System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction

Abstract
A system and method for navigating to a target using fluoroscopic-based three dimensional volumetric data generated from two dimensional fluoroscopic images, including a catheter guide assembly including a sensor, an electromagnetic field generator, a fluoroscopic imaging device to acquire a fluoroscopic video of a target area about a plurality of angles relative to the target area, and a computing device. The computing device is configured to receive previously acquired CT data, determine the location of the sensor based on the electromagnetic field generated by the electromagnetic field generator, generate a three dimensional rendering of the target area based on the acquired fluoroscopic video, receive a selection of the catheter guide assembly in the generated three dimensional rendering, and register the generated three dimensional rendering of the target area with the previously acquired CT data to correct the position of the catheter guide assembly.
Description
BACKGROUND
Technical Field

The present disclosure relates to a system, apparatus, and method of navigation and position confirmation for surgical procedures. More particularly, the present disclosure relates to a system and method for enhanced navigation of a catheter and one or more medical instruments positionable therethrough in one or more branched luminal networks of a patient and confirming placement of those medical instruments prior to initiating treatment or biopsy based on a three dimensional computed tomography volume generated from standard fluoroscopic images.


Description of Related Art

There are several commonly applied methods for treating various maladies affecting organs including the liver, brain, heart, lung and kidney. Often, one or more imaging modalities, such as magnetic resonance imaging, ultrasound imaging, computer tomography (CT), as well as others are employed by clinicians to identify areas of interest within a patient and ultimately targets for treatment.


An endoscopic approach has proven useful in navigating to areas of interest within a patient, and particularly so for areas within luminal networks of the body such as the lungs. To enable the endoscopic, and more particularly the bronchoscopic, approach in the lungs, endobronchial navigation systems have been developed that use previously acquired MRI data or CT image data to generate a three dimensional rendering or volume of the particular body part such as the lungs. In particular, previously acquired images, acquired from an MRI scan or CT scan of the patient, are utilized to generate a three dimensional or volumetric rendering of the patient.


The resulting volume generated from the MRI scan or CT scan is then utilized to create a navigation plan to facilitate the advancement of a navigation catheter (or other suitable device) through a bronchoscope and a branch of the bronchus of a patient to an area of interest. Electromagnetic tracking may be utilized in conjunction with the CT data to facilitate guidance of the navigation catheter through the branch of the bronchus to the area of interest. In certain instances, the navigation catheter may be positioned within one of the airways of the branched luminal networks adjacent to, or within, the area of interest to provide access for one or more medical instruments.


Thus, in order to generate a navigation plan, or in order to even generate a three dimensional or volumetric rendering of the patient's anatomy, such as the lung, a clinician is required to utilize an MRI system or CT system to acquire the necessary image data for construction of the three dimensional volume. It would be ideal to utilize an MRI system or CT-based imaging system, like that of which is used during the planning phase to generate a volumetric rendering, during the procedure to generate near real-time data during the procedure. However such an MRI system of CT-based imaging system is extremely costly, and in many cases not available in the same location as the location where a navigation procedure is carried out. Additionally, such systems expose patients to high doses of radiation, thus making it desirable to reduce a patient's exposure as much as possible.


A fluoroscopic imaging device is commonly located in the operating room during navigation procedures. The standard fluoroscopic imaging device may be used by a clinician to visualize and confirm the placement of a tool after it has been navigated to a desired location. However, although standard fluoroscopic images display highly dense objects such as metal tools and bones as well as large soft-tissue objects such as the heart, the fluoroscopic images have difficulty resolving small soft-tissue objects of interest such as lesions. Further, the fluoroscope image is only a two dimensional projection. In order to be able to see small soft-tissue objects in three dimensional space, an X-ray volumetric reconstruction is needed. Several solutions exist that provide three dimensional volume reconstruction of soft-tissues such as CT and Cone-beam CT which are extensively used in the medical world. These machines algorithmically combine multiple X-ray projections from known, calibrated X-ray source positions into three dimensional volume in which the soft-tissues are visible.


In order to navigate tools to a remote soft-tissue target for biopsy or treatment, both the tool and the target should be visible in some sort of a three dimensional guidance system. The majority of these systems use some X-ray device to see through the body. For example, a CT machine can be used with iterative scans during procedure to provide guidance through the body until the tools reach the target. This is a tedious procedure as it requires several full CT scans, a dedicated CT room and blind navigation between scans. In addition, each scan requires the staff to leave the room to avoid high radiation exposure. Another option is a Cone-beam CT machine which is available in some operation rooms and is somewhat easier to operate, but is expensive and like the CT only provides blind navigation between scans, requires multiple iterations for navigation and requires the staff to leave the room.


Accordingly, there is a need for a system that can achieve the benefits of the CT and Cone-beam CT three dimensional image guidance without the underlying costs, preparation requirements, and radiation side effects associated with these systems.


SUMMARY

The present disclosure is directed to a system and method for enhanced navigation of a catheter within a luminal network of a patient using local three dimensional volumetric data in which small soft-tissue objects are visible constructed from a fluoroscopic video stream, composed of a series of fluoroscopic images, captured by a standard fluoroscopic imaging device available in most procedure rooms. The fluoroscopic-based constructed local three dimensional volumetric data may be used for guidance, navigation planning, improved navigation accuracy, navigation confirmation, and treatment confirmation. In particular, one aspect of the present disclosure utilizes fluoroscopic images (or fluoroscopic video) in order to improve the accuracy of navigation during an electromagnetic navigation procedure (or other navigation procedure) and in order to confirm placement of a surgical tool(s) during such procedures.


Aspects of the present disclosure are described in detail with reference to the figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.


According to one aspect of the present disclosure, a system for navigating to a target using fluoroscopic-based three dimensional volumetric data generated from two dimensional fluoroscopic images is provided. The system includes a catheter guide assembly including a sensor disposed thereon, an electromagnetic field generator configured to generate an electromagnetic field for determining a location of the sensor, a fluoroscopic imaging device configured to acquire a fluoroscopic video of a target area about a plurality of angles relative to the target area, and a computing device. The computing device is configured to receive previously acquired CT data, determine the location of the sensor based on the electromagnetic field generated by the electromagnetic field generator, and generate a three-dimensional rendering of the target area based on the acquired fluoroscopic video. The computing device may also be configured to display the generated three-dimensional rendering, receive a selection (either automatically or manually) of the catheter guide assembly and/or the target within the generated three-dimensional rendering, and register the generated three-dimensional rendering of the target area with the previously acquired CT data. The fluoroscopic video of the target area may include a rotation about the target area in the range of fifteen degrees to sixty degrees. For example, the fluoroscopic video of the target area may include a thirty degree rotation about the target area, where the area covered is fifteen degrees about each side of the target area or patient.


The registration of the generated three-dimensional rendering of the target area (which includes the surgical device navigated to the target area and the target within the target area) with the previously acquired CT data may be accomplished using image-based techniques, including but not limited to, mutual information techniques. The generated three-dimensional rendering of the target area can be registered globally to the previously acquired CT data or locally (in proximity of an area of interest within the target area, for example, the target). The registration of the generated three-dimensional rendering of the target area with the previously acquired CT data may be accomplished using a deep-learning based approach, including but not limited to, approaches where the system learns how to register the two different modalities based on a comparison between many different good and bad registrations.


The computing device may be further configured to display a position of the catheter guide assembly with respect to the previously acquired CT data based on the determined location of the sensor and update, or otherwise correct, the displayed position of the catheter guide assembly with respect to the previously acquired CT data based on the registration of the generated three-dimensional rendering of the target area with the previously acquired CT data. In aspects, the computing device is further configured to detect a portion of the catheter guide assembly and/or the target in the acquired fluoroscopic video, suggest the detected portion to a user, and receive a user command either accepting or rejecting the detection.


