server device of the distributed computing system includes one or more of the media system 301, the communication application service 350, and the provider gateway 360.


In some implementations, the media system 301 is implemented as a single server device. In some implementations, the media system 301 is implemented as a distributed computing system that includes a plurality of server devices, and each server device of the distributed computing system includes one or more of the media proxy service 310, the media server cluster 320, and the signaling controller 330.


In some implementations, the media proxy service 310 is implemented as a single server device. In some implementations, the media proxy service 310 is implemented as a distributed computing system that includes a plurality of server devices.


In some implementations, the media server 321 is implemented as a single server device. In some implementations, the media server 321 is implemented as a distributed computing system that includes a plurality of server devices.


In some implementations, the media server cluster 320 is implemented as a single server device. In some implementations, the media server cluster 320 is implemented as a distributed computing system that includes a plurality of server devices.


In some implementations, the signaling controller 330 is implemented as a single server device. In some implementations, the signaling controller 330 is implemented as a distributed computing system that includes a plurality of server devices.


In some implementations, the communication application service 350 is implemented as a single server device. In some implementations, the communication application service 350 is implemented as a distributed computing system that includes a plurality of server devices.


In some implementations, the provider gateway 360 is implemented as a single server device. In some implementations, the provider gateway 360 is implemented as a distributed computing system that includes a plurality of server devices.


4. METHOD OF FIG. 4


FIG. 4 is a process block diagram of a method 400 of an embodiment, and FIG. 5 is a communication sequence diagram of an implementation of the method 400. The method 400 of FIGS. 4 and 5 is performed at a communication platform system (e.g., 300 of FIGS. 3 and 6), and responsive to a first communication initiation (e.g., 501 of FIG. 5) received by the signaling controller (e.g., 330 of FIG. 3) of the communication platform system (e.g., 300) from a client system (e.g., 340) external to the communication platform system. In some embodiments, the method 400 is performed at a media system (e.g., 301 of FIGS. 3 and 7).


The method 400 includes: providing an invitation to a media server (e.g., 321 of FIG. 3) of the communication platform system (e.g., 300) based on the first communication initiation (e.g., 501 of FIG. 5), the first communication initiation specifying client media parameters, the invitation being provided by the signaling controller (e.g., 330) (process S410); bridging the invited media server (e.g., 321) with the external client system (e.g., 340) by using a media proxy service (e.g., 310) of the communication platform system (process S420); and communicating media between the external client system (e.g., 340) and the invited media server (e.g., 321) by using the media proxy service (e.g., 310) (process S430).


Process S420, which includes bridging the invited media server with the external client system by using the media proxy service, includes: responsive to a first signaling message provided by the invited media server (e.g., the signaling message of the process S511 of FIG. 5), the signaling controller providing an invitation to the media proxy service (e.g., the signaling message of the process S420 shown in FIG. 5) to establish media communication (processes S521, S522, S523, S524) with the external client system based on the first signaling message, the media server providing the first signaling message (e.g., the signaling message of the process S511) responsive to the invitation (e.g., the signaling message of the process S410 shown in FIG. 5) provided by the signaling controller.


In some implementations, the signaling controller 330 performs the process S410. In some implementations, the signaling controller 330 per forms the process S420. In some implementations, the media proxy service 310 performs the process S430. In some implementations, the media server (e.g., 321) per forms the process S511. In some implementations, the media proxy service 310 per forms the process S521. In some implementations, the media proxy service 310 performs the process S522. In some implementations, the signaling controller 330 performs the process S523. In some implementations, the signaling controller 330 performs the process S524.


In some implementations, the process S410 is similar to the process S120 of FIG. 1. In some implementations, the process S420 is similar to the process S130 of FIG. 1. In some implementations, the process S430 is similar to the process S140 of FIG. 1.


In some implementations, the first communication is received by the signaling controller as described above for S110 of FIG. 2.


In some implementations, the method 400 in eludes recovering media communication by using the signaling controller. In some implementations, the media communication is recovered as described above for S150 of FIG. 2.


4.1 Providing an Invitation to a Media Server


In some implementations, the process S410 functions to control the signaling controller 330 to invite a media server (e.g., 321) of the media system 301 by providing an invitation to the media server. In some implementations, the invitation is provided based on the first communication initiation (e.g., 501). The first communication initiation specifies client media parameters. In some implementations, the client media parameters identify the client system media interface 341. In some implementations, the client media parameters include at least media communication information of the client system (e.g., 340). In some implementations, media communication information of the client system includes at least one of a media communication IP address of the client system, a media communication port of the client system, a media communication protocol of the client system, and a media processing codec of the client system.


In some implementations, the signaling controller 330 provides the invitation to the media server via a signaling message (e.g., the signaling message of the process S410 shown in FIG. 5). In some implementations, the signaling controller 330 provides the invitation to the media server via a SIP message. In some implementations, the invitation is a SIP INVITE request, and invitation includes the client media parameters as session description protocol (SDP) parameters of the SIP INVITE request.


In some implementations, the first communication initiation (e.g., 501) is a SIP INVITE request. In some implementations, the first communication initiation is a SIP INVITE request, and the client media parameters are session description protocol (SDP) parameters of the SIP INVITE request.


In some implementations, the signaling controller 330 receives the first communication initiation (e.g., 501) via the signaling interface 331 of the signaling controller 330, and the client system (e.g., 340) provides the first communication initiation via a signaling interface (e.g., 342) of the client system.


In some implementations, the signaling controller 330 provides the invitation via the signaling interface 331, and the media server receives the invitation via a signaling interface (e.g., 321b).


In some implementations, providing an invitation to a media server includes selecting at least one of a plurality of media servers. In some implementations, the signaling controller 330 selects a media server of the cluster 320 by using at least one of a media state manager (e.g., the media state manager described above for FIG. 1), a dispatcher (e.g., the dispatcher described above for S120 of FIG. 2), and a smart media control function (e.g., the smart media control function described above for S120 of FIG. 2).


In some implementations, the media server (e.g., 321) is in eluded in the media server cluster 320, and providing an invitation to a media server (e.g., 321) includes controlling the signaling controller 330 to provide the invitation to the media server (e.g., 321) by using a media server cluster controller of the media system 301.


4.2 Bridging the Invited Media Server


In some implementations, the process S420 functions to bridge the invited media server (e.g., 321) with the external client system (e.g., 340) by using the media proxy service 310 of the media system 301.


In some implementations, the signaling controller 330 provides media server media parameters of a signaling message provided by the media server (e.g., the signaling message of the process S511) and the client media parameters of the first communication initiation (e.g., 501) to the media proxy service 310 via at least a second signaling message (e.g., the signaling message of the process S420 shown in FIG. 5). In some implementations, the signaling controller 330 controls the media proxy service 310 to establish a media proxy (e.g., 312) by providing the client media parameters and the media server media parameters to the media proxy service 310 via at least one signaling message (e.g., the signaling message of the process S420 shown in FIG. 5).


In some implementations, the media proxy service 310 establishes media communication with the external client system by using the client media parameters, and establishes media communication with the media server by using the media server media parameters. In some implementations, the first communication initiation (e.g., 501), the invitation (e.g., the signaling message of the process S410 shown in FIG. 5) the first signaling message (e.g., the signaling message of the process S511), and the second signaling message (e.g., the signaling message of the process S420 shown in FIG. 5) are Session Initiation Protocol (SIP) INVITE requests.


In some implementations, the client media parameters are included in the first communication initiation (e.g., 501) as session description protocol (SDP) parameters. In some implementations, the client media parameters are included in the invitation (e.g., the signaling message of the process S410 shown in FIG. 5) as SDP parameters. In some implementations, the media server media parameters are included in the first signaling message (e.g., the signaling message of the process S511) as SDP parameters. In some implementations, the client media parameters and the media server media parameters are included in the second signaling message (e.g., the signaling message of the process S420 shown in FIG. 5) as SDP parameters.


In some implementations, the first signaling message (e.g., the signaling message of the process S511) is a SIP response (e.g., “200 OK”), and the media server media parameters are included in the first signaling message as SDP parameters.


In some implementations, the first signaling message (e.g., the signaling message of process S511) identifies the media proxy service (e.g., 310).


In some implementations, the media server (e.g., 321) provides the first signaling message (e.g., the signaling message of process S511) via the signaling interface 321b, and the signaling controller 330 receives the signaling message via the signaling interface 331.


In some implementations, the signaling controller 330 provides the second signaling message (e.g., the signaling message of the process S420 shown in FIG. 5) via the signaling interface 331, and the media proxy service 310 receives the signaling message via the signaling interface 311.


In some implementations, bridging the invited media server includes controlling the media proxy service 310 of the media system 301 to establish a media proxy (e.g., 312) (process S521) between the client system (e.g., 340) and the media server (e.g., 321) by using the client media parameters of the first communication initiation (e.g., 501) and media server media parameters provided by the media server (e.g., 321) responsive to the invitation (e.g., the media server media parameters provided at the process S511).


In some implementations, the media server media parameters identify the media server media interface (e.g., 321a). In some implementations, the media server media parameters include at least media communication information of the media server (e.g., 321). In some implementations, media communication information of the media server includes at least one of a media communication IP address of the media server, a media communication port of the media server, a media communication protocol of the media server, and a media processing codec of the media server.


