System and method for navigating a guide wire

Information

  • Patent Grant
  • 11918314
  • Patent Number
    11,918,314
  • Date Filed
    Wednesday, November 25, 2020
    3 years ago
  • Date Issued
    Tuesday, March 5, 2024
    8 months ago
Abstract
A catheter procedure system includes a bedside system having a guide wire, a guide wire advance/retract actuator coupled to the guide wire and a guide wire rotate actuator coupled to the guide wire and a workstation coupled to the bedside system. The workstation includes a user interface, at least one display and a controller coupled to the bedside system, the user interface and the at least one display. The controller is programmed to advance the guide wire through a path using the guide wire advance/retract actuator, wherein the guide wire is rotated a predetermined amount.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to the field of catheter systems for performing therapeutic procedures and in particular, to a catheter procedure system and method for navigating a guide wire.


Vascular disease, and in particular cardiovascular disease, may be treated in a variety of ways. Surgery, such as cardiac bypass surgery, is one method for treating cardiovascular disease. However, under certain circumstances, vascular disease may be treated with a catheter based intervention procedure, such as angioplasty. Catheter based intervention procedures are generally considered less invasive than some other types of procedures. If a patient shows symptoms indicative of cardiovascular disease, an image of the patient's heart may be taken to aid in the diagnosis of the patient's disease and to determine an appropriate course of treatment. For certain disease types, such as atherosclerosis, the image of the patient's heart may show a lesion that is blocking one or more coronary arteries. Following the diagnostic procedure, the patient may undergo a catheter based intervention procedure. During one type of intervention procedure, a guide wire is inserted into a blood vessel in the patient's body. The guide wire is then advanced to the desired location, most commonly in one of the heart vessels or elsewhere in the vascular system. A catheter is then slid over the guide wire and moved through the patient's arterial system until the catheter reaches the site of the lesion. In some procedures, the catheter is equipped with a balloon or a stent that when deployed at the site of a lesion allows for increased blood flow through the portion of the coronary artery that is affected by the lesion. In addition to cardiovascular disease, other diseases (e.g., hypertension, etc.) may be treated using catheterization procedures.


For manual insertion of a guide wire, the physician applies torque and axial push force on the proximal end of a guide wire to effect tip direction and axial advancement at the distal end. Robotic catheter systems have been developed that may be used to aid a physician in performing a catheterization procedure such as a percutaneous coronary intervention (PCI). The physician uses a robotic system to precisely steer a coronary guide wire and balloon/stent device in order to, for example, widen an obstructed artery. In order to perform PCI, the distal tip of a guide wire must be navigated through coronary anatomy past a target lesion. While observing the coronary anatomy using fluoroscopy, the physician manipulates the proximal end of the guide wire in order to direct the distal tip into the appropriate vessels toward the lesion and avoid advancing into side branches. Due to the limitations of fluoroscopy, poor visualization, a lack of depth perception and compliance of the anatomy and the guide wire, it can be difficult to rotate the proximal end of the guide wire and precisely direct its distal tip to the desired location.


It would be desirable to provide a system and method for navigating a guide wire that may reduce the amount of time needed to navigate past a junction point thereby reducing the overall procedure time.


SUMMARY OF THE INVENTION

In accordance with an embodiment, a method for navigating a guide wire during a catheter procedure includes advancing a guide wire through a path using a catheter procedure system, determining if the guide wire is in a desired path based at least on at least one image of a region of interest, rotating the guide wire using the catheter procedure system if the guide wire is not in the desired path, wherein the guide wire is rotated a predetermined amount, retracting the guide wire using the catheter procedure system, repeating the steps of advancing the guide wire and rotating and retracting the guide wire using the catheter procedure system until the guide wire is in the desired path and advancing the guide wire to a desired position using the catheter procedure system.


In accordance with another embodiment, a method for navigating a guide wire during a catheter procedure includes receiving a set of parameters defining a predetermined path, automatically advancing a guide wire through the predetermined path using a catheter procedure system, determining if the guide wire is in the predetermined path based at least on at least one image of a region of interest, rotating the guide wire using the catheter procedure system if the guide wire is not in the predetermined path, wherein the guide wire is rotated a predetermined amount, retracting the guide wire using the catheter procedure system, repeating the steps of advancing the guide wire and retracting and rotating the guide wire using the catheter procedure system until the guide wire is in the predetermined path and advancing the guide wire to a desired position using the catheter procedure system.


In accordance with another embodiment, a catheter procedure system includes a bedside system having a guide wire, a guide wire advance/retract actuator coupled to the guide wire and a guide wire rotate actuator coupled to the guide wire and a workstation coupled to the bedside system including a user interface, at least one display, a controller coupled to the bedside system, the user interface and the at least one display, the controller programmed to advance the guide wire through a path using the guide wire advance/retract actuator, determine if the guide wire is in a desired path based at least on at least one image of a region of interest, rotate the guide wire using the guide wire rotate actuator if the guide wire is not in the desired path, wherein the guide wire is rotated a predetermined amount, retract the guide wire using the guide wire advance/retract actuator, repeat the steps of advancing the guide wire and retracting and rotating the guide wire using guide wire advance/retract actuator and the guide wire rotate actuator until the guide wire is in the desired path and advance the guide wire to a desired position using the guide wire advance/retract actuator.


In accordance with another embodiment, a catheter procedure system includes a bedside system having a guide wire, a guide wire advance/retract actuator coupled to the guide wire and a guide wire rotate actuator coupled to the guide wire and a workstation coupled to the bedside system including a user interface, at least one display, a controller coupled to the bedside system, the user interface and the at least one display, the controller programmed to receive a set of parameters defining a predetermined path using the user interface, advance the guide wire through the predetermined path using the guide wire advance/retract actuator, determine if the guide wire is in the predetermined path based at least on at least one image of a region of interest, rotate the guide wire using the guide wire rotate actuator if the guide wire is not in the predetermined path, wherein the guide wire is rotated a predetermined amount, retract the guide wire using the guide wire advance/retract actuator, repeat the steps of advancing the guide wire and simultaneously retracting and rotating the guide wire using the guide wire advance/retract actuator and the guide wire rotate actuator until the guide wire is in the predetermined path and advance the guide wire to a desired position using the guide wire advance/retract actuator.





BRIEF DESCRIPTION OF THE DRAWINGS

This application will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements in which:



FIG. 1 is a perspective view of a catheter procedure system according to an exemplary embodiment;



FIG. 2 is a block diagram of a catheter procedure system according to an exemplary embodiment;



FIG. 3 is a block diagram of a catheter procedure system depicting various actuating mechanisms according to an exemplary embodiment;



FIG. 4 is a block diagram of a controller for controlling a robotic catheter system according to an exemplary embodiment;



FIG. 5 is a block diagram of a movement instruction module according to an exemplary embodiment;



FIG. 6 illustrates a method for navigating a guide wire in accordance with an embodiment; and



FIGS. 7A-7C illustrate an exemplary navigation of a guide wire in accordance with an embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.


Referring to FIG. 1, a catheter procedure system 10 is shown. Catheter procedure system 10 may be used to perform catheter based medical procedures (e.g., percutaneous intervention procedures). Percutaneous intervention procedures may include diagnostic catheterization procedures during which one or more catheters are used to aid in the diagnosis of a patient's disease. For example, during one embodiment of a catheter based diagnostic procedure, a contrast media is injected into one or more coronary arteries through a catheter and an image of the patient's heart is taken. Percutaneous intervention procedures may also include catheter based therapeutic procedures (e.g., balloon angioplasty, stent placement, treatment of peripheral vascular disease, etc.) during which a catheter is used to treat a disease. It should be noted, however, that one skilled in the art would recognize that, certain specific percutaneous intervention devices or components (e.g., type of guide wire, type of catheter, etc.) will be selected based on the type of procedure that is to be performed. Catheter procedure system 10 is capable of performing any number of catheter based medical procedures with minor adjustments to accommodate the specific percutaneous devices to be used in the procedure. In particular, while the embodiments of catheter procedure system 10 described herein are explained primarily in relation to the diagnosis and/or treatment of coronary disease, catheter procedure system 10 may be used to diagnose and/or treat any type of disease or condition amenable to diagnosis and/or treatment via a catheter based procedure. For example, catheter procedure system 10 may be used for the treatment of hypertension utilizing a radiofrequency emitting catheter to deactivate certain nerves that enervate the kidneys to control hypertension.


Catheter procedure system 10 includes lab unit 11 and workstation 14. Catheter procedure system 10 includes a robotic catheter system, shown as bedside system 12, located within lab unit 11 adjacent patient 21. Generally, bedside system 12 may be equipped with the appropriate percutaneous devices (e.g., guide wires, guide catheters, working catheters, catheter balloons, stents, diagnostic catheters, etc.) or other components (e.g., contrast media, medicine, etc.) to allow the user to perform a catheter based medical procedure. A robotic catheter system, such as bedside system 12, may be any system configured to allow a user to perform a catheter-based medical procedure via a robotic system by operating various controls such as the controls located at workstation 14. Bedside system 12 may include any number and/or combination of components to provide bedside system 12 with the functionality described herein. Various embodiments of bedside system 12 are described in detail in P.C.T. International Application No. PCT/US2009/042720, filed May 4, 2009, which is incorporated herein by reference in its entirety.


In one embodiment, bedside system 12 may be equipped to perform a catheter based diagnostic procedure. In this embodiment, bedside system 12 may be equipped with one or more of a variety of catheters for the delivery of contrast media to the coronary arteries. In one embodiment, bedside system 12 may be equipped with a first catheter shaped to deliver contrast media to the coronary arteries on the left side of the heart, a second catheter shaped to deliver contrast media to the coronary arteries on the right side of the heart, and a third catheter shaped to deliver contrast media into the chambers of the heart.


