The present disclosure relates to sensors and monitoring devices and systems, and in particular, to a system and method for universal fracturing site equipment monitoring.
Hydraulic fracturing is a process to obtain hydrocarbons such as natural gas and petroleum by injecting a fracking fluid or slurry at high pressure into a wellbore to create cracks in deep rock formations. The hydraulic fracturing process employs a variety of different types of equipment at the site of the well, including one or more positive displacement pumps, slurry blender, fracturing fluid tanks, high-pressure flow iron (pipe or conduit), wellhead, valves, charge pumps, and trailers upon which some equipment are carried.
Positive displacement or reciprocating pumps are commonly used in oil fields for high pressure hydrocarbon recovery applications, such as injecting the fracking fluid down the wellbore. A positive displacement pump may include one or more plungers driven by a crankshaft to create a high or low pressure in a fluid chamber. A positive displacement pump typically has two sections, a power end and a fluid end. The power end includes a crankshaft powered by an engine that drives the plungers. The fluid end of the pump includes cylinders into which the plungers operate to draw fluid into the fluid chamber and then forcibly push out at a high pressure to a discharge manifold, which is in fluid communication with a well head.
The universal hydraulic fracturing site equipment monitoring system and method may be used on a number of different pieces of equipment commonly found at a hydraulic fracturing site, such as positive displacement pumps, slurry blender, fracturing fluid tanks, high-pressure flow iron (pipe or conduit), charge pump (which is typically a centrifugal pump), trailers upon which some equipment are carried, valves, wellhead, conveyers, and other equipment. It is desirable to monitor the operation of these equipment so that timely inspection, maintenance, and replacement can be scheduled to ensure optimal operations. The universal hydraulic fracturing site monitoring system and method described herein comprise a universal monitoring device that can be used to monitor the operations of these different types of equipment used for hydraulic fracturing. Currently, no reliable data is available relating to the operations of these equipment so that equipment servicing tasks can be scheduled in a timely and optimal manner. Further, operation data can be easily falsified to benefit from warranty programs if no accurate data is available.
Also referring to
Referring to the flowchart in
In a preferred embodiment, the universal monitoring device is configured to measure and determine at least one of three primary pump operating parameters that include: 1) cycle count, 2) pump speed, and 3) pump pressure. A number of devices may be incorporated in the universal monitoring device to monitor and measure pump operations that may be used to arrive at these three parameters. Examples include: strain gauge, pressure sensor, accelerometer, vibration sensor, piezoelectric element, proximity sensor, linear variable displacement transducer (LVDT), load cell, and flow meter. The universal monitoring device may include one or more of these sensors/devices. Pressure could also be obtained by using strain gauges or load cells located in close proximity to the bore but not necessarily in direct contact with the frac fluids. As shown in
In another embodiment, a fluid pressure sensor may be used within the fluid chamber in the fluid end of the pump to measure the fluid pressure. The fluid pressure sensor may relay measurement fluid pressure data to a processor of the universal monitoring device wirelessly or via a wired connection. The processor includes logic that can determine or calculate at least one of the cycle count, pump speed, and pump pressure parameters of the pump from the fluid pressure data by analysis.
In yet another embodiment, an accelerometer may be incorporated within the universal monitoring device. The accelerometer can be mounted on an exterior surface of the fluid end and/or power end of the pump. The accelerometer is configured to measure or sense the movement or vibrations of the pump and provide this data to a processor of the universal monitoring device. A vibration sensor functions similarly and can also be used for this purpose. The processor includes logic that can determine or calculate at least one of the cycle count, pump speed, and pump pressure parameters of the pump from the accelerometer data or vibration data by analysis.
In yet another embodiment, a piezoelectric element may be incorporated within the universal monitoring device. The piezoelectric element can be mounted on an exterior surface (or internal cavity such as a machined pocket) of the fluid end and/or power end of the pump. The piezoelectric element is configured to generate a voltage in response to applied mechanical stress in the metal housing of the pump under the high pressure of the fluid. The generated voltage can be relayed to a processor of the universal monitoring device. The processor includes logic that can determine or calculate at least one of the cycle count, pump speed, and pump pressure parameters of the pump from the piezoelectric data by analysis.
In yet another embodiment, a proximity sensor may be incorporated within the universal monitoring device. The proximity sensor is configured to generate data in response to detected presence of or movement of a portion of the metal housing of the pump displaced by the high pressure of the fluid. The generated data can be relayed to a processor of the universal monitoring device. The processor includes logic that can determine or calculate at least one of the cycle count, pump speed, and pump pressure parameters of the pump from the proximity sensor data by analysis.
In yet another embodiment, a linear variable displacement transducer (LVDT) may be incorporated within the universal monitoring device. The LVDT can be mounted on an exterior surface of the fluid end and/or power end of the pump. The LVDT is configured to measure the minute displacement of the pump housing under the high pressure of the fluid. The sensed value can be relayed to a processor of the universal monitoring device. The processor includes logic that can determine or calculate at least one of the cycle count, pump speed, and pump pressure parameters of the pump from the LVDT data by analysis.
In yet another embodiment, a load cell may be incorporated within the universal monitoring device. The load cell can be mounted on an exterior surface (or internally such as a machined cavity or pocket) of the fluid end and/or power end of the pump. The load cell is configured to measure the outward displacement of the pump housing against the load cell under the high pressure of the fluid. The sensed value can be relayed to a processor of the universal monitoring device. The processor includes logic that can determine or calculate at least one of the cycle count, pump speed, and pump pressure parameters of the pump from the load cell data by analysis.
The universal monitoring device may be used to monitor a variety of equipment at a fracturing site. The universal monitoring device may be used to monitor the operations of a positive displacement pump, a slurry blender, fracturing fluid tanks, high-pressure flow iron (pipe or conduit), trailers upon which some equipment are carried, valves, wellhead, charge pump (typically a centrifugal pump), conveyers, and other equipment at the site of a hydraulic fracturing operation or other types of hydrocarbon recovery operations.
The features of the present invention which are believed to be novel are set forth below with particularity in the appended claims. However, modifications, variations, and changes to the exemplary embodiments described above will be apparent to those skilled in the art, and the universal monitoring device and method described herein thus encompasses such modifications, variations, and changes and are not limited to the specific embodiments described herein.
The present application claims the benefit of U.S. Provisional Patent Application No. 62/567,114 filed on Oct. 2, 2017, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4467657 | Olsson | Aug 1984 | A |
9915572 | Teil | Mar 2018 | B2 |
9950112 | Melker | Apr 2018 | B2 |
10584698 | Haddad | Mar 2020 | B2 |
20070139211 | Pessin et al. | Jun 2007 | A1 |
20080006089 | Adnan | Jan 2008 | A1 |
20100021314 | Lee | Jan 2010 | A1 |
20140262237 | Walton | Sep 2014 | A1 |
20160356270 | Zhang et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
204029129 | Dec 2014 | CN |
WO-2018109572 | Jun 2018 | WO |
Entry |
---|
International Search Report and Written Opinion received in Patent Cooperation Treaty Application No. PCT/US2018/053668, dated Dec. 4, 2018. |
Number | Date | Country | |
---|---|---|---|
20190100989 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
62567114 | Oct 2017 | US |