4.2.1 Providing Proxy Parameters to the Client System and the Media Server


In some implementations, establishing a media proxy between the client system and the media server includes: providing client proxy parameters to the client system (e.g., 340) (process 524 of FIG. 5); and providing media server proxy parameters to the media server (e.g., 321) (process 523 of FIG. 5). In some implementations, the media server proxy parameters identify the media proxy media interface 313. In some implementations, the client proxy parameters identify the client proxy media interface 314.


In some implementations, the media server proxy parameters include at least media communication information of the media proxy me di a interface 313. In some implementations, media communication information of the media proxy media interface 313 includes at least one of a media communication IP address of the media proxy media interface 313, a media communication port of the media proxy media interface 313, a media communication protocol of the media proxy media interface 313, and a media processing codec of the media proxy media interface 313.


In some implementations, the client proxy parameters include at least media communication information of the client proxy media interface 314. In some implementations, media communication information of the client proxy media interface 314 includes at least one of a media communication IP address of the client proxy media interface 314, a media communication port of the client proxy media interface 314, a media communication protocol of the client proxy media interface 314, and a media processing codec of the client proxy media interface 314.


In some implementations, the media proxy service 310 provides the client proxy parameters and the media proxy parameters to the signaling controller 330 via a t least one signaling message (e.g., the signaling message of the process S522). In some implementations, the media proxy service 310 provides the signaling message (e.g., the signaling message of the process S522) via the signaling interface 311, and the signaling controller 330 receives the signaling message via the signaling interface 331.


In some implementations, the signaling message of the process S522 is a SIP message. In some implementations, the signaling message of the process S522 is a SIP response (e.g., “200 OK”) to the signaling message of the process S420 (shown in FIG. 5). In some implementations, the client proxy parameters and the media proxy parameters are included in the signaling message of the process S522 as SDP parameters.


In some implementations, the signaling controller 330 provides the client proxy parameters to the client system (e.g., 340) via a signaling message (e.g., the signaling message of the process S524), and the signaling controller 330 provides the media server proxy parameters to the media server (e.g., 321) via a signaling message (e.g., the signaling message of the process S523).


In some implementations, the signaling controller 330 provides the signaling message of the process S523 via the signaling interface 331, and the media server 321 receives the signaling message via the signaling interface 321b. In some implementations, the signaling message of the process S523 is a SIP message. In some implementations, the signaling message of the process S523 is a SIP response (e.g., “200 OK”) to the signaling message of the process S511. In some implementations, the media server proxy parameters are included in the signaling message of the process S523 as SDP parameters.


In some implementations, the signaling controller 330 provides the signaling message of the process S524 via the signaling interface 331, and the client system 340 receives the signaling message via the signaling interface 342. In some implementations, the signaling message of the process S524 is a SIP message. In some implementations, the signaling message of the process S524 is a SIP response (e.g., “200 OK”) to the first communication initiation 501. In some implementations, the client proxy parameters are included in the signaling message of the process S524 as SDP parameters.


4.2 Communicating Media by Using the Media Proxy Service


In some implementations, the process S430 functions to communicate media between the external client system (e.g., 340) and the invited media server (e.g., 321) by using the established media proxy (e.g., the media proxy 312 of the media proxy service 310) (e.g., the media proxy established at the process S521 of FIG. 5).


In some implementations, communicating media between the external client system (e.g., 340) and the invited media server (e.g., 321) by using the established media proxy (e.g., 312) includes controlling the media proxy service 310 to provide media received from the client system to the media server by using the media server media parameters (e.g., the media server media parameters of the process s511), and the client system provides the media to the media proxy service 310 by using the client proxy parameters (e.g., the client proxy parameters of the process S524).


In some implementations, communicating media between the external client system (e.g., 340) and the invited media server (e.g., 321) by using the established media proxy (e.g., 312) includes controlling the media proxy service 310 to provide media received from the media server to the client system by using the client media parameters (e.g., the client media parameters of the communication initiation 501), and the media server provides the media to the media proxy service 310 by using the media server proxy parameters (e.g., the media proxy parameters of the process S523).


In some implementations, the media proxy service 310 uses the media interface 313 to provide media received at the media interface 314 to the media server via the media interface 321a. In some implementations, the media proxy service 310 uses the media interface 314 to provide media received at the media interface 313 to the client system via the media interface 341.


4.4 Controlling Media Communication


In some implementations, the method 400 includes controlling media communication responsive to a signaling message provided by at least one of the client system (e.g., 340), the media server (e.g., 321) and the media proxy service 310. In some implementations, the signaling controller 330 receives the signaling message to control media communication (via the signaling interface 331). In some implementations, responsive to the signaling message to control media communication, the signaling controller 330 provides at least one signaling message to at least one of the client system (e.g., 340), the media server (e.g., 321) and the media proxy service 310.


In some implementations, controlling media communication includes at least one of ending media communication, recovering media communication, controlling operations performed on the media, controlling transcoding of the media, controlling a recording service, controlling a text-to-speech service, controlling a speech recognition service, controlling an input detection service, controlling a conferencing service, controlling a communicating application service (e.g., 350), and the like.


In some implementations, the method 400 includes ending media communication responsive to a signaling message (e.g., a SIP BYE message) provided by at least one of the client system (e.g., 340), the media server (e.g., 321) and the media proxy service 310. In some implementations, the signaling controller 330 receives the signaling message to end media communication (e.g., a SIP BYE message) (via the signaling interface 331). In some implementations, responsive to the signaling message to end media communication, the signaling controller 330 provides at least one signaling message to at least one of the client system (e.g., 340), the media server (e.g., 321) and the media proxy service 310.


5. COMMUNICATION APPLICATION SERVICE

In some implementations, the communication platform system 300 provides signaling and media communication to support a communication application session (e.g., of the communication application service 350), and the signaling controller 330 establishes a signaling channel with the communication application service 350 of the communication platform system 300. In some implementations, the signaling controller 330 establishes the signaling channel between the singling interface 331 of the signaling controller and the signaling interface 351 of the communication application service 350.


In some implementations, the communication application service 350 establishes a signaling channel and media communication with the provider gateway 360 of the communication platform system. In some implementations, the communication application service 350 establishes the signaling channel between the signaling interface 351 of the communication application service 350 and the provider gateway 360. In some implementations, the communication application service 350 establishes the media communication between the media interface 354 of the communication application service 350 and the provider gateway 360.


In some implementations, the communication application service 350 communicates media between the media interface 354 of the communication application service 350 and the media interface of a media server (e.g., the media interface 321c of the media server 321).


In some implementations, the communication application service 350 includes a call router (e.g., a call router as described above for FIG. 2).


6. MEDIA SERVICE PLATFORM

In some implementations, the communication platform system is a media service platform (e.g., a platform that includes a media system similar to the media system 301), and the media services provided by the media service platform include at least one of transcoding services, conferencing services, DTMF tone interpretations, and scaling of picture in a video stream.


7. SYSTEM ARCHITECTURE: COMMUNICATION PLATFORM SYSTEM


FIG. 6 is an architecture diagram of a system (e.g., the communication platform system 300 of FIG. 3) according to an implementation in which the system is implemented by a server device. In some implementations, the system is implemented by a plurality of devices. In some implementations, the system 300 is similar to the system of FIG. 1.


The bus 601 interfaces with the processors 601A-601N, the main memory (e.g., a random access memory (RAM)) 622, a read only memory (ROM) 604, a processor-readable storage medium 605, a display device 607, a user input device 608, and a network device 611.


The processors 601A-601N may take many forms, such as ARM processors, X86 processors, and the like.


In some implementations, the system (e.g., 300) includes at least one of a central processing unit (processor) and a multi-processor unit (MPU).


The processors 601A-601N and the main memory 622 form a processing unit 699. In some embodiments, the processing unit includes one or more processor s communicatively coupled to one or more of a RAM, ROM, and machine-readable storage medium; the one or more processors of the processing unit receive instructions stored by the one or more of a RAM, ROM, and machine-readable storage medium via a bus; and the one or more processors execute the received instructions. In some embodiments, the processing unit is an ASIC (Application-Specific Integrated Circuit). In some embodiments, the processing unit is a SoC (System-on-Chip). In some embodiments, the processing unit includes one or more of a media system, a communication application service, and a provider gateway.


The network adapter device 611 provides one or more wired or wireless interfaces for exchanging data and commands between the system (e.g., 300) and other devices, such as a client system 340 and a carrier network 370. Such wired and wireless interfaces include, for example, a universal serial bus (USB) interface, Bluetooth interface, Wi-Fi interface, Ethernet interface, near field communication (NFC) interface, and the like.


Machine-executable instructions in software programs (such as an operating system, application programs, and device drivers) are loaded into the memory 622 (of the processing unit 699) from the processor-readable storage medium 605, the ROM 604 or any other storage location. During execution of these software programs, the respective machine-executable instructions are accessed by at least one of processors 601A-601N (of the processing unit 699) via the bus 601, and then executed by at least one of processors 601A-601N. Data used by the software programs are also stored in the memory 622, and such data is accessed by at least one of processors 601A-601N during execution of the machine-executable instructions of the software programs. The processor-readable storage medium 605 is one of (or a combination of two or more of) a hard drive, a flash drive, a DVD, a CD, an optical disk, a floppy disk, a flash storage, a solid state drive, a ROM, an EEPROM, an electronic circuit, a semiconductor memory device, and the like. The processor-readable storage medium 605 includes machine-executable instructions (and related data) for an operating system 612, software programs 613, device drivers 614, the media system 301, the communication application service 350, and the provider gateway 360. As shown in FIG. 6, the machine-executable instructions (and related data) for the media system 301 include machine-executable instructions (and related data) for the media proxy service 310, the media server cluster 320, the signaling controller 330, and the media server 321.


