Several modern high-speed serial data busses, normally used for digital communication between physically separated electronic devices, implement the well-known, time-tested “differential pair” signal line configuration to transmit and receive data. The differential pair typically consists of two signal lines, a positive (“p”) signal line and a negative (“n”) signal line, which normally exhibit one of two possible voltage values during data transmission. During such data transmission, the two signal lines exhibit different voltage values from each other. For example, a data value of ‘1’ is usually indicated on a differential pair with a voltage V+ on the “p” line, and a lower voltage V− on the “n” line. Similarly, to indicate a data value of ‘0’, the “p” line holds a voltage of V− while the “n” line exhibits a voltage of V+. Therefore, except during times in which the data value of the differential pair is in transition, the magnitude of the differential voltage between the two signal wires generally remains at about V+minus V−. Advantageously, differential pair signal lines have long been known to demonstrate high common-mode rejection, which allows the data being transferred to be unaffected by noise that is induced onto both signal wires of the differential pair.
In addition to transferring data, the modern serial data busses that utilize differential pairs for data transfer, such as Serial AT Attachment (Serial ATA), also utilize those same signal wires to indicate changes in the overall state of the communication link, such as to invoke data bus power management. To indicate these state changes, the two signal wires of the differential pair normally are driven so that the resulting differential voltage is substantially zero for specific periods of time. Driving the differential signal pair in this manner is commonly known as “squelch,” or “out-of-band” signaling. As a result, electronic devices connected to such a bus are usually required to generate and detect the squelch state of the differential pair, which generally lasts only for a few tens or hundreds of nanoseconds.
Testing the operation of a squelch detection circuit is a crucial task in the design and manufacturing of such a circuit to ensure proper operation of the circuit under various circumstances. For example, an important trait of the detection circuit to be tested is its squelch “noise floor,” which is the circuit's sensitivity to noise when the voltage across the differential signal pair is near the maximum allowed to indicate the squelch state.
One particularly important characteristic requiring testing is the time the detection circuit requires to detect the squelch state. The measuring of this characteristic is especially important in view of the fact that various filtering techniques likely to be employed to improve the noise floor of the circuit also have a deleterious effect on the dynamic response of the circuit. Given that a squelch state may only last a few tens or hundreds of nanoseconds, as mentioned above, any significant delay in detecting the squelch state is likely to allow some of these states to avoid detection altogether. Unfortunately, specialized test equipment that is capable of measuring this response time is not currently available.
Therefore, a need presently exists for a reliable method for measuring the response time of a squelch detection circuit for a differential signal pair using a test system consisting of general-purpose test equipment. Ideally, such a method that elicits the response time of a squelch detection circuit would be simple in implementation, short in execution, and capable of being implemented using standard automated test equipment in the manufacturing environment.
Embodiments of the invention, to be discussed in detail below, provide a method for measuring the response time of a differential signal pair squelch detection circuit. First, both the positive and negative signal lines of the differential signal pair are driven with square waves. One of the signal lines is driven by a first square wave having a period twice the duration of a squelch state that is easily detectable by the squelch detection circuit. The remaining signal line is driven by a second square wave with a period that is an integral multiple of the period of the first square wave, with the period of the second square wave being at least four times the period of the first square wave. Also, the second square wave is maintained in phase with the first square wave. The period of both the first and second squares waves is then gradually reduced by the same percentage until the duty cycle of a squelch detect signal of the squelch detection circuit is less than fifty percent. The response time of the squelch detection circuit is then represented by half of the resulting period of the first square wave.
In an alternate embodiment, the first square wave driving one of the differential signal lines has a period four times the duration of a squelch state that is essentially always detectable by the squelch detection circuit. Like before, the second square wave driving the remaining signal line has a period that is an integral multiple of the first square wave period, with the period of the second square wave being at least four times that of the first square wave. Initially, the second square wave lags the first square wave by ninety degrees. The phase lag of the second square wave compared to the first is then gradually increased until the duty cycle of the squelch detect signal is less than fifty percent. As a result, the squelch detection circuit response time is 180 degrees minus the resulting phase lag of the second square wave, divided by 360 degrees, multiplied by the period of the first square wave.
Use of the embodiments of the invention result in a simple and accurate determination of the response time of a squelch detection circuit with the use of standard electronic test equipment. Also, the overall testing time of a particular squelch detection circuit is minimal, and automated test equipment may be used to implement the embodiments of the present invention for the manufacturing environment.
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
Before describing specific embodiments of the invention, a short discussion of the actions of the differential signal lines, “p” and “n”, during both the data transfer state and squelch, or out-of-band, state is desirable. As stated earlier, the squelch state essentially is the state in which the “p” and “n” signal lines are not being driven to their normal data transmission voltage levels.
