The disclosure relates generally to computer networks. More specifically, certain embodiments of the technology relate to a method and system for network policy simulation in a distributed computing system
With the growing demand of clustered storage and computing, network security policy management has become an important aspect for modern datacenters. Network security policies define network architecture, govern data access and safeguard the system integrity of datacenters.
It remains a challenge to manually manage the large number of network security policies. Even small datacenters could potentially implement hundreds or thousands of policies. Further, various changes to the network (e.g., adding or removing a security policy, modifying one or more endpoint groups) can result in network latency or even network failures.
In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific examples thereof which are illustrated in the appended drawings. Understanding that these drawings depict only examples of the disclosure and are not therefore to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various embodiments of the present technology are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without departing from the spirit and scope of the present technology.
Aspects of the present technology relate to techniques that enable simulation of a new network policy and/or changes to endpoint group (EPG) membership with regard to its effects on network data flow. By enabling a simulation data flow that is parallel and independent from the regular data flow, the present technology can provide optimized network security management with improved efficiency.
In accordance with one aspect of the present disclosure, a computer-implemented method is provided. The method includes receiving a network traffic from a first endpoint group of a network destined for a second endpoint group of the network, capturing first network flow data between the first endpoint group and the second endpoint group based at least in part by enforcing a first network policy of the network with respect to the network traffic, receiving a request to simulate enforcement of a second network policy between the first endpoint group and the second endpoint group, determining second network flow data between the first endpoint group and the second endpoint group by simulating enforcement of the second network policy with respect to the network traffic, and providing an indication whether to enforce the second network policy based at least in part on the second network flow data.
According to some embodiments, the present technology can enable a computer-implemented method that further includes receiving aggregate network flow data from a plurality of sensors of the network, the plurality of sensors including at least a first sensor of a physical switch of the network, a second sensor of a hypervisor associated with the physical switch, a third sensor of a virtual machine associated with the hypervisor, determining, based at least in part on the aggregate network flow data, a dependency map of an application executing in the network, the dependency map indicating a pattern of network traffic associated with the application, determining, based at least in part on the dependency map, at least one network policy for the network, and storing the at least one network policy in a policy table
In accordance with another aspect of the present disclosure, a non-transitory computer-readable storage medium storing instructions is provided, the instructions which, when executed by a processor, cause the processor to perform operations including, receive a network traffic from a first endpoint group of a network destined for a second endpoint group of the network, capture first network flow data between the first endpoint group and the second endpoint group based at least in part by enforcing a first network policy of the network with respect to the network traffic, receive a request to simulate enforcement of a second network policy between the first endpoint group and the second endpoint group, determine second network flow data between the first endpoint group and the second endpoint group by simulating enforcement of the second network policy with respect to the network traffic, and provide an indication whether to enforce the second network policy based at least in part on the second network flow data.
Although many of the examples herein are described with reference to the network security policy, it should be understood that these are only examples and the present technology is not limited in this regard. Rather, any network rules or policies that provide communication protocols for a distributed computing system may be used.
Additionally, even though the present discussion uses a sensor as an example of a network-monitoring device, the present technology is applicable to other controller or device that is capable of review, record and report network data communication between various end groups.
Additional features and advantages of the disclosure will be set forth in the description which follows, and, in part, will be obvious from the description, or can be learned by practice of the herein disclosed principles. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the disclosure will become more fully apparent from the following description and appended claims, or can be learned by the practice of the principles set forth herein.
Configuration and image manager 102 can configure and manage sensors 104. For example, when a new virtual machine is instantiated or when an existing virtual machine is migrated, configuration and image manager 102 can provision and configure a new sensor on the virtual machine. According to some embodiments, configuration and image manager 102 can monitor the physical status or heathy of sensors 104. For example, configuration and image manager 102 might request status updates or initiate tests. According to some embodiments, configuration and image manager 102 also manages and provisions virtual machines.
According to some embodiments, configuration and image manager 102 can verify and validate sensors 104. For example, sensors 104 can be provisioned with a unique ID that is generated using a one-way hash function of its basic input/output system (BIOS) universally unique identifier (UUID) and a secret key stored on configuration and image manager 102. This unique ID can be a large number that is difficult for an imposter sensor to guess. According to some embodiments, configuration and image manager 102 can keep sensors 104 up to date by installing new versions of their software and applying patches. Configuration and image manager 102 can get these updates from a local source or automatically from a remote source via internet.
Sensors 104 can be associated with each node and component of a data center (e.g., virtual machine, hypervisor, slice, blade, switch, router, gateway, etc.). Sensors 104 can monitor communications to and from the component, report on environmental data related to the component (e.g., component IDs, statuses, etc.), and perform actions related to the component (e.g., shut down a process, block ports, redirect traffic, etc.). Sensors 104 can send their records over a high-bandwidth connection to the collectors 122 for storage.
Sensors 104 can comprise software codes (e.g., running on virtual machine 106, container 112, or hypervisor 108), an application-specific integrated circuit (ASIC 110, e.g., a component of a switch, gateway, router, or standalone packet monitor), or an independent unit (e.g., a device connected to a switch's monitoring port or a device connected in series along a main trunk of a datacenter). For clarity and simplicity in this description, the term “component” is used to denote a component of the network (i.e., a process, module, slice, blade, hypervisor, machine, switch, router, gateway, etc.). It should be understood that various software and hardware configurations can be used as sensors 104. Sensors 104 can be lightweight, minimally impeding normal traffic and compute resources in a datacenter. Software sensors 104 can “sniff” packets being sent over its host network interface card (NIC) or individual processes can be configured to report traffic to sensors 104.
According to some embodiments, sensors 104 reside on every virtual machine, hypervisor, switch, etc. This layered sensor structure allows for granular packet statistics and data collection at each hop of data transmission. In some embodiments, sensors 104 are not installed in certain places. For example, in a shared hosting environment, customers may have exclusive control of VMs, thus preventing network administrators from installing a sensor on those client-specific VMs.
As sensors 104 capture communications, they can continuously send network traffic flow data to collectors 122. The network traffic flow data can relate to a packet, collection of packets, flow, group of flows, open ports, port knocks, etc. The network traffic flow data can also include other details such as the VM bios ID, sensor ID, associated process ID, associated process name, process user name, sensor private key, geo-location of sensor, environmental details, etc. The network traffic flow data can comprise data describing the communication on all layers of the OSI model. For example, the network traffic flow data can include Ethernet signal strength, source/destination MAC address, source/destination IP address, protocol, port number, encryption data, requesting process, a sample packet, etc.
Sensors 104 can preprocess network traffic flow data before sending. For example, sensors 104 can remove extraneous or duplicative data or create a summary of the data (e.g., latency, packets and bytes sent per traffic flow, flagging abnormal activity, etc.). According to some embodiments, sensors 104 are configured to selectively capture certain types of connection information while disregarding the rest. Further, as it can be overwhelming for a system to capture every packet, sensors can be configured to capture only a representative sample of packets (for example, every 1,000th packet).
According to some embodiments, sensors 104 can perform various actions with regard to the associated network component. For example, a sensor installed on a VM can close, quarantine, restart, or throttle a process executing on the VM. Sensors 104 can create and enforce policies (e.g., block access to ports, protocols, or addresses). According to some embodiments, sensors 104 receive instructions to perform such actions; alternatively, sensors 104 can act autonomously without external direction.
Sensors 104 can send network traffic flow data to one or more collectors 122. Sensors 104 can be assigned to send network traffic flow data to a primary collector and a secondary collector. In some embodiments, sensors 104 are not assigned a collector, but determine an optimal collector through a discovery process. Sensors 104 can change a destination for the report if its environment changes. For example, if a certain collector experiences failure or if a sensor is migrated to a new location that is close to a different collector. According to some embodiments, sensors 104 send different network traffic flow data to different collectors. For example, sensors 104 can send a first report related to one type of process to a first collector, and send a second report related to another type of process to a second collector.
Collectors 122 can be any type of storage medium that can serve as a repository for the data recorded by the sensors. According to some embodiments, collectors 122 are directly connected to the top of rack (TOR) switch; alternatively, collectors 122 can be located near the end of row or elsewhere on or off premises. The placement of collectors 122 can be optimized according to various priorities such as network capacity, cost, and system responsiveness. According to some embodiments, data storage of collectors 122 is located in an in-memory database such as dash DB by IBM. This approach benefits from rapid random access speeds that typically are required for analytics software. Alternatively, collectors 122 can utilize solid state drives, disk drives, magnetic tape drives, or a combination of the foregoing according to cost, responsiveness, and size requirements. Collectors 122 can utilize various database structures such as a normalized relational database or NoSQL database.
According to some embodiments, collectors 122 serve as network storage for network traffic monitoring system 100. Additionally, collectors 122 can organize, summarize, and preprocess the collected data. For example, collectors 122 can tabulate how often packets of certain sizes or types are transmitted from different virtual machines. Collectors 122 can also characterize the traffic flows going to and from various network components. According to some embodiments, collectors 122 can match packets based on sequence numbers, thus identifying traffic flows as well as connection links.
According to some embodiments, collectors 122 flag anomalous data. Because it would be inefficient to retain all data indefinitely, collectors 122 can routinely replace detailed network traffic flow data with consolidated summaries. In this manner, collectors 122 can retain a complete dataset describing one period (e.g., the past minute), with a smaller report of another period (e.g., the previous), and progressively consolidated network traffic flow data of other times (day, week, month, year, etc.). By organizing, summarizing, and preprocessing the data, collectors 122 can help network traffic monitoring system 100 scale efficiently. Although collectors 122 are generally herein referred to as a plural noun, a single machine or cluster of machines are contemplated to be sufficient, especially for smaller datacenters. In some embodiments, collectors 122 serve as sensors 104 as well.
According to some embodiments, collectors 122 receive data that does not come from sensors 104. For example, collectors 122 can receive out-of-band data 114 that includes, for example, geolocation data 116, IP watch lists 118, and WhoIs data 120. Additional out-of-band data can include power status, temperature data, etc.
Configuration and image manager 102 can configure and manage sensors 104. When a new virtual machine is instantiated or when an existing one is migrated, configuration and image manager 102 can provision and configure a new sensor on the machine. In some embodiments configuration and image manager 102 can monitor the health of sensors 104. For example, configuration and image manager 102 might request status updates or initiate tests. In some embodiments, configuration and image manager 102 also manages and provisions virtual machines.
Analytics module 124 can, via a high bandwidth connection, process the data stored in various collectors 122. Analytics module 124 can accomplish various tasks in its analysis, some of which are herein disclosed. According to some embodiments, network traffic monitoring system 100 can utilize analytics module 124 to automatically determine network topology. Using data provided from sensors 104, analytics module 124 can determine what type of devices exist on the network (brand and model of switches, gateways, machines, etc.), where they are physically located (e.g., latitude and longitude, building, datacenter, room, row, rack, machine, etc.), how they are interconnected (10 Gb Ethernet, fiber-optic, etc.), and what the strength of each connection is (bandwidth, latency, etc.). Automatically determining the network topology can facilitate integrating of network traffic monitoring system 100 within an already established datacenter. Furthermore, analytics module 124 can detect changes of network topology without the needed of further configuration.
Analytics module 124 can determine dependencies of components within the network. For example, if component A routinely sends data to component B, but component B never sends data to component A, then analytics module 124 can determine that component B is dependent on component A, but A is likely not dependent on component B. If, however, component B also sends data to component A, then they are likely interdependent. These components can be processes, virtual machines, hypervisors, VLANs, etc. Once analytics module 124 has determined component dependencies, it can then form a component (“application”) dependency map. This map can be instructive when analytics module 124 attempts to determine the root cause of a failure (because failure of one component can cascade and cause failure of its dependent components) or when analytics module 124 attempts to predict what will happen if a component is taken offline. Additionally, analytics module 124 can associate edges of an application dependency map with expected latency, bandwidth, etc. for that individual edge.
Analytics module 124 can establish patterns and norms for component behavior. For example, it can determine that certain processes (when functioning normally) will only send a certain amount of traffic to a certain VM using a small set of ports. Analytics module 124 can establish these norms by analyzing individual components or by analyzing data coming from similar components (e.g., VMs with similar configurations). Similarly, analytics module 124 can determine expectations for network operations. For example, it can determine the expected latency between two components, the expected throughput of a component, response times of a component, typical packet sizes, traffic flow signatures, etc. In some embodiments, analytics module 124 can combine its dependency map with pattern analysis to create reaction expectations. For example, if traffic increases with one component, other components may predictably increase traffic in response (or latency, compute time, etc.).
According to some embodiments, analytics module 124 uses machine learning techniques to identify which patterns are policy-compliant or unwanted or harmful. For example, a network administrator can indicate network states corresponding to an attack and network states corresponding to normal operation. Analytics module 124 can then analyze the data to determine which patterns most correlate with the network being in a complaint or non-compliant state. According to some embodiments, the network can operate within a trusted environment for a time so that analytics module 124 can establish baseline normalcy. According to some embodiments, analytics module 124 contains a database of norms and expectations for various components. This database can incorporate data from sources external to the network. Analytics module 124 can then create network security policies for how components can interact. According to some embodiments, when policies are determined external to network traffic monitoring system 100, analytics module 124 can detect the policies and incorporate them into this framework. A network administrator can manually tweak the network security policies. For example, network security policies can be dynamically changed and be conditional on events. These policies can be enforced on the components. Policy engine 126 can maintain these network security policies and receive user input to change the policies.
Policy engine 126 can configure analytics module 126 to establish what network security policies exist or should be maintained. For example, policy engine 126 may specify that certain machines should not intercommunicate or that certain ports are restricted. A network policy controller can set the parameters of policy engine 126. According to some embodiments, policy engine 126 is accessible via presentation module 128.
Over time, components may occasionally exhibit anomalous behavior. Analytics module 124 can analyze the frequency and severity of the anomalous behavior to determine a reputation score for the component. Analytics module 124 can use the reputation score of a component to selectively enforce security policies. For example, if a component has a high reputation score, analytics module 124 may allow the component to periodically violate its relevant policy; while if the component frequently violates its relevant policy, its reputation score may be lowered. Analytics module 124 can correlate observed reputation score with characteristics of a component. For example, a particular virtual machine with a particular configuration may be more prone to misconfiguration and receive a lower reputation score. According to some embodiments, security policies are strictly followed, but explicitly factor in a component's reputation score. When a new component is placed in the network, analytics module 124 can assign a starting reputation score similar to the scores of similarly configured components. The expected reputation score for a given component configuration can be externally sourced outside of the datacenter. A network administrator can be presented with expected reputation scores for various components before installation, thus assisting the network administrator in choosing components and configurations that will result in high reputation scores.