Additionally, the computing device may be further configured to track the two dimensional position or orientation of the catheter guide assembly or medical device navigated to the target region throughout the fluoroscopic video. The computing device may be further configured to reconstruct positions of the medical device throughout the fluoroscopic video using a structure-from-motion technique. The pose of the fluoroscopic imaging device for each frame of the fluoroscopic video may be determined based on the reconstructed positions. Additionally, or alternatively, the pose of the fluoroscopic imaging device for each frame of the fluoroscopic video may be determined based on an external angle measurement device, for example an accelerometer, coupled to the fluoroscopic imaging device.


In yet another aspect of the present disclosure a method for navigating to a target using fluoroscopic-based three dimensional volumetric data generated from two dimensional fluoroscopic images is provided. The method includes receiving previously acquired CT data, navigating a catheter guide assembly including a sensor disposed thereon to the target, generating an electromagnetic field, and determining a location of the sensor based on the generated electromagnetic field. The method further includes acquiring a fluoroscopic video of the target area about a plurality of angles relative to the target area using a fluoroscopic imaging device, generating a three-dimensional rendering of the target area based on the acquired fluoroscopic video, optionally displaying the generated three-dimensional rendering, receiving a selection of the catheter guide assembly within the generated three-dimensional rendering, and registering the generated three-dimensional rendering of the target area with the previously acquired CT data. The method may further include navigating a radio-opaque marker to the target area, wherein the radio-opaque marker is at least partially visible in the fluoroscopic video acquired.


Additionally, the method may further include displaying a position of the catheter guide assembly with respect to the previously acquired CT data based on the determined location of the sensor and updating, or otherwise correcting, the position of the catheter guide assembly with respect to the previously acquired CT data based on the registration of the generated three-dimensional rendering of the target area with the previously acquired CT data. Additionally, the method may further include detecting a portion of the catheter guide assembly and/or the target in the acquired fluoroscopic video and receiving a user command either accepting or rejecting the detection.


The positions of the medical device throughout the fluoroscopic video may be reconstructed using a structure-from-motion technique. The pose of the fluoroscopic imaging device for each frame of the fluoroscopic video may be determined based on the reconstructed positions. Additionally, or alternatively, the pose of the fluoroscopic imaging device for each frame of the fluoroscopic video may be determined based on an external angle measurement device, for example an accelerometer, coupled to the fluoroscopic imaging device.


In yet another aspect of the present disclosure a non-transitory computer readable storage medium is provided. The non-transitory computer readable storage medium includes instructions, which when executed, causes a system to perform any of the methods described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:



FIG. 1 is a perspective view of one illustrative embodiment of an electromagnetic navigation (EMN) system incorporating a fluoroscopic imaging device in accordance with the present disclosure;



FIG. 2 is a perspective view of a catheter assembly usable with the system of FIG. 1;



FIG. 3 is an anatomical illustration of a three dimensional model for a lung in accordance with an embodiment of the present disclosure;



FIG. 4A is an illustration of a pathway from the entry point to the target in accordance with an embodiment of the present disclosure;



FIG. 4B is a transverse cross-sectional view of the section of the lung of FIG. 4A taken along section line B-B;



FIG. 4C is an illustration of a catheter guide assembly inserted into a lung following the pathway plan of FIG. 4A;



FIG. 4D is an enlarged detail view of the circled area of FIG. 4C; and



FIG. 5 is a flow chart of a method for navigating a catheter to a target.





DETAILED DESCRIPTION

The present disclosure is directed to a system and method for enhanced navigation of a catheter within a luminal network of a patient using local three dimensional volumetric data in which small soft-tissue objects are visible constructed from a fluoroscopic video stream, composed of a series of fluoroscopic images, captured by a standard fluoroscopic imaging device available in most procedure rooms. The fluoroscopic-based constructed local three dimensional volumetric data is registered with previously acquired volumetric data used for creating a navigation plan and diagnosis. Additionally, the fluoroscopic-based constructed local three dimensional volumetric data may be used for guidance, navigation planning, improved navigation accuracy, navigation confirmation, and treatment confirmation.


The three dimensional model of a patient's lungs, generated from previously acquired CT scans, may not provide a basis sufficient for accurate guiding of medical instruments to a target during an electromagnetic navigation procedure. In certain instances, the inaccuracy is caused by deformation of the patient's lungs during the procedure relative to the lungs at the time of the acquisition of the previously acquired CT data. This deformation (CT-to-Body divergence) may be caused by many different factors, for example: sedation vs. no sedation, bronchoscope changing patient pose and also pushing the tissue, different lung volume because CT was in inhale while navigation is during breathing, different bed, day, etc. Thus, another imaging modality is necessary to visualize targets and/or a terminal bronchial branch, and enhance the electromagnetic navigation procedure by correcting the navigation during the procedure, enabling visualization of the target, and confirming placement of the surgical device during the procedure. For this purpose, the system described herein processes and converts image data captured by the fluoroscopic imaging device 110, as will be described in detail below. This fluoroscopic image data may be utilized to identify such targets and terminal bronchial branches or be incorporated into, and used to update, the data from the CT scans in an effort to provide a more accurate/correction of the electromagnetic navigation procedure. Further, the fluoroscopic images may be captured post-navigation and thus includes visuals of the position of the navigated medical instrument relative to the target.



FIG. 1 depicts an aspect of an Electromagnetic Navigation (EMN) system 100 configured for reviewing CT image data to identify one or more targets, planning a pathway to an identified target (planning phase), navigating an extended working channel (EWC) 12 of a catheter guide assembly 40 to a target (navigation phase) via a user interface, and confirming placement of the EWC 12 (or any portion of the catheter guide assembly 40 or any instruments inserted therethrough) relative to the target. One such electromagnetic navigation system is the ELECTROMAGNETIC NAVIGATION BRONCHOSCOPY® system currently sold by Medtronic PLC. The target may be tissue of interest or a region of interest identified during review of the CT image data during the planning phase. Following navigation, a medical instrument such as a biopsy tool, delivery device, or treatment device may be inserted into the EWC 12 to obtain a tissue sample from the tissue located at, or proximate to, the target, deliver items or therapies to the region, or treat the region.


As shown in FIGS. 1-2, EWC 12 is part of a catheter guide assembly 40 which extends distally from a handle 41 of the catheter guide assembly 40. In practice, the EWC 12 is inserted into bronchoscope 30 for access to a luminal network of the patient “P.” Specifically, EWC 12 of catheter guide assembly 40 may be inserted into a working channel of bronchoscope 30 for navigation through a patient's luminal network. A locatable guide (LG) 32, including a sensor 44 disposed thereon, is inserted into the EWC 12 and locked into position such that the sensor 44 extends a desired distance beyond the distal tip of the EWC 12. The position and orientation of the sensor 44 relative to a reference coordinate system, and thus the distal end of the EWC 12, within an electromagnetic field can be derived. Catheter guide assemblies 40 are currently marketed and sold by Medtronic PLC under the brand names SUPERDIMENSION® Procedure Kits, or EDGE™ Procedure Kits, and are contemplated as useable with the present disclosure. For a more detailed description of the catheter guide assemblies 40, reference is made to commonly-owned U.S. Patent Publication No. 2014/0046315, filed on Mar. 15, 2013, by Ladtkow et al., U.S. Pat. Nos. 7,233,820, and 9,044,254, the entire contents of each of which are hereby incorporated by reference.