8. SYSTEM ARCHITECTURE: MEDIA SYSTEM


FIG. 7 is an architecture diagram of a media system (e.g., the media system 301 of FIG. 3) according to an implementation in which the media system is implemented by a server device. In some implementations, the system is implemented by a plurality of devices.


The bus 701 interfaces with the processors 701A-701N, the main memory (e.g., a random access memory (RAM)) 722, a read only memory (ROM) 704, a processor-readable storage medium 705, a display device 707, a user input device 708, and a network device 711.


The processors 701A-701N may take many forms, such as ARM processors, X86 processors, and the like.


In some implementations, the media system (e.g., 301) includes at least one of a central processing unit (processor) and a multi-processor unit (MPU).


The processors 701A-701N and the main memory 722 form a processing unit 799. In some embodiments, the processing unit includes one or more processor s communicatively coupled to one or more of a RAM, ROM, and machine-readable storage medium; the one or more processors of the processing unit receive instructions stored by the one or more of a RAM, ROM, and machine-readable storage medium via a bus; and the one or more processors execute the received instructions. In some embodiments, the processing unit is an ASIC (Application-Specific Integrated Circuit). In some embodiments, the processing unit is a SoC (System-on-Chip). In some embodiments, the processing unit includes one or more of a media proxy service, a media server cluster, a signaling controller, and a media server.


The network adapter device 711 provides one or more wired or wireless interfaces for exchanging data and commands between the media system (e.g., 301) and other devices, such as a client system (e.g., 340) and a communication application service (e.g., 350) of a communication platform system. Such wired and wireless interfaces include, for example, a universal serial bus (USB) interface, Bluetooth interface, Wi-Fi interface, Ethernet interface, near field communication (NFC) interface, and the like.


Machine-executable instructions in software programs (such as an operating system, application programs, and device drivers) are loaded into the memory 722 (of the processing unit 799) from the processor-readable storage medium 705, the ROM 704 or any other storage location. During execution of these software programs, the respective machine-executable instructions are accessed by at least one of processors 701A-701N (of the processing unit 799) via the bus 701, and then executed by at least one of processors 701A-701N. Data used by the software programs are also stored in the memory 722, and such data is accessed by at least one of processors 701A-701N during execution of the machine-executable instructions of the software programs. The processor-readable storage medium 705 is one of (or a combination of two or more of) a hard drive, a flash drive, a DVD, a CD, an optical disk, a floppy disk, a flash storage, a solid state drive, a ROM, an EEPROM, an electronic circuit, a semiconductor memory device, and the like. The processor-readable storage medium 705 includes machine-executable instructions (and related data) for an operating system 712, software programs 713, device drivers 714, the media proxy service 310, the media server cluster 320, the signaling controller 330, and the media server 321.


9. MACHINES

The system and methods of the preferred embodiment and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the media and signaling components of a communication platform or a media system. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), harddrives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.


10. CONCLUSION

As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A method comprising: receiving, by a signaling controller device, a communication initiation from a client system;selecting, by the signaling controller device, a media server based on the communication initiation;transmitting, by the signaling controller device, client codec to the media server;receiving, by the signaling controller device, media server codec from the media server in response to transmitting the client codec;bridging, by the signaling controller device, the media server and the client system with a proxy service established to facilitate communication between the client system and the media server;providing, by the signaling controller device, a media server proxy parameter to the media server, the providing of the media server proxy parameter including sending a first message from a signaling interface of the signaling controller device to the media server, the media server proxy parameter identifying a media server interface of the proxy service; andproviding, by the signaling controller device, a client proxy parameter to the client system, the providing of the client proxy parameter including sending a second message from the signaling interface of the signaling controller device to the client system, the client proxy parameter identifying a media client interface of the proxy service.
  • 2. The method of claim 1, wherein the proxy service communicates media with the client system using the client codec and client interface codec, and wherein the proxy service communicates media with the media server using the media server codec and media server interface codec.
  • 3. The method of claim 2, wherein the client interface codec is a codec of a client interface of the proxy service, and the media server interface codec is a codec of the media server interface of the proxy service.
  • 4. The method of claim 1, wherein the media client interface is usable by the client system for communicating media to the proxy service from the client system, and wherein the media server interface is usable by the media server for communicating additional media to the proxy service from the media server.
  • 5. The method of claim 4, wherein the first message comprises a signaling message that uses one or more signaling resources that are separate from one or more media resources used for the communicating of the media and the communicating of the additional media.
  • 6. The method of claim 1, further comprising: communicating media between the client system and the media server.
  • 7. The method of claim 1, wherein the client system is external to the signaling controller device, the media server is external to the signaling controller device, and the proxy service is external to the signaling controller device and the media server.
  • 8. The method of claim 1, further comprising: authenticating the communication initiation, wherein selecting the media server is in response to authenticating the communication initiation.
  • 9. The method of claim 1, wherein the media server provides the media server codec after receiving the client codec from the signaling controller device.
  • 10. The method of claim 1, wherein the proxy service provides information client interface codec and media server interface codec to the signaling controller device after receiving the client codec and the media server codec from the signaling controller device.
  • 11. A signaling controller device comprising: one or more computer processors; andone or more computer-readable mediums storing instructions that, when executed by the one or more computer processors, cause the signaling controller device to perform operations comprising:receiving a communication initiation from a client system;selecting a media server based on the communication initiation;transmitting client codec to the media server;receiving media server codec from the media server in response to transmitting the client codec;bridging the media server and the client system with a proxy service established to facilitate communication between the client system and the media server;providing a media server proxy parameter to the media server, the providing of the media server proxy parameter including sending a first message from a signaling interface of the signaling controller device to the media server, the media server proxy parameter identifying a media server interface of the proxy service; andproviding a client proxy parameter to the client system, the providing of the client proxy parameter including sending a second message from the signaling interface of the signaling controller device to the client system, the client proxy parameter identifying a media client interface of the proxy service.
  • 12. The signaling controller device of claim 11, wherein the proxy service communicates media with the client system using the client codec and client interface codec, and wherein the proxy service communicates media with the media server via the media server using the media server codec and media server interface codec.
  • 13. The signaling controller device of claim 12, wherein the client interface codec is a codec of a client interface of the proxy service, and the media server interface codec is a codec of the media server interface of the proxy service.
  • 14. The signaling controller device of claim 11, wherein the media client interface is usable by the client system for communicating media to the proxy service from the client system, and wherein the media server interface is usable by the media server for communicating additional media to the proxy service from the media server.
  • 15. The signaling controller device of claim 14, wherein the first message comprises a signaling message that uses one or more signaling resources that are separate from one or more media resources used for the communicating of the media and the communicating of the additional media.
  • 16. The signaling controller device of claim 11, the operations further comprising: communicating media between the client system and the media server.
  • 17. The signaling controller device of claim 11, wherein the client system is external to the signaling controller device, the media server is external to the signaling controller device, and the proxy service is external to the signaling controller device and the media server.
  • 18. The signaling controller device of claim 11, the operations further comprising: authenticating the communication initiation, wherein selecting the media server is in response to authenticating the communication initiation.
  • 19. The signaling controller device of claim 11, wherein the media server provides the media server codec after receiving the client codec from the signaling controller device.
  • 20. A non-transitory computer-readable medium storing instructions that, when executed by one or more computer processors of a signaling controller device, cause the signaling controller device to perform operations comprising: receiving a communication initiation from a client system;selecting a media server based on the communication initiation;transmitting client codec to the media server;receiving media server codec from the media server in response to transmitting the client codec;bridging the media server and the client system with a proxy service established to facilitate communication between the client system and the media server;providing a media server proxy parameter to the media server, the providing of the media server proxy parameter including sending a first message from a signaling interface of the signaling controller device to the media server, the media server proxy parameter identifying a media server interface of the proxy service; andproviding a client proxy parameter to the client system, the providing of the client proxy parameter including sending a second message from the signaling interface of the signaling controller device to the client system, the client proxy parameter identifying a media client interface of the proxy service.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/687,054, filed 25 Aug. 2017, which is a continuation of U.S. patent application Ser. No. 14/793,284, filed 7 Jul. 2015, which claims the benefit of U.S. Provisional Application Ser. No. 62/021,633, filed on 7 Jul. 2014, all of which are incorporated in their entirety by this reference.