Some anomalous behavior can be indicative of a misconfigured component or a malicious attack. Certain attacks are easy to detect if they originate from outside of the datacenter, but can prove difficult to detect and isolate if they originate from within the datacenter. One such attack could be a distributed denial of service (DDOS) where a component or group of components attempt to overwhelm another component with spurious transmissions and requests. Detecting an attack or other anomalous network traffic can be accomplished by comparing the expected network conditions with actual network conditions. For example, if a traffic flow varies from its historical signature (packet size, TCP header options, etc.) it may be an attack.
Once potentially harmful traffic is identified, analytics module 124 can enforce and modify policies in order to mitigate the effects of the traffic. For example, a virtual machine may be prevented from communicating on certain ports. Analytics module 124 can use the sensors 104 to enforce these policies, including restarting a component. For example, if analytics module 124 determines that an individual process is causing the attack, it can direct the sensor located on that virtual machine to terminate or restart the process. This enables other processes on the virtual machine and other network components to continue normal operation without interruption.
According to some embodiments, analytics module 124 can simulate changes in the network. For example, analytics module 124 can simulate what may result if a new security policy is implemented, an end point such as a machine is taken offline or added, or a connection is severed or added. Historical ground truth flows can be used to simulate network traffic based on policy or EPG membership changes. This type of simulation can provide a network administrator with greater information on what policies to implement. According to some embodiments, the simulation may serve as a feedback loop for security policies. For example, if change to certain policies or new policies (e.g., and/or EPG membership changes) would affect certain services (as predicted by the simulation), those changes to the policies or new policies (and/or EPG membership changes) should not be implemented. As such, analytics module 124 can use simulations to discover vulnerabilities in the datacenter. According to some embodiments, analytics module 124 can determine which services and components will be affected by a change in security policies and/or EPG membership changes. Analytics module 124 can then take necessary actions to prepare those services and components for the change. For example, analytic module 124 can reject implementing the new policies and/or EPG membership changes. For example, network traffic monitoring system 100 can send a notification to administrators to initiate a migration of the components, or shut the components down, etc.
According to some embodiments, analytics module 124 can supplement its simulation analysis by initiating synthetic traffic flows and synthetic attacks on the datacenter. These artificial actions can assist analytics module 124 in gathering data to enhance its model. In some embodiments, these synthetic flows and synthetic attacks are used to verify the integrity of sensors 104, collectors 108, and analytics module 110. In some embodiments, the impact on an application due to changes to EPG membership can be determined and/or the impact of future attacks due to changes to EPG membership can be determined.
In some cases, when a traffic flow is expected to be reported by a sensor but fails to report it, it can be an indication that the sensor has failed or become compromised. Further, by comparing the network traffic flow data from multiple sensors 104 throughout the datacenter, analytics module 124 can determine if a certain sensor has failed to report a particular traffic flow.
Presentation module 128 can comprise serving layer 130, public alert 132, authentication 134, web frontend (FE)/UI 136 and 3rd party tools 138. As analytics module 124 processes the data and generates network traffic flow data, they may not be in a human-readable form or they may be too large for an administrator to navigate. Presentation module 128 can take the network traffic flow data generated by analytics module 124 and further summarize, filter, and organize the network traffic flow data as well as create intuitive presentations of the network traffic flow data.
Serving layer 130 can be the interface between presentation module 128 and analytics module 124. As analytics module 124 generates network traffic flow data, predictions, and conclusions, serving layer 130 can summarize, filter, and organize the information that comes from analytics module 124. According to some embodiments, serving layer 139 can request raw data from a sensor, collector, or analytics module 124.
Web FE/UI 136 can connect with serving layer 130 to present the data from serving layer 130 in a page for human presentation. For example, web FE/UI 136 can present the data in bar charts, core charts, tree maps, acyclic dependency maps, line graphs, tables, etc. Web FE/UI 136 can be configured to allow a user to “drill down” on information sets to get a filtered data representation specific to the item the user wishes to “drill down” to. For example, individual traffic flows, components, etc. Web FE/UI 136 can also be configured to allow a user to filter by search. This search filter can use natural language processing to determine analyze the network administrator's input. There can be options to view data relative to the current second, minute, hour, day, etc. Web FE/UI 136 can allow a network administrator to view traffic flows, application dependency maps, network topology, etc.
According to some embodiments, web FE/UI 136 is solely configured to present information. According to some embodiments, web FE/UI 136 can receive inputs from a network administrator to configure network traffic monitoring system 100 or components of the datacenter. These instructions can be passed through serving layer 130, sent to configuration and image manager 102, or sent to policy engine 126. Authentication module 134 can verify the identity and privileges of the network administrator. In some embodiments, authentication module 134 can grant network administrators different rights according to established policies.
Public alert 132 is a module that can identify network conditions satisfying specified criteria and pushing alerts to third party tools 138. Public alert 132 can use network traffic flow data generated or accessible through analytics module 124. One example of third party tools 138 is a security information and event management system. Third party tools 138 may retrieve information from serving layer 130 through an API.
Additionally, the various elements of network traffic monitoring system 100 can exist in various configurations. For example, collectors 122 can be a component of sensors 104. In some embodiments, additional elements can share certain portion of computation to ease the load of analytics module 124.
Spine switches 202 can support various capabilities, such as 40 or 10 Gbps Ethernet speeds. Spine switches 202 can include one or more 40 Gigabit Ethernet ports, each of which can also be split to support other speeds. For example, a 40 Gigabit Ethernet port can be split into four 10 Gigabit Ethernet ports.
Leaf switches 204 can reside at the edge of network fabric 201, thus representing the physical network edge. According to some embodiments, the leaf switches 204 can be top-of-rack switches configured according to a top-of-rack architecture. According to some embodiments, the leaf switches 204 can be aggregation switches in any particular topology, such as end-of-row or middle-of-row topologies. The leaf switches 204 can also represent aggregation switches.
Leaf switches 204 can be responsible for routing and/or bridging the tenant packets and applying network policies. According to some embodiments, a leaf switch can perform one or more additional functions, such as implementing a mapping cache, sending packets to the proxy function when there is a miss in the cache, encapsulate packets, enforce ingress or egress policies, etc.
Network connectivity in network fabric 201 can flow through the leaf switches 204. For example, leaf switches 204 can provide servers, resources, endpoints, external networks, or VMs network access to network fabric 201. According to some embodiments, leaf switches 204 can connect one or more end point groups to network fabric 201 or any external networks. Each end point group can connect to network fabric 201 via one of leaf switches 204.
Endpoints 218a-218d (collectively “218”) can connect to network fabric 201 via leaf switches 204. For example, endpoints 218a and 218b can connect directly to leaf switch 204A. On the other hand, endpoints 218c and 218d can connect to leaf switch 204b via L1 network 208. Similarly, wide area network (WAN) 220 can connect to leaf switches 204a via L2 network 210.
Endpoints 218 can include any communication device or component, such as a computer, server, blade, hypervisor, virtual machine, container, process (e.g., running on a virtual machine), switch, router, gateway, etc. According to some embodiments, endpoints 218 can include a server, hypervisor, process, or switch configured with a VTEP functionality which connects an overlay network with network fabric 201. The overlay network can host physical devices, such as servers, applications, EPGs, virtual segments, virtual workloads, etc. In addition, endpoints 218 can host virtual workload(s), clusters, and applications or services, which can connect with network fabric 201 or any other device or network, including an external network. For example, one or more endpoints 218 can host, or connect to, a cluster of load balancers or an end point group of various applications.
Sensors 206a-206h (collectively “206) can be associated with each node and component of a data center (e.g., virtual machine, hypervisor, slice, blade, switch, router, gateway, etc.). As illustrated in
Sensors 206 can preprocess network traffic flow data before sending. For example, sensors 206 can remove extraneous or duplicative data or create a summary of the data (e.g., latency, packets and bytes sent per traffic flow, flagging abnormal activity, etc.). According to some embodiments, sensors 206 are configured to selectively capture certain types of connection information while disregarding the rest. Further, as it can be overwhelming for a system to capture every packet, sensors can be configured to capture only a representative sample of packets (for example, every 1,000th packet).
According to some embodiments, sensors 206 can perform various actions with regard to the associated network component. For example, a sensor installed on a VM can close, quarantine, restart, or throttle a process executing on the VM. Sensors 206 can create and enforce security policies (e.g., block access to ports, protocols, or addresses). According to some embodiments, sensors 206 receive instructions to perform such actions; alternatively, sensors 104 can act autonomously without external direction.
Sensors 206 can send network traffic flow data to one or more collectors 212. Sensors 206 can be assigned to send network traffic flow data to a primary collector and a secondary collector. In some embodiments, sensors 206 are not assigned a collector, but determine an optimal collector through a discovery process. Sensors 206 can change a destination for the report if its environment changes. For example, if a certain collector experiences failure or if a sensor is migrated to a new location that is close to a different collector. According to some embodiments, sensors 206 send different network traffic flow data to different collectors. For example, sensors 206 can send a first report related to one type of process to a first collector, and send a second report related to another type of process to a second collector.
Collectors 212 can be any type of storage medium that can serve as a repository for the data recorded by the sensors. Collectors 212 can be connected to network fabric 201 via one or more network interfaces. Collectors 212 can be located near the end of row or elsewhere on or off premises. The placement of collectors 212 can be optimized according to various priorities such as network capacity, cost, and system responsiveness. Although collectors 122 are generally herein referred to as a plural noun, a single machine or cluster of machines are contemplated to be sufficient, especially for smaller datacenters. In some embodiments, collectors 122 serve as sensors 202 as well.
According to some embodiments, collectors 212 serve as network storage for network flow data. Additionally, collectors 212 can organize, summarize, and preprocess the collected data. For example, collectors 212 can tabulate how often packets of certain sizes or types are transmitted from different virtual machines. Collectors 212 can also characterize the traffic flows going to and from various network components. According to some embodiments, collectors 212 can match packets based on sequence numbers, thus identifying traffic flows as well as connection links.
Analytics module 214 can process and analyze the data stored in various collectors 212 to perform various tasks. According to some embodiments, can utilize analytics module 214 to automatically determine network topology. Using data provided from sensors 202, analytics module 214 can determine what type of devices exist on the network (brand and model of switches, gateways, machines, etc.), where they are physically located (e.g., latitude and longitude, building, datacenter, room, row, rack, machine, etc.), how they are interconnected (10 Gb Ethernet, fiber-optic, etc.), and what the strength of each connection is (bandwidth, latency, etc.). Furthermore, analytics module 214 can detect changes of network topology without the needed of further configuration.
Analytics module 214 can determine dependencies of components within the network. For example, if component A routinely sends data to component B, but component B never sends data to component A, then analytics module 214 can determine that component B is dependent on component A, but A is likely not dependent on component B. If, however, component B also sends data to component A, then they are likely interdependent. These components can be processes, virtual machines, hypervisors, VLANs, etc.
Using the determined component dependencies, analytics module 214 can then form a component (“application”) dependency map. This map can be instructive when analytics module 214 attempts to diagnose the root cause of a failure or when analytics module 214 attempts to predict what will happen if a proposed network security policy is implemented or an end point is added or taken offline (e.g., one or more EPG memberships are changed).
According to some embodiments, analytics module 214 uses machine learning techniques to identify which patterns are policy-compliant or unwanted or harmful. According to some embodiments, analytics module 214 contains a database of norms and expectations for various components. This database can incorporate data from sources external to the network. Using this database, analytics module 214 can then create network security policies for how components can interact. According to some embodiments, when policies are determined external but safe, analytics module 214 can detect the policies and incorporate them into this framework. A network administrator can manually tweak the network security policies. For example, network security policies can be dynamically changed and be conditional on events. These policies can be enforced on the components. Policy engine 216 can maintain these network security policies and receive user input to change the policies.
Policy engine 216 can configure analytics module 214 to establish what network security policies exist or should be maintained. For example, policy engine 216 may specify that certain machines should not intercommunicate or that certain ports are restricted. A network security policy controller can set the parameters of policy engine 216.
Analytics module 214 can analyze the frequency and severity of the anomalous behavior to determine a reputation score for the component. Analytics module 214 can use the reputation score of a component to selectively enforce security policies. For example, if a component has a high reputation score, analytics module 214 may allow the component to periodically violate its relevant policy; while if the component frequently violates its relevant policy, its reputation score may be lowered. Analytics module 214 can correlate observed reputation score with characteristics of a component. For example, a particular virtual machine with a particular configuration may be more prone to misconfiguration and receive a lower reputation score. When a new component is placed in the network, analytics module 214 can assign a starting reputation score similar to the scores of similarly configured components. The expected reputation score for a given component configuration can be externally sourced outside of the datacenter. A network administrator can be presented with expected reputation scores for various components before installation, thus assisting the network administrator in choosing components and configurations that will result in high reputation scores.
According to some embodiments, analytics module 214 can simulate policy changes in the network and/or EPG membership changes. For example, analytics module 214 can receive a request to simulate a new network security policy between a first endpoint group and a second endpoint group and/or to simulate an EPG membership change between a first endpoint group and a second endpoint group. Analytics module 214, by simulating the new network policy and/or by simulating the EPH membership change, determines simulated network flow data which is parallel and independent from ground truth network flow data between the two endpoint groups. For example, a network management system can determine whether to implement the new network security policy or EPG membership change based on the effects of the simulated network flow data. In particular, analytics module 214 can determine, by monitoring simulated network flow data collected by sensors, the simulated network flow causes a negative impact, e.g., failed packet transmission or slowed packet transmission, on the ground truth network flow. According to some embodiments, when a traffic flow is expected to be reported by a sensor but fails to report it, it can be an indication that the sensor has failed or become compromised. Further, by comparing the network traffic flow data from multiple sensors 206 throughout the datacenter, analytics module 214 can determine if a certain sensor has failed to report a particular traffic flow. Accordingly, the network management system can determine not to enforce the new network security policy or EPG membership change. Conversely, when the simulated network flow does not lead to a negative impact on the ground truth network flow, analytic module 214 can determine to enforce the new network security policy or EPH membership change in the network.
Further, analytics module 214 can simulate what may result if an end point such as a machine is taken offline or added, or a connection is severed or added (e.g., can simulate an EPG membership change). An EPG membership change can be simulated based son simulating the effects on network traffic based on implementation of an experimental set of EPGs. An EPG membership change (e.g., changing membership of EPG groups) can include adding new endpoints to an EPG, removing endpoints from an EPG, moving an endpoint from one EPG to another. This type of simulation can provide a network administrator with greater information on what policies and/or EPG membership changes to implement. According to some embodiments, the simulation may serve as a feedback loop for security policies. For example, if changes to certain policies or new policies (and/or EPG membership changes) would negatively affect certain services (as predicted by the simulation), those changes to the policies or new policies (or EPG membership) should not be implemented. As such, analytics module 214 can use simulations to discover vulnerabilities in the datacenter. According to some embodiments, analytics module 214 can determine which services and components will be affected by a change in security policies or EPG membership. A network administrator can then take necessary actions to prepare those services and components for the changes. For example, the network management system can reject implementing the new policies or EPG membership changes. For example, the network traffic monitoring system can send a notification to administrators to initiate a migration of the components, or shut the components down, etc.