EMN system 100 generally includes an operating table 20 configured to support a patient “P;” a bronchoscope 30 configured for insertion through the patient “P's” mouth into the patient “P's” airways; monitoring equipment 120 coupled to bronchoscope 30 (e.g., a video display, for displaying the video images received from the video imaging system of bronchoscope 30); a tracking system 50 including a tracking module 52, a plurality of reference sensors 54 and a transmitter mat 56; and a computing device 125 including software and/or hardware used to facilitate identification of a target, pathway planning to the target, navigation of a medical instrument to the target, and confirmation of placement of an EWC 12, or a suitable device therethrough, relative to the target.


A fluoroscopic imaging device 110 capable of acquiring fluoroscopic or x-ray images or video of the patient “P” is also included in this particular aspect of system 100. The images, series of images, or video captured may be stored within the imaging device 110 or transmitted to computing device 125 for storage, processing, and display. Additionally, the fluoroscopic imaging device 110 may move relative to the patient “P” so that images may be acquired from different angles or perspectives relative to the patient “P” to create a fluoroscopic video. In one aspect of the present disclosure, fluoroscopic imaging device 110 includes an angle measurement device 111 which is configured to measure the angle of the fluoroscopic imaging device 110 relative to the patient “P.” Angle measurement device 111 may be an accelerometer. Fluoroscopic imaging device 110 may include a single imaging device or more than one imaging device. In embodiments including multiple imaging devices, each imaging device may be a different type of imaging device or the same type. Further details regarding the fluoroscopic imaging device 110 are described in U.S. Pat. No. 8,565,858, which is incorporated by reference in its entirety herein.


Computing device 125 may be any suitable computing device including a processor and storage medium, wherein the processor is capable of executing instructions stored on the storage medium. The computing device 125 is operably coupled to some or all of the components of system 100 including bronchoscope 30, catheter guide assembly 40, locatable guide 32, and tracking system 50. The computing device 125 may include a database configured to store patient data, CT data sets including CT images and volumetric renderings, fluoroscopic data sets including fluoroscopic images and video, navigation plans, and any other such data. Although not explicitly illustrated, the computing device 125 may include inputs, or may otherwise be configured to receive, CT data sets, fluoroscopic images/video and other data described herein. Additionally, computing device 125 includes a display configured to display graphical user interfaces. Computing device 125 may be connected to one or more networks through which one or more databases may be accessed.


With respect to the planning phase, computing device 125 utilizes previously acquired CT image data for generating and viewing a three dimensional model of the patient's “P's” airways, enables the identification of a target on the three dimensional model (automatically, semi-automatically, or manually), and allows for determining a pathway through the patient's “P's” airways to tissue located at and around the target. More specifically, CT images acquired from previous CT scans are processed and assembled into a three dimensional CT volume, which is then utilized to generate a three dimensional model of the patient's “P's” airways. The three dimensional model may be displayed on a display associated with computing device 125, or in any other suitable fashion. Using computing device 125, various views of the three dimensional model or two dimensional images generated from the three dimensional model are presented. The three dimensional model may be manipulated to facilitate identification of target on the three dimensional model or two dimensional images, and selection of a suitable pathway through the patient's “P's” airways to access tissue located at the target can be made. Once selected, the pathway plan, three dimensional model, and images derived therefrom, can be saved and exported to a navigation system for use during the navigation phase(s). One such planning software is the ILOGIC® planning suite currently sold by Medtronic PLC.


With respect to the navigation phase, a six degrees-of-freedom electromagnetic tracking system 50, e.g., similar to those disclosed in U.S. Pat. Nos. 8,467,589, 6,188,355, and published PCT Application Nos. WO 00/10456 and WO 01/67035, the entire contents of each of which are incorporated herein by reference, or other suitable positioning measuring system, is utilized for performing registration of the images and the pathway for navigation, although other configurations are also contemplated. Tracking system 50 includes a tracking module 52, a plurality of reference sensors 54, and a transmitter mat 56. Tracking system 50 is configured for use with a locatable guide 32 and particularly sensor 44. As described above, locatable guide 32 and sensor 44 are configured for insertion through an EWC 12 into a patient “P's” airways (either with or without bronchoscope 30) and are selectively lockable relative to one another via a locking mechanism.


Transmitter mat 56 is positioned beneath patient “P.” Transmitter mat 56 generates an electromagnetic field around at least a portion of the patient “P” within which the position of a plurality of reference sensors 54 and the sensor element 44 can be determined with use of a tracking module 52. One or more of reference sensors 54 are attached to the chest of the patient “P.” The six degrees of freedom coordinates of reference sensors 54 are sent to computing device 125 (which includes the appropriate software) where they are used to calculate a patient coordinate frame of reference. Registration, as detailed below, is generally performed to coordinate locations of the three dimensional model and two dimensional images from the planning phase with the patient's “P's” airways as observed through the bronchoscope 30, and allow for the navigation phase to be undertaken with precise knowledge of the location of the sensor 44, even in portions of the airway where the bronchoscope 30 cannot reach. Further details of such a registration technique and their implementation in luminal navigation can be found in U.S. Patent Application Pub. No. 2011/0085720, the entire content of which is incorporated herein by reference, although other suitable techniques are also contemplated.


Registration of the patient “P's” location on the transmitter mat 56 is performed by moving LG 32 through the airways of the patient “P.” More specifically, data pertaining to locations of sensor 44, while locatable guide 32 is moving through the airways, is recorded using transmitter mat 56, reference sensors 54, and tracking module 52. A shape resulting from this location data is compared to an interior geometry of passages of the three dimensional model generated in the planning phase, and a location correlation between the shape and the three-dimensional model based on the comparison is determined, e.g., utilizing the software on computing device 125. In addition, the software identifies non-tissue space (e.g., air filled cavities) in the three dimensional model. The software aligns, or registers, an image representing a location of sensor 44 with a the three-dimensional model and two-dimensional images generated from the three-dimension model, which are based on the recorded location data and an assumption that locatable guide 32 remains located in non-tissue space in the patient “P's” airways. Alternatively, a manual registration technique may be employed by navigating the bronchoscope 30 with the sensor 44 to pre-specified locations in the lungs of the patient “P”, and manually correlating the images from the bronchoscope to the model data of the three dimensional model.


Following registration of the patient “P” to the image data and pathway plan, a user interface is displayed in the navigation software of system 100 which sets for the pathway that the clinician is to follow to reach the target. One such navigation software is the ILOGIC® navigation suite currently sold by Medtronic PLC.


Once EWC 12 has been successfully navigated proximate the target as depicted on the user interface, the locatable guide 32 may be unlocked from EWC 12 and removed, leaving EWC 12 in place as a guide channel for guiding medical instruments. Such medical instruments may include, without limitation, optical systems, ultrasound probes, marker placement tools, biopsy tools, ablation tools (i.e., microwave ablation devices), laser probes, cryogenic probes, sensor probes, and aspirating needles to the target.


The three dimensional model of a patient's lungs, generated from previously acquired CT scans, may not provide a basis sufficient for accurate guiding of the EWC 12 of the catheter guide assembly 40 to a target during the procedure. As described above, the inaccuracy may be caused by CT-to-Body divergence (deformation of the patient's lungs during the procedure relative to the lungs at the time of the acquisition of the previously acquired CT data). Thus, another imaging modality is necessary to visualize targets and/or a terminal bronchial branch, and enhance the electromagnetic navigation procedure by correcting the navigation during the procedure, enabling visualization of the target, and confirming placement of the surgical device during the procedure. For this purpose, the system described herein processes and converts image data captured by the fluoroscopic imaging device 110, as will be described in detail below. This fluoroscopic image data may be utilized to identify such targets and terminal bronchial branches or be incorporated into, and used to update, the data from the CT scans in an effort to provide a more accurate/correction of the electromagnetic navigation procedure. Further, the fluoroscopic images may be captured post-navigation and thus includes visuals of the EWC 12 and any medical devices positioned therethrough relative to the target.