During the squelch state 104, the “p” and “n” signals generally maintain their voltage within a second pair of voltage limits so that the squelch state 104 can be distinguished from the data transfer state 103. More specifically, the differential signals should maintain their voltage levels between the maximum squelch voltage 120 and the minimum squelch voltage 130 to ensure that the squelch state 104 will be detected. In doing so, the difference between the voltages of the differential signal pair is less than the difference between the maximum squelch voltage 120 and the minimum squelch voltage 130, thus indicating the squelch state 104.
In response to the initiation of the squelch state 104, a squelch detection circuit, upon detecting the presence of that state, typically forces a squelch state signal to its active state. However, when the duration of the squelch state 104 is sufficiently short, it will not be detected by the squelch detection circuit. This duration is referred to as the circuit's response time. As described earlier, the response time is a critical characteristic of a squelch detection circuit, and measuring that characteristic is the focus of the various embodiments of the present invention.
To facilitate the measuring methods disclosed herein, a test system 1, shown in
The output signal of the squelch detection circuit, the squelch detect signal 6, drives an input of a pulse counter 4. Also, a clock generator 5 produces a clock signal 7 that drives a separate input of the pulse counter 4 so that the number of pulses of the clock signal 7 that occur while the squelch detect signal 6 is active, as well as the total number of pulses of the clock signal 7 occurring over the same time period, may be counted. As a result of this comparison, the response time of the squelch detection circuit 2 may be determined.
Under the initial conditions of the first and second square waves, as described below, the squelch detection circuit 2 is able to detect all squelch states appearing on the positive and negative signal lines of the differential pair. Under those circumstances, the squelch detect signal 6 essentially exhibits a 50% duty cycle, as determined by the operation of the pulse counter 4. For example, assume the clock signal 7 operates at a frequency several times that of the first and second square waves. Also assume that the pulse counter 4 counts both “raw” pulses of the clock signal 7 and “enabled” clock signal 7 pulses that occur while the squelch detect signal 6 is active over multiple cycles of the second square wave. Under these conditions, the pulse counter 4 will count half as many “enabled” clock signal 7 pulses as there are “raw” clock signal 7 pulses, due to the 50% duty cycle. However, as will be seen below, changes in frequency or phase of the first and second square waves can lower the ratio of enabled-to-raw clock signal 7 pulses, thus indicating a change in duty cycle of the squelch detect signal 6. As a result of this change in duty cycle, the response time of the squelch detection circuit 2 may then be calculated, as discussed in detail below. Generally speaking, the frequency of the clock signal 7 should be at least several times the frequency of the first square wave, with a frequency of 200 times that of the first square wave being viewed as adequate for most applications. Similarly, the length of time the pulse counter 4 operates for each measurement should be an integral number of periods of the second square wave to ensure a 50% duty cycle initially, with a factor of 16 typically being considered sufficient in most cases.
In a first method embodiment 100 of
A specific example of the initial driving conditions of the method 100 is shown in
Under these initial conditions, the resulting squelch detect signal, as shown in
Thereafter, the period of both the first and second square waves is gradually reduced by the same percentage until the duty cycle of the squelch detect signal drops below the 50% level (step 140). At that point, the squelch detection circuit is operating at the edge of its response time capabilities. As a result, the response time of the circuit may be calculated by taking half of the resulting period of the first square wave, which represents the minimum length of the squelch state that the squelch detection circuit is able to detect (step 150):
Response time=Tfinal/2
Another embodiment 200, as shown in
Optionally, verification that the duty cycle of the squelch detect signal generated by the squelch detection circuit is about fifty percent may be undertaken, as before (step 130 of
To determine the response time of the circuit, the phase lag of the second square wave compared to the first is then gradually increased until the squelch detect signal duty cycle falls below its initial 50% value (step 240). Accomplishing this step allows the calculation of the response time as 180 degrees minus the resulting or final phase lag of the second square wave, divided by 360 degrees, multiplied by the period T of the first square wave (step 250):
Response time=((180°Φfinal)/360°)*T
The disclosed embodiments of the invention are appropriate primarily for testing squelch detection circuits that are insensitive to the direct-current (DC) value of the common mode voltage. The methods described produce the squelch state by driving both lines of the differential signal pair to either V+ or V−, as opposed to the midpoint voltage 110 typically seen in actual squelch operation. As a result, the methods disclosed herein are not applicable if the squelch detection circuit is designed to only detect squelch via the voltage of one or both of the differential signal lines residing between the maximum squelch voltage 120 and the minimum squelch voltage 130, as displayed in
From the foregoing, embodiments of the invention provide a simple and reliable system and method for measuring the response time of a squelch or out-of-band detection circuit for a differential signal pair. Specific embodiments of the invention other than those shown above are also possible. As a result, the invention is not to be restricted to the specific forms so described and illustrated; the invention is limited only by the claims.