System performance and power requirements are becoming increasingly demanding in computer systems and devices, particularly in portable computing devices (PCDs), such as cellular telephones, portable digital assistants (PDAs), portable game consoles, palmtop computers, tablet computers, and other portable electronic devices. Such devices may comprise two or more types of processing units optimized for a specific purpose. For example, one or more central processing units (CPUs) may used for general system-level performance or other purposes, while a graphics processing unit (GPU) may be specifically designed for manipulating computer graphics for output to a display device. As each processor requires more performance, there is a need for faster and more specialized memory devices designed to enable the particular purpose(s) of each processor. Memory architectures are typically optimized for a specific application. CPUs may require high-density memory with an acceptable system-level performance, while GPUs may require relatively lower-density memory with a substantially higher performance than CPUs.
As a result, a single computer device, such as a PCD, may include two or more dissimilar memory devices with each specialized memory device optimized for its special purpose and paired with and dedicated to a specific processing unit. In this conventional architecture (referred to as a “discrete” architecture), each dedicated processing unit is physically coupled to a different type of memory device via a plurality of physical/control layers each with a corresponding memory channel. Each dedicated processing unit physically accesses the corresponding memory device at a different data rate optimized for its intended purpose. For example, in one exemplary configuration, a general purpose CPU may physically access a first type of dynamic random access memory (DRAM) device at an optimized data bandwidth (e.g., 17 Gb/s). A higher-performance, dedicated GPU may physically access a second type of DRAM device at a higher data bandwidth (e.g., 34 Gb/s). While the discrete architecture individually optimizes the performance of the CPU and the GPU, there are a number of significant disadvantages.
To obtain the higher performance, the GPU-dedicated memory must be sized and configured to handle all potential use cases, display resolutions, and system settings. Furthermore, the higher performance is “localized” because only the GPU is able to physically access the GPU-dedicated memory at the higher data bandwidth. While the CPU can access the GPU-dedicated memory and the GPU can access the CPU-dedicated memory, the discrete architecture provides this access via a physical interconnect bus (e.g., a Peripheral Component Interconnect Express (PCIE)) between the GPU and the CPU at a reduced data bandwidth, which is typically less than the optimized bandwidth for either type of memory device. Even if the physical interconnect bus between the GPU and the CPU did not function as a performance “bottleneck”, the discrete architecture does not permit either the GPU or the CPU to take advantage of the combined total available bandwidth of the two different types of memory devices. The memory spaces of the respective memory devices are placed in separate contiguous blocks of memory addresses. In other words, the entire memory map places the first type of memory device in one contiguous block and separately places the second type of memory device in a different contiguous block. There is no hardware coordination between the memory ports of the different memory devices to support physical access residing within the same contiguous block.
Accordingly, while there is an increasing demand for more specialized memory devices in computer systems to provide increasingly more system and power performance in computer devices, there remains a need in the art for improved systems and methods for managing dissimilar memory devices.
Systems and methods are provided for managing performance of a computing device having dissimilar memory types. An exemplary embodiment comprises a method for interleaving dissimilar memory devices. The method involves determining an interleave bandwidth ratio comprising a ratio of bandwidths for two or more dissimilar memory devices. The dissimilar memory devices are interleaved according to the interleave bandwidth ratio. Memory address requests are distributed from one or more processing units to the dissimilar memory devices according to the interleave bandwidth ratio.
In the Figures, like reference numerals refer to like parts throughout the various views unless otherwise indicated. For reference numerals with letter character designations such as “102A” or “102B”, the letter character designations may differentiate two like parts or elements present in the same Figure. Letter character designations for reference numerals may be omitted when it is intended that a reference numeral to encompass all parts having the same reference numeral in all Figures.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
In this description, the term “application” may also include files having executable content, such as: object code, scripts, byte code, markup language files, and patches. In addition, an “application” referred to herein, may also include files that are not executable in nature, such as documents that may need to be opened or other data files that need to be accessed.