FIG. 3 illustrates a three dimensional model 300 of a patient's bronchial tree and the trachea together with the lung. As described above, the three dimensional model may be a three dimensional rendering derived from CT data acquired from a previous CT scan. The three dimensional model 300 may include information of most of the organs so that a clinician may selectively see particular organs or portions of organs of interest as shown in FIG. 3. In this case, these selected organs are the lungs including right lung 310, left lung 320, trachea 330, and bronchial tree 340. The right lobe 310 has three sub-lobes, i.e., superior lobe 312, middle lobe 314, and inferior lobe 316, and the left lobe 320 has two sub-lobes, i.e., superior lobe 322 and inferior lobe 324.


The trachea 330 is a tube that connects the pharynx and larynx to the right and left lungs 310 and 320. At the lower end of the trachea 330, divides into the left and right primary bronchi 342 divides. The primary bronchi 242 divide into secondary bronchi 344 at its lower end. The circumference of the primary bronchus 342 is greater than that of the secondary bronchus 344. In the same manner, tertiary bronchus 346 divides at the lower end of the secondary bronchus 344 and terminal bronchiole 348 divides at the lower end of the tertiary bronchus 346. The primary bronchus 342, the secondary bronchus 344, and the tertiary bronchus 346 are supported by cartilaginous plates. However, as the size of the tertiary bronchus 346 becomes smaller, the cartilaginous plates disappear and outer wall is dominated by smooth muscle. The outer wall of the terminal bronchiole 348 is also dominated by smooth muscle.


Diseased or cancerous cells, or simply a target, may exist on any bronchial trees 340, the primary bronchus 342, the secondary bronchus 344, the tertiary bronchus 346, and the terminal bronchioles 348. In many instances, there is a delay in time between acquisition of the CT data for planning a procedure and the actual procedure itself. During this time, it is possible for targets to change in size and even for new targets to form. Utilizing a fluoroscopic-based local three dimensional reconstruction of the area of interest during the procedure phase provides greater specificity and greater accuracy in detecting and identifying a target's location relative to a navigated catheter guide assembly 40 in the patient.


In accordance with at least one embodiment, the fluoroscopic-based local three dimensional reconstruction of the area of interest is employed to update the image data of the lungs (three dimensional model 300) by following the pathway plan described above and capturing a fluoroscopic rotation video of the area of interest when the EWC 12 is navigated to the target. This fluoroscopic-based local three dimensional reconstruction may be registered to the CT scan images and/or the three dimensional model 300 to update the CT scan images and/or the three dimensional model with respect to the presence, location, and size of a target. In one aspect, this data may be used to visualize the target(s). Further, the data may also be used diagnostically to help the clinician confirm that all likely targets have been identified or treated completely after treatments. Additionally, the fluoroscopic-based local three dimensional reconstruction is generated after EWC 12 is navigated and thus includes visuals of the EWC 12 and any medical devices positioned therethrough relative to the target. Such data may be useful in assisting to confirm placement of the medical devices, preventing pneumothorax, and other benefits described herein. Additionally, the fluoroscopic-based local three dimensional reconstruction may be utilized in order to correct the electromagnetic navigation coordinates of the EWC 12 which may be inaccurately represented to the user due to C-to-Body divergence or deformation.



FIG. 4A shows a planar view of bronchial trees 340 of the three dimensional model or of the slices of images of the lung such as the bronchial trees of FIG. 3 and a pathway plan to a target. When a target is located at the distal regions of the bronchial tree 340 of FIG. 3, a pathway plan shows how to navigate to the target via the luminal network of the lung.



FIG. 4B shows an expanded transverse cross-sectional view of the terminal bronchiole of FIG. 4A taken along section line B-B. The terminal bronchiole is surrounded by smooth muscle 405. Nerves 410 and veins 415 are located on the outer wall of the smooth muscle 405. The fluoroscopic-based local three dimensional reconstruction, as described above, provides a local view of the airways, even out to the terminal bronchiole, so that when navigating to these peripheral regions, the position of the EWC 12 can be corrected or updated to cure any inaccuracies caused by CT-to-Body divergence. Thus, by using real time fluoroscopic imaging in addition to the previously acquired CT data, navigation to, and direction of, therapies such as denervation can be accomplished even at the lung periphery enabling greater granularity of treatment options, with greater precision, and with a better understanding of the anatomy that with the previously acquired CT data alone.



FIG. 4C and FIG. 4D illustrate a bronchoscope 30 with a catheter guide assembly 40 inserted into the lungs via a natural orifice (e.g., the mouth) of a patient toward the target 450 following a pathway plan. When the bronchoscope 30 reaches a certain location of the lung, the bronchoscope 30 becomes wedged and cannot go further into bronchial tree due to the size constraints. Then, the EWC 12 of the catheter guide assembly 40 may be used to navigate the luminal network to a target 450 following the pathway plan, as described above. FIG. 4D illustrates an enlarged detail view of the circled area of FIG. 4C, where a sensor 44 of a locatable guide (LG) 32 may stick out of the distal tip of the EWC 12 which navigates the luminal network to the target 450 located at the terminal bronchiole of the lung.


Having described the components of system 100 depicted in FIGS. 1-2, the following description of FIG. 5 provides an exemplary workflow of using the components of system 100, including the fluoroscopic imaging device 110, to navigate through a luminal network of a patient utilizing a previously generated navigation plan and three-dimensional volumetric data of a desired region of interest generated from data received from the fluoroscopic imaging device 110 of system 100. The systems and methods described herein may be useful for visualizing a particular target region of a patient utilizing imaging devices which are commonly located within a surgical setting during EMN procedures and which expose the patient to less radiation than additional MRI and CT scans.


Although the methods illustrated and described herein are illustrated and described as being in a particular order and requiring particular steps, any of the methods may include some or all of the steps and may be implemented in any order not specifically described.


Turning now to FIG. 5, a method for enhanced navigation during an EMN procedure using fluoroscopic based three-dimensional volumetric data of a local region of a patient will now be described and referred to as method 500. Method 500 begins at step 501 where the EMN procedure is planned using planning software described above. In particular, previously acquired CT data is utilized to identify targets and plan navigation pathways to the targets.


In step 503, the navigation procedure begins where a portion of a catheter guide assembly is navigated to a target area utilizing an electromagnetic navigation system, such as the EMN system 100 (FIG. 1) described above. The navigation of the catheter guide assembly in step 503 may additionally include navigation of a marker placement device to the target area via the catheter guide assembly. As described above, the navigation in step 503 is accomplished using a previously created navigation plan which includes routes created during the planning phase. Step 503, may additionally include the step of placing radio-opaque markers within the target area. In one example, four radio-opaque markers are utilized. However, less than four or more than four radio-opaque markers may be used.


In step 505 the virtual position of the catheter guide assembly is displayed on the user interface of system 100. The virtual position of the catheter guide assembly is based on the electromagnetically tracked location of the catheter guide assembly within the patient's body. Throughout the entire navigation procedure, like in step 505, the virtual position of the catheter guide assembly is displayed on a user interface of system 100 to assist in navigating the EWC to the target. In step 507, the electromagnetically-tracked position data of the catheter guide assembly is stored in system 100. In instances where radio-opaque markers are placed within the region of the target, step 507 may additionally include the step of storing the location data of the catheter guide assembly at the time that each of the radio-opaque markers is placed. System 100 then identifies the position of each placed marker as the corresponding position of the catheter guide assembly at the time of deployment of the marker.