In another embodiment, bedside system 12 may be equipped to perform a catheter based therapeutic procedure. In this embodiment, bedside system 12 may be equipped with a guide catheter, a guide wire, and a working catheter (e.g., a balloon catheter, a stent delivery catheter, ablation catheter, etc.). In one embodiment, bedside system 12 may equipped with a working catheter that includes a secondary lumen that is threaded over the guide wire during a procedure. In another embodiment, bedside system 12 may be equipped with an over-the-wire working catheter that includes a central lumen that is threaded over the guide wire during a procedure. In another embodiment, bedside system 12 may be equipped with an intravascular ultrasound (IVUS) catheter. In another embodiment, any of the percutaneous devices of bedside system 12 may be equipped with positional sensors that indicate the position of the component within the body.


Bedside system 12 is in communication with workstation 14, allowing signals generated by the user inputs and/or control system of workstation 14 to be transmitted to bedside system 12 to control the various functions of beside system 12. Bedside system 12 also may provide feedback signals (e.g., operating conditions, warning signals, error codes, etc.) to workstation 14. Bedside system 12 may be connected to workstation 14 via a communication link 38 that may be a wireless connection, cable connectors, or any other means capable of allowing communication to occur between workstation 14 and beside system 12.


Workstation 14 includes a user interface 30. User interface 30 includes controls 16. Controls 16 allow the user to control bedside system 12 to perform a catheter based medical procedure. For example, controls 16 may be configured to cause bedside system 12 to perform various tasks using the various percutaneous devices with which bedside system 12 may be equipped (e.g., to advance, retract, or rotate a guide wire, advance, retract, or rotate a working catheter, advance, retract, or rotate a guide catheter, inflate or deflate a balloon located on a catheter, position and/or deploy a stent, inject contrast media into a catheter, inject medicine into a catheter, or to perform any other function that may be performed as part of a catheter based medical procedure, etc.). In some embodiments, one or more of the percutaneous intervention devices may be steerable, and controls 16 may be configured to allow a user to steer one or more steerable percutaneous device. In one such embodiment, bedside system 12 may be equipped with a steerable guide catheter, and controls 16 may also be configured to allow the user located at remote workstation 14 to control the bending of the distal tip of a steerable guide catheter. Further embodiments of catheter system 10 including a steerable guide catheter are disclosed in P.C.T. International Application No. PCT/US2010/27666, filed Mar. 17, 2010, which is incorporated herein by reference in its entirety.


In one embodiment, controls 16 include a touch screen 18, a dedicated guide catheter control 29, a dedicated guide wire control 23, and a dedicated working catheter control 25. In this embodiment, guide wire control 23 is a joystick configured to advance, retract, or rotate a guide wire, working catheter control 25 is a joystick configured to advance, retract, or rotate a working catheter, and guide catheter control 29 is a joystick configured to advance, retract, or rotate a guide catheter. In addition, touch screen 18 may display one or more icons (such as icons 162, 164, and 166) that control movement of one or more percutaneous devices via bedside system 12 or to receive various inputs from the user as discussed below. Controls 16 may also include a balloon or stent control that is configured to inflate or deflate a balloon and/or a stent. Each of the controls may include one or more buttons, joysticks, touch screens, etc., that may be desirable to control the particular component to which the control is dedicated. As discussed in more detail below, catheter procedure system 10 includes a percutaneous device movement algorithm module or movement instruction module 114 that dictates how bedside system 12 responds to a user's manipulation of controls 16 to cause a percutaneous device to move in a particular way.


Controls 16 may include an emergency stop button 31 and a multiplier button 33. When emergency stop button 31 is pushed a relay is triggered to cut the power supply to bedside system 12. Multiplier button 33 acts to increase or decrease the speed at which the associated component is moved in response to a manipulation of guide catheter control 29, guide wire control 23, and working catheter control 25. For example, if operation of guide wire control 23 advances the guide wire at a rate of 1 mm/sec, pushing multiplier button 33 may cause operation of guide wire control 23 to advance the guide wire at a rate of 2 mm/sec. Multiplier button 33 may be a toggle allowing the multiplier effect to be toggled on and off. In another embodiment, multiplier button 33 must be held down by the user to increase the speed of a component during operation of controls 16.


User interface 30 may include a first monitor 26 and a second monitor 28. First monitor 26 and second monitor 28 may be configured to display information or patient specific data to the user located at workstation 14. For example, first monitor 26 and second monitor 28 may be configured to display image data (e.g., x-ray images, MRI images, CT images, ultrasound images, etc.), hemodynamic data (e.g., blood pressure, heart rate, etc.), patient record information (e.g., medical history, age, weight, etc.). In addition, first monitor 26 and second monitor 28 may be configured to display procedure specific information (e.g., duration of procedure, catheter or guide wire position, volume of medicine or contrast agent delivered, etc.). In one embodiment, the user may interact with or select various icons or information displayed on monitors 26 and 28 using a user input device or control (e.g., a mouse). Monitor 26 and monitor 28 may be configured to display information regarding the position and/or bend of the distal tip of a steerable guide catheter. Further, monitor 26 and monitor 28 may be configured to display information to provide the functionalities associated with the various modules of controller 40 discussed below. In another embodiment, user interface 30 includes a single screen of sufficient size to display one or more of the display components and/or touch screen components discussed herein.


Catheter procedure system 10 also includes an imaging system 32 located within lab unit 11. Imaging system 32 may be any medical imaging system that may be used in conjunction with a catheter based medical procedure (e.g., non-digital x-ray, digital x-ray, CT, MRI, ultrasound, etc.). In an exemplary embodiment, imaging system 32 is a digital x-ray imaging device that is in communication with workstation 14. As shown in FIG. 1, imaging system 32 may include a C-arm that allows imaging system 32 to partially or completely rotate around patient 21 in order to obtain images at different angular positions relative to patient 21 (e.g., sagittal views, caudal views, cranio-caudal views, etc.).


Imaging system 32 is configured to take x-ray images of the appropriate area of patient 21 during a particular procedure. For example, imaging system 32 may be configured to take one or more x-ray images of the heart to diagnose a heart condition. Imaging system 32 may also be configured to take one or more x-ray images during a catheter based medical procedure (e.g., real-time images) to assist the user of workstation 14 to properly position a guide wire, guide catheter, working catheter, stent, etc. during the procedure. The image or images may be displayed on first monitor 26 and/or second monitor 28.


In addition, the user of workstation 14 may be able to control the angular position of imaging system 32 relative to the patient to obtain and display various views of the patient's heart on first monitor 26 and/or second monitor 28. Displaying different views at different portions of the procedure may aid the user of workstation 14 properly move and position the percutaneous devices within the 3D geometry of the patient's heart. For example, displaying the proper view during a procedure may allow the user to view a patient's vascular system from the proper angle to ensure that the distal tip of a steerable guide catheter is bent in the proper way to ensure the catheter is moved as intended. In addition, displaying different views at different portions of a procedure may aid the user in selecting the appropriate instruction set of movement instruction module 114 discussed below. In an exemplary embodiment, imaging system 32 may be any 3D imaging modality of the past, present, or future, such as an x-ray based computed tomography (CT) imaging device, a magnetic resonance imaging device, a 3D ultrasound imaging device, etc. In this embodiment, the image of the patient's heart that is displayed during a procedure may be a 3D image. In addition, controls 16 may also be configured to allow the user positioned at workstation 14 to control various functions of imaging system 32 (e.g., image capture, magnification, collimation, c-arm positioning, etc.).


Referring to FIG. 2, a block diagram of catheter procedure system 10 is shown according to an exemplary embodiment. Catheter procedure system 10 may include a control system, shown as controller 40. As shown in FIG. 2, controller 40 may be part of workstation 14. Controller 40 is in communication with one or more bedside systems 12, controls 16, monitors 26 and 28, imaging system 32, and patient sensors 35 (e.g., electrocardiogram (“ECG”) devices, electroencephalogram (“EEG”) devices, blood pressure monitors, temperature monitors, heart rate monitors, respiratory monitors, etc.). In addition, controller 40 may be in communication with a hospital data management system or hospital network 34, one or more additional output devices 36 (e.g., printer, disk drive, cd/dvd writer, etc.), and a hospital inventory management system 37.


Communication between the various components of catheter procedure system 10 may be accomplished via communication links 38. Communication links 38 may be dedicated wires or wireless connections. Communication links 38 may also represent communication over a network. Catheter procedure system 10 may be connected or configured to include any other systems and/or devices not explicitly shown. For example, catheter procedure system 10 may include IVUS systems, image processing engines, data storage and archive systems, automatic balloon and/or stent inflation systems, contrast media and/or medicine injection systems, medicine tracking and/or logging systems, user logs, encryption systems, systems to restrict access or use of catheter procedure system 10, robotic catheter systems of the past, present, or future, etc. Further embodiments of catheter procedure system 10 including inflation and/or contrast media injection systems are disclosed in P.C.T. International Application No. PCT/US2009/67540, filed Dec. 10, 2009, which is incorporated herein by reference in its entirety.


Referring to FIG. 3, a block diagram of an embodiment of catheter procedure system 10 is shown according to an exemplary embodiment. Catheter procedure system 10 may include various actuating mechanisms that move an associated percutaneous device in response to a user's manipulation of controls 16. In the embodiment shown, catheter procedure system 10 includes a guide wire actuating mechanism 50, a working catheter actuating mechanism 52, and a guide catheter actuating mechanism 54. In other embodiments, catheter procedure system 10 may include an actuating mechanism for inflating an angioplasty or stent delivery balloon and an actuating mechanism for delivering contrast agent. In the embodiment shown, guide wire actuating mechanism 50 and working catheter actuating mechanism 52 are incorporated within cassette 56 which is coupled to a base of bedside system 12. Additional embodiments of bedside system 12 and cassette 56 are described in detail in P.C.T. International Application No. PCT/US2009/042720, filed May 4, 2009, which is incorporated herein by reference in its entirety. Further embodiments of catheter procedure system 10 are described in detail in P.C.T. International Application No. PCT/US2010/27666, filed Mar. 17, 2010, and in P.C.T. International Application No. PCT/US2009/67540, filed Dec. 10, 2009, both of which are incorporated herein by reference in their entireties.