US Referenced Citations (818)
Number Name Date Kind
5274700 Gechter et al. Dec 1993 A
5526416 Dezonno et al. Jun 1996 A
5581608 Jreij et al. Dec 1996 A
5598457 Foladare et al. Jan 1997 A
5867495 Elliott et al. Feb 1999 A
5934181 Adamczewski Aug 1999 A
5978465 Corduroy et al. Nov 1999 A
6026440 Shrader et al. Feb 2000 A
6034946 Roginsky et al. Mar 2000 A
6094681 Shaffer et al. Jul 2000 A
6138143 Gigliotti et al. Oct 2000 A
6185565 Meubus et al. Feb 2001 B1
6192123 Grunsted et al. Feb 2001 B1
6206564 Adamczewski Mar 2001 B1
6223287 Douglas et al. Apr 2001 B1
6232979 Shochet May 2001 B1
6269336 Ladd et al. Jul 2001 B1
6317137 Rosasco Nov 2001 B1
6363065 Thornton et al. Mar 2002 B1
6373836 Deryugin et al. Apr 2002 B1
6425012 Trovato et al. Jul 2002 B1
6426995 Kim et al. Jul 2002 B1
6430175 Echols et al. Aug 2002 B1
6434528 Sanders Aug 2002 B1
6445694 Swartz Sep 2002 B1
6445776 Shank et al. Sep 2002 B1
6459913 Cloutier Oct 2002 B2
6463414 Su et al. Oct 2002 B1
6493558 Bernhart et al. Dec 2002 B1
6496500 Nance et al. Dec 2002 B2
6501739 Cohen Dec 2002 B1
6501832 Saylor et al. Dec 2002 B1
6507875 Mellen-Garnett et al. Jan 2003 B1
6571245 Huang et al. May 2003 B2
6574216 Farris et al. Jun 2003 B1
6577721 Vainio et al. Jun 2003 B1
6600736 Ball et al. Jul 2003 B1
6606596 Zirngibl et al. Aug 2003 B1
6614783 Sonesh et al. Sep 2003 B1
6625258 Ram et al. Sep 2003 B1
6625576 Kochanski et al. Sep 2003 B2
6636504 Albers et al. Oct 2003 B1
6662231 Drosset et al. Dec 2003 B1
6704785 Koo et al. Mar 2004 B1
6707889 Saylor et al. Mar 2004 B1
6711129 Bauer et al. Mar 2004 B1
6711249 Weissman et al. Mar 2004 B2
6738738 Henton May 2004 B2
6757365 Bogard Jun 2004 B1
6765997 Zirngibl et al. Jul 2004 B1
6768788 Langseth et al. Jul 2004 B1
6771955 Imura et al. Aug 2004 B2
6778653 Kallas et al. Aug 2004 B1
6785266 Swartz Aug 2004 B2
6788768 Saylor et al. Sep 2004 B1
6792086 Saylor et al. Sep 2004 B1
6792093 Barak et al. Sep 2004 B2
6798867 Zirngibl et al. Sep 2004 B1
6807529 Johnson et al. Oct 2004 B2
6807574 Partovi et al. Oct 2004 B1
6819667 Brusilovsky et al. Nov 2004 B1
6820260 Flockhart et al. Nov 2004 B1
6829334 Zirngibl et al. Dec 2004 B1
6831966 Tegan et al. Dec 2004 B1
6834265 Balasuriya Dec 2004 B2
6836537 Zirngibl et al. Dec 2004 B1
6842767 Partovi et al. Jan 2005 B1
6850603 Eberle et al. Feb 2005 B1
6870830 Schuster et al. Mar 2005 B1
6873952 Bailey et al. Mar 2005 B1
6874084 Dobner et al. Mar 2005 B1
6885737 Gao et al. Apr 2005 B1
6888929 Saylor et al. May 2005 B1
6895084 Saylor et al. May 2005 B1
6898567 Balasuriya May 2005 B2
6912581 Johnson et al. Jun 2005 B2
6922411 Taylor Jul 2005 B1
6928469 Duursma et al. Aug 2005 B1
6931405 El-Shimi et al. Aug 2005 B2
6937699 Schuster et al. Aug 2005 B1
6940953 Eberle et al. Sep 2005 B1
6941268 Porter et al. Sep 2005 B2
6947417 Laursen et al. Sep 2005 B2
6947988 Saleh et al. Sep 2005 B1
6961330 Cattan et al. Nov 2005 B1
6964012 Zirngibl et al. Nov 2005 B1
6970915 Partovi et al. Nov 2005 B1
6977992 Zirngibl et al. Dec 2005 B2
6981041 Araujo et al. Dec 2005 B2
6985862 Strom et al. Jan 2006 B2
6999576 Sacra Feb 2006 B2
7003464 Ferrans et al. Feb 2006 B2
7006606 Cohen et al. Feb 2006 B1
7010586 Allavarpu et al. Mar 2006 B1
7020685 Chen et al. Mar 2006 B1
7039165 Saylor et al. May 2006 B1
7058042 Bontempi et al. Jun 2006 B2
7058181 Wright et al. Jun 2006 B2
7062709 Cheung Jun 2006 B2
7065637 Nanja Jun 2006 B1
7076037 Gonen et al. Jul 2006 B1
7076428 Anastasakos et al. Jul 2006 B2
7089310 Ellerman et al. Aug 2006 B1
7099442 Da Palma et al. Aug 2006 B2
7103003 Brueckheimer et al. Sep 2006 B2
7103171 Annadata et al. Sep 2006 B1
7106844 Holland Sep 2006 B1
7111163 Haney Sep 2006 B1
7136932 Schneider Nov 2006 B1
7140004 Kunins et al. Nov 2006 B1
7143039 Stifelman et al. Nov 2006 B1
7197331 Anastasakos et al. Mar 2007 B2
7197461 Eberle et al. Mar 2007 B1
7197462 Takagi et al. Mar 2007 B2
7197544 Wang et al. Mar 2007 B2
D540074 Peters Apr 2007 S
7225232 Elberse May 2007 B2
7227849 Rasanen Jun 2007 B1
7245611 Narasimhan et al. Jul 2007 B2
7260208 Cavalcanti Aug 2007 B2
7266181 Zirngibl et al. Sep 2007 B1
7269557 Bailey et al. Sep 2007 B1
7272212 Eberle et al. Sep 2007 B2
7272564 Phillips et al. Sep 2007 B2
7277851 Henton Oct 2007 B1
7283515 Fowler Oct 2007 B2
7283519 Girard Oct 2007 B2
7286521 Jackson et al. Oct 2007 B1
7287248 Adeeb Oct 2007 B1
7289453 Riedel et al. Oct 2007 B2
7296739 Mo et al. Nov 2007 B1
7298702 Jones Nov 2007 B1
7298732 Cho Nov 2007 B2
7298834 Homeier et al. Nov 2007 B1
7308085 Weissman Dec 2007 B2
7308408 Stifelman et al. Dec 2007 B1
7324633 Gao et al. Jan 2008 B2
7324942 Mahowald et al. Jan 2008 B1
7328263 Sadjadi Feb 2008 B1
7330463 Bradd et al. Feb 2008 B1
7330890 Partovi et al. Feb 2008 B1
7340040 Saylor et al. Mar 2008 B1
7349412 Jones Mar 2008 B1
7349714 Lee et al. Mar 2008 B2
7369865 Gabriel et al. May 2008 B2
7370329 Kumar et al. May 2008 B2
7373660 Guichard et al. May 2008 B1
7376223 Taylor et al. May 2008 B2
7376586 Partovi et al. May 2008 B1
7376733 Connelly et al. May 2008 B2
7376740 Porter et al. May 2008 B1
7412525 Cafarella et al. Aug 2008 B2
7418090 Reding et al. Aug 2008 B2
7428302 Zirngibl et al. Sep 2008 B2
7440898 Eberle et al. Oct 2008 B1
7447299 Partovi et al. Nov 2008 B1
7454459 Kapoor et al. Nov 2008 B1
7457249 Baldwin et al. Nov 2008 B2
7457397 Saylor et al. Nov 2008 B1
7473872 Takimoto Jan 2009 B2
7486780 Zirngibl et al. Feb 2009 B2
7496054 Taylor Feb 2009 B2
7496188 Saha et al. Feb 2009 B2
7496651 Joshi Feb 2009 B1
7500249 Kampe et al. Mar 2009 B2
7505951 Thompson et al. Mar 2009 B2
7519359 Chiarulli et al. Apr 2009 B2
7522711 Stein et al. Apr 2009 B1
7536454 Balasuriya May 2009 B2
7542761 Sarkar Jun 2009 B2
7552054 Stifelman et al. Jun 2009 B1
7571226 Partovi et al. Aug 2009 B1
7606868 Le et al. Oct 2009 B1
7613287 Stifelman et al. Nov 2009 B1
7623648 Oppenheim et al. Nov 2009 B1
7630900 Strom Dec 2009 B1
7631310 Henzinger Dec 2009 B1
7644000 Strom Jan 2010 B1
7657433 Chang Feb 2010 B1
7657434 Thompson et al. Feb 2010 B2
7668157 Weintraub et al. Feb 2010 B2
7672275 Yajnik et al. Mar 2010 B2
7672295 Andhare et al. Mar 2010 B1
7675857 Chesson Mar 2010 B1
7676221 Roundtree et al. Mar 2010 B2
7685280 Berry et al. Mar 2010 B2
7685298 Day et al. Mar 2010 B2
7715547 Ibbotson et al. May 2010 B2
7716293 Kasuga et al. May 2010 B2
7733850 Croak Jun 2010 B1
7742499 Erskine et al. Jun 2010 B1
7779065 Gupta et al. Aug 2010 B2
7809125 Brunson et al. Oct 2010 B2
7809791 Schwartz et al. Oct 2010 B2
7875836 Imura et al. Jan 2011 B2
7882253 Pardo-Castellote et al. Feb 2011 B2
7920866 Bosch et al. Apr 2011 B2
7926099 Chakravarty et al. Apr 2011 B1
7929562 Petrovykh Apr 2011 B2
7936867 Hill et al. May 2011 B1