In step 509, with the catheter guide assembly navigated (and the radio-opaque markers placed in the target area, if placed), the fluoroscopic imaging device of system 100 is positioned such that the catheter guide assembly (and all of the radio-opaque markers, if placed) are visible in at least two different angles of the fluoroscopic imaging device relative to the patient. The fluoroscopic imaging device is then used to capture a video about the region of interest, that is the region where the catheter guide assembly is navigated to (and where the radio-opaque markers are located, if placed). In one aspect, the captured video may be of about a 30° rotation around the region of interest. However, less that, or more than, a 30° rotation may be utilized.


In step 511, a fluoroscopic-based local three dimensional volume is constructed from the captured fluoroscopic rotation video. Further details regarding exemplary techniques utilized to construct the local three dimensional volume from the captured fluoroscopic video may be found in U.S. Provisional Application Ser. No. 62/201,750, filed on Aug. 6, 2015, the entire content of which is incorporated by reference herein.


In step 513, the fluoroscopic-based local three dimensional volume generated in step 511 may optionally be displayed on a user interface of system 100. Because the fluoroscopic rotation video is captured after navigation of the EWC, and after placement of any markers, the catheter guide assembly (and the radio-opaque markers, if placed) are included in the fluoroscopic images/video and are visible in the display of the fluoroscopic-based three dimensional volume. In one aspect, the display of the fluoroscopic-based local three dimensional volume in step 513 is carried out by projecting the fluoroscopic-based local three dimensional volume (or a localized portion thereof) back onto the two dimensional images captured in the fluoroscopic video from step 509. For example, step 513 may include projecting the generated fluoroscopic-based local three dimensional volume of the target area onto the two dimensional fluoroscopic images used to create the three dimensional volume for at least two different angles. Such a projection provides confirmation that the catheter or EWC is in, or is not in, the target area in both of the two different angles. Such a display as described above can also enable marking the catheter or EWC and target on both two dimensional images to obtain the relative three dimensional position of the catheter or EWC and target. These capabilities are enabled because projecting the target area provides a greater detail of the density differences in the target area, without obstruction of much denser objects (such as ribs, spine, heart, fat, major BV, etc.). Thus, the soft tissue objects, such as a target lesion, can be observed in this manner. Such marking may be accomplished manually by a user via the user interface or automatically by the system, for example by image analysis. This relative position may be utilized to correct the position on the previously acquired CT data.


In step 515, a selection of the image of the catheter guide assembly (and the radio-opaque markers, if placed) from the fluoroscopic-based local three dimensional volume is made. Step 515 may be implemented in a variety of ways. In one aspect, a clinician may select, or otherwise outline, the catheter guide assembly or markers from the display of step 513. In another aspect, system 100 may perform an image analysis of the fluoroscopic-based local three dimensional volume and determine the location of the catheter guide assembly and markers within the three dimensional volume. In another aspect, the system 100 may suggest the detected catheter and markers and present the suggestion to a clinician for approval/modification of the system's suggestion.


In step 517, the previously acquired CT data or the previously generated navigation plan is registered with the fluoroscopic-based local three dimensional volume which has been reconstructed in step 511. With the virtual location of the catheter assembly known based on the electromagnetic field generated and sensed, in step 519, the displayed virtual location of the catheter assembly is updated, or otherwise corrected, based on the newly registered data from step 517. In particular, in step 519, the position of the catheter assembly is more accurately depicted based on the registration of the fluoroscopic-based local three dimensional volume with the previously acquired CT data.


In step 521, the clinician further advances the catheter assembly to engage the target utilizing the updated and more accurate position data of the catheter assembly displayed on the display. In step 523, subsequent to the clinician repositioning the catheter assembly in step 521, a second fluoroscopic rotation video may be captured if desired. Step 523 is similar to any, or all, of steps 509-519 and will not be described in further detail. Upon capturing a second fluoroscopic video in step 523, the system may present the clinician with a more accurate position and location of the catheter guide assembly after the catheter guide assembly has been repositioned in step 521.


In step 525 it is determined if the catheter guide assembly is at the target. In one aspect, step 525 is accomplished by determining whether a distance between a portion of the catheter guide assembly and an edge, or center, of the target is within a predetermined threshold. When the distance between the catheter guide assembly and the target is more than the predetermined threshold, then it is determined that the catheter guide assembly is not at the target (no in step 525) and method 500 reverts to step 521 where the clinician can adjust the position of the catheter guide assembly. When the distance between the catheter guide assembly and the target is less than the predetermined threshold, then it is determined that the catheter guide assembly is at the target (yes in step 525) and method 500 proceeds to step 527.


In step 527, the procedure is performed on the target. As described above, method 500 may be used to navigate to a target region for various purposes. That is, step 527 may include any type of procedure, which may include for example, biopsy collection, marker placement, device placement, therapeutic treatments, agent delivery, ablation treatments including radiofrequency and microwave ablations, and any other such procedure that may benefit from enhanced and more accurate navigation through a luminal network.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same.


Detailed embodiments of the present disclosure are disclosed herein. However, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms and aspects. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.