Guide wire actuating mechanism 50 is coupled to guide wire 58 such that guide wire actuating mechanism 50 is able to cause guide wire 58 to advance, retract, and rotate. Working catheter actuating mechanism 52 is coupled to working catheter 60 such that working catheter actuating mechanism 52 is able to cause working catheter 60 to advance, retract, and rotate. Connector 62 couples guide catheter 64 to guide catheter actuating mechanism 54 such that guide catheter actuating mechanism 54 is able to cause guide catheter 64 to advance, retract, and rotate. In various embodiments, guide wire actuating mechanism 50, working catheter actuating mechanism 52, and guide catheter actuating mechanism may each include an engagement structure (e.g., one or more pairs of pinch wheels) suitable for engaging the respective percutaneous device such that the actuating mechanism is able to impart axial and/or rotational movement to the percutaneous device.


A Y-connector 66 is coupled to guide catheter actuating mechanism 54 via connector 68. In various embodiments, connector 68 may be a component separate from both Y-connector 66 and guide catheter actuating mechanism 54. In other embodiments, connector 68 may be part of (e.g., integral with) Y-connector 66 or part of actuating mechanism 54. In the embodiment shown, Y-connector 66 is also connected to cassette 56.


In one embodiment, Y-connector 66 includes a first leg, a second leg, and a third leg. The first leg of the Y-connector is connected to or in communication with the internal lumen of guide catheter 64. The second leg is angled away from the longitudinal axis of guide catheter 64. The second leg provides a port for the injection of fluids (e.g., contrast media, medicine, etc.) into the lumen of guide catheter 64. The third leg of Y-connector 66 is coupled to a cassette 56 and receives both guide wire 58 and working catheter 60. Thus, by this arrangement, guide wire 58 and working catheter 60 are inserted through Y-connector 66 into the internal lumen of guide catheter 64.


Guide wire actuating mechanism 50 includes a rotate actuator 70 and an advance/retract actuator 72. Rotate actuator 70 is configured to cause rotation of guide wire 58 about its longitudinal axis. Advance/retract actuator 72 is configured to advance and/or retract guide wire 58 (i.e., to advance and/or retract along the longitudinal axis of the guide wire) within patient 21. Working catheter actuating mechanism 52 includes a rotate actuator 74 and an advance/retract actuator 76. Rotate actuator 74 is configured to cause rotation of working catheter 60 about its longitudinal axis. Advance/retract actuator 76 is configured to advance and/or retract working catheter 60 (i.e., to advance and/or retract along the longitudinal axis of the working catheter) within patient 21. Guide catheter actuating mechanism 54 includes a rotate actuator 78, an advance/retract actuator 80, and a bend actuator 82. Rotate actuator 78 is configured to cause rotation of guide catheter 64 about its longitudinal axis. Advance/retract actuator 80 is configured to advance and/or retract guide catheter 64 (i.e., to advance and/or retract along the longitudinal axis of the guide catheter) within patient 21. In some embodiments, guide catheter 64 may include one or more bend control elements that allow the user to cause bending of the distal tip of guide catheter 64. In such an embodiment, bend actuator 82 causes the distal tip of guide catheter 64 to bend in response to a user's manipulation of controls 16.


As shown in the block diagram of FIG. 3, controls 16 and controller 40 located at workstation 14 are communicably coupled to various portions of bedside system 12 to allow the user and/or control system to control movement of guide wire 58, working catheter 60 and guide catheter 64 and any other percutaneous devices that bedside system 12 is equipped with. In the embodiment shown, controls 16 and controller 40 are coupled to guide catheter actuating mechanism 54 to allow the user to move guide catheter 64. In addition, controls 16 and controller 40 are coupled to cassette 56 to allow the user to control guide wire 58 via guide wire actuating mechanism 50 and to control working catheter 60 via working catheter actuating mechanism 52. Control signals 116 generated by the controls and controller at workstation 14 are communicated to bedside system 12 to control movement of percutaneous devices discussed herein.


Referring to FIG. 4, a block diagram of controller 40 is shown according to an exemplary embodiment. Controller 40 may generally be an electronic control unit suitable to provide catheter procedure system 10 with the various functionalities described herein. For example, controller 40 may be an embedded system, a dedicated circuit, a general purpose system programmed with the functionality described herein, etc. Controller 40 includes a processing circuit 90, memory 92, communication module or subsystem 94, communication interface 96, procedure control module or subsystem 98, simulation module or subsystem 100, assist control module or subsystem 102, mode selection module or subsystem 104, inventory module or subsystem 106, GUI module or subsystem 108, data storage module or subsystem 110, and record module or subsystem 112.


Processing circuit 90 may be a general purpose processor, an application specific processor (ASIC), a circuit containing one or more processing components, a group of distributed processing components, a group of distributed computers configured for processing, etc., configured provide the functionality of module or subsystem components 94, 98-114. Memory 92 (e.g., memory unit, memory device, storage device, etc.) may be one or more devices for storing data and/or computer code for completing and/or facilitating the various processes described in the present disclosure. Memory 92 may include volatile memory and/or non-volatile memory. Memory 92 may include database components, object code components, script components, and/or any other type of information structure for supporting the various activities described in the present disclosure.


According to an exemplary embodiment, any distributed and/or local memory device of the past, present, or future may be utilized with the systems and methods of this disclosure. According to an exemplary embodiment, memory 92 is communicably connected to processing circuit 90 and module components 94, 98-114 (e.g., via a circuit or any other wired, wireless, or network connection) and includes computer code for executing one or more processes described herein. A single memory unit may include a variety of individual memory devices, chips, disks, and/or other storage structures or systems.


Module or subsystem components 94, 98-114 may be computer code (e.g., object code, program code, compiled code, script code, executable code, or any combination thereof), hardware, software, or any combination thereof, for conducting each module's respective functions. Module components 94, 98-114 may be stored in memory 92, or in one or more local, distributed, and/or remote memory units configured to be in communication with processing circuit 90 or another suitable processing system.


Communication interface 96 includes one or more component for communicably coupling controller 40 to the other components of catheter procedure system 10 via communication links 38. Communication interface 96 may include one or more jacks or other hardware for physically coupling communication links 38 to controller 40, an analog to digital converter, a digital to analog converter, signal processing circuitry, and/or other suitable components. Communication interface 96 may include hardware configured to connect controller 40 with the other components of catheter procedure system 10 via wireless connections. Communication module 94 is configured to support the communication activities of controller 40 (e.g., negotiating connections, communication via standard or proprietary protocols, etc.).


Data storage module 110 is configured to support the storage and retrieval of information by controller 40. In one embodiment, data storage module 110 is a database for storing patient specific data, including image data. In another embodiment, data storage module 110 may be located on hospital network 34. Data storage module 110 and/or communication module 94 may also be configured to import and/or export patient specific data from hospital network 34 for use by controller 40.


Controller 40 also includes a procedure control module 98 configured to support the control of bedside system 12 during a catheter based medical procedure. Procedure control module 98 allows the user to operate bedside system 12 by manipulating controls 16. To provide this control, procedure control module 98 is in communication with a percutaneous device movement algorithm or movement instruction module 114. Movement instruction module 114 includes one or more movement algorithms or instruction sets (e.g., a library of instruction sets) that dictate how bedside system 12 operates in response to a user's manipulation of controls 16 to produce movement of one or more of the percutaneous devices (e.g., guide wire, working catheter, guide catheter, etc.) that bedside system 12 is equipped with. In various embodiments, procedure control module 98 is configured to generate one or more control signals 116 based upon the user's manipulation of controls 16 and based upon one or more active set of movement instructions provided by movement instruction module 114. Control signals generated by procedure control module 98 are communicated from controller 40 to the appropriate actuator or actuators of bedside system 12. The control signals control the appropriate actuators to cause movement of a percutaneous device in accordance with the manipulation of controls 16 by the user and with the active instruction set of movement instruction module 114. In this manner, movement of the percutaneous device may be controlled from workstation 14. Procedure control module 98 may also cause data appropriate for a particular procedure to be displayed on monitors 26 and 28. Procedure control module 98 may also cause various icons (e.g., icons 162, 164, 166, etc.) to be displayed on touch screen 18 that the user may interact with to control the use of bedside system 12.


Referring to FIG. 5, movement instruction module 114 is depicted according to an exemplary embodiment. In one embodiment, movement instruction module 114 is configured to allow the user to specifically control each movement of a percutaneous device via bedside system 12. In this embodiment, movement instruction module 114 includes a user control instruction set 180 that includes device movement instructions to cause bedside system 12 to move (e.g., advance, retract, rotate, etc.) the percutaneous device in a predefined, set manner (e.g., at a set rate, in a set direction, etc.) in response to a particular input received by controls 16.


For example, user control instruction set 180 of movement instruction module 114 may be configured such that when guide wire control 23 is actuated, bedside system 12 causes the guide wire to advance, retract or rotate at a set rate. Thus, in this embodiment, movement instruction module 114 is configured to allow the user to control the rate and direction of movement of a percutaneous device based on the user's interaction with controls 16. Thus, for certain procedures, the user may select or activate user control instruction set 180 when the user desires to directly control every movement of the percutaneous device by manipulating controls 16.


In one specific embodiment, the movement rate of a percutaneous device caused by bedside system 12 is proportional to the amount of displacement of the control. For example, where controls 23, 25 and 29 are joystick controls, user control instruction set 180 may be configured such that the movement rate of a percutaneous device caused by bedside system 12 is proportional to the degree of displacement of the joystick from the resting position. Further, in this embodiment, the direction of movement (e.g., advancement or retraction) of the percutaneous device caused by bedside system 12 is based on the direction of displacement of the joystick from the resting position.


As discussed above, controls 16 may include a multiplier button 33. Movement instruction module 114 may include a first set of instructions that is active or operative when multiplier button 33 is not activated and a second set of instructions that is operative when multiplier button 33 is activated. In this embodiment, the second set of instructions is configured to cause a percutaneous device to be moved faster by bedside system 12 than it would be moved under the control of the first set of instructions. Thus, when the user presses multiplier button 33, the second set of instructions of movement instruction module 114 is activated causing an increase in the rate of movement of a percutaneous device that results from a particular operation of controls 16. For example, if the first set of instructions of movement instruction module 114 dictates a 1 mm per second rate of advancement of the working catheter when control 16 is fully actuated (e.g., full displacement of a joystick control), then the second set of instructions of movement instruction module 114 may cause a 2 mm per second rate of advancement of the working catheter when control 16 is fully actuated.