The term “content” may also include files having executable content, such as: object code, scripts, byte code, markup language files, and patches. In addition, “content” referred to herein, may also include files that are not executable in nature, such as documents that may need to be opened or other data files that need to be accessed.
As used in this description, the terms “component,” “database,” “module,” “system,” and the like are intended to refer to a computer-related entity, either hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computing device and the computing device may be a component. One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components may execute from various computer readable media having various data structures stored thereon. The components may communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal).
In this description, the terms “communication device,” “wireless device,” “wireless telephone”, “wireless communication device,” and “wireless handset” are used interchangeably. With the advent of third generation (“3G”) wireless technology and four generation (“4G”), greater bandwidth availability has enabled more portable computing devices with a greater variety of wireless capabilities. Therefore, a portable computing device may include a cellular telephone, a pager, a PDA, a smartphone, a navigation device, or a hand-held computer with a wireless connection or link.
As illustrated in the embodiment of
In an embodiment, the interleave bandwidth ratio may be determined by accessing a data structure, such as, table 300 illustrated in
It should be appreciated that the types of memory devices and performance parameters may be varied depending on the particular type of computing device, system applications, etc. in which the system 100 is being implemented. The example types and performance parameters illustrated in
Referring again to
As illustrated in
Column 506 illustrates another assignment for an interleave bandwidth ratio of 2:1. Where DRAM device 104a (“wideio2”) has a rate twice as fast as DRAM device 104b (“lpddr3e), two consecutive address blocks are assigned to wideio2 for every one address block assigned to lpddr3e. For example, address blocks N and N+1 are assigned to wideio2. Block N+2 is assigned to lppdr3e. Blocks N+3 and N+4 are assigned to wideio2, and so on. Column 508 illustrates another assignment for an interleave bandwidth ration of 1:2 in which the assignment scheme is reversed because the DRAM device 104b (“lpddr3e”) is twice as fast as DRAM device 104a (“wideio2”).
Referring again to the flowchart of
Following the above example of a 2:1 interleave bandwidth ratio, the channel remapping logic 600 steers the requests 606, 608, 610, 612, 614, and 616 as illustrated in
As mentioned above, the memory channel optimization module 102 may be configured to selectively enable either the unified mode or the discrete mode based on various desirable use scenarios, system settings, etc. Furthermore, it should be appreciated that portions of the dissimilar memory devices may be interleaved rather than interleaving the entire memory devices.
As mentioned above, the memory channel optimization module 102 may be incorporated into any desirable computing system.
As shown, the PCD 800 includes an on-chip system 322 that includes a multicore CPU 402A. The multicore CPU 402A may include a zeroth core 410, a first core 412, and an Nth core 414. One of the cores may comprise, for example, the GPU 106 with one or more of the others comprising CPU 108. According to alternate exemplary embodiments, the CPU 402 may also comprise those of single core types and not one which has multiple cores, in which case the CPU 108 and the GPU 106 may be dedicated processors, as illustrated in system 100.
A display controller 328 and a touch screen controller 330 may be coupled to the GPU 106. In turn, the touch screen display 108 external to the on-chip system 322 may be coupled to the display controller 328 and the touch screen controller 330.
Further, as shown in
As further illustrated in
As depicted in
In a particular aspect, one or more of the method steps described herein may be stored in the memory 404A as computer program instructions, such as the modules described above in connection with the memory channel optimization module 102 as illustrated in
These instructions may be executed by the multicore CPU 402A in combination or in concert with the memory channel optimization module 102 to perform the methods described herein. Further, the multicore CPU 402A, the memory channel optimization module 102, and memory 404A of the PCD 800, or a combination thereof may serve as a means for executing one or more of the method steps described herein.