As can be appreciated a medical instrument such as a biopsy tool or an energy device, such as a microwave ablation catheter, that is positionable through one or more branched luminal networks of a patient to treat tissue may prove useful in the surgical arena and the present disclosure is directed to systems and methods that are usable with such instruments and tools. Access to luminal networks may be percutaneous or through natural orifice using navigation techniques. Additionally, navigation through a luminal network may be accomplished using image-guidance. These image-guidance systems may be separate or integrated with the energy device or a separate access tool and may include MRI, CT, fluoroscopy, ultrasound, electrical impedance tomography, optical, and/or device tracking systems. Methodologies for locating the access tool include EM, IR, echolocation, optical, and others. Tracking systems may be integrated to an imaging device, where tracking is done in virtual space or fused with preoperative or live images. In some cases the treatment target may be directly accessed from within the lumen, such as for the treatment of the endobronchial wall for COPD, Asthma, lung cancer, etc. In other cases, the energy device and/or an additional access tool may be required to pierce the lumen and extend into other tissues to reach the target, such as for the treatment of disease within the parenchyma. Final localization and confirmation of energy device or tool placement may be performed with imaging and/or navigational guidance using a standard fluoroscopic imaging device incorporated with methods and systems described above.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A navigation system comprising: an electromagnetic field generator;a catheter including at least one sensor configured for placement within an electromagnetic field; anda computing device including at least a processor and a memory, wherein the memory includes instructions that when executed by the processor cause the computing device to: determine a position of the catheter within an electromagnetic field generated by the electromagnetic field generator;display the determined position in a 3D model derived from pre-procedure imaging;receive a series of fluoroscopic images of a target area captured by a fluoroscopic imaging device;generate a fluoroscopic-based three-dimensional reconstruction of the target area based on the series of fluoroscopic images of the target area captured by the fluoroscopic imaging device;receive an identification of a location of medical device in at least one two-dimensional image from the three-dimensional reconstruction;receive an identification of a location of a target in at least one two-dimensional image from the three-dimensional reconstruction;determine a relative position of the medical device to the target in the target area within the fluoroscopic-based three-dimensional reconstruction; andupdate the displayed position of the sensor in the 3D model relative to a target in the 3D model based on the determined relative position in the fluoroscopic-based three-dimensional reconstruction.
  • 2. The navigation system of claim 1, wherein the instructions, when executed by the processor cause the computing device to generate a second fluoroscopic-based three-dimensional reconstruction of the target area based on a second series of fluoroscopic images of the target area, when it is determined that the medical device is further than a predetermined threshold distance from a portion of the target.
  • 3. A navigation system comprising: a tracking system configured to track the position of a catheter within a luminal network;a sensor, associated with the catheter, and configured to be detected by the tracking system; anda computing device including at least a processor and a memory, wherein the memory includes instructions that when executed by the processor cause the computing device to: determine a position of the sensor associated with the catheter;display that determined position in a 3D model derived from pre-procedure imaging;receive a series of fluoroscopic images of a target area captured by a fluoroscopic imaging device;determine poses of the fluoroscopic imaging device corresponding to a plurality of fluoroscopic images of the series of fluoroscopic images;generate a fluoroscopic-based three-dimensional reconstruction of the target area based on the series of fluoroscopic images of the target area captured by the fluoroscopic imaging device and the poses determined;receive an identification of a location of a target in at least one two-dimensional image from the three-dimensional reconstruction; andupdate the displayed position of the sensor in the 3D model relative to a target in the 3D model based on the identified location of the target in the fluoroscopic-based three-dimensional reconstruction.
  • 4. The navigation system of claim 3, wherein the instructions, when executed by the processor cause the computing device to register the 3D model with the fluoroscopic-based three-dimensional reconstruction.
  • 5. The navigation system of claim 3, wherein the pre-procedure imaging is magnetic resonance imaging or computed tomography imaging.
  • 6. The navigation system of claim 3, wherein the instructions, when executed by the processor cause the computing device to receive an identification of a location of a medical device in at least one image from the three-dimensional reconstruction automatically via image processing.
  • 7. The navigation system of claim 3, wherein the instructions, when executed by the processor cause the computing device to receive an identification of a location of a medical device in at least one image from the three-dimensional reconstruction by receiving user input.
  • 8. The navigation system of claim 7, wherein the instructions, when executed by the processor cause the computing device to determine whether the medical device is within a predetermined threshold distance from a portion of the target.
  • 9. The navigation system of claim 8, wherein the instructions, when executed by the processor cause the computing device to generate a second fluoroscopic-based three-dimensional reconstruction of the target area based on a second series of fluoroscopic images of the target area, when it is determined that the medical device is further than a predetermined threshold distance from a portion of the target.
  • 10. The navigation system of claim 9, wherein the instructions, when executed by the processor cause the computing device to: receive an identification of a medical device in at least one image from the second three-dimensional reconstruction; receive an identification of a target in at least one image from the second three-dimensional reconstruction; anddetermining whether the medical device is within a predetermined threshold distance from a portion of the target.
  • 11. A three-dimensional fluoroscopic imaging system method: receiving a series of fluoroscopic images of a target area captured by a fluoroscopic imaging device;determining poses of the fluoroscopic imaging device corresponding to a plurality of fluoroscopic images of the series of fluoroscopic images;generating a fluoroscopic-based three-dimensional reconstruction of the target area based on the series of fluoroscopic images of the target area captured by the fluoroscopic imaging device and the poses determined;receiving an identification of a medical device in at least one first two-dimensional image from the three-dimensional reconstruction;receiving an identification of a target in at least one second two-dimensional image from the three-dimensional reconstruction; anddetermining whether the medical device is within a predetermined threshold distance from a portion of the target.
  • 12. The three-dimensional fluoroscopic imaging system method of claim 11, wherein the portion of the target is selected from a group consisting of an edge and a center of the target.
  • 13. The three-dimensional fluoroscopic imaging system method of claim 11, wherein the identification of the medical device or the target is performed automatically via image processing.
  • 14. The three-dimensional fluoroscopic imaging system method of claim 11, wherein the identification of the medical device or the target comprises receiving user input.
  • 15. The three-dimensional fluoroscopic imaging system method of claim 11, further comprising generating a second fluoroscopic-based three-dimensional reconstruction of the target area based on a second series of fluoroscopic images of the target area.
  • 16. The three-dimensional fluoroscopic imaging system method of claim 15, further comprising: receiving an identification of a medical device in at least one image from the second three-dimensional reconstruction;receiving an identification of a target in at least one image from the three-dimensional reconstruction; anddetermining whether the medical device is within a predetermined threshold distance from a portion of the target.
  • 17. The three-dimensional fluoroscopic imaging system method of claim 16, comprising registering the first or second fluoroscopic-based three-dimensional reconstruction of the target area based to a navigation plan.
  • 18. The three-dimensional fluoroscopic imaging system method of claim 17, wherein the navigation plan is based on pre-procedure imaging.
  • 19. The three-dimensional fluoroscopic imaging system method of claim 18, wherein the pre-procedure imaging is magnetic resonance imaging or computed tomography imaging.
  • 20. The three-dimensional fluoroscopic imaging system method of claim 19, further comprising updating a location of the medical device displayed in the navigation plan based on the position of the medical device relative to the target in the target area within the first or second fluoroscopic-based three-dimensional reconstruction of the target area.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Patent Application No. 15/224,898 filed Aug. 1, 2016, which claims benefit of and priority to U.S. Provisional Application Ser. No. 62/201,750, filed Aug. 6, 2015, the entire content of which is incorporated by reference herein.