7949111 Harlow et al. May 2011 B2
7962644 Ezerzer et al. Jun 2011 B1
7979555 Rothstein et al. Jul 2011 B2
7992120 Wang et al. Aug 2011 B1
8023425 Raleigh Sep 2011 B2
8024785 Andress et al. Sep 2011 B2
8045689 Provenzale et al. Oct 2011 B2
8046378 Zhuge et al. Oct 2011 B1
8046823 Begen et al. Oct 2011 B1
8069096 Ballaro et al. Nov 2011 B1
8078483 Hirose et al. Dec 2011 B1
8081744 Sylvain Dec 2011 B2
8081958 Soderstrom et al. Dec 2011 B2
8103725 Gupta et al. Jan 2012 B2
8126128 Hicks, III et al. Feb 2012 B1
8126129 Mcguire Feb 2012 B1
8130750 Hester Mar 2012 B2
8130917 Helbling et al. Mar 2012 B2
8139730 Da Palma et al. Mar 2012 B2
8145212 Lopresti et al. Mar 2012 B2
8149716 Ramanathan et al. Apr 2012 B2
8150918 Edelman et al. Apr 2012 B1
8156213 Deng et al. Apr 2012 B1
8165116 Ku et al. Apr 2012 B2
8166185 Samuel et al. Apr 2012 B2
8169936 Koren et al. May 2012 B2
8175007 Jain et al. May 2012 B2
8185619 Maiocco et al. May 2012 B1
8196133 Kakumani et al. Jun 2012 B2
8204479 Vendrow et al. Jun 2012 B2
8214868 Hamilton et al. Jul 2012 B2
8218457 Malhotra et al. Jul 2012 B2
8233611 Zettner Jul 2012 B1
8238533 Blackwell et al. Aug 2012 B2
8243889 Taylor et al. Aug 2012 B2
8249552 Gailloux et al. Aug 2012 B1
8266327 Kumar et al. Sep 2012 B2
8295272 Boni et al. Oct 2012 B2
8301117 Keast et al. Oct 2012 B2
8306021 Lawson Nov 2012 B2
8315198 Corneille et al. Nov 2012 B2
8315369 Lawson et al. Nov 2012 B2
8315620 Williamson et al. Nov 2012 B1
8319816 Swanson et al. Nov 2012 B1
8326805 Arous et al. Dec 2012 B1
8335852 Hokimoto Dec 2012 B2
8346630 Mckeown Jan 2013 B1
8355394 Taylor et al. Jan 2013 B2
8411669 Chen et al. Apr 2013 B2
8413247 Hudis et al. Apr 2013 B2
8417817 Jacobs Apr 2013 B1
8429827 Wetzel Apr 2013 B1
8438315 Tao et al. May 2013 B1
8462670 Chien Jun 2013 B2
8467502 Sureka et al. Jun 2013 B2
8477926 Jasper et al. Jul 2013 B2
8503639 Reding et al. Aug 2013 B2
8503650 Reding et al. Aug 2013 B2
8504818 Rao et al. Aug 2013 B2
8509068 Begall et al. Aug 2013 B2
8532686 Schmidt et al. Sep 2013 B2
8533857 Tuchman et al. Sep 2013 B2
8542805 Agranovsky et al. Sep 2013 B2
8543665 Ansari et al. Sep 2013 B2
8547962 Ramachandran et al. Oct 2013 B2
8549047 Beechuk et al. Oct 2013 B2
8565117 Hilt et al. Oct 2013 B2
8572391 Golan et al. Oct 2013 B2
8576712 Sabat et al. Nov 2013 B2
8577803 Chatterjee et al. Nov 2013 B2
8582450 Robesky Nov 2013 B1
8582737 Lawson et al. Nov 2013 B2
8594626 Woodson et al. Nov 2013 B1
8601136 Fahlgren et al. Dec 2013 B1
8611338 Lawson et al. Dec 2013 B2
8613102 Nath Dec 2013 B2
8621598 Lai et al. Dec 2013 B2
8649268 Lawson et al. Feb 2014 B2
8656452 Li et al. Feb 2014 B2
8667056 Proulx et al. Mar 2014 B1
8675493 Buddhikot et al. Mar 2014 B2
8688147 Nguyen et al. Apr 2014 B2
8695077 Gerhard et al. Apr 2014 B1
8713693 Shanabrook et al. Apr 2014 B2
8728656 Takahashi et al. May 2014 B2
8751801 Harris et al. Jun 2014 B2
8755376 Lawson et al. Jun 2014 B2
8767925 Sureka et al. Jul 2014 B2
8781975 Bennett et al. Jul 2014 B2
8797920 Parreira Aug 2014 B2
8806024 Toba Francis et al. Aug 2014 B1
8819133 Wang Aug 2014 B2
8825746 Ravichandran et al. Sep 2014 B2
8837465 Lawson et al. Sep 2014 B2
8838707 Lawson et al. Sep 2014 B2
8843596 Goel et al. Sep 2014 B2
8855271 Brock et al. Oct 2014 B2
8861510 Fritz Oct 2014 B1
8879547 Maes Nov 2014 B2
8903938 Vermeulen et al. Dec 2014 B2
8918848 Sharma et al. Dec 2014 B2
8924489 Bleau et al. Dec 2014 B2
8938053 Cooke et al. Jan 2015 B2
8948356 Nowack et al. Feb 2015 B2
8954591 Ganesan et al. Feb 2015 B2
8964726 Lawson et al. Feb 2015 B2
8990610 Bostick et al. Mar 2015 B2
9014664 Kim et al. Apr 2015 B2
9015702 Bhat Apr 2015 B2
9031223 Smith et al. May 2015 B2
9071677 Aggarwal et al. Jun 2015 B2
9137127 Nowack et al. Sep 2015 B2
9141682 Adoc, Jr. et al. Sep 2015 B1
9161296 Parsons et al. Oct 2015 B2
9177007 Winters et al. Nov 2015 B2
9204281 Ramprasad et al. Dec 2015 B2
9210275 Lawson et al. Dec 2015 B2
9306982 Lawson et al. Apr 2016 B2
9307094 Nowack et al. Apr 2016 B2
9325624 Malatack et al. Apr 2016 B2
9338190 Eng et al. May 2016 B2
9344573 Wolthuis et al. May 2016 B2
9356916 Kravitz et al. May 2016 B2
9378337 Kuhr Jun 2016 B2
9398622 Lawson et al. Jul 2016 B2
9438567 Barraclough Sep 2016 B1
9456008 Lawson et al. Sep 2016 B2
9456339 Hildner et al. Sep 2016 B1
9460169 Hinton et al. Oct 2016 B2
9596274 Lawson et al. Mar 2017 B2
9628624 Wolthuis et al. Apr 2017 B2
9632875 Raichstein et al. Apr 2017 B2
9634995 Binder Apr 2017 B2
9674242 Fritz Jun 2017 B1
9736130 Asveren Aug 2017 B1
9774687 Tarricone Sep 2017 B2
10212237 Tarricone Feb 2019 B2
10230801 Ezell Mar 2019 B2
20010038624 Greenberg et al. Nov 2001 A1
20010043684 Guedalia et al. Nov 2001 A1
20010051996 Cooper et al. Dec 2001 A1
20020006124 Jimenez et al. Jan 2002 A1
20020006125 Josse et al. Jan 2002 A1
20020006193 Rodenbusch et al. Jan 2002 A1
20020025819 Cetusic et al. Feb 2002 A1
20020036983 Widegren Mar 2002 A1
20020057777 Saito et al. May 2002 A1
20020064267 Martin et al. May 2002 A1
20020067823 Walker et al. Jun 2002 A1
20020077833 Arons et al. Jun 2002 A1
20020126813 Partovi et al. Sep 2002 A1
20020133587 Ensel et al. Sep 2002 A1
20020136391 Armstrong et al. Sep 2002 A1
20020165957 Devoe et al. Nov 2002 A1
20020176378 Hamilton et al. Nov 2002 A1
20020176404 Girard Nov 2002 A1
20020184361 Eden Dec 2002 A1
20020198941 Gavrilescu et al. Dec 2002 A1
20030006137 Wei et al. Jan 2003 A1
20030012356 Zino et al. Jan 2003 A1
20030014665 Anderson et al. Jan 2003 A1
20030018830 Chen et al. Jan 2003 A1
20030023672 Vaysman Jan 2003 A1
20030026426 Wright et al. Feb 2003 A1
20030046366 Pardikar et al. Mar 2003 A1
20030051037 Sundaram et al. Mar 2003 A1
20030058884 Kallner et al. Mar 2003 A1
20030059020 Meyerson et al. Mar 2003 A1
20030060188 Gidron et al. Mar 2003 A1
20030061317 Brown et al. Mar 2003 A1
20030061404 Atwal et al. Mar 2003 A1
20030088421 Maes et al. May 2003 A1
20030097330 Hillmer et al. May 2003 A1
20030097447 Johnston May 2003 A1
20030097639 Niyogi et al. May 2003 A1
20030103620 Brown et al. Jun 2003 A1
20030123640 Roelle et al. Jul 2003 A1
20030149721 Alfonso-nogueiro et al. Aug 2003 A1
20030162506 Toshimitsu et al. Aug 2003 A1
20030190032 Ravishankar Oct 2003 A1
20030195950 Huang et al. Oct 2003 A1
20030195990 Greenblat et al. Oct 2003 A1
20030196076 Zabarski et al. Oct 2003 A1
20030204616 Billhartz et al. Oct 2003 A1
20030211842 Kempf et al. Nov 2003 A1
20030231647 Petrovykh Dec 2003 A1
20030233276 Pearlman et al. Dec 2003 A1
20040008635 Nelson et al. Jan 2004 A1
20040011690 Marfino et al. Jan 2004 A1
20040044953 Watkins et al. Mar 2004 A1
20040052349 Creamer et al. Mar 2004 A1
20040071275 Bowater et al. Apr 2004 A1
20040085949 Partanen May 2004 A1