Certain steps in the processes or process flows described in this specification naturally precede others for the invention to function as described. However, the invention is not limited to the order of the steps described if such order or sequence does not alter the functionality of the invention. That is, it is recognized that some steps may performed before, after, or parallel (substantially simultaneously with) other steps without departing from the scope and spirit of the invention. In some instances, certain steps may be omitted or not performed without departing from the invention. Further, words such as “thereafter”, “then”, “next”, etc. are not intended to limit the order of the steps. These words are simply used to guide the reader through the description of the exemplary method.
Additionally, one of ordinary skill in programming is able to write computer code or identify appropriate hardware and/or circuits to implement the disclosed invention without difficulty based on the flow charts and associated description in this specification, for example.
Therefore, disclosure of a particular set of program code instructions or detailed hardware devices is not considered necessary for an adequate understanding of how to make and use the invention. The inventive functionality of the claimed computer implemented processes is explained in more detail in the above description and in conjunction with the Figures which may illustrate various process flows.
In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted as one or more instructions or code on a computer-readable medium. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to carry or store desired program code in the form of instructions or data structures and that may be accessed by a computer.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (“DSL”), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
Disk and disc, as used herein, includes compact disc (“CD”), laser disc, optical disc, digital versatile disc (“DVD”), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
Alternative embodiments for the method 200 and the system 100 for managing dissimilar memory devices will become apparent to one of ordinary skill in the art to which the invention pertains without departing from its spirit and scope. Therefore, although selected aspects have been illustrated and described in detail, it will be understood that various substitutions and alterations may be made therein without departing from the spirit and scope of the present invention, as defined by the following claims.
This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application filed on Dec. 10, 2012, assigned Provisional Application Ser. No. 61/735,352, and entitled “System and Method for Managing Performance of a Computing Device Having Dissimilar Memory Types,” the entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
7620793 | Edmondson et al. | Nov 2009 | B1 |
7768518 | Collins et al. | Aug 2010 | B2 |
8194085 | Greco et al. | Jun 2012 | B2 |
8289333 | Schreyer et al. | Oct 2012 | B2 |
8314807 | Biswas et al. | Nov 2012 | B2 |
20040260864 | Lee et al. | Dec 2004 | A1 |
20050235124 | Pomaranski et al. | Oct 2005 | A1 |
20070180203 | Ramgarajan et al. | Aug 2007 | A1 |
20080016308 | Bartley et al. | Jan 2008 | A1 |
20080250212 | Asaro et al. | Oct 2008 | A1 |
20090150710 | Bilger et al. | Jun 2009 | A1 |
20090228631 | Marulkar et al. | Sep 2009 | A1 |
20100118041 | Chen et al. | May 2010 | A1 |
20100321397 | Ginzburg | Dec 2010 | A1 |
20110154104 | Swanson et al. | Jun 2011 | A1 |
20110157195 | Sprangle et al. | Jun 2011 | A1 |
20110320751 | Wang et al. | Dec 2011 | A1 |
20120054455 | Wang et al. | Mar 2012 | A1 |
20120155160 | Alam et al. | Jun 2012 | A1 |
20120162237 | Chung | Jun 2012 | A1 |
20120331226 | Krishnan et al. | Dec 2012 | A1 |
20140101379 | Tomlin | Apr 2014 | A1 |
20140164690 | Subrato et al. | Jun 2014 | A1 |
20140164720 | Stewart et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
1591897 | Nov 2005 | EP |
WO-9004576 | May 1990 | WO |
Entry |
---|
International Search Report and Written Opinion—PCT/US2013/067843—ISA/EPO—Jan. 31, 2014. |
Li J., et al., “An Optimized Large-Scale Hybrid DGEMM Design for CPUs and ATI GPUs,” ICS '2012 Proceedings of the 26th ACM international conference on Supercomputing, 2012, pp. 377-386. |
Texas Instruments, “DaVinci Digital Video Processor—datasheet”, Texas Instruments, SPRS614D Mar. 2011. Revised Jan. 2013, pp. 151-327. |
Number | Date | Country | |
---|---|---|---|
20140164689 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61735352 | Dec 2012 | US |