US Referenced Citations (321)
Number Name Date Kind
5057494 Sheffield Oct 1991 A
5321113 Cooper et al. Jun 1994 A
5852646 Klotz et al. Dec 1998 A
5930329 Navab Jul 1999 A
5963612 Navab Oct 1999 A
5963613 Navab Oct 1999 A
6003517 Sheffield et al. Dec 1999 A
6038282 Wiesent et al. Mar 2000 A
6049582 Navab Apr 2000 A
6050724 Schmitz et al. Apr 2000 A
6055449 Navab Apr 2000 A
6081577 Webber Jun 2000 A
6120180 Graumann Sep 2000 A
6236704 Navab et al. May 2001 B1
6317621 Graumann et al. Nov 2001 B1
6351513 Bani-Hashemi et al. Feb 2002 B1
6373916 Inoue et al. Apr 2002 B1
6389104 Bani-Hashemi et al. May 2002 B1
6404843 Vaillant Jun 2002 B1
6424731 Launay et al. Jul 2002 B1
6473634 Barni Oct 2002 B1
6484049 Seeley et al. Nov 2002 B1
6485422 Mikus et al. Nov 2002 B1
6490475 Seeley et al. Dec 2002 B1
6491430 Seissler Dec 2002 B1
6546068 Shimura Apr 2003 B1
6546279 Bova et al. Apr 2003 B1
6549607 Webber Apr 2003 B1
6697664 Kienzle et al. Feb 2004 B2
6707878 Claus et al. Mar 2004 B2
6714810 Grzeszczuk et al. Mar 2004 B2
6731283 Navab May 2004 B1
6731970 Schlossbauer et al. May 2004 B2
6768784 Green et al. Jul 2004 B1
6782287 Grzeszczuk et al. Aug 2004 B2
6785356 Grass et al. Aug 2004 B2
6785571 Glossop Aug 2004 B2
6801597 Webber Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6865253 Blumhofer et al. Mar 2005 B2
6898263 Avinash et al. May 2005 B2
6944260 Hsieh et al. Sep 2005 B2
6956927 Sukeyasu et al. Oct 2005 B2
7010080 Mitschke et al. Mar 2006 B2
7010152 Bojer et al. Mar 2006 B2
7035371 Boese et al. Apr 2006 B2
7106825 Gregerson et al. Sep 2006 B2
7117027 Zheng et al. Oct 2006 B2
7129946 Ditt et al. Oct 2006 B2
7130676 Barrick Oct 2006 B2
7165362 Jobs et al. Jan 2007 B2
7251522 Essenreiter et al. Jul 2007 B2
7327872 Vaillant et al. Feb 2008 B2
7343195 Strommer et al. Mar 2008 B2
7369641 Tsubaki et al. May 2008 B2
7440538 Tsujii Oct 2008 B2
7467007 Lothert Dec 2008 B2
7474913 Durlak Jan 2009 B2
7502503 Bojer et al. Mar 2009 B2
7505549 Ohishi et al. Mar 2009 B2
7508388 Barfuss et al. Mar 2009 B2
7551759 Hristov et al. Jun 2009 B2
7603155 Jensen et al. Oct 2009 B2
7620223 Xu et al. Nov 2009 B2
7639866 Pomero et al. Dec 2009 B2
7664542 Boese et al. Feb 2010 B2
7689019 Boese et al. Mar 2010 B2
7689042 Brunner et al. Mar 2010 B2
7693263 Bouvier et al. Apr 2010 B2
7711082 Fujimoto et al. May 2010 B2
7711083 Heigl et al. May 2010 B2
7711409 Keppel et al. May 2010 B2
7720520 P et al. May 2010 B2
7725165 Chen et al. May 2010 B2
7734329 Boese et al. Jun 2010 B2
7742557 Brunner et al. Jun 2010 B2
7761135 Pfister et al. Jul 2010 B2
7778685 Evron et al. Aug 2010 B2
7787932 Vilsmeier et al. Aug 2010 B2
7804991 Abovitz et al. Sep 2010 B2
7831096 Williamson et al. Nov 2010 B2
7835779 Anderson et al. Nov 2010 B2
7853061 Gorges et al. Dec 2010 B2
7877132 Rongen et al. Jan 2011 B2
7899226 Pescatore et al. Mar 2011 B2
7907989 Borgert et al. Mar 2011 B2
7912180 Zou et al. Mar 2011 B2
7912262 Timmer et al. Mar 2011 B2
7916918 Suri et al. Mar 2011 B2
7949088 Nishide et al. May 2011 B2
7991450 Virtue et al. Aug 2011 B2
8000436 Seppi et al. Aug 2011 B2
8043003 Vogt et al. Oct 2011 B2
8045780 Boese et al. Oct 2011 B2
8050739 Eck et al. Nov 2011 B2
8090168 Washburn et al. Jan 2012 B2
8111894 Haar Feb 2012 B2
8111895 Spahn Feb 2012 B2
8126111 Uhde et al. Feb 2012 B2
8126241 Zarkh et al. Feb 2012 B2
8150131 Harer et al. Apr 2012 B2
8180132 Gorges et al. May 2012 B2
8195271 Rahn Jun 2012 B2
8200316 Keppel et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8229061 Hanke et al. Jul 2012 B2
8248413 Gattani et al. Aug 2012 B2
8270691 Xu et al. Sep 2012 B2
8271068 Khamene et al. Sep 2012 B2
8275448 Camus et al. Sep 2012 B2
8306303 Bruder et al. Nov 2012 B2
8311617 Keppel et al. Nov 2012 B2
8320992 Frenkel et al. Nov 2012 B2
8335359 Fidrich et al. Dec 2012 B2
8340379 Razzaque et al. Dec 2012 B2
8345817 Fuchs et al. Jan 2013 B2
8374416 Gagesch et al. Feb 2013 B2
8374678 Graumann Feb 2013 B2
8423117 Pichon et al. Apr 2013 B2
8442618 Strommer et al. May 2013 B2
8482606 Razzaque et al. Jul 2013 B2
8515527 Vaillant et al. Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Isaacs Sep 2013 B2
8532258 Bulitta et al. Sep 2013 B2
8532259 Shedlock et al. Sep 2013 B2
8548567 Maschke et al. Oct 2013 B2
8625869 Harder et al. Jan 2014 B2
8666137 Nielsen et al. Mar 2014 B2
8670603 Tolkowsky et al. Mar 2014 B2
8675996 Liao et al. Mar 2014 B2
8693622 Graumann et al. Apr 2014 B2
8693756 Tolkowsky et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8706184 Mohr et al. Apr 2014 B2
8706186 Fichtinger et al. Apr 2014 B2
8712129 Strommer et al. Apr 2014 B2
8718346 Isaacs et al. May 2014 B2
8750582 Boese et al. Jun 2014 B2
8755587 Bender et al. Jun 2014 B2
8781064 Fuchs et al. Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798339 Mielekamp et al. Aug 2014 B2
8827934 Chopra et al. Sep 2014 B2
8831310 Razzaque et al. Sep 2014 B2
8855748 Keppel et al. Oct 2014 B2
9001121 Finlayson et al. Apr 2015 B2
9001962 Funk Apr 2015 B2
9008367 Tolkowsky et al. Apr 2015 B2
9031188 Belcher et al. May 2015 B2
9036777 Ohishi et al. May 2015 B2
9042624 Dennerlein May 2015 B2
9044190 Rubner et al. Jun 2015 B2
9087404 Hansis et al. Jul 2015 B2
9095252 Popovic Aug 2015 B2
9104902 Xu et al. Aug 2015 B2
9111175 Strommer et al. Aug 2015 B2
9135706 Zagorchev et al. Sep 2015 B2
9171365 Mareachen et al. Oct 2015 B2
9179878 Jeon Nov 2015 B2
9216065 Cohen et al. Dec 2015 B2
9232924 Liu et al. Jan 2016 B2
9262830 Bakker et al. Feb 2016 B2
9265468 Rai et al. Feb 2016 B2
9277893 Tsukagoshi et al. Mar 2016 B2
9280837 Grass et al. Mar 2016 B2
9282944 Fallavollita et al. Mar 2016 B2
9375268 Long Jun 2016 B2
9401047 Bogoni et al. Jul 2016 B2
9406134 Klingenbeck-Regn et al. Aug 2016 B2
9433390 Nathaniel et al. Sep 2016 B2
9445772 Callaghan et al. Sep 2016 B2
9445776 Han et al. Sep 2016 B2
9466135 Koehler et al. Oct 2016 B2
9743896 Averbuch Aug 2017 B2
9833167 Cohen et al. Dec 2017 B2
9888898 Imagawa et al. Feb 2018 B2
9918659 Chopra et al. Mar 2018 B2
10004558 Long et al. Jun 2018 B2
10127629 Razzaque et al. Nov 2018 B2
10194897 Cedro et al. Feb 2019 B2
10373719 Soper et al. Aug 2019 B2
10376178 Chopra Aug 2019 B2
10405753 Sorger Sep 2019 B2
10478162 Barbagli et al. Nov 2019 B2
10480926 Froggatt et al. Nov 2019 B2
10524866 Srinivasan et al. Jan 2020 B2
10555788 Panescu et al. Feb 2020 B2
10569071 Harris et al. Feb 2020 B2
10603106 Weide et al. Mar 2020 B2