20040101122 Da Palma et al. May 2004 A1
20040102182 Reith et al. May 2004 A1
20040117788 Karaoguz et al. Jun 2004 A1
20040136324 Steinberg et al. Jul 2004 A1
20040165569 Sweatman et al. Aug 2004 A1
20040172482 Weissman et al. Sep 2004 A1
20040199572 Hunt et al. Oct 2004 A1
20040205101 Radhakrishnan Oct 2004 A1
20040205689 Ellens et al. Oct 2004 A1
20040213400 Golitsin et al. Oct 2004 A1
20040216058 Chavers et al. Oct 2004 A1
20040218748 Fisher Nov 2004 A1
20040228469 Andrews et al. Nov 2004 A1
20040236696 Aoki et al. Nov 2004 A1
20040240649 Goel Dec 2004 A1
20050005109 Castaldi et al. Jan 2005 A1
20050005200 Matenda et al. Jan 2005 A1
20050010483 Ling Jan 2005 A1
20050015505 Kruis et al. Jan 2005 A1
20050021626 Prajapat et al. Jan 2005 A1
20050025303 Hostetler Feb 2005 A1
20050038772 Colrain Feb 2005 A1
20050043952 Sharma et al. Feb 2005 A1
20050047579 Salame Mar 2005 A1
20050060411 Coulombe et al. Mar 2005 A1
20050083907 Fishler Apr 2005 A1
20050091336 Dehamer et al. Apr 2005 A1
20050091572 Gavrilescu et al. Apr 2005 A1
20050108770 Karaoguz et al. May 2005 A1
20050125251 Berger et al. Jun 2005 A1
20050125739 Thompson et al. Jun 2005 A1
20050128961 Miloslavsky et al. Jun 2005 A1
20050135578 Ress et al. Jun 2005 A1
20050141500 Bhandari et al. Jun 2005 A1
20050147088 Bao et al. Jul 2005 A1
20050177635 Schmidt et al. Aug 2005 A1
20050181835 Lau et al. Aug 2005 A1
20050198292 Duursma et al. Sep 2005 A1
20050228680 Malik Oct 2005 A1
20050238153 Chevalier Oct 2005 A1
20050240659 Taylor Oct 2005 A1
20050243977 Creamer et al. Nov 2005 A1
20050246176 Creamer et al. Nov 2005 A1
20050286496 Malhotra et al. Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060008065 Longman et al. Jan 2006 A1
20060008073 Yoshizawa et al. Jan 2006 A1
20060008256 Khedouri et al. Jan 2006 A1
20060015467 Morken et al. Jan 2006 A1
20060021004 Moran et al. Jan 2006 A1
20060023676 Whitmore et al. Feb 2006 A1
20060047666 Bedi et al. Mar 2006 A1
20060067506 Flockhart et al. Mar 2006 A1
20060080415 Tu Apr 2006 A1
20060098624 Morgan et al. May 2006 A1
20060129638 Deakin Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20060146792 Ramachandran et al. Jul 2006 A1
20060146802 Baldwin et al. Jul 2006 A1
20060168126 Costa-Requena et al. Jul 2006 A1
20060168334 Potti et al. Jul 2006 A1
20060203979 Jennings Sep 2006 A1
20060209695 Archer, Jr. et al. Sep 2006 A1
20060212865 Vincent et al. Sep 2006 A1
20060215824 Mitby et al. Sep 2006 A1
20060217823 Hussey Sep 2006 A1
20060217978 Mitby et al. Sep 2006 A1
20060222166 Ramakrishna et al. Oct 2006 A1
20060235715 Abrams et al. Oct 2006 A1
20060256816 Yarlagadda et al. Nov 2006 A1
20060262915 Marascio et al. Nov 2006 A1
20060270386 Yu et al. Nov 2006 A1
20060285489 Francisco et al. Dec 2006 A1
20070002744 Mewhinney et al. Jan 2007 A1
20070036143 Alt et al. Feb 2007 A1
20070038499 Margulies et al. Feb 2007 A1
20070043681 Morgan et al. Feb 2007 A1
20070050306 McQueen Mar 2007 A1
20070058647 Bettis Mar 2007 A1
20070064672 Raghav et al. Mar 2007 A1
20070070906 Thakur Mar 2007 A1
20070070980 Phelps et al. Mar 2007 A1
20070071223 Lee et al. Mar 2007 A1
20070074174 Thornton Mar 2007 A1
20070074283 Croak Mar 2007 A1
20070081519 Ramaswamy Apr 2007 A1
20070088836 Tai et al. Apr 2007 A1
20070091907 Seshadri et al. Apr 2007 A1
20070107048 Halls et al. May 2007 A1
20070112574 Greene May 2007 A1
20070116191 Bermudez et al. May 2007 A1
20070121651 Casey et al. May 2007 A1
20070127691 Lert Jun 2007 A1
20070127703 Siminoff Jun 2007 A1
20070130260 Weintraub et al. Jun 2007 A1
20070133771 Stifelman et al. Jun 2007 A1
20070147351 Dietrich et al. Jun 2007 A1
20070149166 Turcotte et al. Jun 2007 A1
20070153711 Dykas et al. Jul 2007 A1
20070167170 Fitchett et al. Jul 2007 A1
20070192629 Saito Aug 2007 A1
20070201448 Baird et al. Aug 2007 A1
20070208862 Fox et al. Sep 2007 A1
20070232284 Mason et al. Oct 2007 A1
20070239761 Baio et al. Oct 2007 A1
20070242626 Altberg et al. Oct 2007 A1
20070255828 Paradise Nov 2007 A1
20070265073 Novi et al. Nov 2007 A1
20070286180 Marquette et al. Dec 2007 A1
20070291734 Bhatia et al. Dec 2007 A1
20070291905 Halliday et al. Dec 2007 A1
20070293200 Roundtree et al. Dec 2007 A1
20070295803 Levine et al. Dec 2007 A1
20080005275 Overton et al. Jan 2008 A1
20080025320 Bangalore et al. Jan 2008 A1
20080037715 Prozeniuk et al. Feb 2008 A1
20080037746 Dufrene et al. Feb 2008 A1
20080040484 Yardley Feb 2008 A1
20080049617 Grice et al. Feb 2008 A1
20080052395 Wright et al. Feb 2008 A1
20080091843 Kulkarni Apr 2008 A1
20080101571 Harlow et al. May 2008 A1
20080104348 Kabzinski et al. May 2008 A1
20080120702 Hokimoto May 2008 A1
20080123559 Haviv et al. May 2008 A1
20080134049 Gupta et al. Jun 2008 A1
20080139166 Agarwal et al. Jun 2008 A1
20080146268 Gandhi et al. Jun 2008 A1
20080152101 Griggs Jun 2008 A1
20080154601 Stifelman et al. Jun 2008 A1
20080155029 Helbling et al. Jun 2008 A1
20080162482 Ahern et al. Jul 2008 A1
20080165708 Moore et al. Jul 2008 A1
20080172404 Cohen Jul 2008 A1
20080177883 Hanai et al. Jul 2008 A1
20080192736 Jabri et al. Aug 2008 A1
20080201426 Darcie Aug 2008 A1
20080209050 Li Aug 2008 A1
20080212945 Khedouri et al. Sep 2008 A1
20080222656 Lyman Sep 2008 A1
20080229421 Hudis et al. Sep 2008 A1
20080232574 Baluja et al. Sep 2008 A1
20080235230 Maes Sep 2008 A1
20080256224 Kaji et al. Oct 2008 A1
20080275741 Loeffen Nov 2008 A1
20080307436 Hamilton Dec 2008 A1
20080310599 Purnadi et al. Dec 2008 A1
20080313318 Vermeulen et al. Dec 2008 A1
20080316931 Qiu et al. Dec 2008 A1
20080317222 Griggs et al. Dec 2008 A1
20080317232 Couse et al. Dec 2008 A1
20080317233 Rey et al. Dec 2008 A1
20090046838 Andreasson Feb 2009 A1
20090052437 Taylor et al. Feb 2009 A1
20090052641 Taylor et al. Feb 2009 A1
20090059894 Jackson et al. Mar 2009 A1
20090063502 Coimbatore et al. Mar 2009 A1
20090074159 Goldfarb et al. Mar 2009 A1
20090075684 Cheng et al. Mar 2009 A1
20090083155 Tudor et al. Mar 2009 A1
20090089165 Sweeney Apr 2009 A1
20090089352 Davis et al. Apr 2009 A1
20090089699 Saha et al. Apr 2009 A1
20090092674 Ingram et al. Apr 2009 A1
20090093250 Jackson et al. Apr 2009 A1
20090094674 Schwartz et al. Apr 2009 A1
20090125608 Werth et al. May 2009 A1
20090129573 Gavan et al. May 2009 A1
20090136011 Goel May 2009 A1
20090170496 Bourque Jul 2009 A1
20090171659 Pearce et al. Jul 2009 A1
20090171669 Engelsma et al. Jul 2009 A1
20090171752 Galvin et al. Jul 2009 A1
20090182896 Patterson et al. Jul 2009 A1
20090193433 Maes Jul 2009 A1
20090216835 Jain et al. Aug 2009 A1
20090217293 Wolber et al. Aug 2009 A1
20090220057 Waters Sep 2009 A1
20090221310 Chen et al. Sep 2009 A1
20090222341 Belwadi et al. Sep 2009 A1
20090225748 Taylor Sep 2009 A1