According to some embodiments, analytics module 214 can supplement its simulation analysis by initiating synthetic traffic flows and synthetic attacks on the datacenter. This simulated network flow data can assist analytics module 214 to make more accurate determinations regarding network bandwidth utilization network attacks. In some embodiments, these synthetic flows and synthetic attacks can also be used to verify the integrity of sensors 206, collectors 212, and analytics module 214.
In policy table 300, each box lists the applicable policy or policies between a particular source endpoint group (SEPG) and a destination endpoint group (DEPG). Policy table 300 can include policies 30011-300nn (collectively “300”) for enforcement in the network. In one example, the system can perform a lookup for SEPG=EPG 1 and DEPG=EPG 1 to determine the appropriate policy for a packet that is traveling from an endpoint that is part of EPG 1 to an endpoint that is also part of EPG 1. Accordingly, box 30011 dictates that “Policy A” should be applied to traffic that travels from an endpoint that is part of EPG 1 to and an endpoint that is also part of EPG 1. Policy A may correspond to a policy that allows traffic to travel between the endpoints.
According to some embodiments, the same policies are applied in a bidirectional fashion. For example, box 30012 provides for “Policy B” to be applied to traffic from EPG 1 to EPG 2, and box 30021 provides for “Policy B” to also be applied to traffic from EPG 2 to EPG 1. Alternatively, policies can be applied differently for data that is going in one direction versus another. For example, box 30013 provides for both “Policy C” and “Policy D” to be applied to traffic from EPG 1 to EPG 3 while box 30031 provides only for “Policy C” to be applied to the data that travels in the opposite direction, from EPG 3 to EPG 1. Particularly, “Policy C” may be used to allow traffic to flow in both directions. However, “Policy D” may be used to change the quality of service (QoS) of the traffic in only one of the directions.
According to some embodiments, a network system can control data traffic by using a whitelist model in which a policy must be present to allow communication. A whitelist rule allows a communication while a blacklist rule blocks a communication. For example, box 30032 defines the policies that govern traffic from EPG 3 to EPG 2. However, under a whitelist model, because this box does not contain any policies, traffic would not be allowed to flow from EPG 3 to EPG 2. Conversely, box 30023 includes “Policy E” that governs traffic from EPG 2 to EPG 3. Hence, under a whitelist model, this example would allow unidirectional traffic from EPG 2 to EPG3. Alternatively, a network can employ a blacklist model in which all traffic is permitted unless a particular policy exists to prevent it. According to some embodiments, the network system can convert a blacklist rule to a whitelist rule, using the dependency map as disclosed herein.
Enforcement of a security policy can include a number of actions such as allowing the traffic to continue, redirecting the traffic, changing the quality of service, or copying the data packet. In addition, the network system may also apply a tag to the data packet or set one or more bits in the data packet to mark the enforcement of the policy. Once the policy is applied, the appropriate network action can be performed on the data packet.
According to some embodiments, a network system can generate a simulation policy table that is configured to store one or more proposed network policies, which are subject to the policy simulation as described herein. For example, the network system, e.g., using an analytics module, can concurrently simulate multiple network policies, determine which proposed policies are proper to be implemented, and enforce these determined policies throughout the network accordingly.
At step 402, a network traffic monitoring system (e.g., network traffic monitoring system 200 of
At step 404, the network traffic monitoring system can capture ground-truth network flow data between the first endpoint group and the second endpoint group by enforcing a first security policy stored in a policy table of a network. For example, as illustrated in
At step 406, the network traffic monitoring system can receive a request to simulate a second network security policy between the first endpoint group and the second endpoint group of a network. For example, as illustrated in
At step 408, the network traffic monitoring system can determine second network flow data between the first endpoint group and the second endpoint group by simulating enforcement of the second network policy with respect to the network traffic. For example, analytics module 214, by enforcing the new network policy, determines simulated network flow data which can be parallel and independent from ground truth network flow data between the two endpoint groups.
At step 410, a network management system and/or network administrator can provide an indication whether to enforce the second network policy based at least in part on the second network flow data. For example, analytics module 214 can provide a recommendation whether to enforce the new network security policy based on the effects of the simulated network flow data and a confidence value for the recommendation. For example, the network administrator can determine whether the policy should be enforced based on analysis of the simulated network flow data and the recommendation and/or automate the network management system to enforce the policy if the confidence value is above a confidence threshold.
At step 412, the nodes of the network can implement the second network security policy. For example, when the simulated network flow does not lead to a negative impact on the ground truth network flow, the network management system and/or network administrator can determine to enforce the new network security policy in the network.
At step 414, the network traffic monitoring system can make a recommendation to reject the second network security policy. For example, when implementation of the second network policy exposes one or more endpoints to security threats or lowers a reputation value of one or more endpoints below a threshold, the network traffic monitoring system can recommend that the network policy should not be enforced.
At step 502, network traffic monitoring system 500 can receive aggregate network flow data from a plurality of sensors of the network. The plurality of sensors includes at least a first sensor of a physical switch of the network, a second sensor of a hypervisor associated with the physical switch, a third sensor of a virtual machine associated with the hypervisor. For example, as illustrated in
At step 504, network traffic monitoring system 500 can determine, based at least in part on the aggregate network flow data, a dependency map of an application executing in the network, the dependency map indicating a pattern of network traffic associated with the application. For example, analytics module 214 can determine dependencies of components within the network. For example, if component A routinely sends data to component B, but component B never sends data to component A, then analytics module 214 can determine that component B is dependent on component A, but A is likely not dependent on component B. If, however, component B also sends data to component A, then they are likely interdependent. These components can be processes, virtual machines, hypervisors, VLANs, etc. Using the determined component dependencies, analytics module 214 can then form a component (“application”) dependency map. This map can be instructive when analytics module 214 attempts to diagnose the root cause of a failure or when analytics module 214 attempts to predict what will happen if a proposed network security policy is implemented or an end point is added or taken offline.
At step 506, network traffic monitoring system 500 can determine, based at least in part on the dependency map, at least one network policy for the network. For example, analytics module 214 can use machine learning techniques to identify which patterns are policy-compliant or unwanted or harmful, thus deriving the related network security policies. According to some embodiments, analytics module 214 contains a database of norms and expectations for various components. This database can incorporate data from sources external to the network. Using this database, analytics module 214 can then create network security policies for how components can interact. According to some embodiments, when policies are determined external but safe, analytics module 214 can detect the policies and incorporate them into this framework. A network administrator can manually tweak the network security policies. For example, network security policies can be dynamically changed and be conditional on events.
At step 508, network traffic monitoring system 500 can store the at least one network policy in the policy table. For example, policy engine 216 can maintain these network security policies in a policy table. According to some embodiments, policy engine 216 can receive user input to change the policies.
To enable user interaction with the computing device 600, an input device 645 can represent any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 635 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems can enable a user to provide multiple types of input to communicate with the computing device 600. The communications interface 640 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.
Storage device 630 is a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 625, read only memory (ROM) 620, and hybrids thereof.
The storage device 630 can include software modules 632, 634, 636 for controlling the processor 610. Other hardware or software modules are contemplated. The storage device 630 can be connected to the system bus 605. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as the processor 610, bus 605, output device 635, and so forth, to carry out the function.
Chipset 660 can also interface with one or more communication interfaces 690 that can have different physical interfaces. Such communication interfaces can include interfaces for wired and wireless local area networks, for broadband wireless networks, as well as personal area networks. Some applications of the methods for generating, displaying, and using the GUI disclosed herein can include receiving ordered datasets over the physical interface or be generated by the machine itself by processor 655 analyzing data stored in storage 670 or 675. Further, the machine can receive inputs from a user via user interface components 685 and execute appropriate functions, such as browsing functions by interpreting these inputs using processor 655.
It can be appreciated that example systems 600 and 650 can have more than one processor 610 or be part of a group or cluster of computing devices networked together to provide greater processing capability.
For clarity of explanation, in some instances the present technology may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.
In some embodiments the computer-readable storage devices, mediums, and memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.
Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.
Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, rackmount devices, standalone devices, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.
The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.
Although a variety of examples and other information was used to explain aspects within the scope of the appended claims, no limitation of the claims should be implied based on particular features or arrangements in such examples, as one of ordinary skill would be able to use these examples to derive a wide variety of implementations. Further and although some subject matter may have been described in language specific to examples of structural features and/or method steps, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to these described features or acts. For example, such functionality can be distributed differently or performed in components other than those identified herein. Rather, the described features and steps are disclosed as examples of components of systems and methods within the scope of the appended claims. Moreover, claim language reciting “at least one of” a set indicates that one member of the set or multiple members of the set satisfy the claim.
This application is a continuation of U.S. application Ser. No. 15/045,205, filed Feb. 16, 2016, entitled “SYSTEM AND METHOD FOR NETWORK POLICY SIMULATION,” which in turn, is claims priority to U.S. Provisional Application 62/171,899, titled “System for Monitoring and Managing Datacenters” and filed Jun. 5, 2015, all of which are expressly incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5086385 | Launey et al. | Feb 1992 | A |
5319754 | Meinecke et al. | Jun 1994 | A |
5400246 | Wilson et al. | Mar 1995 | A |
5436909 | Dev et al. | Jul 1995 | A |
5448724 | Hayashi | Sep 1995 | A |
5555416 | Owens et al. | Sep 1996 | A |
5726644 | Jednacz et al. | Mar 1998 | A |
5742803 | Igarashi et al. | Apr 1998 | A |
5742829 | Davis et al. | Apr 1998 | A |
5751914 | Coley et al. | May 1998 | A |
5794047 | Meier | Aug 1998 | A |
5822731 | Schultz | Oct 1998 | A |
5831848 | Rielly et al. | Nov 1998 | A |
5903545 | Sabourin et al. | May 1999 | A |
5949974 | Ewing et al. | Sep 1999 | A |
6012096 | Link et al. | Jan 2000 | A |
6026362 | Kim et al. | Feb 2000 | A |
6085243 | Fletcher et al. | Jul 2000 | A |
6115462 | Servi et al. | Sep 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6144962 | Weinberg et al. | Nov 2000 | A |
6192402 | Iwase | Feb 2001 | B1 |
6204850 | Green | Mar 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226273 | Busuioc et al. | May 2001 | B1 |
6230312 | Hunt | May 2001 | B1 |
6239699 | Ronnen | May 2001 | B1 |
6247058 | Miller et al. | Jun 2001 | B1 |
6249241 | Jordan et al. | Jun 2001 | B1 |
6279035 | Brown et al. | Aug 2001 | B1 |
6295527 | McCormack et al. | Sep 2001 | B1 |
6307837 | Ichikawa et al. | Oct 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6338131 | Dillon | Jan 2002 | B1 |
6351843 | Berkley et al. | Feb 2002 | B1 |
6353775 | Nichols | Mar 2002 | B1 |
6381735 | Hunt | Apr 2002 | B1 |
6499137 | Hunt | Dec 2002 | B1 |
6525658 | Streetman et al. | Feb 2003 | B2 |
6546420 | Lemler et al. | Apr 2003 | B1 |
6546553 | Hunt | Apr 2003 | B1 |
6597663 | Rekhter | Jul 2003 | B1 |
6611896 | Mason, Jr. et al. | Aug 2003 | B1 |
6629123 | Hunt | Sep 2003 | B1 |
6633909 | Barrett et al. | Oct 2003 | B1 |
6654750 | Adams et al. | Nov 2003 | B1 |
6718414 | Doggett | Apr 2004 | B1 |
6728779 | Griffin et al. | Apr 2004 | B1 |
6751663 | Farrell et al. | Jun 2004 | B1 |
6774899 | Ryall et al. | Aug 2004 | B1 |
6801878 | Hintz et al. | Oct 2004 | B1 |
6816461 | Scrandis et al. | Nov 2004 | B1 |
6847993 | Novaes | Jan 2005 | B1 |
6848106 | Hipp | Jan 2005 | B1 |
6925490 | Novaes et al. | Aug 2005 | B1 |
6958998 | Shorey | Oct 2005 | B2 |
6965861 | Dailey et al. | Nov 2005 | B1 |
6983323 | Cantrell et al. | Jan 2006 | B2 |
6996808 | Niewiadomski et al. | Feb 2006 | B1 |
6996817 | Birum et al. | Feb 2006 | B2 |
6999452 | Drummond-Murray et al. | Feb 2006 | B1 |
7002464 | Bruemmer et al. | Feb 2006 | B2 |
7024468 | Meyer et al. | Apr 2006 | B1 |
7036049 | Ali et al. | Apr 2006 | B2 |
7089583 | Mehra et al. | Aug 2006 | B2 |
7096368 | Kouznetsov et al. | Aug 2006 | B2 |
7111055 | Falkner | Sep 2006 | B2 |
7120934 | Ishikawa | Oct 2006 | B2 |
7133923 | MeLampy et al. | Nov 2006 | B2 |
7162643 | Sankaran et al. | Jan 2007 | B1 |
7167483 | Sharma et al. | Jan 2007 | B1 |
7181769 | Keanini et al. | Feb 2007 | B1 |
7185103 | Jain | Feb 2007 | B1 |
7194664 | Fung et al. | Mar 2007 | B1 |
7203740 | Putzolu et al. | Apr 2007 | B1 |
7213068 | Kohli et al. | May 2007 | B1 |
7231664 | Markham | Jun 2007 | B2 |
7263689 | Edwards et al. | Aug 2007 | B1 |
7296288 | Hill et al. | Nov 2007 | B1 |
7302487 | Ylonen et al. | Nov 2007 | B2 |
7327735 | Robotham et al. | Feb 2008 | B2 |
7331060 | Ricciulli | Feb 2008 | B1 |
7337206 | Wen et al. | Feb 2008 | B1 |
7349761 | Cruse | Mar 2008 | B1 |
7353507 | Gazdik et al. | Apr 2008 | B2 |
7353511 | Ziese | Apr 2008 | B1 |
7356679 | Le et al. | Apr 2008 | B1 |
7360072 | Soltis et al. | Apr 2008 | B1 |
7370092 | Aderton et al. | May 2008 | B2 |
7395195 | Suenbuel et al. | Jul 2008 | B2 |
7444404 | Wetherall et al. | Oct 2008 | B2 |
7453879 | Lo | Nov 2008 | B1 |
7454486 | Kaler et al. | Nov 2008 | B2 |
7466681 | Ashwood-Smith et al. | Dec 2008 | B2 |
7467205 | Dempster et al. | Dec 2008 | B1 |
7469290 | Liubovich et al. | Dec 2008 | B1 |
7496040 | Seo | Feb 2009 | B2 |
7496575 | Buccella et al. | Feb 2009 | B2 |
7496661 | Morford et al. | Feb 2009 | B1 |
7523178 | Reeves et al. | Apr 2009 | B2 |
7523465 | Aamodt et al. | Apr 2009 | B2 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530105 | Gilbert et al. | May 2009 | B2 |
7539770 | Meier | May 2009 | B2 |
7568107 | Rathi et al. | Jul 2009 | B1 |
7571478 | Munson et al. | Aug 2009 | B2 |
7594262 | Hanzlik | Sep 2009 | B2 |
7606203 | Shabtay et al. | Oct 2009 | B1 |
7610330 | Quinn et al. | Oct 2009 | B1 |
7633942 | Bearden et al. | Dec 2009 | B2 |
7644438 | Dash et al. | Jan 2010 | B1 |
7676570 | Levy et al. | Mar 2010 | B2 |
7681131 | Quarterman et al. | Mar 2010 | B1 |
7693947 | Judge et al. | Apr 2010 | B2 |
7742406 | Muppala | Jun 2010 | B1 |
7742413 | Bugenhagen | Jun 2010 | B1 |
7743242 | Oberhaus et al. | Jun 2010 | B2 |
7752307 | Takara | Jul 2010 | B2 |
7774498 | Kraemer et al. | Aug 2010 | B1 |
7783457 | Cunningham | Aug 2010 | B2 |
7787480 | Mehta et al. | Aug 2010 | B1 |
7788477 | Huang et al. | Aug 2010 | B1 |
7808897 | Mehta et al. | Oct 2010 | B1 |
7813822 | Hoffberg | Oct 2010 | B1 |
7840618 | Zhang et al. | Nov 2010 | B2 |
7844696 | Labovitz et al. | Nov 2010 | B2 |
7844744 | Abercrombie et al. | Nov 2010 | B2 |
7864707 | Dimitropoulos et al. | Jan 2011 | B2 |
7870204 | LeVasseur et al. | Jan 2011 | B2 |
7873025 | Patel et al. | Jan 2011 | B2 |
7873074 | Boland | Jan 2011 | B1 |
7874001 | Beck et al. | Jan 2011 | B2 |
7885197 | Metzler | Feb 2011 | B2 |
7895649 | Brook et al. | Feb 2011 | B1 |
7904420 | Ianni | Mar 2011 | B2 |
7930752 | Hertzog et al. | Apr 2011 | B2 |
7934248 | Yehuda et al. | Apr 2011 | B1 |
7957934 | Greifeneder | Jun 2011 | B2 |
7961637 | McBeath | Jun 2011 | B2 |
7970946 | Djabarov et al. | Jun 2011 | B1 |
7975035 | Popescu et al. | Jul 2011 | B2 |
7990847 | Leroy et al. | Aug 2011 | B1 |
8001610 | Chickering et al. | Aug 2011 | B1 |
8005935 | Pradhan et al. | Aug 2011 | B2 |
8040232 | Oh et al. | Oct 2011 | B2 |
8040822 | Proulx et al. | Oct 2011 | B2 |
8040832 | Nishio et al. | Oct 2011 | B2 |
8056134 | Ogilvie | Nov 2011 | B1 |
8115617 | Thubert et al. | Feb 2012 | B2 |
8135657 | Kapoor et al. | Mar 2012 | B2 |
8135847 | Pujol et al. | Mar 2012 | B2 |
8156430 | Newman | Apr 2012 | B2 |
8160063 | Maltz et al. | Apr 2012 | B2 |
8179809 | Eppstein et al. | May 2012 | B1 |
8181248 | Oh et al. | May 2012 | B2 |
8181253 | Zaitsev et al. | May 2012 | B1 |
8185343 | Fitzgerald et al. | May 2012 | B1 |
8185824 | Mitchell et al. | May 2012 | B1 |
8239365 | Salman | Aug 2012 | B2 |
8239915 | Satish et al. | Aug 2012 | B1 |
8250657 | Nachenberg et al. | Aug 2012 | B1 |
8255972 | Azagury et al. | Aug 2012 | B2 |
8266697 | Coffman | Sep 2012 | B2 |
8272875 | Jurmain | Sep 2012 | B1 |
8280683 | Finkler | Oct 2012 | B2 |
8281397 | Vaidyanathan et al. | Oct 2012 | B2 |
8291495 | Burns et al. | Oct 2012 | B1 |
8296847 | Mendonca et al. | Oct 2012 | B2 |
8311973 | Zadeh | Nov 2012 | B1 |
8312540 | Kahn et al. | Nov 2012 | B1 |
8339959 | Moisand et al. | Dec 2012 | B1 |
8356007 | Larson et al. | Jan 2013 | B2 |
8365005 | Bengtson et al. | Jan 2013 | B2 |
8365286 | Poston | Jan 2013 | B2 |
8370407 | Devarajan et al. | Feb 2013 | B1 |
8381289 | Pereira et al. | Feb 2013 | B1 |
8391270 | Van et al. | Mar 2013 | B2 |
8392515 | Kakivaya | Mar 2013 | B2 |
8407164 | Malik et al. | Mar 2013 | B2 |
8407798 | Lotem et al. | Mar 2013 | B1 |
8413235 | Chen et al. | Apr 2013 | B1 |
8442073 | Skubacz et al. | May 2013 | B2 |
8451731 | Lee et al. | May 2013 | B1 |
8462212 | Kundu et al. | Jun 2013 | B1 |
8463860 | Guruswamy et al. | Jun 2013 | B1 |
8489765 | Vasseur et al. | Jul 2013 | B2 |
8494985 | Keralapura et al. | Jul 2013 | B1 |
8499348 | Rubin | Jul 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8527977 | Cheng et al. | Sep 2013 | B1 |
8549635 | Muttik et al. | Oct 2013 | B2 |
8565109 | Poovendran et al. | Oct 2013 | B1 |
8570861 | Brandwine et al. | Oct 2013 | B1 |
8572600 | Chung et al. | Oct 2013 | B2 |
8572734 | McConnell et al. | Oct 2013 | B2 |
8572735 | Ghosh et al. | Oct 2013 | B2 |
8572739 | Cruz et al. | Oct 2013 | B1 |
8578491 | McNamee et al. | Nov 2013 | B2 |
8588081 | Salam et al. | Nov 2013 | B2 |
8595709 | Rao et al. | Nov 2013 | B2 |
8600726 | Varshney et al. | Dec 2013 | B1 |
8612530 | Sapovalovs et al. | Dec 2013 | B1 |
8613084 | Dalcher | Dec 2013 | B2 |
8615803 | Dacier et al. | Dec 2013 | B2 |
8624898 | Bugaj et al. | Jan 2014 | B1 |
8630316 | Haba | Jan 2014 | B2 |
8631464 | Belakhdar et al. | Jan 2014 | B2 |
8640086 | Bonev et al. | Jan 2014 | B2 |
8656493 | Capalik | Feb 2014 | B2 |
8661544 | Yen et al. | Feb 2014 | B2 |
8677487 | Balupari et al. | Mar 2014 | B2 |
8683389 | Bar-Yam et al. | Mar 2014 | B1 |
8689172 | Amaral et al. | Apr 2014 | B2 |
8706914 | Duchesneau | Apr 2014 | B2 |
8713676 | Pandrangi et al. | Apr 2014 | B2 |
8719452 | Ding et al. | May 2014 | B1 |
8719835 | Kanso et al. | May 2014 | B2 |
8750287 | Bui et al. | Jun 2014 | B2 |
8752042 | Ratica | Jun 2014 | B2 |
8752179 | Zaitsev | Jun 2014 | B2 |
8755396 | Sindhu et al. | Jun 2014 | B2 |
8762951 | Kosche et al. | Jun 2014 | B1 |
8769084 | Westerfeld et al. | Jul 2014 | B2 |
8775577 | Alford et al. | Jul 2014 | B1 |
8776180 | Kumar et al. | Jul 2014 | B2 |
8779921 | Curtiss | Jul 2014 | B1 |
8793255 | Bilinski et al. | Jul 2014 | B1 |
8805946 | Glommen | Aug 2014 | B1 |
8812448 | Anderson et al. | Aug 2014 | B1 |
8812725 | Kulkarni | Aug 2014 | B2 |
8813236 | Saha et al. | Aug 2014 | B1 |
8825848 | Dotan et al. | Sep 2014 | B1 |
8832013 | Adams et al. | Sep 2014 | B1 |
8832103 | Isaacson et al. | Sep 2014 | B2 |
8832461 | Saroiu et al. | Sep 2014 | B2 |
8849926 | Marzencki et al. | Sep 2014 | B2 |
8881258 | Paul et al. | Nov 2014 | B2 |
8887238 | Howard et al. | Nov 2014 | B2 |
8887285 | Jordan et al. | Nov 2014 | B2 |
8904520 | Nachenberg et al. | Dec 2014 | B1 |
8908685 | Patel et al. | Dec 2014 | B2 |
8914497 | Xiao et al. | Dec 2014 | B1 |