10610306 Chopra Apr 2020 B2
10638953 Duindam et al. May 2020 B2
10639114 Schuh et al. May 2020 B2
10674970 Averbuch et al. Jun 2020 B2
10682070 Duindam Jun 2020 B2
10702137 Deyanov Jul 2020 B2
10706543 Donhowe et al. Jul 2020 B2
10709506 Coste-Maniere et al. Jul 2020 B2
10772485 Schlesinger et al. Sep 2020 B2
10796432 Mintz et al. Oct 2020 B2
10823627 Sanborn et al. Nov 2020 B2
10827913 Ummalaneni et al. Nov 2020 B2
10835153 Rafii-Tari et al. Nov 2020 B2
10885630 Li et al. Jan 2021 B2
10896506 Zhao et al. Jan 2021 B2
20020147462 Mair et al. Oct 2002 A1
20030013972 Makin Jan 2003 A1
20030088179 Seeley May 2003 A1
20030208122 Melkent et al. Nov 2003 A1
20040120981 Nathan Jun 2004 A1
20060251213 Bernhardt et al. Nov 2006 A1
20080045938 Weide et al. Feb 2008 A1
20120289825 Rai Nov 2012 A1
20130303945 Blumenkranz et al. Nov 2013 A1
20140035798 Kawada et al. Feb 2014 A1
20140100440 Cheline et al. Apr 2014 A1
20150148690 Chopra et al. May 2015 A1
20150227679 Kamer et al. Aug 2015 A1
20150265368 Chopra et al. Sep 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160157939 Larkin et al. Jun 2016 A1
20160183841 Duindam et al. Jun 2016 A1
20160192860 Allenby et al. Jul 2016 A1
20160206380 Sparks et al. Jul 2016 A1
20160287343 Eichler et al. Oct 2016 A1
20160287344 Donhowe et al. Oct 2016 A1
20170112571 Thiel et al. Apr 2017 A1
20170112576 Coste-Maniere et al. Apr 2017 A1
20170209071 Zhao et al. Jul 2017 A1
20170265952 Donhowe et al. Sep 2017 A1
20170311844 Zhao et al. Nov 2017 A1
20170319165 Averbuch Nov 2017 A1
20180078318 Barbagli et al. Mar 2018 A1
20180144092 Flitsch et al. May 2018 A1
20180153621 Duindam et al. Jun 2018 A1
20180235709 Donhowe et al. Aug 2018 A1
20180240237 Donhowe et al. Aug 2018 A1
20180256262 Duindam et al. Sep 2018 A1
20180263706 Averbuch Sep 2018 A1
20180279852 Rafii-Tari et al. Oct 2018 A1
20180325419 Zhao et al. Nov 2018 A1
20190000559 Berman et al. Jan 2019 A1
20190000560 Berman et al. Jan 2019 A1
20190008413 Duindam et al. Jan 2019 A1
20190038365 Soper et al. Feb 2019 A1
20190065209 Mishra et al. Feb 2019 A1
20190110839 Rafii-Tari et al. Apr 2019 A1
20190175062 Rafii-Tari et al. Jun 2019 A1
20190175799 Hsu et al. Jun 2019 A1
20190183318 Froggatt et al. Jun 2019 A1
20190183585 Rafii-Tari et al. Jun 2019 A1
20190183587 Rafii-Tari et al. Jun 2019 A1
20190192234 Gadda et al. Jun 2019 A1
20190209016 Herzlinger et al. Jul 2019 A1
20190209043 Zhao et al. Jul 2019 A1
20190216548 Ummalaneni Jul 2019 A1
20190239723 Duindam et al. Aug 2019 A1
20190239831 Chopra Aug 2019 A1
20190250050 Sanborn et al. Aug 2019 A1
20190254649 Walters et al. Aug 2019 A1
20190269470 Barbagli Sep 2019 A1
20190269818 Dhanaraj et al. Sep 2019 A1
20190269819 Dhanaraj et al. Sep 2019 A1
20190272634 Li et al. Sep 2019 A1
20190298160 Ummalaneni et al. Oct 2019 A1
20190298451 Wong et al. Oct 2019 A1
20190320878 Duindam et al. Oct 2019 A1
20190320937 Duindam et al. Oct 2019 A1
20190336238 Yu et al. Nov 2019 A1
20190343424 Blumenkranz et al. Nov 2019 A1
20190350659 Wang et al. Nov 2019 A1
20190365199 Zhao et al. Dec 2019 A1
20190365479 Rafii-Tari Dec 2019 A1
20190365486 Srinivasan et al. Dec 2019 A1
20190380787 Ye et al. Dec 2019 A1
20200000319 Saadat et al. Jan 2020 A1
20200000526 Zhao Jan 2020 A1
20200008655 Schlesinger et al. Jan 2020 A1
20200030044 Wang et al. Jan 2020 A1
20200030461 Sorger Jan 2020 A1
20200038750 Kojima Feb 2020 A1
20200043207 Lo et al. Feb 2020 A1
20200046431 Soper et al. Feb 2020 A1
20200046436 Tzeisler et al. Feb 2020 A1
20200054399 Duindam et al. Feb 2020 A1
20200054408 Schuh et al. Feb 2020 A1
20200060771 Lo et al. Feb 2020 A1
20200069192 Sanborn et al. Mar 2020 A1
20200077870 Dicarlo et al. Mar 2020 A1
20200078023 Cedro et al. Mar 2020 A1
20200078095 Chopra et al. Mar 2020 A1
20200078103 Duindam et al. Mar 2020 A1
20200085514 Blumenkranz Mar 2020 A1
20200109124 Pomper et al. Apr 2020 A1
20200129045 Prisco Apr 2020 A1
20200129239 Bianchi et al. Apr 2020 A1
20200138514 Blumenkranz et al. May 2020 A1
20200138515 Wong May 2020 A1
20200142013 Wong May 2020 A1
20200155116 Donhowe et al. May 2020 A1
20200155232 Wong May 2020 A1
20200170623 Averbuch Jun 2020 A1
20200170720 Ummalaneni Jun 2020 A1
20200179058 Barbagli et al. Jun 2020 A1
20200188021 Wong et al. Jun 2020 A1
20200188038 Donhowe et al. Jun 2020 A1
20200205903 Srinivasan et al. Jul 2020 A1
20200205904 Chopra Jul 2020 A1
20200214664 Zhao et al. Jul 2020 A1
20200229679 Zhao et al. Jul 2020 A1
20200242767 Zhao et al. Jul 2020 A1
20200275860 Duindam Sep 2020 A1
20200297442 Adebar et al. Sep 2020 A1
20200315554 Averbuch et al. Oct 2020 A1
20200330795 Sawant et al. Oct 2020 A1
20200352427 Deyanov Nov 2020 A1
20200364865 Donhowe et al. Nov 2020 A1
20200383750 Kemp et al. Dec 2020 A1
20210000524 Barry et al. Jan 2021 A1
Foreign Referenced Citations (35)
Number Date Country
0013237 Jul 2003 BR
0116004 Jun 2004 BR
0307259 Dec 2004 BR
0412298 Sep 2006 BR
112018003862 Oct 2018 BR
101190149 Jun 2008 CN
1644519 Dec 2008 CZ
486540 Sep 2016 CZ
2709512 Aug 2017 CZ
2884879 Jan 2020 CZ
1644519 Dec 2008 EP
2141497 Jan 2010 EP
3413830 Sep 2019 EP
3478161 Feb 2020 EP
3641686 Apr 2020 EP
3644885 May 2020 EP
3644886 May 2020 EP
3749239 Dec 2020 EP
H11197259 Jul 1999 JP
PA03005028 Jan 2004 MX
PA03000137 Sep 2004 MX
PA03006874 Sep 2004 MX
225663 Jan 2005 MX
226292 Feb 2005 MX
PA03010507 Jul 2005 MX
PA05011725 May 2006 MX
06011286 Mar 2007 MX
246862 Jun 2007 MX
2007006441 Aug 2007 MX
265247 Mar 2009 MX
284569 Mar 2011 MX
2008038283 Apr 2008 WO
2009081297 Jul 2009 WO
2014186715 Nov 2014 WO
2015101948 Jul 2015 WO
Non-Patent Literature Citations (5)
Entry
Australian Examination Report No. 2 issued in Appl. No. AU 2016210747 dated Oct. 18, 2017 (4 pages).
CT scan—Wikipedia, the free encyclopedia [retrieved from internet on Mar. 30, 2017] published on Jun. 30, 2015 as per Wayback Machine.
Extended European Search Report from Appl. No. EP 16182953.6-1666 dated Jan. 2, 2017.
Japanese Office Action issued in Appl. No. JP 2019-021423, together with English language translation, dated Jan. 8, 2020 (7 pages).
Office Action issued in Chinese Appl No. 201610635896.X dated Jul. 23, 2018, together with English language translation (16 pages).
Related Publications (1)
Number Date Country
20200315562 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62201750 Aug 2015 US
Continuations (1)
Number Date Country
Parent 15224898 Aug 2016 US
Child 16909711 US