20090225763 Forsberg et al. Sep 2009 A1
20090228868 Drukman et al. Sep 2009 A1
20090232289 Drucker et al. Sep 2009 A1
20090234965 Viveganandhan et al. Sep 2009 A1
20090235349 Lai et al. Sep 2009 A1
20090238168 Lavoie Sep 2009 A1
20090241135 Wong et al. Sep 2009 A1
20090252159 Lawson et al. Oct 2009 A1
20090262725 Chen et al. Oct 2009 A1
20090276771 Nickolov et al. Nov 2009 A1
20090288012 Hertel et al. Nov 2009 A1
20090288165 Qiu et al. Nov 2009 A1
20090300194 Ogasawara Dec 2009 A1
20090316687 Kruppa Dec 2009 A1
20090318112 Vasten Dec 2009 A1
20100027531 Kurashima Feb 2010 A1
20100037204 Lin et al. Feb 2010 A1
20100054142 Moiso et al. Mar 2010 A1
20100070424 Monk Mar 2010 A1
20100071053 Ansari et al. Mar 2010 A1
20100082513 Liu Apr 2010 A1
20100087215 Gu et al. Apr 2010 A1
20100088187 Courtney et al. Apr 2010 A1
20100088698 Krishnamurthy Apr 2010 A1
20100094758 Chamberlain et al. Apr 2010 A1
20100103845 Ulupinar et al. Apr 2010 A1
20100107222 Glasser Apr 2010 A1
20100115041 Hawkins et al. May 2010 A1
20100138501 Clinton et al. Jun 2010 A1
20100142516 Lawson et al. Jun 2010 A1
20100150139 Lawson et al. Jun 2010 A1
20100161716 Kajos Jun 2010 A1
20100167689 Sepehri-Nik et al. Jul 2010 A1
20100188979 Thubert et al. Jul 2010 A1
20100191915 Spencer Jul 2010 A1
20100205309 Skog Aug 2010 A1
20100208881 Kawamura Aug 2010 A1
20100217837 Ansari et al. Aug 2010 A1
20100217982 Brown et al. Aug 2010 A1
20100232594 Lawson et al. Sep 2010 A1
20100235539 Carter et al. Sep 2010 A1
20100239077 Michaelis Sep 2010 A1
20100250946 Korte et al. Sep 2010 A1
20100251329 Wei Sep 2010 A1
20100251340 Martin et al. Sep 2010 A1
20100265825 Blair et al. Oct 2010 A1
20100281108 Cohen Nov 2010 A1
20100291910 Sanding et al. Nov 2010 A1
20100291943 Mihaly Nov 2010 A1
20100299437 Moore Nov 2010 A1
20100312919 Lee et al. Dec 2010 A1
20100332852 Vembu et al. Dec 2010 A1
20110026516 Roberts et al. Feb 2011 A1
20110029882 Jaisinghani Feb 2011 A1
20110029981 Jaisinghani Feb 2011 A1
20110053555 Cai et al. Mar 2011 A1
20110055412 Kongalath Mar 2011 A1
20110078278 Cui et al. Mar 2011 A1
20110081008 Lawson et al. Apr 2011 A1
20110083069 Paul et al. Apr 2011 A1
20110083179 Lawson et al. Apr 2011 A1
20110093516 Geng et al. Apr 2011 A1
20110096673 Stevenson et al. Apr 2011 A1
20110110366 Moore et al. May 2011 A1
20110131293 Mori Jun 2011 A1
20110138453 Verma et al. Jun 2011 A1
20110143714 Keast et al. Jun 2011 A1
20110145049 Hertel et al. Jun 2011 A1
20110149810 Koren et al. Jun 2011 A1
20110149950 Petit-Huguenin et al. Jun 2011 A1
20110151884 Zhao Jun 2011 A1
20110158235 Senga Jun 2011 A1
20110167172 Roach et al. Jul 2011 A1
20110170505 Rajasekar et al. Jul 2011 A1
20110176537 Lawson et al. Jul 2011 A1
20110179126 Wetherell et al. Jul 2011 A1
20110211679 Mezhibovsky et al. Sep 2011 A1
20110251921 Kassaei et al. Oct 2011 A1
20110252154 Bunch Oct 2011 A1
20110253693 Lyons et al. Oct 2011 A1
20110255675 Jasper et al. Oct 2011 A1
20110258432 Rao et al. Oct 2011 A1
20110265168 Lucovsky et al. Oct 2011 A1
20110265172 Sharma Oct 2011 A1
20110267985 Wilkinson et al. Nov 2011 A1
20110274111 Narasappa et al. Nov 2011 A1
20110276892 Jensen-Horne et al. Nov 2011 A1
20110276951 Jain Nov 2011 A1
20110280390 Lawson et al. Nov 2011 A1
20110283259 Lawson et al. Nov 2011 A1
20110289126 Aikas et al. Nov 2011 A1
20110289162 Furlong et al. Nov 2011 A1
20110299672 Chiu et al. Dec 2011 A1
20110310902 Xu Dec 2011 A1
20110313950 Nuggehalli et al. Dec 2011 A1
20110320449 Gudlavenkatasiva Dec 2011 A1
20110320550 Lawson et al. Dec 2011 A1
20120000903 Baarman et al. Jan 2012 A1
20120011274 Moreman Jan 2012 A1
20120017222 May Jan 2012 A1
20120021796 Coulombe Jan 2012 A1
20120023531 Meuninck et al. Jan 2012 A1
20120023544 Li et al. Jan 2012 A1
20120027228 Rijken et al. Feb 2012 A1
20120028602 Lisi et al. Feb 2012 A1
20120036277 Stokking Feb 2012 A1
20120036574 Heithcock et al. Feb 2012 A1
20120039202 Song Feb 2012 A1
20120059709 Lieberman et al. Mar 2012 A1
20120079066 Li et al. Mar 2012 A1
20120083266 Vanswol et al. Apr 2012 A1
20120089572 Raichstein et al. Apr 2012 A1
20120094637 Jeyaseelan et al. Apr 2012 A1
20120101952 Raleigh et al. Apr 2012 A1
20120110564 Ran et al. May 2012 A1
20120114112 Rauschenberger et al. May 2012 A1
20120149404 Beattie et al. Jun 2012 A1
20120166488 Kaushik et al. Jun 2012 A1
20120170726 Schwartz Jul 2012 A1
20120173610 Bleau et al. Jul 2012 A1
20120174095 Natchadalingam et al. Jul 2012 A1
20120179646 Hinton et al. Jul 2012 A1
20120179907 Byrd et al. Jul 2012 A1
20120180021 Byrd et al. Jul 2012 A1
20120180029 Hill et al. Jul 2012 A1
20120185561 Klein et al. Jul 2012 A1
20120198004 Watte Aug 2012 A1
20120201238 Lawson et al. Aug 2012 A1
20120208495 Lawson et al. Aug 2012 A1
20120221603 Kothule et al. Aug 2012 A1
20120226579 Ha et al. Sep 2012 A1
20120239757 Firstenberg et al. Sep 2012 A1
20120240226 Li Sep 2012 A1
20120246273 Bornstein et al. Sep 2012 A1
20120254828 Aiylam et al. Oct 2012 A1
20120266258 Tuchman et al. Oct 2012 A1
20120281536 Gell et al. Nov 2012 A1
20120288082 Segall Nov 2012 A1
20120290706 Lin et al. Nov 2012 A1
20120304245 Lawson et al. Nov 2012 A1
20120304275 Ji et al. Nov 2012 A1
20120316809 Egolf et al. Dec 2012 A1
20120321058 Eng et al. Dec 2012 A1
20120321070 Smith et al. Dec 2012 A1
20130029629 Lindholm et al. Jan 2013 A1
20130031158 Salsburg Jan 2013 A1
20130031613 Shanabrook et al. Jan 2013 A1
20130036476 Roever et al. Feb 2013 A1
20130047232 Tuchman et al. Feb 2013 A1
20130054517 Beechuk et al. Feb 2013 A1
20130054684 Brazier et al. Feb 2013 A1
20130058262 Parreira Mar 2013 A1
20130067232 Cheung et al. Mar 2013 A1
20130067448 Sannidhanam et al. Mar 2013 A1
20130097298 Ting et al. Apr 2013 A1
20130110658 Lyman May 2013 A1
20130132573 Lindblom May 2013 A1
20130139148 Berg et al. May 2013 A1
20130145406 Baskaran Jun 2013 A1
20130156024 Burg Jun 2013 A1
20130163580 Vass Jun 2013 A1
20130166580 Maharajh et al. Jun 2013 A1
20130179942 Caplis et al. Jul 2013 A1
20130201909 Bosch et al. Aug 2013 A1
20130204786 Mattes et al. Aug 2013 A1
20130212603 Cooke et al. Aug 2013 A1
20130244632 Spence et al. Sep 2013 A1
20130268676 Martins et al. Oct 2013 A1
20130325934 Fausak et al. Dec 2013 A1
20130328997 Desai Dec 2013 A1
20130336472 Fahlgren et al. Dec 2013 A1
20140013400 Warshavsky et al. Jan 2014 A1
20140025503 Meyer et al. Jan 2014 A1
20140058806 Guenette et al. Feb 2014 A1
20140064467 Lawson et al. Mar 2014 A1
20140072115 Makagon et al. Mar 2014 A1
20140073291 Hildner et al. Mar 2014 A1
20140095627 Romagnino Apr 2014 A1
20140101058 Castel et al. Apr 2014 A1
20140101149 Winters et al. Apr 2014 A1
20140105372 Nowack et al. Apr 2014 A1
20140106704 Cooke et al. Apr 2014 A1
20140122600 Kim et al. May 2014 A1