8924941 | Krajec et al. | Dec 2014 | B2 |
8931043 | Cooper et al. | Jan 2015 | B2 |
8954546 | Krajec | Feb 2015 | B2 |
8954610 | Berke et al. | Feb 2015 | B2 |
8955124 | Kim et al. | Feb 2015 | B2 |
8966021 | Allen | Feb 2015 | B1 |
8966625 | Zuk et al. | Feb 2015 | B1 |
8973147 | Pearcy et al. | Mar 2015 | B2 |
8984331 | Quinn | Mar 2015 | B2 |
8990386 | He et al. | Mar 2015 | B2 |
8996695 | Anderson et al. | Mar 2015 | B2 |
8997063 | Krajec et al. | Mar 2015 | B2 |
8997227 | Mhatre et al. | Mar 2015 | B1 |
9014047 | Alcala et al. | Apr 2015 | B2 |
9015716 | Fletcher et al. | Apr 2015 | B2 |
9043905 | Allen et al. | May 2015 | B1 |
9071575 | Lemaster et al. | Jun 2015 | B2 |
9088598 | Zhang et al. | Jul 2015 | B1 |
9104543 | Cavanagh et al. | Aug 2015 | B1 |
9110905 | Polley et al. | Aug 2015 | B2 |
9117075 | Yeh | Aug 2015 | B1 |
9122599 | Jaladanki et al. | Sep 2015 | B1 |
9130836 | Kapadia et al. | Sep 2015 | B2 |
9135145 | Voccio et al. | Sep 2015 | B2 |
9141912 | Shircliff et al. | Sep 2015 | B2 |
9141914 | Viswanathan et al. | Sep 2015 | B2 |
9146820 | Alfadhly et al. | Sep 2015 | B2 |
9152789 | Natarajan et al. | Oct 2015 | B2 |
9158720 | Shirlen et al. | Oct 2015 | B2 |
9160764 | Stiansen et al. | Oct 2015 | B2 |
9170917 | Kumar et al. | Oct 2015 | B2 |
9178906 | Chen et al. | Nov 2015 | B1 |
9179058 | Zeira et al. | Nov 2015 | B1 |
9185127 | Neou et al. | Nov 2015 | B2 |
9191042 | Dhayni | Nov 2015 | B2 |
9191400 | Ptasinski et al. | Nov 2015 | B1 |
9191402 | Yan | Nov 2015 | B2 |
9197654 | Ben-Shalom et al. | Nov 2015 | B2 |
9225793 | Dutta et al. | Dec 2015 | B2 |
9237111 | Banavalikar et al. | Jan 2016 | B2 |
9246702 | Sharma et al. | Jan 2016 | B1 |
9246773 | Degioanni | Jan 2016 | B2 |
9252915 | Bakken | Feb 2016 | B1 |
9253042 | Lumezanu et al. | Feb 2016 | B2 |
9253206 | Fleischman | Feb 2016 | B1 |
9258217 | Duffield et al. | Feb 2016 | B2 |
9276829 | Castro et al. | Mar 2016 | B2 |
9281940 | Matsuda et al. | Mar 2016 | B2 |
9286047 | Avramov et al. | Mar 2016 | B1 |
9292415 | Seto et al. | Mar 2016 | B2 |
9294486 | Chiang et al. | Mar 2016 | B1 |
9294498 | Yampolskiy et al. | Mar 2016 | B1 |
9300689 | Tsuchitoi | Mar 2016 | B2 |
9306870 | Klein | Apr 2016 | B1 |
9317574 | Brisebois et al. | Apr 2016 | B1 |
9319384 | Yan et al. | Apr 2016 | B2 |
9369435 | Short et al. | Jun 2016 | B2 |
9369479 | Lin | Jun 2016 | B2 |
9378068 | Anantharam et al. | Jun 2016 | B2 |
9385917 | Khanna et al. | Jul 2016 | B1 |
9396327 | Auger et al. | Jul 2016 | B2 |
9397902 | Dragon et al. | Jul 2016 | B2 |
9405903 | Xie et al. | Aug 2016 | B1 |
9413615 | Singh et al. | Aug 2016 | B1 |
9417985 | Baars et al. | Aug 2016 | B2 |
9418222 | Rivera et al. | Aug 2016 | B1 |
9426068 | Dunbar et al. | Aug 2016 | B2 |
9454324 | Madhavapeddi | Sep 2016 | B1 |
9462013 | Boss et al. | Oct 2016 | B1 |
9465696 | McNeil et al. | Oct 2016 | B2 |
9483334 | Walsh | Nov 2016 | B2 |
9487222 | Palmer et al. | Nov 2016 | B2 |
9501744 | Brisebois et al. | Nov 2016 | B1 |
9531589 | Clemm et al. | Dec 2016 | B2 |
9536084 | Lukacs et al. | Jan 2017 | B1 |
9552221 | Pora | Jan 2017 | B1 |
9563517 | Natanzon et al. | Feb 2017 | B1 |
9575869 | Pechanec et al. | Feb 2017 | B2 |
9575874 | Gautallin et al. | Feb 2017 | B2 |
9576240 | Jeong et al. | Feb 2017 | B2 |
9582669 | Shen et al. | Feb 2017 | B1 |
9596196 | Hills | Mar 2017 | B1 |
9602536 | Brown, Jr. et al. | Mar 2017 | B1 |
9621413 | Lee | Apr 2017 | B1 |
9621575 | Jalan et al. | Apr 2017 | B1 |
9634915 | Bley | Apr 2017 | B2 |
9645892 | Patwardhan | May 2017 | B1 |
9658942 | Bhat et al. | May 2017 | B2 |
9665474 | Li et al. | May 2017 | B2 |
9678803 | Suit | Jun 2017 | B2 |
9684453 | Holt et al. | Jun 2017 | B2 |
9686233 | Paxton | Jun 2017 | B2 |
9697033 | Koponen et al. | Jul 2017 | B2 |
9727394 | Xun et al. | Aug 2017 | B2 |
9729568 | Lefebvre et al. | Aug 2017 | B2 |
9733973 | Prasad et al. | Aug 2017 | B2 |
9736041 | Lumezanu et al. | Aug 2017 | B2 |
9749145 | Banavalikar et al. | Aug 2017 | B2 |
9800608 | Korsunsky et al. | Oct 2017 | B2 |
9804830 | Raman et al. | Oct 2017 | B2 |
9804951 | Liu et al. | Oct 2017 | B2 |
9813307 | Walsh et al. | Nov 2017 | B2 |
9813324 | Nampelly et al. | Nov 2017 | B2 |
9813516 | Wang | Nov 2017 | B2 |
9825911 | Brandwine | Nov 2017 | B1 |
9836183 | Love et al. | Dec 2017 | B1 |
9857825 | Johnson et al. | Jan 2018 | B1 |
9858621 | Konrardy et al. | Jan 2018 | B1 |
9860208 | Ettema et al. | Jan 2018 | B1 |
9904584 | Konig et al. | Feb 2018 | B2 |
9916232 | Voccio et al. | Mar 2018 | B2 |
9916538 | Zadeh et al. | Mar 2018 | B2 |
9935851 | Gandham et al. | Apr 2018 | B2 |
9967158 | Pang et al. | May 2018 | B2 |
9979615 | Kulshreshtha et al. | May 2018 | B2 |
9996529 | McCandless et al. | Jun 2018 | B2 |
10002187 | McCandless et al. | Jun 2018 | B2 |
10009240 | Rao et al. | Jun 2018 | B2 |
10116531 | Attar et al. | Oct 2018 | B2 |
10142353 | Yadav et al. | Nov 2018 | B2 |
10171319 | Yadav et al. | Jan 2019 | B2 |
10243862 | Cafarelli et al. | Mar 2019 | B2 |
10394692 | Liu et al. | Aug 2019 | B2 |
10447551 | Zhang et al. | Oct 2019 | B1 |
10454793 | Deen et al. | Oct 2019 | B2 |
10454999 | Eder | Oct 2019 | B2 |
10476982 | Tarre et al. | Nov 2019 | B2 |
10516586 | Gandham et al. | Dec 2019 | B2 |
10652225 | Koved et al. | May 2020 | B2 |
10686804 | Yadav et al. | Jun 2020 | B2 |
10749890 | Aloisio et al. | Aug 2020 | B1 |
10944683 | Roskind | Mar 2021 | B1 |
11368378 | Gandham et al. | Jun 2022 | B2 |
11516098 | Spadaro et al. | Nov 2022 | B2 |
11528283 | Yadav et al. | Dec 2022 | B2 |
11556808 | Kim et al. | Jan 2023 | B1 |
20010028646 | Arts et al. | Oct 2001 | A1 |
20020023210 | Tuomenoksa et al. | Feb 2002 | A1 |
20020053033 | Cooper et al. | May 2002 | A1 |
20020083175 | Afek et al. | Jun 2002 | A1 |
20020097687 | Meiri et al. | Jul 2002 | A1 |
20020103793 | Koller et al. | Aug 2002 | A1 |
20020107857 | Teraslinna | Aug 2002 | A1 |
20020107875 | Seliger et al. | Aug 2002 | A1 |
20020141343 | Bays | Oct 2002 | A1 |
20020169739 | Carr et al. | Nov 2002 | A1 |
20020184393 | Leddy et al. | Dec 2002 | A1 |
20020196292 | Itoh et al. | Dec 2002 | A1 |
20030005145 | Bullard | Jan 2003 | A1 |
20030016627 | MeLampy et al. | Jan 2003 | A1 |
20030023600 | Nagamura et al. | Jan 2003 | A1 |
20030023601 | Fortier, Jr. et al. | Jan 2003 | A1 |
20030035140 | Tomita et al. | Feb 2003 | A1 |
20030046388 | Milliken | Mar 2003 | A1 |
20030065986 | Fraenkel et al. | Apr 2003 | A1 |
20030069953 | Bottom et al. | Apr 2003 | A1 |
20030072269 | Teruhi et al. | Apr 2003 | A1 |
20030084158 | Saito et al. | May 2003 | A1 |
20030086425 | Bearden et al. | May 2003 | A1 |
20030097439 | Strayer et al. | May 2003 | A1 |
20030105976 | Copeland, III | Jun 2003 | A1 |
20030126242 | Chang | Jul 2003 | A1 |
20030133443 | Klinker et al. | Jul 2003 | A1 |
20030145232 | Poletto et al. | Jul 2003 | A1 |
20030149888 | Yadav | Aug 2003 | A1 |
20030151513 | Herrmann et al. | Aug 2003 | A1 |
20030154399 | Zuk et al. | Aug 2003 | A1 |
20030177208 | Harvey, IV | Sep 2003 | A1 |
20030206205 | Kawahara et al. | Nov 2003 | A1 |
20040019676 | Iwatsuki et al. | Jan 2004 | A1 |
20040030776 | Cantrell et al. | Feb 2004 | A1 |
20040036478 | Logvinov et al. | Feb 2004 | A1 |
20040046787 | Henry et al. | Mar 2004 | A1 |
20040049698 | Ott et al. | Mar 2004 | A1 |
20040054680 | Kelley et al. | Mar 2004 | A1 |
20040111679 | Subasic et al. | Jun 2004 | A1 |
20040133640 | Yeager et al. | Jul 2004 | A1 |
20040133690 | Chauffour et al. | Jul 2004 | A1 |
20040137908 | Sinivaara et al. | Jul 2004 | A1 |
20040167921 | Carson et al. | Aug 2004 | A1 |
20040205536 | Newman et al. | Oct 2004 | A1 |
20040213221 | Civanlar et al. | Oct 2004 | A1 |
20040218532 | Khirman | Nov 2004 | A1 |
20040220984 | Dudfield et al. | Nov 2004 | A1 |
20040243533 | Dempster et al. | Dec 2004 | A1 |
20040255050 | Takehiro et al. | Dec 2004 | A1 |
20040268149 | Aaron | Dec 2004 | A1 |
20050028154 | Smith et al. | Feb 2005 | A1 |
20050039104 | Shah et al. | Feb 2005 | A1 |
20050060403 | Bernstein et al. | Mar 2005 | A1 |
20050063377 | Bryant et al. | Mar 2005 | A1 |
20050068907 | Garg et al. | Mar 2005 | A1 |
20050083933 | Fine et al. | Apr 2005 | A1 |
20050104885 | Jager et al. | May 2005 | A1 |
20050108331 | Osterman | May 2005 | A1 |
20050122325 | Twait | Jun 2005 | A1 |
20050138157 | Jung et al. | Jun 2005 | A1 |
20050154625 | Chua et al. | Jul 2005 | A1 |
20050166066 | Ahuja et al. | Jul 2005 | A1 |
20050177829 | Vishwanath | Aug 2005 | A1 |
20050177871 | Roesch et al. | Aug 2005 | A1 |
20050182681 | Bruskotter et al. | Aug 2005 | A1 |
20050185621 | Sivakumar et al. | Aug 2005 | A1 |
20050198247 | Perry et al. | Sep 2005 | A1 |
20050198371 | Smith et al. | Sep 2005 | A1 |
20050198629 | Vishwanath | Sep 2005 | A1 |
20050207376 | Ashwood-Smith et al. | Sep 2005 | A1 |
20050210331 | Connelly et al. | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050228885 | Winfield et al. | Oct 2005 | A1 |
20050237948 | Wan et al. | Oct 2005 | A1 |
20050257244 | Joly et al. | Nov 2005 | A1 |
20050289244 | Sahu et al. | Dec 2005 | A1 |
20060004758 | Teng et al. | Jan 2006 | A1 |
20060026669 | Zakas | Feb 2006 | A1 |
20060048218 | Lingafelt et al. | Mar 2006 | A1 |
20060058218 | Syud et al. | Mar 2006 | A1 |
20060075396 | Surasinghe | Apr 2006 | A1 |
20060077909 | Saleh et al. | Apr 2006 | A1 |
20060080733 | Khosmood et al. | Apr 2006 | A1 |
20060089985 | Poletto | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060098625 | King et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060106550 | Morin et al. | May 2006 | A1 |
20060143432 | Rothman et al. | Jun 2006 | A1 |
20060156408 | Himberger et al. | Jul 2006 | A1 |
20060158266 | Yonekawa et al. | Jul 2006 | A1 |
20060158354 | Aberg et al. | Jul 2006 | A1 |
20060159032 | Ukrainetz et al. | Jul 2006 | A1 |
20060173912 | Lindvall et al. | Aug 2006 | A1 |
20060195448 | Newport | Aug 2006 | A1 |
20060212556 | Yacoby et al. | Sep 2006 | A1 |
20060224398 | Lakshman et al. | Oct 2006 | A1 |
20060253566 | Stassinopoulos et al. | Nov 2006 | A1 |
20060265713 | Depro et al. | Nov 2006 | A1 |
20060272018 | Fouant | Nov 2006 | A1 |
20060274659 | Ouderkirk | Dec 2006 | A1 |
20060280179 | Meier | Dec 2006 | A1 |
20060294219 | Ogawa et al. | Dec 2006 | A1 |
20070010898 | Hosek et al. | Jan 2007 | A1 |
20070014275 | Bettink et al. | Jan 2007 | A1 |
20070019618 | Shaffer et al. | Jan 2007 | A1 |
20070025306 | Cox et al. | Feb 2007 | A1 |
20070044147 | Choi et al. | Feb 2007 | A1 |
20070067756 | Garza | Mar 2007 | A1 |
20070074288 | Chang et al. | Mar 2007 | A1 |
20070097976 | Wood et al. | May 2007 | A1 |
20070118654 | Jamkhedkar et al. | May 2007 | A1 |
20070124376 | Greenwell | May 2007 | A1 |
20070127491 | Verzijp et al. | Jun 2007 | A1 |
20070140131 | Malloy et al. | Jun 2007 | A1 |
20070150568 | Ruiz | Jun 2007 | A1 |
20070162420 | Ou et al. | Jul 2007 | A1 |
20070169179 | Narad | Jul 2007 | A1 |
20070177626 | Kotelba | Aug 2007 | A1 |
20070180526 | Copeland, III | Aug 2007 | A1 |
20070195729 | Li et al. | Aug 2007 | A1 |
20070195794 | Fujita et al. | Aug 2007 | A1 |
20070195797 | Patel et al. | Aug 2007 | A1 |
20070199060 | Touboul | Aug 2007 | A1 |
20070201474 | Isobe | Aug 2007 | A1 |
20070209074 | Coffman | Sep 2007 | A1 |
20070211637 | Mitchell | Sep 2007 | A1 |
20070214348 | Danielsen | Sep 2007 | A1 |
20070220159 | Choi et al. | Sep 2007 | A1 |
20070223388 | Arad et al. | Sep 2007 | A1 |
20070230415 | Malik | Oct 2007 | A1 |
20070232265 | Park et al. | Oct 2007 | A1 |