In various embodiments, movement instruction module 114 may include various sets of instructions to facilitate the performance of certain movements of percutaneous devices via bedside system 12 without the user having to manually manipulate controls 16 in a series of complicated movements to generate a particular type of movement by the percutaneous device. In these embodiments, a user may select or activate a particular movement instruction set that defines a movement profile, and when controls 16 are manipulated by the user, the percutaneous device is moved in accordance with the movement profile. Thus, movement instruction module 114 may allow a particular movement of a percutaneous device associated with the activated instruction set to be performed consistently in each procedure. The movement profile needed to perform a particular procedure may depend on factors such as, the type of condition being treated (e.g., a chronic total occlusion (CTO), partial occlusion, etc.), the location of the condition being treated (e.g., coronary arteries, peripheral arteries, etc.), the geometry of the area being treated, the particular type (e.g., make, model, size, etc.) of percutaneous device being used, etc.


In one embodiment, movement instruction module 114 may include an axial step movement profile instruction set 182 that is configured to cause bedside system 12 to move a percutaneous device in series of small axially steps or pulses when a user operates controls 16 to cause advancement of the percutaneous device. In such an embodiment, axial step movement profile instruction set 182 of movement instruction module 114 may specify a step distance (i.e., a distance parameter of the step, e.g., 0.2 mm, 0.4 mm, 0.8 mm, 1 mm, 1.5 mm, 2 mm, etc.), a step duration (i.e., the length of time it takes the device to move the step distance, e.g., 0.05 sec, 0.1 sec, 0.3 sec, 0.5, sec, 1 sec, etc.), and a rest duration (i.e., the length of time between steps, e.g., 0.05 sec, 0.1 sec, 0.3 sec, 0.5, sec, 1 sec, etc.). Such pulsed movement may be used to allow a percutaneous device to traverse a CTO. In this embodiment, advancement of the percutaneous device along its longitudinal axis occurs in a series of pulsed axial steps defined by the step distance, step duration, and rest duration.


In another embodiment, axial step movement profile instruction set 182 of movement instruction module 114 may include a movement profile that is configured to cause bedside system 12 to intersperse one or more retract pulses (i.e., pulses the move the device in a direction opposite of the direction of advancement) with the axial advance pulses when a user operates controls 16 to cause net advancement of a percutaneous device. In one embodiment, movement instruction module 114 may be configured to cause bedside system 12 to move a percutaneous device in a set of forward pulses that is followed by one or more retract pulses, which is then followed by a second set of forward pulses, and so on, while the user operates controls 16 to cause advancement of the percutaneous device. To ensure net forward progress utilizing such a movement profile, the instruction set ensures that the distance traveled during each set of forward pulses is greater than the distance traveled during the retract pulses. The retract pulse may allow the percutaneous device to disengage from a structure (e.g., lesion, vessel wall, etc.) prior to further advancement. In various embodiments, movement instruction module 114 may be configured to cause pulsed movement of any percutaneous device with which bedside system 12 is equipped, including the guide wire, working catheter, and guide catheter.


In another embodiment, movement instruction module 114 may include an automatic rotation movement profile instruction set 184 that is configured to cause bedside system 12 to rotate the percutaneous device at a set rate as the percutaneous device is advanced and/or retracted in response to the user's operation of controls 16 to cause advancement/retraction of a percutaneous device. In such an embodiment, automatic rotation movement profile instruction set 184 of movement instruction module 114 may specify an amount of rotation experienced by the percutaneous device as the percutaneous device is advanced or retracted (i.e., a rotation rate). The rotation rate may be specified in terms of degrees of rotation per unit of axial distance traveled (e.g., 360 degrees of rotation for each 2 mm traveled, etc.) or may be specified in terms of degrees of rotation per unit of time of axial travel (e.g., 360 degrees of rotation for each 5 seconds of axial travel). This embodiment allows the user to perform a drilling or corkscrew action with the percutaneous device without having to manually operate controls 16 to cause both axial movement and rotation. In various embodiments, movement instruction module 114 may include instructions to cause such movement of any device with which bedside system 12 is equipped, including the guide wire, working catheter, and guide catheter.


In various embodiments, controller 40 is configured to allow a user to set or select one more of the parameters associated with a particular movement profile. For example, a user may input or select the desired step distance, step duration, rest duration, rotation rate, etc., for the movement profiles discussed above. In these embodiments, controls 16 may include at least one user input device or a control (e.g., touch screen icons 162, 164, 166, keyboard, etc.) that allows the user to input the parameters associated with a movement profile.


In one embodiment, one or more user input devices of controls 16 may be a dedicated user input device that is associated with one of the movement instruction sets of movement instruction module 114 such that operation of the associated user input device itself causes bedside system 12 to move the percutaneous device in accordance with the movement profile. In one embodiment, procedure control module 98 may be configured to display one or more icons (e.g., icons 162, 164, 166, etc.) on touch screen 18 that is associated with a set of movement instructions (e.g., profiles 182 and 184). When the user operates or touches one of the touch screen icons associated with a movement instruction set, bedside system 12 is controlled to move a percutaneous device in accordance with the instruction set associated with the touch screen icon. In one embodiment, certain user input devices of controls 16 (e.g., one or more joysticks) may allow for total or specific control of movement of the percutaneous device by the user, and manipulation of the dedicated touch screen icon causes bedside system to advance the percutaneous device in accordance with an associated axial step movement profile or rotation movement profile.


In one embodiment, bedside system 12 may be equipped with a steerable guide catheter 64 that may be steered by bending the distal tip via bend actuator 82 in response to a user's manipulation of controls 16. In this embodiment, the distal tip of steerable guide catheter 64 may be bent to a particular shape or angle to position guide catheter 64 properly to perform a particular procedure, and movement instruction module 114 may include one or more instruction sets that define a movement profile configured to cause bedside system 12 to move the distal tip of guide catheter 64 to the desired position. In one embodiment, procedure control module 98 may be configured to display several icons (such as icons 162, 164, or 166) on touch screen 18 each indicating a different bend angle or bend shape (e.g., a button for a 30 degree bend, a button for a 40 degree bend, a button for the Judkins Left 4 bend, a button for the Judkins Right 4 bend, etc.), and when the user pushes the button for a particular degree bend or bend shape, the instruction set of movement instruction module 114 associated with the selected icon is executed causing the distal tip of guide catheter 64 to move to the bend angle or bend shape associated with the selected icon.


In another embodiment, movement instruction module 114 may include sets of instructions specific to various types of catheter based procedures that may be performed using bedside system 12. For example, movement instruction module 114 may include one set of instructions that will be executed if bedside system 12 is being used to perform a diagnostic catheterization procedure, shown as diagnostic procedure instruction set 186, and another set of instructions that will be executed if bedside system 12 is being used to perform a therapeutic catheter procedure, shown as therapeutic procedure instruction set 188. In this embodiment, controls 16 may include at least one user input device (e.g., touch screen icons 162, 164, 166) that allows the user to select whether catheter procedure system 10 is going to be used for a diagnostic or therapeutic procedure. In this embodiment, a user input device (e.g., touch screen icon 162, 164, 166) of controls 16 may be associated with a diagnostic procedure and another user input device may be associated with a therapeutic procedure, and selection or operation of the associated user input device by the user activates diagnostic procedure instruction set 186 or therapeutic procedure instruction set 188.


In addition, diagnostic procedure instruction set 186 or therapeutic procedure instruction set 188 may include various subsets of instructions for various types of diagnostic or therapeutic procedures that may be performed using bedside system 12. In one such embodiment, a user input device (e.g., touch screen icon 162, 164, 166) of controls 16 may be associated with a specific type of therapeutic procedure, and selection or operation of the associated user input device activates the appropriate instruction set of therapeutic procedure instruction set 188 that is related to the specific type of therapeutic procedure to be performed. For example, therapeutic procedure instruction set 188 may include a first instruction set associated with a stent placement procedure, a second instruction set associated with an angioplasty procedure, a third instruction set associated with an ablation procedure, etc. Thus, in this embodiment, the user will select the type of therapeutic procedure that is to be performed via the associated user input device, and the instruction subset of therapeutic procedure instruction set 188 for the selected type of therapeutic procedure will be activated.


In other embodiments, movement instruction module 114 may include sets of instructions specific to various types of percutaneous devices that may be used with bedside system 12, shown as device specific instruction sets 190. For example, device specific instruction sets 190 may include a set of instructions for each different type, make and/or model of percutaneous devices that may be used with bedside system 12. In such an embodiment, the instruction set for a particular type, make or model of percutaneous device may account for the properties of the device (e.g., weight, diameter, surface friction, rigidity, etc.) to ensure that the percutaneous device is moved as expected by bedside system 12. In addition, the instruction set for a particular percutaneous device may be based on the type of device being controlled by bedside system 12 (e.g., a guide wire, guide catheter, a working catheter, an angioplasty balloon, a stent, ablation catheter, imaging catheter, etc.).


Some percutaneous devices are designed to be moved or controlled in a particular way during treatment of a condition. Device specific instruction sets 190 may include one or more instruction sets to cause bedside system 12 to move such a percutaneous devices in a manner consistent with its design. For example, in one embodiment, device specific instruction sets 190 may include one or more instruction sets to allow bedside system 12 to control a device specially designed to traverse a chronic total occlusion (e.g., the CrossBoss CTO Catheter manufactured by BridgePoint Medical). In this embodiment, movement instruction module 114 includes an instruction set that allows bedside system 12 to rotate the CrossBoss CTO Catheter at its specified speed.