20140123187 Reisman May 2014 A1
20140126715 Lum et al. May 2014 A1
20140129363 Lorah et al. May 2014 A1
20140153565 Lawson et al. Jun 2014 A1
20140185490 Holm et al. Jul 2014 A1
20140254600 Shibata et al. Sep 2014 A1
20140258481 Lundell Sep 2014 A1
20140269333 Boerjesson Sep 2014 A1
20140274086 Boerjesson et al. Sep 2014 A1
20140282473 Saraf et al. Sep 2014 A1
20140289303 Tarricone et al. Sep 2014 A1
20140289391 Balaji et al. Sep 2014 A1
20140289420 Tarricone et al. Sep 2014 A1
20140304054 Orun et al. Oct 2014 A1
20140317640 Harm et al. Oct 2014 A1
20140355600 Lawson et al. Dec 2014 A1
20140372508 Fausak et al. Dec 2014 A1
20140372509 Fausak et al. Dec 2014 A1
20140372510 Fausak et al. Dec 2014 A1
20140373098 Fausak et al. Dec 2014 A1
20140379670 Kuhr Dec 2014 A1
20150004932 Kim et al. Jan 2015 A1
20150004933 Kim et al. Jan 2015 A1
20150023251 Giakoumelis et al. Jan 2015 A1
20150026477 Malatack et al. Jan 2015 A1
20150066865 Yara et al. Mar 2015 A1
20150081918 Nowack et al. Mar 2015 A1
20150082378 Collison Mar 2015 A1
20150100634 He et al. Apr 2015 A1
20150119050 Ciao et al. Apr 2015 A1
20150131651 Tarricone et al. May 2015 A1
20150180781 Poulin Jun 2015 A1
20150181631 Lee et al. Jun 2015 A1
20150236905 Bellan et al. Aug 2015 A1
20150281294 Nur et al. Oct 2015 A1
20150281299 Moustafa Oct 2015 A1
20150365480 Soto et al. Dec 2015 A1
20150370788 Bareket et al. Dec 2015 A1
20150381580 Graham, III et al. Dec 2015 A1
20160006819 Tarricone Jan 2016 A1
20160011758 Dornbush et al. Jan 2016 A1
20160028695 Binder Jan 2016 A1
20160077693 Meyer et al. Mar 2016 A1
20160112475 Awson et al. Apr 2016 A1
20160112521 Lawson et al. Apr 2016 A1
20160119291 Zollinger et al. Apr 2016 A1
20160127254 Kumar et al. May 2016 A1
20160149956 Birnbaum et al. May 2016 A1
20160162172 Rathod Jun 2016 A1
20160205519 Patel et al. Jul 2016 A1
20160226937 Patel et al. Aug 2016 A1
20160226979 Lancaster et al. Aug 2016 A1
20160234391 Wolthuis et al. Aug 2016 A1
20160239770 Batabyal et al. Aug 2016 A1
20160248835 Petrangeli Aug 2016 A1
20160380693 Scott Dec 2016 A1
20170041406 Lawson Feb 2017 A1
20170093688 Tarricone et al. Mar 2017 A1
20170339283 Chaudhary et al. Nov 2017 A1
20170359422 Tarricone Dec 2017 A1
20190357288 Palanisamy Nov 2019 A1
Foreign Referenced Citations (20)
Number Date Country
1684587 Mar 1971 DE
0282126 Sep 1988 EP
1464418 Oct 2004 EP
1522922 Apr 2005 EP
1770586 Apr 2007 EP
2053869 Apr 2009 EP
2134107 Sep 1999 ES
10294788 Nov 1998 JP
2004166000 Jun 2004 JP
2004220118 Aug 2004 JP
2006319914 Nov 2006 JP
WO-9732448 Sep 1997 WO
WO-2002087804 Nov 2002 WO
WO-2006037492 Apr 2006 WO
WO-2009018489 Feb 2009 WO
WO-2009124223 Oct 2009 WO
WO-2010037064 Apr 2010 WO
WO-2010040010 Apr 2010 WO
WO-2010101935 Sep 2010 WO
WO-2011091085 Jul 2011 WO
Non-Patent Literature Citations (28)
Entry
“Aepona's API Monetization Platform Wins Best of 4G Awards for Mobile Cloud Enabler”, 4G World 2012 Conference & Expo, [Online]. [Accessed Nov. 5, 2015]. Retrieved from the Internet: <URL: https://www.realwire.com/releases/%20Aeponas-API-Monetization>, (Oct. 30, 12), 4 pgs.
“U.S. Appl. No. 14/793,284, Examiner Interview Summary dated Mar. 22, 2016”, 3 pgs.
“U.S. Appl. No. 14/793,284, Examiner Interview Summary dated Aug. 4, 2016”, 3 pgs.
“U.S. Appl. No. 14/793,284, Final Office Action dated May 25, 2016”, 18 pgs.
“U.S. Appl. No. 14/793,284, Non-Final Office Action dated Nov. 23, 2016”, 8 pgs.
“U.S. Appl. No. 14/793,284, Non-Final Office Action dated Nov. 25, 2015”, 14 pgs.
“U.S. Appl. No. 14/793,284, Notice of Allowance dated May 25, 2017”, 6 pgs.
“U.S. Appl. No. 14/793,284, Notice of Allowance dated Aug. 3, 2017”, 2 pgs.
“U.S. Appl. No. 14/793,284, Response filed Feb. 23, 2017 to Non-Final Office Action dated Nov. 23, 2016”, 7 pgs.
“U.S. Appl. No. 14/793,284, Response filed Mar. 22, 2016 to Non-Final Office Action dated Nov. 25, 2015”, 16 pgs.
“U.S. Appl. No. 14/793,284, Response filed Aug. 16, 2016 to Final Office Action dated May 25, 2016”, 14 pgs.
“U.S. Appl. No. 15/687,054, Corrected Notice of Allowability dated Nov. 14, 2018”, 2 Pgs.
“U.S. Appl. No. 15/687,054, Non-Final Office Action dated Mar. 19, 2018”, 13 pgs.
“U.S. Appl. No. 15/687,054, Notice of Allowability dated Oct. 24, 2018”, 2 pgs.
“U.S. Appl. No. 15/687,054, Notice of Allowance dated Oct. 3, 2018”, 5 pgs.
“U.S. Appl. No. 15/687,054, Response Filed Jul. 19, 2018 to Non-Final Office Action dated Mar. 19, 2018”, 10 pgs.
“Archive Microsoft Office 365 Email I Retain Unified Archiving”, GWAVA, Inc., Montreal, Canada, [Online] Retrieved from the internet: <http://www.gwava.com/Retain/Retain for_Office_365.php>, (2015), 4 pgs.
“Complaint for Patent Infringement”, Telinit Technologies, LLC v. Twilio Inc 2:12-cv-663, (Oct. 12, 2012), 17 pgs.
“Ethernet to Token ring Bridge”, Black Box Corporation, [Online] Retrieved from the internet :<http://blackboxcanada.com/resource/files/productdetails/17044.pdf>, (Oct. 1999), 2 pgs.
“Twilio Cloud Communications—APIs for Voice, VolP, and Text Messaging”, Twilio, [Online] Retrieved from the internet: <http://www.twilio.com/docs/api/rest/call-feedback>, (Jun. 24, 2015), 8 pgs.
Abu-Lebdeh, et al., “A 3GPP Evolved Packet Core-Based Architecture for QoS-Enabled Mobile Video Surveillance Applications”, 2012 Third International Conference on the Network of the Future (NOF), (Nov. 21-23, 2012), 1-6.
Barakovic, Sabina, et al., “Survey and Challenges of QoE Management Issues in Wireless Networks”, Hindawi Publishing Corporation, (2012), 1-29.
Berners-Lee, T., “RFC 3986: Uniform Resource Identifier (URI): Generic Syntax”, The Internet Society, [Online]. Retrieved from the Internet: <URL: http://tools.ietf.org/html/rfc3986>, (Jan. 2005), 57 pgs.
Kim, Hwa-Jong, et al., “In-Service Feedback QoE Framework”, 2010 Third International Conference on Communication Theory. Reliability and Quality of Service, (2010), 135-138.
Matos, et al., “Quality of Experience-based Routing in Multi-Service Wireless Mesh Networks”, Realizing Advanced Video Optimized Wireless Networks. IEEE, (2012), 7060- 7065.
Mu, Mu, et al., “Quality Evaluation in Peer-to-Peer IPTV Services”, Data Traffic and Monitoring Analysis, LNCS 7754, 302-319, (2013), 18 pgs.
Subramanya, et al., “Digital Signatures”, IEEE Potentials, (Mar./Apr. 2006), 5-8.
Tran, et al., “User to User adaptive routing based on QoE”, ICNS 2011: The Seventh International Conference on Networking and Services, (2011), 170-177.
Related Publications (1)
Number Date Country
20190230166 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
62021633 Jul 2014 US
Continuations (2)
Number Date Country
Parent 15687054 Aug 2017 US
Child 16259405 US
Parent 14793284 Jul 2015 US
Child 15687054 US