20070250640 | Wells | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070280108 | Sakurai | Dec 2007 | A1 |
20070300061 | Kim et al. | Dec 2007 | A1 |
20080002697 | Anantharamaiah et al. | Jan 2008 | A1 |
20080013532 | Garner et al. | Jan 2008 | A1 |
20080017619 | Yamakawa et al. | Jan 2008 | A1 |
20080022385 | Crowell et al. | Jan 2008 | A1 |
20080028389 | Genty et al. | Jan 2008 | A1 |
20080040088 | Vankov et al. | Feb 2008 | A1 |
20080046708 | Fitzgerald et al. | Feb 2008 | A1 |
20080049633 | Edwards et al. | Feb 2008 | A1 |
20080052387 | Heinz et al. | Feb 2008 | A1 |
20080056124 | Nanda et al. | Mar 2008 | A1 |
20080066009 | Gardner et al. | Mar 2008 | A1 |
20080082662 | Dandliker et al. | Apr 2008 | A1 |
20080101234 | Nakil et al. | May 2008 | A1 |
20080120350 | Grabowski et al. | May 2008 | A1 |
20080126534 | Mueller et al. | May 2008 | A1 |
20080141246 | Kuck et al. | Jun 2008 | A1 |
20080151906 | Kolli | Jun 2008 | A1 |
20080155245 | Lipscombe et al. | Jun 2008 | A1 |
20080181100 | Yang et al. | Jul 2008 | A1 |
20080185621 | Yi et al. | Aug 2008 | A1 |
20080201109 | Zill et al. | Aug 2008 | A1 |
20080208367 | Koehler et al. | Aug 2008 | A1 |
20080212598 | Kolli | Sep 2008 | A1 |
20080222352 | Booth et al. | Sep 2008 | A1 |
20080225722 | Khemani | Sep 2008 | A1 |
20080232358 | Baker et al. | Sep 2008 | A1 |
20080247539 | Huang et al. | Oct 2008 | A1 |
20080250122 | Zsigmond et al. | Oct 2008 | A1 |
20080250128 | Sargent | Oct 2008 | A1 |
20080262990 | Kapoor et al. | Oct 2008 | A1 |
20080270199 | Chess et al. | Oct 2008 | A1 |
20080282347 | Dadhia et al. | Nov 2008 | A1 |
20080295163 | Kang | Nov 2008 | A1 |
20080298271 | Morinaga et al. | Dec 2008 | A1 |
20080300834 | Wiemer et al. | Dec 2008 | A1 |
20080301755 | Sinha et al. | Dec 2008 | A1 |
20080301765 | Nicol et al. | Dec 2008 | A1 |
20080320592 | Suit et al. | Dec 2008 | A1 |
20090003306 | Plutov | Jan 2009 | A1 |
20090019026 | Valdes-Perez et al. | Jan 2009 | A1 |
20090059934 | Aggarwal et al. | Mar 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077097 | Lacapra et al. | Mar 2009 | A1 |
20090077543 | Siskind et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090106646 | Mollicone et al. | Apr 2009 | A1 |
20090109849 | Wood et al. | Apr 2009 | A1 |
20090133126 | Jang et al. | May 2009 | A1 |
20090138590 | Lee et al. | May 2009 | A1 |
20090158432 | Zheng et al. | Jun 2009 | A1 |
20090161658 | Danner et al. | Jun 2009 | A1 |
20090164565 | Underhill | Jun 2009 | A1 |
20090177484 | Davis et al. | Jul 2009 | A1 |
20090180393 | Nakamura | Jul 2009 | A1 |
20090192847 | Lipkin et al. | Jul 2009 | A1 |
20090193495 | McAfee et al. | Jul 2009 | A1 |
20090241170 | Kumar et al. | Sep 2009 | A1 |
20090249302 | Xu et al. | Oct 2009 | A1 |
20090252181 | Desanti | Oct 2009 | A1 |
20090260083 | Szeto et al. | Oct 2009 | A1 |
20090271412 | Lacapra et al. | Oct 2009 | A1 |
20090271504 | Ginter et al. | Oct 2009 | A1 |
20090292795 | Ford et al. | Nov 2009 | A1 |
20090296593 | Prescott | Dec 2009 | A1 |
20090300180 | Dehaan et al. | Dec 2009 | A1 |
20090307753 | Dupont et al. | Dec 2009 | A1 |
20090310485 | Averi et al. | Dec 2009 | A1 |
20090313373 | Hanna et al. | Dec 2009 | A1 |
20090313698 | Wahl | Dec 2009 | A1 |
20090319912 | Serr et al. | Dec 2009 | A1 |
20090323543 | Shimakura | Dec 2009 | A1 |
20090328219 | Narayanaswamy | Dec 2009 | A1 |
20100005288 | Rao et al. | Jan 2010 | A1 |
20100005478 | Helfman et al. | Jan 2010 | A1 |
20100042716 | Farajidana et al. | Feb 2010 | A1 |
20100049839 | Parker et al. | Feb 2010 | A1 |
20100054241 | Shah et al. | Mar 2010 | A1 |
20100070647 | Irino et al. | Mar 2010 | A1 |
20100077445 | Schneider et al. | Mar 2010 | A1 |
20100095293 | O'Neill et al. | Apr 2010 | A1 |
20100095367 | Narayanaswamy | Apr 2010 | A1 |
20100095377 | Krywaniuk | Apr 2010 | A1 |
20100128598 | Gandhewar et al. | May 2010 | A1 |
20100138526 | DeHaan et al. | Jun 2010 | A1 |
20100138810 | Komatsu et al. | Jun 2010 | A1 |
20100148940 | Gelvin et al. | Jun 2010 | A1 |
20100153316 | Duffield et al. | Jun 2010 | A1 |
20100153696 | Beachem et al. | Jun 2010 | A1 |
20100157809 | Duffield et al. | Jun 2010 | A1 |
20100161817 | Xiao et al. | Jun 2010 | A1 |
20100162036 | Linden | Jun 2010 | A1 |
20100174813 | Hildreth et al. | Jul 2010 | A1 |
20100180016 | Bugwadia et al. | Jul 2010 | A1 |
20100185901 | Hirsch | Jul 2010 | A1 |
20100188989 | Wing et al. | Jul 2010 | A1 |
20100188995 | Raleigh | Jul 2010 | A1 |
20100194741 | Finocchio | Aug 2010 | A1 |
20100220584 | DeHaan et al. | Sep 2010 | A1 |
20100226373 | Rowell et al. | Sep 2010 | A1 |
20100235514 | Beachem | Sep 2010 | A1 |
20100235879 | Burnside et al. | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100246432 | Zhang et al. | Sep 2010 | A1 |
20100287266 | Asati et al. | Nov 2010 | A1 |
20100303240 | Beachem et al. | Dec 2010 | A1 |
20100306180 | Johnson et al. | Dec 2010 | A1 |
20100317420 | Hoffberg | Dec 2010 | A1 |
20100319060 | Aiken et al. | Dec 2010 | A1 |
20110004935 | Moffie et al. | Jan 2011 | A1 |
20110010585 | Bugenhagen et al. | Jan 2011 | A1 |
20110022641 | Werth et al. | Jan 2011 | A1 |
20110055381 | Narasimhan et al. | Mar 2011 | A1 |
20110055382 | Narasimhan | Mar 2011 | A1 |
20110055388 | Yumerefendi et al. | Mar 2011 | A1 |
20110060704 | Rubin et al. | Mar 2011 | A1 |
20110066719 | Miryanov et al. | Mar 2011 | A1 |
20110069685 | Tofighbakhsh | Mar 2011 | A1 |
20110072119 | Bronstein et al. | Mar 2011 | A1 |
20110083124 | Moskal et al. | Apr 2011 | A1 |
20110083125 | Komatsu et al. | Apr 2011 | A1 |
20110085556 | Breslin et al. | Apr 2011 | A1 |
20110103259 | Aybay et al. | May 2011 | A1 |
20110107074 | Chan et al. | May 2011 | A1 |
20110107331 | Evans et al. | May 2011 | A1 |
20110125894 | Anderson et al. | May 2011 | A1 |
20110126136 | Abella et al. | May 2011 | A1 |
20110126275 | Anderson et al. | May 2011 | A1 |
20110145885 | Rivers et al. | Jun 2011 | A1 |
20110153039 | Gvelesiani et al. | Jun 2011 | A1 |
20110153811 | Jeong et al. | Jun 2011 | A1 |
20110158088 | Lofstrand et al. | Jun 2011 | A1 |
20110158112 | Finn et al. | Jun 2011 | A1 |
20110158410 | Falk et al. | Jun 2011 | A1 |
20110167435 | Fang | Jul 2011 | A1 |
20110170860 | Smith et al. | Jul 2011 | A1 |
20110173490 | Narayanaswamy et al. | Jul 2011 | A1 |
20110185423 | Sallam | Jul 2011 | A1 |
20110191465 | Hofstaedter et al. | Aug 2011 | A1 |
20110196957 | Ayachitula et al. | Aug 2011 | A1 |
20110202655 | Sharma et al. | Aug 2011 | A1 |
20110202761 | Sarela et al. | Aug 2011 | A1 |
20110214174 | Herzog et al. | Sep 2011 | A1 |
20110225207 | Subramanian et al. | Sep 2011 | A1 |
20110228696 | Agarwal et al. | Sep 2011 | A1 |
20110231510 | Korsunsky et al. | Sep 2011 | A1 |
20110238793 | Bedare et al. | Sep 2011 | A1 |
20110239058 | Umezuki | Sep 2011 | A1 |
20110239194 | Braude | Sep 2011 | A1 |
20110246663 | Melsen et al. | Oct 2011 | A1 |
20110267952 | Ko et al. | Nov 2011 | A1 |
20110276951 | Jain | Nov 2011 | A1 |
20110277034 | Hanson | Nov 2011 | A1 |
20110283266 | Gallagher et al. | Nov 2011 | A1 |
20110283277 | Castillo et al. | Nov 2011 | A1 |
20110289122 | Grube et al. | Nov 2011 | A1 |
20110289301 | Allen et al. | Nov 2011 | A1 |
20110302295 | Westerfeld et al. | Dec 2011 | A1 |
20110302652 | Westerfeld | Dec 2011 | A1 |
20110310892 | DiMambro | Dec 2011 | A1 |
20110314148 | Petersen et al. | Dec 2011 | A1 |
20110317982 | Xu et al. | Dec 2011 | A1 |
20120005542 | Petersen et al. | Jan 2012 | A1 |
20120011153 | Buchanan et al. | Jan 2012 | A1 |
20120016972 | Tamura | Jan 2012 | A1 |
20120017262 | Kapoor et al. | Jan 2012 | A1 |
20120047394 | Jain et al. | Feb 2012 | A1 |
20120075999 | Ko et al. | Mar 2012 | A1 |
20120079592 | Pandrangi | Mar 2012 | A1 |
20120089664 | Igelka | Apr 2012 | A1 |
20120096394 | Balko et al. | Apr 2012 | A1 |
20120102361 | Sass et al. | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120102545 | Carter, III et al. | Apr 2012 | A1 |
20120110188 | Van Biljon et al. | May 2012 | A1 |
20120117226 | Tanaka et al. | May 2012 | A1 |
20120117642 | Lin et al. | May 2012 | A1 |
20120136996 | Seo et al. | May 2012 | A1 |
20120137278 | Draper et al. | May 2012 | A1 |
20120137361 | Yi et al. | May 2012 | A1 |
20120140626 | Anand et al. | Jun 2012 | A1 |
20120144030 | Narasimhan | Jun 2012 | A1 |
20120167057 | Schmich et al. | Jun 2012 | A1 |
20120195198 | Regan | Aug 2012 | A1 |
20120197856 | Banka et al. | Aug 2012 | A1 |
20120198541 | Reeves | Aug 2012 | A1 |
20120216271 | Cooper et al. | Aug 2012 | A1 |
20120216282 | Pappu et al. | Aug 2012 | A1 |
20120218989 | Tanabe et al. | Aug 2012 | A1 |
20120219004 | Balus et al. | Aug 2012 | A1 |
20120233348 | Winters | Sep 2012 | A1 |
20120233473 | Vasseur et al. | Sep 2012 | A1 |
20120240185 | Kapoor et al. | Sep 2012 | A1 |
20120240232 | Azuma | Sep 2012 | A1 |
20120246303 | Petersen et al. | Sep 2012 | A1 |
20120254109 | Shukla et al. | Oct 2012 | A1 |
20120255875 | Vicente et al. | Oct 2012 | A1 |
20120260135 | Beck et al. | Oct 2012 | A1 |
20120260227 | Shukla et al. | Oct 2012 | A1 |
20120260236 | Basak et al. | Oct 2012 | A1 |
20120268405 | Ferren et al. | Oct 2012 | A1 |
20120278021 | Lin et al. | Nov 2012 | A1 |
20120281700 | Koganti et al. | Nov 2012 | A1 |
20120287815 | Attar | Nov 2012 | A1 |
20120300628 | Prescott et al. | Nov 2012 | A1 |
20130003538 | Greenberg et al. | Jan 2013 | A1 |
20130003733 | Venkatesan et al. | Jan 2013 | A1 |
20130006935 | Grisby | Jan 2013 | A1 |
20130007435 | Bayani | Jan 2013 | A1 |
20130019008 | Jorgenson et al. | Jan 2013 | A1 |
20130038358 | Cook et al. | Feb 2013 | A1 |
20130041934 | Annamalaisami et al. | Feb 2013 | A1 |
20130054682 | Malik et al. | Feb 2013 | A1 |
20130055145 | Antony et al. | Feb 2013 | A1 |
20130055373 | Beacham et al. | Feb 2013 | A1 |
20130064096 | Degioanni et al. | Mar 2013 | A1 |
20130080375 | Viswanathan et al. | Mar 2013 | A1 |
20130085889 | Fitting et al. | Apr 2013 | A1 |
20130086272 | Chen et al. | Apr 2013 | A1 |
20130094372 | Boot | Apr 2013 | A1 |
20130094376 | Reeves | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130103827 | Dunlap et al. | Apr 2013 | A1 |
20130107709 | Campbell et al. | May 2013 | A1 |
20130114598 | Schrum et al. | May 2013 | A1 |
20130117748 | Cooper et al. | May 2013 | A1 |
20130117847 | Friedman et al. | May 2013 | A1 |
20130122854 | Agarwal et al. | May 2013 | A1 |
20130124807 | Nielsen et al. | May 2013 | A1 |
20130125107 | Bandakka et al. | May 2013 | A1 |
20130145099 | Liu et al. | Jun 2013 | A1 |
20130148663 | Xiong | Jun 2013 | A1 |
20130159999 | Chiueh et al. | Jun 2013 | A1 |
20130160128 | Dolan-Gavitt et al. | Jun 2013 | A1 |
20130166730 | Wilkinson | Jun 2013 | A1 |
20130173784 | Wang et al. | Jul 2013 | A1 |
20130173787 | Tateishi et al. | Jul 2013 | A1 |
20130174256 | Powers | Jul 2013 | A1 |
20130179487 | Lubetzky et al. | Jul 2013 | A1 |
20130179879 | Zhang et al. | Jul 2013 | A1 |
20130198509 | Buruganahalli et al. | Aug 2013 | A1 |
20130198517 | Mazzarella | Aug 2013 | A1 |
20130198839 | Wei et al. | Aug 2013 | A1 |
20130201986 | Sajassi et al. | Aug 2013 | A1 |
20130205137 | Farrugia et al. | Aug 2013 | A1 |
20130205293 | Levijarvi et al. | Aug 2013 | A1 |
20130219161 | Fontignie et al. | Aug 2013 | A1 |
20130219263 | Abrahami | Aug 2013 | A1 |
20130219500 | Lukas et al. | Aug 2013 | A1 |
20130232498 | Mangtani et al. | Sep 2013 | A1 |
20130238665 | Sequin | Sep 2013 | A1 |
20130242999 | Kamble et al. | Sep 2013 | A1 |