In another exemplary embodiment, device specific instruction sets 190 may include one or more instruction sets to allow bedside system 12 to control the Symplicity Catheter manufactured by Ardian, Inc. for the treatment of hypertension. The Symplicity Catheter emits low-power radiofrequency energy to deactivate certain renal nerves from within the renal artery to treat hypertension. In this embodiment, movement instruction module 114 includes an instruction set to cause the Symplicity Catheter to retract a certain distance, to rotate a certain amount, and to emit a pulse of radiofrequency energy following rotation and retraction. In this embodiment the retract distance and the rotation amount are determined to position the Symplicity Catheter in the proper locations to deactivate the proper number of renal nerves to treat hypertension.


Controller 40 also includes simulation module or subsystem 100, assist module or subsystem 102, mode selection module or subsystem 104, inventory module or subsystem 106, GUI module or subsystem 108, data storage module or subsystem 110, and record module or subsystem 112. Generally, simulation module 100 is configured to run a simulated catheterization procedure based upon stored vascular image data and also based upon a user's manipulation of controls 16. Generally, assist module 102 is configured to provide information to the user located at workstation 14 during a real and/or simulated catheterization procedure to assist the user with the performance of the procedure. Specific embodiments of controller 40, including specific embodiments of simulation module 100, and assist module 102, are described in detail in P.C.T. International Application No. PCT/US2009/055318, filed Aug. 28, 2009, which is incorporated herein by reference in its entirety. Other specific embodiments of controller 40, including specific embodiments of GUI module 108, are described in P.C.T. International Application No. PCT/US2009/055320, filed Aug. 28, 2009, which is incorporated herein by reference in its entirety.


Movement instruction module 114 has been described as including various instructions sets in various exemplary embodiments as discussed above. However, it should be understood that movement instruction module 114 may include any combination of one or more of the instruction sets discussed above. In any embodiment in which movement instruction module 114 includes more than one instruction set, controller 40 may be configured to select one or more proper instruction set to be activated for a particular procedure either automatically or based on a received user input.


In various embodiments, controller 40 may be configured to allow the user of controls 16 to choose which instruction set or sets of movement instruction module 114 to activate for a particular procedure. In one such embodiment, one or more user input device (e.g., touch screen icon 162, 164, 166, a button, switch, etc.) of controls 16 may be associated with a particular movement instruction set, and selection or operation of the associated user input device activates the instruction set of movement instruction module 114 related to the desired movement parameter or movement profile. Then, with one of the instruction sets activated via operation of the associated user input device, the percutaneous device is moved in accordance with the activated movement instruction set as the user manipulates controls 16 (e.g., a joystick).


In one embodiment, procedure control module 98 may display information associated with one or more of the available instruction sets of movement instruction module 114 from which the user may chose. For example, a list of available instruction sets (e.g., instruction set for pulsed axial movement, instruction set for corkscrew motion, instruction sets for different percutaneous devices, etc.) may be displayed on a display device. In this embodiment, the user may then select the desired instruction set from the list to activate that instruction set using a device such as a mouse or touch screen. When an instruction set of movement instruction module 114 is activated, control signal 116 and the resulting movement of percutaneous device is based upon the user's manipulation of controls 16 and based upon the activated instruction set. In one embodiment, controller 40 is configured to display a separate touch screen icon associated with each movement instruction set of movement instruction module 114. In another embodiment, each available instruction set may be displayed as a list (e.g., a drop-down menu) allowing the user to select the desired instruction set via an input device such as a mouse.


In other embodiments, controller 40 may be configured such that one or more movement instruction set of movement instruction module 114 may be active at one time. In this embodiment, the user may activate any combination of one or more instruction sets of movement instruction module 114 via the associated user input devices. In one embodiment, the user may select more than one instruction set from the list of available instruction sets. For example, the user may activate both the axial step movement profile and the rotational movement profile at the same time, such that operation of controls 16 causes bedside system 12 to move the percutaneous device both for rotation and pulsed axial advancement. As another example, the user may select one instruction set of the device specific instruction sets 190 for the device that the user is controlling via bedside system 12 and may select another instruction set for the type of movement (e.g., pulsed movement, corkscrew movement, etc.). In another embodiment, the user may also select an additional instruction set associated with the type of procedure being performed (e.g., diagnostic, therapeutic, etc.). In other embodiments, a subset of the available movement instruction sets of movement instruction module 114 may be selectable by the user (e.g., profiles 182 and 184), and another subset of the available movement instruction sets of movement instruction module 114 may be automatically selected by controller 40, as described in more detail below. Once one or more instruction sets of movement instruction module 114 are activated, bedside system 12 will be operated based upon the user's manipulation of controls 16 and based upon the one or more activated instruction set.


In some embodiments, procedure control module 98 may be configured to automatically select or activate one or more of the available instruction sets of movement instruction module 114 based upon data available to or received by controller 40. In one embodiment, the instruction set that is automatically activated is associated with a feature of the percutaneous device being controlled. In various embodiments, the feature of the percutaneous device may include the type, make, model and a physical property of the percutaneous device. In one such embodiment, the user may indicate the type of percutaneous device being used for a procedure, and procedure control module 98 may automatically activate the instruction set associated with that particular type of percutaneous device. The user may indicate the type of percutaneous device by any suitable means, for example, entry of the name, model number, or other identifying information of the percutaneous device via a keyboard, selection of the particular percutaneous device from a list, scanning of a barcode associated with the percutaneous device with a barcode reader in communication with controller 40, etc. In another embodiment, catheter procedure system 10 may include an RFID reader that reads an RFID tag containing identifying information associated with a percutaneous device that has been loaded into bedside system 12. The identifying information or data read by the RFID reader may then be communicated to procedure control module 98, and procedure control module 98 may select the appropriate instruction set from movement instruction module 114 based on the identifying information read by the RFID reader.


In one embodiment, assist module 102 may be configured to provide information to the user (e.g., via display on monitor 26 and/or 28, etc.) to aid in the selection of the proper instruction set of movement instruction module 114 for a particular procedure. In one embodiment, assist module 102 may display a suggestion to the user regarding which instruction set should be activated for a particular procedure. In one embodiment, the suggestion generated by assist module 102 may be based on analysis of image data of a patient acquired during a diagnostic or therapeutic procedure. In one embodiment, assist module 102 may be configured to assess one or more property (e.g., density, degree of calcification, etc.) of a lesion (e.g., an atherosclerosis, etc.), and may suggest a movement instruction set suitable for traversing the lesion with the percutaneous device. For example, if a particular lesion is identified to have a high degree of calcification, assist module 102 may select a movement instruction set suitable to allow the percutaneous device to traverse the lesion, such as a pulsed movement instruction set with a relatively low pulse duration may.


As mentioned, catheter procedure system 10 may be used to perform catheter based medical procedures. Typically, catheter based medical procedures involve the placement of a guide wire at a desired location in a patient's arterial system (e.g., the distal end of the guide wire positioned at or past a target lesion). Controller 40 may be used to operate bedside system 12 to advance a guide wire through a patient's arterial system until the distal end of the guide wire is positioned at the desired location. FIG. 6 illustrates a method for navigating a guide wire in accordance with an embodiment. At block 302, the guide wire navigation process is begun. In an exemplary procedure, the guide wire may be inserted into an incision in the patient and, for example, into the femoral artery. At block 304, bedside system 12 is operated to advance the guide wire through the arterial system. In one embodiment, a user operates the bedside system 12 by manipulation of controls 16. For example, controller 40 generates control signals based upon the user input and controls the bedside system 12 (e.g., the guide wire advance/retract actuator 72) to advance the guide wire along a path through the coronary anatomy. The path may be traversed in discrete length steps based on the input provided by the user. In another embodiment, the user may provide a set of parameters that define a predetermined path to, for example, a target lesion. In this embodiment, controller 40 is configured to automatically advance the guide wire along the predetermined path. For example, the movement instruction module 114 of controller 40 may include a guide wire navigation module 192 (shown in FIG. 5) that is configured to control the bedside system 12 to advance the guide wire along the predetermined path.


At block 306, it is determined whether the guide wire is advancing through the proper path. FIG. 7A illustrates an exemplary path to a lesion in the heart. In FIG. 7A, a guide wire 402 is passed through a guide catheter 404 into an artery 412 of the heart 406. A path to a target lesion 408 may, for example, pass though one or more junction points 414 in the coronary anatomy. The guide wire 402, in particular a distal end 410 of the guide wire 402, needs to be advanced through the proper vessels to reach the desired location, for example, the target lesion 408. In one embodiment, an imaging system 32 may be used to provide fluoroscopic images of a region of interest showing the path to the target lesion. The images may be displayed (for example, on a monitor 26, 28) and used to determine if the guide wire is passing through the correct passageway (or vessel) to reach the desired location. In one embodiment, a user may view the images on a display to determine the location of the guide wire. In another embodiment, controller 40 may be configured to process the images to determine the location of the guide wire.


Referring to FIG. 7A, the distal end 410 of the guide wire is within side branch 418 after junction 414 and not within the correct branch 416 of the correct path. Returning to FIG. 6, if the guide wire is not advancing along the correct path at block 306 (e.g., the guide wire does not track into the correct vessel or branch 416 at a junction point but is in side branch 418), the user may provide an input to operate the bedside system 12 to retract the guide wire. In another embodiment, the controller 40 may be configured to automatically retract the guide wire when it is determined that the guide wire is not advancing along the correct path. In this embodiment, the guide wire navigation module 192 may be configured to automatically retract the guide wire. At block 308, the controller 40 (for example, the guide wire navigation module 192) is configured to control the bedside system 12 to rotate and retract the guide wire in response to a control signal to retract the guide wire. In one embodiment, the guide wire is rotated and then retracted. In another embodiment, the guide wire may be retracted and then rotated. In yet another embodiment, the guide wire is rotated and retracted simultaneously. Accordingly, the guide wire rotates while being retracted. In one embodiment, the proximal end of the guide wire is rotated (e.g., using a guide wire rotate actuator) a predetermined amount (e.g., 180 degrees). In another embodiment, the guide wire may first be rotated a first amount in a first direction and then rotated a second amount in the opposite direction. FIG. 7B shows a guide wire 402 retracted to a point before the junction 414. In one embodiment, the guide wire 402 is retraced a distance that positions the distal end 410 of the guide wire before the junction point 414. As mentioned, the guide wire is rotated while being retracted. In another embodiment, if it is required to retract the guide wire multiple times to position the distal end 410 prior to the junction 414, the guide wire may only be rotated with the first retraction of the guide wire.