20130246925 | Ahuja et al. | Sep 2013 | A1 |
20130247201 | Alperovitch et al. | Sep 2013 | A1 |
20130254879 | Chesla et al. | Sep 2013 | A1 |
20130268994 | Cooper et al. | Oct 2013 | A1 |
20130275579 | Hernandez et al. | Oct 2013 | A1 |
20130283240 | Krajec et al. | Oct 2013 | A1 |
20130283281 | Krajec et al. | Oct 2013 | A1 |
20130283374 | Zisapel et al. | Oct 2013 | A1 |
20130290521 | Labovitz et al. | Oct 2013 | A1 |
20130297771 | Osterloh et al. | Nov 2013 | A1 |
20130298244 | Kumar et al. | Nov 2013 | A1 |
20130301472 | Allan | Nov 2013 | A1 |
20130304900 | Trabelsi et al. | Nov 2013 | A1 |
20130305369 | Karta et al. | Nov 2013 | A1 |
20130308468 | Cowie | Nov 2013 | A1 |
20130312097 | Turnbull | Nov 2013 | A1 |
20130318357 | Abraham et al. | Nov 2013 | A1 |
20130322441 | Anumala | Dec 2013 | A1 |
20130326623 | Kruglick | Dec 2013 | A1 |
20130326625 | Anderson et al. | Dec 2013 | A1 |
20130332773 | Yuan et al. | Dec 2013 | A1 |
20130333029 | Chesla et al. | Dec 2013 | A1 |
20130335219 | Malkowski | Dec 2013 | A1 |
20130336164 | Yang et al. | Dec 2013 | A1 |
20130343207 | Cook et al. | Dec 2013 | A1 |
20130346054 | Mumtaz | Dec 2013 | A1 |
20130346736 | Cook et al. | Dec 2013 | A1 |
20130347103 | Veteikis et al. | Dec 2013 | A1 |
20140006610 | Formby et al. | Jan 2014 | A1 |
20140006871 | Lakshmanan et al. | Jan 2014 | A1 |
20140009338 | Lin et al. | Jan 2014 | A1 |
20140012562 | Chang et al. | Jan 2014 | A1 |
20140012814 | Bercovici et al. | Jan 2014 | A1 |
20140019972 | Yahalom et al. | Jan 2014 | A1 |
20140020099 | Vaidyanathan et al. | Jan 2014 | A1 |
20140031005 | Sumcad et al. | Jan 2014 | A1 |
20140033193 | Palaniappan | Jan 2014 | A1 |
20140036688 | Stassinopoulos et al. | Feb 2014 | A1 |
20140040343 | Nickolov et al. | Feb 2014 | A1 |
20140047185 | Peterson et al. | Feb 2014 | A1 |
20140047274 | Lumezanu et al. | Feb 2014 | A1 |
20140047372 | Gnezdov et al. | Feb 2014 | A1 |
20140050222 | Lynar et al. | Feb 2014 | A1 |
20140053226 | Fadida et al. | Feb 2014 | A1 |
20140056318 | Hansson et al. | Feb 2014 | A1 |
20140059200 | Nguyen et al. | Feb 2014 | A1 |
20140074946 | Dirstine et al. | Mar 2014 | A1 |
20140075048 | Yuksel et al. | Mar 2014 | A1 |
20140075336 | Curtis et al. | Mar 2014 | A1 |
20140081596 | Agrawal et al. | Mar 2014 | A1 |
20140089494 | Dasari et al. | Mar 2014 | A1 |
20140092884 | Murphy et al. | Apr 2014 | A1 |
20140096058 | Molesky et al. | Apr 2014 | A1 |
20140105029 | Jain et al. | Apr 2014 | A1 |
20140108635 | Khemani | Apr 2014 | A1 |
20140108665 | Arora et al. | Apr 2014 | A1 |
20140115219 | Ajanovic et al. | Apr 2014 | A1 |
20140115403 | Rhee et al. | Apr 2014 | A1 |
20140115654 | Rogers et al. | Apr 2014 | A1 |
20140122656 | Baldwin et al. | May 2014 | A1 |
20140129942 | Rathod | May 2014 | A1 |
20140130039 | Chaplik et al. | May 2014 | A1 |
20140136680 | Joshi et al. | May 2014 | A1 |
20140137109 | Sharma et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140140213 | Raleigh et al. | May 2014 | A1 |
20140140244 | Kapadia et al. | May 2014 | A1 |
20140141524 | Keith | May 2014 | A1 |
20140143825 | Behrendt et al. | May 2014 | A1 |
20140149490 | Luxenberg et al. | May 2014 | A1 |
20140156814 | Barabash et al. | Jun 2014 | A1 |
20140156861 | Cruz-Aguilar et al. | Jun 2014 | A1 |
20140164607 | Bai et al. | Jun 2014 | A1 |
20140165200 | Singla | Jun 2014 | A1 |
20140165207 | Engel et al. | Jun 2014 | A1 |
20140173623 | Chang et al. | Jun 2014 | A1 |
20140173723 | Singla et al. | Jun 2014 | A1 |
20140192639 | Smirnov | Jul 2014 | A1 |
20140201717 | Mascaro et al. | Jul 2014 | A1 |
20140201838 | Varsanyi et al. | Jul 2014 | A1 |
20140208296 | Dang et al. | Jul 2014 | A1 |
20140210616 | Ramachandran | Jul 2014 | A1 |
20140215443 | Voccio et al. | Jul 2014 | A1 |
20140215573 | Cepuran | Jul 2014 | A1 |
20140215621 | Xaypanya et al. | Jul 2014 | A1 |
20140224784 | Kohler | Aug 2014 | A1 |
20140225603 | Auguste et al. | Aug 2014 | A1 |
20140230062 | Kumaran | Aug 2014 | A1 |
20140233387 | Zheng et al. | Aug 2014 | A1 |
20140247206 | Grokop et al. | Sep 2014 | A1 |
20140258310 | Wong et al. | Sep 2014 | A1 |
20140269777 | Rothstein et al. | Sep 2014 | A1 |
20140280499 | Basavaiah et al. | Sep 2014 | A1 |
20140280892 | Reynolds et al. | Sep 2014 | A1 |
20140280908 | Rothstein et al. | Sep 2014 | A1 |
20140281030 | Cui et al. | Sep 2014 | A1 |
20140286174 | Iizuka et al. | Sep 2014 | A1 |
20140286354 | Van De Poel et al. | Sep 2014 | A1 |
20140289418 | Cohen et al. | Sep 2014 | A1 |
20140289854 | Mahvi | Sep 2014 | A1 |
20140297357 | Zeng et al. | Oct 2014 | A1 |
20140298461 | Hohndel et al. | Oct 2014 | A1 |
20140301213 | Khanal et al. | Oct 2014 | A1 |
20140307686 | Su et al. | Oct 2014 | A1 |
20140317278 | Kersch et al. | Oct 2014 | A1 |
20140317737 | Shin et al. | Oct 2014 | A1 |
20140321290 | Jin et al. | Oct 2014 | A1 |
20140330616 | Lyras | Nov 2014 | A1 |
20140331048 | Casas-Sanchez et al. | Nov 2014 | A1 |
20140331276 | Frascadore et al. | Nov 2014 | A1 |
20140331280 | Porras et al. | Nov 2014 | A1 |
20140331304 | Wong | Nov 2014 | A1 |
20140344438 | Chen et al. | Nov 2014 | A1 |
20140348182 | Chandra et al. | Nov 2014 | A1 |
20140351203 | Kunnatur et al. | Nov 2014 | A1 |
20140351415 | Harrigan et al. | Nov 2014 | A1 |
20140359695 | Chari et al. | Dec 2014 | A1 |
20140363076 | Han et al. | Dec 2014 | A1 |
20140376379 | Fredette et al. | Dec 2014 | A1 |
20150006689 | Szilagyi et al. | Jan 2015 | A1 |
20150006714 | Jain | Jan 2015 | A1 |
20150007317 | Jain | Jan 2015 | A1 |
20150009840 | Pruthi et al. | Jan 2015 | A1 |
20150019140 | Downey et al. | Jan 2015 | A1 |
20150019569 | Parker et al. | Jan 2015 | A1 |
20150023170 | Kakadia et al. | Jan 2015 | A1 |
20150026794 | Zuk et al. | Jan 2015 | A1 |
20150026809 | Altman et al. | Jan 2015 | A1 |
20150033305 | Shear et al. | Jan 2015 | A1 |
20150036480 | Huang et al. | Feb 2015 | A1 |
20150036533 | Sodhi et al. | Feb 2015 | A1 |
20150039751 | Harrigan et al. | Feb 2015 | A1 |
20150039757 | Petersen et al. | Feb 2015 | A1 |
20150043351 | Ohkawa et al. | Feb 2015 | A1 |
20150046882 | Menyhart et al. | Feb 2015 | A1 |
20150047032 | Hannis et al. | Feb 2015 | A1 |
20150052441 | Degioanni | Feb 2015 | A1 |
20150058976 | Carney et al. | Feb 2015 | A1 |
20150067143 | Babakhan et al. | Mar 2015 | A1 |
20150067786 | Fiske | Mar 2015 | A1 |
20150082151 | Liang et al. | Mar 2015 | A1 |
20150082430 | Sridhara et al. | Mar 2015 | A1 |
20150085665 | Kompella et al. | Mar 2015 | A1 |
20150089614 | Mathew et al. | Mar 2015 | A1 |
20150095332 | Beisiegel et al. | Apr 2015 | A1 |
20150112933 | Satapathy | Apr 2015 | A1 |
20150113063 | Liu et al. | Apr 2015 | A1 |
20150113133 | Srinivas et al. | Apr 2015 | A1 |
20150117624 | Rosenshine | Apr 2015 | A1 |
20150124608 | Agarwal et al. | May 2015 | A1 |
20150124652 | Dharmapurikar et al. | May 2015 | A1 |
20150128133 | Pohlmann | May 2015 | A1 |
20150128205 | Mahaffey et al. | May 2015 | A1 |
20150128246 | Feghali et al. | May 2015 | A1 |
20150134801 | Walley et al. | May 2015 | A1 |
20150138993 | Forster et al. | May 2015 | A1 |
20150142962 | Srinivas et al. | May 2015 | A1 |
20150147973 | Williams et al. | May 2015 | A1 |
20150156118 | Madani et al. | Jun 2015 | A1 |
20150170213 | O'Malley | Jun 2015 | A1 |
20150195291 | Zuk et al. | Jul 2015 | A1 |
20150199254 | Vesepogu et al. | Jul 2015 | A1 |
20150215334 | Bingham et al. | Jul 2015 | A1 |
20150222516 | Deval et al. | Aug 2015 | A1 |
20150222939 | Gallant et al. | Aug 2015 | A1 |
20150227396 | Nimmagadda et al. | Aug 2015 | A1 |
20150227598 | Hahn et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150244739 | Ben-Shalom et al. | Aug 2015 | A1 |
20150245248 | Shudark et al. | Aug 2015 | A1 |
20150249622 | Phillips et al. | Sep 2015 | A1 |
20150254330 | Chan et al. | Sep 2015 | A1 |
20150256413 | Du et al. | Sep 2015 | A1 |
20150256555 | Choi et al. | Sep 2015 | A1 |
20150256587 | Walker et al. | Sep 2015 | A1 |
20150261842 | Huang et al. | Sep 2015 | A1 |
20150261886 | Wu et al. | Sep 2015 | A1 |
20150261887 | Joukov | Sep 2015 | A1 |
20150271008 | Jain et al. | Sep 2015 | A1 |
20150271255 | Mackay et al. | Sep 2015 | A1 |
20150278273 | Wigington et al. | Oct 2015 | A1 |
20150281116 | Ko et al. | Oct 2015 | A1 |
20150281277 | May et al. | Oct 2015 | A1 |
20150281407 | Raju et al. | Oct 2015 | A1 |
20150294212 | Fein | Oct 2015 | A1 |
20150295945 | Canzanese, Jr. et al. | Oct 2015 | A1 |
20150304346 | Kim | Oct 2015 | A1 |
20150312233 | Graham, III et al. | Oct 2015 | A1 |
20150336016 | Chaturvedi | Nov 2015 | A1 |
20150341376 | Nandy et al. | Nov 2015 | A1 |
20150341379 | Lefebvre et al. | Nov 2015 | A1 |
20150341383 | Reddy et al. | Nov 2015 | A1 |
20150347554 | Vasantham et al. | Dec 2015 | A1 |
20150356297 | Guri et al. | Dec 2015 | A1 |
20150358287 | Caputo, II et al. | Dec 2015 | A1 |
20150358352 | Chasin et al. | Dec 2015 | A1 |
20150379278 | Thota et al. | Dec 2015 | A1 |
20150381409 | Margalit et al. | Dec 2015 | A1 |
20160006753 | McDaid et al. | Jan 2016 | A1 |
20160019030 | Shukla et al. | Jan 2016 | A1 |
20160020959 | Rahaman | Jan 2016 | A1 |
20160021131 | Heilig | Jan 2016 | A1 |
20160026552 | Holden et al. | Jan 2016 | A1 |
20160028605 | Gil et al. | Jan 2016 | A1 |
20160030683 | Taylor et al. | Feb 2016 | A1 |
20160034560 | Setayesh et al. | Feb 2016 | A1 |
20160035787 | Matsuda | Feb 2016 | A1 |
20160036636 | Erickson et al. | Feb 2016 | A1 |
20160036833 | Ardeli et al. | Feb 2016 | A1 |
20160036837 | Jain et al. | Feb 2016 | A1 |
20160036838 | Jain et al. | Feb 2016 | A1 |
20160050128 | Schaible et al. | Feb 2016 | A1 |
20160050132 | Zhang | Feb 2016 | A1 |
20160057616 | Ljung | Feb 2016 | A1 |
20160072638 | Amer et al. | Mar 2016 | A1 |
20160072815 | Rieke et al. | Mar 2016 | A1 |
20160080414 | Kolton et al. | Mar 2016 | A1 |
20160087861 | Kuan et al. | Mar 2016 | A1 |
20160094394 | Sharma et al. | Mar 2016 | A1 |
20160094529 | Mityagin | Mar 2016 | A1 |
20160094657 | Meira et al. | Mar 2016 | A1 |
20160094994 | Kirkby et al. | Mar 2016 | A1 |
20160103692 | Guntaka et al. | Apr 2016 | A1 |
20160105333 | Lenglet et al. | Apr 2016 | A1 |
20160105350 | Greifeneder et al. | Apr 2016 | A1 |
20160112269 | Singh et al. | Apr 2016 | A1 |
20160112270 | Danait et al. | Apr 2016 | A1 |
20160112284 | Pon et al. | Apr 2016 | A1 |
20160119234 | Valencia Lopez et al. | Apr 2016 | A1 |
20160127395 | Underwood et al. | May 2016 | A1 |
20160147585 | Konig et al. | May 2016 | A1 |
20160148251 | Thomas et al. | May 2016 | A1 |
20160150060 | Meng et al. | May 2016 | A1 |
20160156531 | Cartwright et al. | Jun 2016 | A1 |
20160162308 | Chen et al. | Jun 2016 | A1 |
20160162312 | Doherty et al. | Jun 2016 | A1 |
20160173446 | Nantel | Jun 2016 | A1 |
20160173535 | Barabash et al. | Jun 2016 | A1 |
20160183093 | Vaughn et al. | Jun 2016 | A1 |
20160191362 | Hwang et al. | Jun 2016 | A1 |
20160191466 | Pernicha | Jun 2016 | A1 |
20160191469 | Zatko et al. | Jun 2016 | A1 |
20160191476 | Schutz et al. | Jun 2016 | A1 |
20160196374 | Bar et al. | Jul 2016 | A1 |
20160205002 | Rieke et al. | Jul 2016 | A1 |
20160216994 | Sefidcon et al. | Jul 2016 | A1 |
20160217022 | Velipasaoglu et al. | Jul 2016 | A1 |
20160218933 | Porras et al. | Jul 2016 | A1 |
20160234083 | Ahn et al. | Aug 2016 | A1 |
20160248794 | Cam | Aug 2016 | A1 |
20160248813 | Byrnes | Aug 2016 | A1 |
20160255082 | Rathod | Sep 2016 | A1 |
20160269424 | Chandola et al. | Sep 2016 | A1 |
20160269442 | Shieh | Sep 2016 | A1 |