At block 310 of FIG. 6, bedside system 12 is operated to advance the guide wire. FIG. 7C shows the guide wire 402 advanced past the junction point 414 and into the desired path to the target lesion 408. In one embodiment, a user operates the bedside system 12 by manipulation of controls 16. In another embodiment, controller 40 (for example, guide wire navigation module 192) is configured to automatically advance the guide wire along a predetermined path. At block 306 of FIG. 6, if the guide wire is still not advancing along the correct path, steps 306 to 310 are repeated until the guide wire is located in the correct passageway. In one embodiment, the controller 40 (for example, guide wire navigation module 193) is configured to automatically repeat the iterations of steps 306 to 310 until a user provides an input indicating the guide wire is in the correct passageway. In one embodiment, the amount of rotation of the guide wire is changed for each retraction of the guide wire (i.e. with each iteration). At block 312, it is determined whether the guide wire is positioned at the desired location (e.g., at a target lesion). If the guide wire is not at the proper location, the process returns to block 304 and the guide wire is advanced. If the guide wire is at the desired location, the next steps in the catheter procedure may begin at block 314. For example, a working catheter may be positioned and a therapeutic procedure performed.


Computer-executable instructions for navigating a guide wire according to the above-described method may be stored on a form of computer readable media. Computer readable media includes volatile and nonvolatile, removable, and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer readable media includes, but is not limited to, random access memory (RAM), read-only memory (ROM), electrically erasable programmable ROM (EEPROM), flash memory or other memory technology, compact disk ROM (CD-ROM), digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired instructions and which may be accessed by system 10 (shown in FIG. 1), including by internet or other computer network form of access.


Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only. The construction and arrangements, shown in the various exemplary embodiments, are illustrative only. While the current application recites particular combinations of features in the claims appended hereto, various embodiments of the invention relate to any combination of any of the features described herein whether or not such combination is currently claimed, and any such combination of features may be claimed in this or future applications. Any of the features, elements, or components of any of the exemplary embodiments discussed above may be used alone or in combination with any of the features, elements, or components of any of the other embodiments discussed above. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.

Claims
  • 1. A workstation for operating a robotic catheter system comprising: a user interface configured to receive a first user input and a second user input separate from the first user input;a control system operatively coupled to the user interface, the control system configured to remotely and independently control movement of a percutaneous device with a bedside system, wherein the percutaneous device is moveable both for advancement and retraction along a longitudinal axis of the percutaneous device and for rotation about the longitudinal axis of the percutaneous device; anda device movement algorithm subsystem including a first set of instructions and at least a second set of instructions;wherein the control system controls the percutaneous device based upon both the first user input causing advancement or retraction of the percutaneous device and at least one of the sets of instructions of the device movement algorithm subsystem operatively selected with the second user input causing an automatic rotation of the percutaneous device by a specified non-zero amount only as the percutaneous device is advanced or retracted by the first user input,wherein the second set of instructions includes an automatic rotation movement profile set of instructions configured to rotate the percutaneous device with the bedside system as the percutaneous device is advanced and/or retracted in response to the first set of instructionswherein the rate of rotation is a set rate, and wherein the set rate is one of:a set degrees of rotation per unit of axial distance traveled, ora set degrees of rotation per unit of time of axial travel.
  • 2. The workstation of claim 1, wherein the second set of instructions is configured to cause the percutaneous device to be moved faster by the bedside system than it would be moved under the control of the first set of instructions.
  • 3. The workstation of claim 1, further including a third set of instructions, wherein a user may activate both the second set of instructions and the third set of instructions at the same time wherein, the second set of instructions is one of a rotation movement profile and the third set of instructions is a pulsed axial advancement such that operation of controls causes the bedside system to move the percutaneous device for both rotation and pulsed axial advancement, wherein the second set of instructions is a corkscrew movement profile and the third set of instructions is a pulsed axial advancement such that operation of controls causes the bedside system to move the percutaneous device for both corkscrew and pulsed axial advancement.
  • 4. The workstation of claim 3 wherein the second user interface is a dropdown menu displaying each available set of instructions as a list, and/or wherein only a subset of the available movement sets of instructions may be selected by the user.
  • 5. The workstation of claim 3, wherein the first user input or the second user input allows a user to identify a specific procedure to be performed, and wherein the movement algorithm subsystem includes sets of instructions specific to the various type of procedures, and wherein a subset of a therapeutic procedure set of instructions for the selected procedure is activated.
  • 6. The workstation of claim 1, including a specific set of instructions for each different type, make and/or model of the percutaneous device used with the bedside system, and wherein the specific set of instructions causes the bedside system to move the percutaneous device in a manner consistent with the design of the percutaneous device.
  • 7. The workstation of claim 6, comprising an input device for identifying the type, make and/or model of the percutaneous device, and wherein a procedure control module automatically activates the set of instructions from the movement algorithm subsystem based on the type of the percutaneous device identified.
  • 8. The workstation of claim 1, including an assist module configured to assess at least one property of a lesion.
  • 9. The workstation of claim 8, wherein the assist module further assesses lesion properties based on an analysis of an image data and suggests a movement set of instructions suitable for traversing the lesion with the percutaneous device, and/or wherein a selected set of movement instructions is set based on a degree of calcification of the lesion.
  • 10. The workstation of claim 1, wherein an assist module displays a suggested set of instructions based on one or more of a procedure type, a percutaneous device type, and/or a lesion property.
  • 11. The workstation of claim 1, wherein the movement algorithm subsystem includes a plurality of movement profile sets of instructions and wherein a controller is configured to allow a user to set or select one or more of the parameters associated with at least one of the movement profile set of instructions.
  • 12. The workstation of claim 1, wherein the second user input is separate from the first user input and wherein automatic rotation of the percutaneous device by a specified amount occurs in response to the user's operation of the first user's input to cause advancement or retraction of the percutaneous device.
  • 13. A catheter procedure system, comprising: a bedside system comprising: a percutaneous device actuating mechanism including an axial movement actuator configured to move a percutaneous device along a longitudinal axis of a percutaneous device and a rotation actuator configured to rotate the percutaneous device about the longitudinal axis of the percutaneous device; anda remote workstation, the remote workstation comprising: a first user interface configured to receive a first user input and a second user input separate for the first user input;a control system operatively coupled to the user interface and to the bedside system, the control system configured to remotely and independently control movement of the percutaneous device; anda device movement algorithm subsystem including a first set of instructions and at least a second set of instructions;wherein the control system controls the percutaneous device based upon both the first user input causing advancement or retraction of the percutaneous device and at least one of the sets of instructions of the device movement algorithm subsystem operatively selected with the second user input causing an automatic non-zero rotation of the percutaneous device at a specified rate only as the percutaneous device is advanced or retracted in response to the first user input,wherein the rate of rotation is a set rate, and wherein the set rate is a set degrees of rotation per unit of time of axial travel.
  • 14. The catheter procedure system of claim 13, wherein the second set of instructions is configured to cause the percutaneous device to be moved faster by the bedside system than it would be moved under the control of the first set of instructions.
  • 15. The catheter procedure system of claim 13, wherein the second set of instructions includes an automatic rotation movement profile set of instructions configured to rotate the percutaneous device with the bedside system as the percutaneous device is advanced and/or retracted in response to the first set of instructions.
  • 16. The catheter procedure system of claim 13, including a specific set of instructions for each different type, make and/or model of the percutaneous device used with the bedside system, and wherein the specific set of instructions causes the bedside system to move the percutaneous device in a manner consistent with the design of the percutaneous device.
  • 17. The catheter procedure system of claim 13, wherein the second user input is separate from the first user input and wherein automatic rotation of the percutaneous device by a specified amount occurs in response to the user's operation of the first user's input to cause advancement or retraction of the percutaneous device.
  • 18. A workstation for operating a robotic catheter system comprising: a user interface configured to receive a first user input and a second user input separate from the first user input;a control system operatively coupled to the user interface, the control system configured to remotely and independently control movement of a percutaneous device with a bedside system, wherein the percutaneous device is moveable both for advancement and retraction along a longitudinal axis of the percutaneous device and for rotation about the longitudinal axis of the percutaneous device; anda device movement algorithm subsystem including a first set of instructions and at least a second set of instructions;wherein the control system controls the percutaneous device based upon both the first user input causing advancement or retraction of the percutaneous device and at least one of the sets of instructions of the device movement algorithm subsystem operatively selected with the second user input causing an automatic rotation of the percutaneous device by a specified amount only as the percutaneous device is advanced or retracted in response to the user's operation of the first user input to cause automatic advancement or retraction of the percutaneous device and wherein the rate of rotation is a set non-zero rate, and wherein the set rate is a set degrees of rotation per unit of axial distance traveled.
CROSS-REFERENCE TO RELATED PATENT APPLICATION

This application is a continuation of U.S. application Ser. No. 15/939,833, filed Mar. 29, 2018 entitled “System and Method for Navigating a Guide Wire” which is a continuation of U.S. application Ser. No. 14/946,117, filed Nov. 19, 2015 entitled “System and Method for Navigating a Guide Wire”, now U.S. Pat. No. 9,962,229, which claims the benefit of U.S. Provisional Application No. 62/087,890 filed Dec. 5, 2014 entitled “System And Method For Navigating A Guide Wire” and is a continuation-in-part of U.S. application Ser. No. 13/444,121 filed Apr. 11, 2012 entitled “Catheter System With Percutaneous Device Algorithm” now U.S. Pat. No. 9,220,568, which is a continuation of International Application No. PCT/US2010/052178, filed Oct. 11, 2010, which claims the benefit of U.S. Provisional Application No. 61/250,739 filed Oct. 12, 2009 all of which are incorporated herein by reference in their entirety.

US Referenced Citations (276)
Number Name Date Kind
2718598 Graf Sep 1955 A
3147953 Arth Sep 1964 A
3308297 Mansker Mar 1967 A
4254341 Herr et al. Mar 1981 A
4382184 Wernikoff May 1983 A
4581538 Lenhart Apr 1986 A
4965456 Huettenrauch et al. Oct 1990 A
4977588 Van der Ende Dec 1990 A
5015864 Maleki May 1991 A
5049147 Danon Sep 1991 A
5090044 Kobayashi Feb 1992 A
5133364 Palermo et al. Jul 1992 A
5139473 Bradshaw et al. Aug 1992 A
5185778 Magram Feb 1993 A
5217003 Wilk Jun 1993 A
5217474 Zacca et al. Jun 1993 A
5314407 Auth et al. May 1994 A
5318541 Viera et al. Jun 1994 A
5351676 Putman Oct 1994 A
5361768 Webler et al. Nov 1994 A
5377678 Dumoulin et al. Jan 1995 A
5396880 Kagan et al. Mar 1995 A
5423321 Fontenot Jun 1995 A
5423846 Rischell Jun 1995 A
5425382 Golden et al. Jun 1995 A
5434775 Sims et al. Jul 1995 A
5464023 Viera Nov 1995 A
5484407 Osypka Jan 1996 A
5487734 Thorne et al. Jan 1996 A
5492131 Galel Feb 1996 A
5524180 Wang et al. Jun 1996 A
5540649 Bonnell et al. Jul 1996 A
5578014 Erez et al. Nov 1996 A
5584078 Saboory Dec 1996 A
5584843 Wulfman et al. Dec 1996 A
5586968 Gruendl et al. Dec 1996 A
5623943 Hackett et al. Apr 1997 A
5116350 Stevens Jun 1997 A
5644613 Mick Jul 1997 A
5654864 Ritter et al. Aug 1997 A
5690645 Van Erp Nov 1997 A
5697377 Wittkampf Dec 1997 A
5704897 Truppe Jan 1998 A
5706827 Ehr et al. Jan 1998 A
5728044 Shan Mar 1998 A
5741271 Nakao et al. Apr 1998 A
5779623 Bonnell Jul 1998 A
5821920 Rosenberg et al. Oct 1998 A
5842987 Sahadevan Dec 1998 A
5851182 Sahadevan Dec 1998 A
5882333 Schaer et al. Mar 1999 A
5957941 Ream Sep 1999 A
5981964 McAuley et al. Nov 1999 A
6004276 Wright et al. Dec 1999 A
6013038 Pflueger Jan 2000 A
6024749 Shturman et al. Feb 2000 A
6048300 Thornton et al. Apr 2000 A
6083170 Ben-Haim Jul 2000 A
6096004 Meglan et al. Aug 2000 A
6126647 Posey et al. Oct 2000 A
6129734 Shturman et al. Oct 2000 A
6171234 White et al. Jan 2001 B1
6193735 Stevens Feb 2001 B1
6233476 Strommer et al. May 2001 B1
6258052 Milo Jul 2001 B1
6261247 Ishikawa et al. Jul 2001 B1
6266552 Slettenmark Jul 2001 B1
6285898 Ben-Haim Sep 2001 B1
6290675 Vujanic et al. Sep 2001 B1
6351513 Bani-Hashemi et al. Feb 2002 B1
6358199 Pauker et al. Mar 2002 B1
6375471 Wendlandt et al. Apr 2002 B1
6442451 Lapham Aug 2002 B1
6447504 Ben-Haim et al. Sep 2002 B1
6448571 Goldstein Sep 2002 B1
6497444 Simon Dec 2002 B1
6499163 Stensby Dec 2002 B1
6522909 Garibaldi et al. Feb 2003 B1
6540670 Hirata et al. Apr 2003 B1
6554472 Dietz et al. Apr 2003 B1
6610007 Belson et al. Aug 2003 B2
6653648 Goldstein Nov 2003 B2
6705990 Gallant et al. Mar 2004 B1
6726675 Beyar Apr 2004 B1
6740103 Hall et al. May 2004 B2
6770066 Weaver et al. Aug 2004 B1
6835173 Couvillon, Jr. Dec 2004 B2
6878106 Herrmann Apr 2005 B1
6997870 Couvillon, Jr. Feb 2006 B2
7087013 Belson et al. Aug 2006 B2
7112811 Lemer Sep 2006 B2
7276044 Ferry et al. Oct 2007 B2
7294135 Stephens et al. Nov 2007 B2
7608847 Rees Oct 2009 B2
7615032 Whittaker et al. Nov 2009 B2
7615042 Beyar et al. Nov 2009 B2
7632265 Hauck et al. Dec 2009 B2
7663128 Arterson Feb 2010 B2
7666135 Couvillon, Jr. Feb 2010 B2
7686816 Belef et al. Mar 2010 B2
7697972 Verard et al. Apr 2010 B2
7706894 Stewart et al. Apr 2010 B2
7729743 Sabczynski et al. Jun 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7769427 Shachar Aug 2010 B2
7803169 Shamay Sep 2010 B2
D626250 Wenderow et al. Oct 2010 S
7811294 Strommer et al. Oct 2010 B2
7848788 Tulley et al. Dec 2010 B2
7887549 Wenderow et al. Feb 2011 B2
7905853 Chapman et al. Mar 2011 B2
7967773 Amborn et al. Jun 2011 B2
7984659 Fujimoto et al. Jul 2011 B2
8043362 Gong et al. Oct 2011 B2
8046049 Govari et al. Oct 2011 B2
8187229 Weitzner et al. May 2012 B2
8257302 Beyar et al. Sep 2012 B2
8343096 Kirschenman et al. Jan 2013 B2
8390438 Olson et al. Mar 2013 B2
D680645 Murphy et al. Apr 2013 S
8460214 Kuban et al. Jun 2013 B2
8694157 Wenderow et al. Apr 2014 B2
9050438 Rollins et al. Jun 2015 B2
9119941 Rollins et al. Sep 2015 B2
99119942 Rollins et al. Sep 2015
9220568 Bromander et al. Dec 2015 B2
9314306 Yu Apr 2016 B2
9333324 Cohen et al. May 2016 B2
9408669 Kokish et al. Aug 2016 B2
9510912 Bencteux et al. Dec 2016 B2
9533121 Pacheco et al. Jan 2017 B2
9566414 Wong et al. Feb 2017 B2
9731096 Bian et al. Aug 2017 B2
9827047 Fudaba et al. Nov 2017 B2
9956382 Hwang May 2018 B2
9962229 Blacker et al. May 2018 B2
10039522 Magnin et al. Aug 2018 B2
10052458 Fischer et al. Aug 2018 B2
10238456 Murphy et al. Mar 2019 B2
10881474 Blacker et al. Jan 2021 B2
20010025142 Wessels et al. Sep 2001 A1
20020087166 Brock et al. Jul 2002 A1
20020109107 Goldstein Aug 2002 A1
20020115931 Strauss et al. Aug 2002 A1
20020168618 Anderson et al. Nov 2002 A1
20020177789 Ferry et al. Nov 2002 A1
20030036712 Heh et al. Feb 2003 A1
20030040671 Somogyi et al. Feb 2003 A1
20030069719 Cunningham et al. Apr 2003 A1
20030078003 Hunter et al. Apr 2003 A1
20030088209 Chiu et al. May 2003 A1
20030176770 Merril et al. Sep 2003 A1
20030199848 Ledesma et al. Oct 2003 A1
20030210259 Liu et al. Nov 2003 A1
20040015974 Jeyaraman Jan 2004 A1
20040044279 Lewin et al. Mar 2004 A1
20040064086 Gottlieb et al. Apr 2004 A1
20040068173 Viswanathan Apr 2004 A1
20040085294 Michelitsch et al. May 2004 A1
20040113498 Kroenke Jun 2004 A1
20040138548 Strommer et al. Jul 2004 A1
20040152974 Solomon Aug 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20050008210 Evron et al. Jan 2005 A1
20050020878 Ohnishi Jan 2005 A1
20050020911 Viswanathan et al. Jan 2005 A1
20050107697 Berke May 2005 A1
20050119615 Noriega et al. Jun 2005 A1
20050203382 Govari et al. Sep 2005 A1
20050222554 Wallace et al. Oct 2005 A1
20050245846 Casey Nov 2005 A1
20050256504 Long et al. Nov 2005 A1
20050273199 Ban et al. Dec 2005 A1
20050277851 Whittaker et al. Dec 2005 A1
20050283075 Ma et al. Dec 2005 A1
20060015096 Hauck et al. Jan 2006 A1
20060041181 Viswanathan et al. Feb 2006 A1
20060041245 Ferry et al. Feb 2006 A1
20060066574 Kim et al. Mar 2006 A1
20060074297 Viswanathan Apr 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060084911 Belef et al. Apr 2006 A1
20060116575 Willis Jun 2006 A1
20060146010 Schneider Jul 2006 A1
20060186061 Briggs et al. Aug 2006 A1
20060229587 Beyar et al. Oct 2006 A1
20060258935 Pile-Spellman et al. Nov 2006 A1
20060282140 Schock et al. Dec 2006 A1
20070016029 Donaldson et al. Jan 2007 A1
20070016072 Grunwald et al. Jan 2007 A1
20070043338 Moll et al. Feb 2007 A1
20070060879 Weitzner et al. Mar 2007 A1
20070083111 Hossack Apr 2007 A1
20070083193 Werneth et al. Apr 2007 A1
20070100235 Kennedy May 2007 A1
20070103437 Rosenberg May 2007 A1
20070106247 Burnett et al. May 2007 A1
20070118079 Moberg et al. May 2007 A1
20070123070 Bencteux May 2007 A1
20070137372 Devengenzo et al. Jun 2007 A1
20070142749 Khatib et al. Jun 2007 A1
20070185480 El-Galley et al. Aug 2007 A1
20070185486 Hauck et al. Aug 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070239106 Weitzner et al. Oct 2007 A1
20070250097 Weitzner et al. Oct 2007 A1
20070276216 Beyar Nov 2007 A1
20070276234 Shahidi Nov 2007 A1
20080000485 Williams et al. Jan 2008 A1
20080009791 Cohen et al. Jan 2008 A1
20080027313 Shachar Jan 2008 A1
20080051820 Gong et al. Feb 2008 A1
20080059598 Garibaldi et al. Mar 2008 A1
20080097224 Murphy et al. Apr 2008 A1
20080146922 Steins et al. Jun 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080167750 Stahler et al. Jul 2008 A1
20080217564 Beyar et al. Sep 2008 A1
20080221922 Putnam et al. Sep 2008 A1
20080221992 Bernstein Sep 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080269663 Arnold et al. Oct 2008 A1
20090012533 Barbagli et al. Jan 2009 A1
20090082722 Munger et al. Mar 2009 A1
20090105639 Weitzner et al. Apr 2009 A1
20090110152 Manzke et al. Apr 2009 A1
20090131955 Wenderow et al. May 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090138025 Stahler et al. May 2009 A1
20090182226 Weitzner et al. Jul 2009 A1
20090221958 Beyar et al. Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090247944 Kirschenman et al. Oct 2009 A1
20090326449 Wang et al. Dec 2009 A1
20100069833 Wenderow et al. Mar 2010 A1
20100073150 Olson et al. Mar 2010 A1
20100076308 Wenderow et al. Mar 2010 A1
20100076309 Wenderow et al. Mar 2010 A1
20100076310 Wenderow et al. Mar 2010 A1
20100084586 Teodorescu Apr 2010 A1
20100087811 Herrin et al. Apr 2010 A1
20100130987 Wenderow et al. May 2010 A1
20100175701 Reis et al. Jul 2010 A1
20100204613 Rollins et al. Aug 2010 A1
20100292651 Yodfat et al. Nov 2010 A1
20100318100 Okamoto et al. Dec 2010 A1
20100331670 Strommer et al. Dec 2010 A1
20110004144 Beiriger et al. Jan 2011 A1
20110015569 Kirschenman et al. Jan 2011 A1
20110109283 Kapels et al. May 2011 A1
20110144658 Wenderow et al. Jun 2011 A1
20110152882 Wenderow et al. Jun 2011 A1
20110184275 Klingenbeck Jul 2011 A1
20110234780 Ito et al. Sep 2011 A1
20120046600 Kohler et al. Feb 2012 A1
20120172727 Hastings et al. Jul 2012 A1
20120179032 Bromander et al. Jul 2012 A1
20120191107 Tanner et al. Jul 2012 A1
20130035537 Wallace et al. Feb 2013 A1
20130172738 Bencteux et al. Jul 2013 A1
20140180089 Alpert et al. Jun 2014 A1
20140276389 Walker Sep 2014 A1
20140277333 Lewis et al. Sep 2014 A1
20140277334 Yu et al. Sep 2014 A1
20140316448 Higgins Oct 2014 A1
20150057575 Tsusaka et al. Feb 2015 A1
20150148816 Govari et al. May 2015 A1
20160008077 Bencteux et al. Jan 2016 A1
20160008574 Kaufman et al. Jan 2016 A1
20160184552 Hou et al. Jun 2016 A1
20160338789 DeMathelin et al. Nov 2016 A1
20160354582 Yu et al. Dec 2016 A1
20170071684 Kokish et al. Mar 2017 A1
20170151024 Deboeuf et al. Jun 2017 A1
20170156802 Deboeuf et al. Jun 2017 A1
20181085616 Deboeuf et al. Jul 2018
Foreign Referenced Citations (48)
Number Date Country
2208422 Sep 1995 CN
101612436 Dec 2009 CN
102028549 Apr 2011 CN
103083783 May 2013 CN
103584918 Feb 2014 CN
103976766 Aug 2014 CN
2856439 Jul 1980 DE
4233323 Apr 1994 DE
102005042326 Mar 2007 DE
0329492 Aug 1989 EP
0331944 Sep 1989 EP
0554986 Aug 1993 EP
0590268 Apr 1994 EP
0970663 Jan 2000 EP
1415660 May 2004 EP
1442720 Aug 2004 EP
1504713 Feb 2005 EP
1554986 Jul 2005 EP
1792638 Jun 2007 EP
2626033 Aug 2013 EP
2167098 Aug 1973 FR
H0531117 Feb 1993 JP
07184923 Jul 1995 JP
7328016 Dec 1995 JP
2005103018 Apr 2005 JP
2006167298 Jun 2006 JP
279814 Jul 1975 SU
992067 Jan 1983 SU
9320876 Oct 1993 WO
9502233 Jan 1995 WO
9621486 Jul 1996 WO
0174252 Oct 2001 WO
0209571 Feb 2002 WO
02064011 Aug 2002 WO
2005000105 Jan 2005 WO
2006018841 Feb 2006 WO
2006120666 Nov 2006 WO
2007036925 Apr 2007 WO
2009137410 Nov 2009 WO
2010025336 Mar 2010 WO
2010025338 Mar 2010 WO
2010068783 Jun 2010 WO
2010107916 Sep 2010 WO
2011018147 Feb 2011 WO
2011018157 Feb 2011 WO
2011046874 Apr 2011 WO
2014074955 May 2014 WO
2014127353 Aug 2014 WO
Non-Patent Literature Citations (20)
Entry
Wang, Dangxiao, et al. “Toward in-vivo force and motion measurement for vascular surgery.” IEEE Transactions on Instrumentation and Measurement 63.8 (2014): 1975-1982.
Snow, N. (1982). Elimination of lead dislodgement by the use of tined transvenous electrodes. Pacing and Clinical Electrophysiology, 5(4), 571-574.
Guo, S., Yamaji, H., Kita, Y., Izuishi, K., & Tamiya, T. (Sep. 2008). A novel active catheter system for ileus treatment. In 2008 IEEE International Conference on Automation and Logistics (pp. 67-72). IEEE.
Perrino, Albert C., and Scott T. Reeves. Practical Approach to Transesophageal Echocardiography, Wolters Kluwer, 2013. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/columbia/detail.action?docID=3417892.
Vascular Interventional Surgery Robot Motion Planning and Catheter Navigator Design. A Dissertation Submitted for the Degree of Master, 2011.
Ji, Cheng, Zeng-Guang Hou, and Xiao-Liang Xie. “Guidewire navigation and delivery system for robot-assisted cardiology interventions.” IEEE 10th International Conference on Cognitive Informatics and Cognitive Computing (ICCI-CC'11). IEEE, 2011.
Wang, Jun-qiang, et al. “Computer-assisted navigation systems for insertion of cannulated screws in femoral neck fractures: a comparison of bi-planar robot navigation with optoelectronic navigation in a Synbone hip model trial.” Chinese medical journal 124.23 (2011): 3906-3911.
Anderson, J., Chui, C.K., Cai. Y., Wang Y., Eng, Z.L.M., Eng, X.M.M., Nowinski, W., Solaiyappan, M., Murphy, K., Gailloud, P. & Venbrux, A., Virtual Reality Training in International Radiology: The John Hopkins and Kent Ridge Digital Labratory Experience, Theime Medical Publishers, 2002, 2 pages, vol. 19, No. 2, New York, NY.
Becker, Y, Cancer in ataxia-telangiectasia patients: Analysis of factors leading to radiation-induced and spontaneous tumors, Anticancer Res., 1986, vol. 6, No. 5, Abstract, pp. 1021-1032, Israel.
Beyar, R., Gruberg, L., Deleanu, D., Roguin, A., Almagor, Y., Cohen, S., Kumar, G., & Wenderow, T., Remote Control Percutaneous Coronary Interventions, Journal of American College of Cardiology, 2006, vol. 47, No. 2, 5 pages, Elsevier Inc., Haifa, Israel.
Biazzi, L. & Garbagna, P., Exposition Aux Radiations Et Protection Pendant Les Examens Angiographiques, Ann. Radiol., 1979, vol. 22, No. 4, Abstract, pp. 345-347, France.
EESR for EP 19157144.7; dated Oct. 2, 2019; 10 pages.
Essinger A., Raimondi, S. & Valley, J.F., Radiation Exposure to the Examiner During Coronary Angiography, Ann. Radiol., 1979 vol. 22 no. 4 Abstract, pp. 340-343, France.
Extended European Search Report for application 15865169.5; dated Jul. 2, 2018; 8 pages.
Favaretti, C., Stritoni, P., Mariotti, A., Bressan, M. & Razzolini, R., The Distribution and Activities of Hemodynamic Labratories in Italy: The implications for the Quality of Services, G Ital Cardiol, May 1994, vol. 24 No. 5, Abstract, pp. 477-482, Italy.
International Search Report and Written Opinion for PCT/US2015/064036; dated Feb. 23, 2016; 7 pages.
Magnavita, N. & Fileni, A., Occupational risk caused by ultrasound in medicine, Radiologica Medica, Jul.-Aug. 1994, vol. 88, No. 1-2, Abstract, pp. 107-111, Italy.
Roach, H., Larson, E., Cobran, T. & Bartlett, B., Intravenous site care practices in critical care: a national survey, Heart Lung, Sep.-Oct. 1995, vol. 24, No. 5, Abstract, pp. 420-424, Washington D.C., United States.
Van Den Brand, M., Utilization or coronary angioplasty and cost or angioplasty disposables in 14 westem European countries, Europe Heart Journal, Mar. 1993, vol. 14, No. 3, Abstract, pp. 391-397, Rotterdam, Netherlands.
Wu, J.R., Huang, T.Y., Wu, D.K., Hsu, P.C. & Weng, P.S., An investigation of radiation exposure on pediatric patients and doctors during cardiac catheterization and cineangiography, Journal of Medical Sciences, Sep. 1991, vol. 7, No. 9, Abstract, pp. 448-453, Taiwan, China.
Related Publications (1)
Number Date Country
20210093406 A1 Apr 2021 US
Provisional Applications (2)
Number Date Country
62087890 Dec 2014 US
61250738 Oct 2009 US
Continuations (3)
Number Date Country
Parent 15939833 Mar 2018 US
Child 17105418 US
Parent 14946117 Nov 2015 US
Child 15939833 US
Parent PCT/US2010/052178 Oct 2010 US
Child 13444121 US
Continuation in Parts (1)
Number Date Country
Parent 13444121 Apr 2012 US
Child 14946117 US