20160269482 | Jamjoom et al. | Sep 2016 | A1 |
20160277272 | Peach et al. | Sep 2016 | A1 |
20160277435 | Salajegheh et al. | Sep 2016 | A1 |
20160283307 | Takeshima et al. | Sep 2016 | A1 |
20160285730 | Ohkawa et al. | Sep 2016 | A1 |
20160292065 | Thangamani et al. | Oct 2016 | A1 |
20160294691 | Joshi | Oct 2016 | A1 |
20160306550 | Liu et al. | Oct 2016 | A1 |
20160308908 | Kirby et al. | Oct 2016 | A1 |
20160321452 | Richardson et al. | Nov 2016 | A1 |
20160321455 | Deng et al. | Nov 2016 | A1 |
20160330097 | Kim et al. | Nov 2016 | A1 |
20160337204 | Dubey et al. | Nov 2016 | A1 |
20160357424 | Pang et al. | Dec 2016 | A1 |
20160357546 | Chang et al. | Dec 2016 | A1 |
20160357587 | Yadav et al. | Dec 2016 | A1 |
20160357957 | Deen et al. | Dec 2016 | A1 |
20160359592 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359628 | Singh et al. | Dec 2016 | A1 |
20160359658 | Yadav et al. | Dec 2016 | A1 |
20160359673 | Gupta et al. | Dec 2016 | A1 |
20160359677 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359678 | Madani et al. | Dec 2016 | A1 |
20160359679 | Parandehgheibi et al. | Dec 2016 | A1 |
20160359680 | Parandehgheibi et al. | Dec 2016 | A1 |
20160359686 | Parandehgheibi et al. | Dec 2016 | A1 |
20160359695 | Yadav et al. | Dec 2016 | A1 |
20160359696 | Yadav et al. | Dec 2016 | A1 |
20160359697 | Scheib et al. | Dec 2016 | A1 |
20160359698 | Deen et al. | Dec 2016 | A1 |
20160359699 | Gandham et al. | Dec 2016 | A1 |
20160359700 | Pang et al. | Dec 2016 | A1 |
20160359701 | Pang et al. | Dec 2016 | A1 |
20160359703 | Gandham et al. | Dec 2016 | A1 |
20160359704 | Gandham et al. | Dec 2016 | A1 |
20160359705 | Parandehgheibi et al. | Dec 2016 | A1 |
20160359708 | Gandham et al. | Dec 2016 | A1 |
20160359709 | Deen et al. | Dec 2016 | A1 |
20160359711 | Deen et al. | Dec 2016 | A1 |
20160359712 | Alizadeh Attar et al. | Dec 2016 | A1 |
20160359740 | Parandehgheibi et al. | Dec 2016 | A1 |
20160359759 | Singh et al. | Dec 2016 | A1 |
20160359872 | Yadav et al. | Dec 2016 | A1 |
20160359877 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359878 | Prasad et al. | Dec 2016 | A1 |
20160359879 | Deen et al. | Dec 2016 | A1 |
20160359880 | Pang et al. | Dec 2016 | A1 |
20160359881 | Yadav et al. | Dec 2016 | A1 |
20160359888 | Gupta et al. | Dec 2016 | A1 |
20160359889 | Yadav et al. | Dec 2016 | A1 |
20160359890 | Deen et al. | Dec 2016 | A1 |
20160359891 | Pang et al. | Dec 2016 | A1 |
20160359897 | Yadav et al. | Dec 2016 | A1 |
20160359905 | Touboul et al. | Dec 2016 | A1 |
20160359912 | Gupta et al. | Dec 2016 | A1 |
20160359913 | Gupta et al. | Dec 2016 | A1 |
20160359914 | Deen et al. | Dec 2016 | A1 |
20160359915 | Gupta et al. | Dec 2016 | A1 |
20160359917 | Rao et al. | Dec 2016 | A1 |
20160373481 | Sultan et al. | Dec 2016 | A1 |
20160378978 | Singla et al. | Dec 2016 | A1 |
20160380865 | Dubal et al. | Dec 2016 | A1 |
20160380869 | Shen et al. | Dec 2016 | A1 |
20170006141 | Bhadra | Jan 2017 | A1 |
20170024453 | Raja et al. | Jan 2017 | A1 |
20170032122 | Thakar et al. | Feb 2017 | A1 |
20170032310 | Mimnaugh | Feb 2017 | A1 |
20170034018 | Parandehgheibi et al. | Feb 2017 | A1 |
20170048121 | Hobbs et al. | Feb 2017 | A1 |
20170054643 | Fraser | Feb 2017 | A1 |
20170059353 | Madine et al. | Mar 2017 | A1 |
20170070582 | Desai et al. | Mar 2017 | A1 |
20170075710 | Prasad et al. | Mar 2017 | A1 |
20170085483 | Mihaly et al. | Mar 2017 | A1 |
20170091204 | Minwalla et al. | Mar 2017 | A1 |
20170093910 | Gukal et al. | Mar 2017 | A1 |
20170118244 | Bai et al. | Apr 2017 | A1 |
20170163502 | Macneil et al. | Jun 2017 | A1 |
20170187733 | Ahn et al. | Jun 2017 | A1 |
20170201448 | Deval et al. | Jul 2017 | A1 |
20170208487 | Ratakonda et al. | Jul 2017 | A1 |
20170214708 | Gukal et al. | Jul 2017 | A1 |
20170222909 | Sadana et al. | Aug 2017 | A1 |
20170223052 | Stutz | Aug 2017 | A1 |
20170250880 | Akens et al. | Aug 2017 | A1 |
20170250951 | Wang et al. | Aug 2017 | A1 |
20170257424 | Neogi et al. | Sep 2017 | A1 |
20170284839 | Ojala | Oct 2017 | A1 |
20170289067 | Lu et al. | Oct 2017 | A1 |
20170295141 | Thubert et al. | Oct 2017 | A1 |
20170302691 | Singh et al. | Oct 2017 | A1 |
20170324518 | Meng et al. | Nov 2017 | A1 |
20170331747 | Singh et al. | Nov 2017 | A1 |
20170346736 | Chander et al. | Nov 2017 | A1 |
20170364380 | Frye, Jr. et al. | Dec 2017 | A1 |
20180005427 | Marvie et al. | Jan 2018 | A1 |
20180006911 | Dickey | Jan 2018 | A1 |
20180007115 | Nedeltchev et al. | Jan 2018 | A1 |
20180013670 | Kapadia et al. | Jan 2018 | A1 |
20180032905 | Abercrombie | Feb 2018 | A1 |
20180098123 | Larson et al. | Apr 2018 | A1 |
20180145906 | Yadav et al. | May 2018 | A1 |
20180191617 | Caulfield et al. | Jul 2018 | A1 |
20200225110 | Knauss et al. | Jul 2020 | A1 |
20200273040 | Novick et al. | Aug 2020 | A1 |
20200279055 | Nambiar et al. | Sep 2020 | A1 |
20200396129 | Tedaldi et al. | Dec 2020 | A1 |
20220141103 | Gandham et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
1486555 | Mar 2004 | CN |
101093452 | Dec 2007 | CN |
101465763 | Jun 2009 | CN |
101667935 | Mar 2010 | CN |
101770551 | Jul 2010 | CN |
102142009 | Aug 2011 | CN |
102204170 | Sep 2011 | CN |
102521537 | Jun 2012 | CN |
103023970 | Apr 2013 | CN |
103699664 | Apr 2014 | CN |
103716137 | Apr 2014 | CN |
104065518 | Sep 2014 | CN |
105165100 | Dec 2015 | CN |
107196807 | Sep 2017 | CN |
0811942 | Dec 1997 | EP |
1039690 | Sep 2000 | EP |
1069741 | Jan 2001 | EP |
1076848 | Jul 2002 | EP |
1383261 | Jan 2004 | EP |
1450511 | Aug 2004 | EP |
2043320 | Apr 2009 | EP |
2045974 | Apr 2009 | EP |
2427022 | Mar 2012 | EP |
2723034 | Apr 2014 | EP |
2860912 | Apr 2015 | EP |
2887595 | Jun 2015 | EP |
3069241 | Aug 2018 | EP |
3793166 | Mar 2021 | EP |
2009016906 | Jan 2009 | JP |
20090061372 | Jun 2009 | KR |
101394338 | May 2014 | KR |
0145370 | Jun 2001 | WO |
2006045793 | May 2006 | WO |
2007014314 | Feb 2007 | WO |
2007042171 | Apr 2007 | WO |
2007070711 | Jun 2007 | WO |
2007139842 | Dec 2007 | WO |
2008069439 | Jun 2008 | WO |
2010048693 | May 2010 | WO |
2010059972 | May 2010 | WO |
2012139288 | Oct 2012 | WO |
2012162419 | Nov 2012 | WO |
2013030830 | Mar 2013 | WO |
2013055812 | Apr 2013 | WO |
2013126759 | Aug 2013 | WO |
2014127008 | Aug 2014 | WO |
2015042171 | Mar 2015 | WO |
2015099778 | Jul 2015 | WO |
2015118454 | Aug 2015 | WO |
2016004075 | Jan 2016 | WO |
2016019523 | Feb 2016 | WO |
Entry |
---|
Gang Xu, Cristian Borcea, and Liviu Iftode; (A Policy Enforcing Mechanism for Trusted Ad Hoc Networks); pp. 16 Published online Mar. 30 (Year: 2010). |
Ilsun You, Luigi Catuogno, Aniello Castiglione, and Giuseppe Cattaneo; (On Asynchronous Enforcement of Security Policies in “Nomadic” Storage Facilities); pp. 6 Date Added to IEEE Xplore: Jul. 22 (Year: 2013). |
Citirx, “AppFlow: Next-Generation Application Performance Monitoring,” Citirx.com, 2011, pp. 1-8. |
Costa R., et al., “An Intelligent Alarm Management System for Large-Scale Telecommunication Companies,” In Portuguese Conference on Artificial Intelligence, Oct. 2009, 14 Pages, Retrieved from the Internet: URL: https://repositorium.sdum.uminho.Pt/bitstream/1822/11357/1/154-2.pdf. |
De Carvalho T.F.R., “Root Cause Analysis in Large and Complex Networks,” Mestrado Em Seguranca Informatica, Dec. 2008, 66 Pages. |
Diaz J.M., et al., “A Simple Closed-Form Approximation for the Packet Loss Rate of a TCP Connection Over Wireless Links,” IEEE Communications Letters, Sep. 2014, vol. 18, No. 9, 4 Pages. |
Duan Y., et al., “Detective: Automatically Identify and Analyze Malware Processes in Forensic Scenarios via DLLs,” IEEE ICC—Next Generation Networking Symposium, 2015, pp. 5691-5696. |
“Effective use of Reputation Intelligence in a Security Operations Center: Tailoring HP Reputation Security Monitor to your Needs,” HP Technical White Paper, Copyright, Jul. 2013, Rev. 1, pp. 1-6. |
Extended European Search Report for European Application No. 19215055.5, mailed Jan. 17, 2020, 9 Pages. |
Extended European Search Report for European Application No. 20165008.2, mailed May 25, 2020, 6 pages. |
Extended European Search Report for European Application No. 21150804.9, mailed May 6, 2021, 8 Pages. |
Extended European Search Report for European Application No. 21156151.9, mailed May 25, 2021, 8 pages. |
Extended European Search Report for European Application No. 21190461.0, mailed Mar. 1, 2022, 10 Pages. |
Feinstein L., et al., “Statistical Approaches to DDoS Attack Detection and Response,” Proceedings of the DARPA Information Survivability Conference and Exposition, Apr. 22-24, 2003, vol. 1, pp. 303-314. |
Foundation for Intelligent Physical Agents, “Fipa Agent Message Transport Service Specification,” Dec. 3, 2002, 15 Pages, Retrieved from the Internet: URL: http://www.fiDa.org. |
George A., et al., “NetPal: A Dynamic Network Administration Knowledge Base,” In proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative Research: Meeting of Minds (CASCON '08), Marsha Chechik, Mark Vigder, and Darlene Stewart Editions, ACM, NewYork, United States of America, Article 20, 2008, 14 Pages. |
Gia T.N., et al., “Fog Computing in Healthcare Internet of Things: A Case Study on ECG Feature Extraction,” IEEE International Conference on Computer and Information Technology, Ubiquitous Computing and Communications, Dependable, Autonomic and Secure Computing, Pervasive Intelligence and Computing, Oct. 26, 2015, pp. 356-363. |
Github, “OpenTracing,” 10 pages, Retrieved on Jul. 5, 2023, from URL: https://github.com/opentracing/specification/blob/master/specification.md. |
Goins A., et al., “Diving Deep into Kubernetes Networking,” Rancher, Jan. 2019, 42 pages. |
Goldsteen A., et al., “A Tool for Monitoring and Maintaining System Trustworthiness at RunTime,” REFSQ, 2015, pp. 142-147. |
Grove D., et al., “Call Graph Construction in Object-Oriented Languages,” ACM Object-oriented Programming, Systems, Languages, and Applications—OOPSLA '97 Conference Proceedings, Oct. 1997, 18 pages. |
Hamadi S., et al., “Fast Path Acceleration for Open vSwitch in Overlay Networks,” Global Information Infrastructure and Networking Symposium (GIIS), Montreal, QC, Sep. 15-19, 2014, 5 pages. |
Heckman S., et al., “On Establishing a Benchmark for Evaluating Static Analysis Alert Prioritization and Classification Techniques,” IEEE, Oct. 9-10, 2008, 10 Pages. |
Henke C., et al., “Evaluation of Header Field Entropy forHash-Based Packet Selection,” based on Search String from Google: “entropy header fields,” Obtained on: Nov. 12, 2019, Passive and Active Network Measurement—PAM, 2008, vol. 4979, pp. 82-91. |
Hideshima Y., et al., “STARMINE: A Visualization System for Cyber Attacks,” Australian Computer Society, Inc., Jan. 2006, Asia-Pacific Symposium on Information Visualization (APVIS 2006), Tokyo, Japan, Feb. 2006, pp. 1-9, Retrieved from the Internet: URL: htps://www.researchgate.net/publication/221536306. |
Hogg S., “Not your Father's Flow Export Protocol (Part 2), What is AppFlow and how does it Differ From Other Flow Analysis Protocols?,” Core Networking, Mar. 19, 2014, 6 pages. |
Huang D-J., et al., “Clock Skew Based Node Identification in Wireless Sensor Networks,” IEEE GLOBECOM, 2008, 5 Pages. |
Ihler A., et al., “Learning to Detect Events With Markov-Modulated Poisson Processes,” ACM Transactions on Knowledge Discovery From Data, Dec. 2007, vol. 1, No. 3, Article 13, pp. 13:1 to 13:23. |
International Search Report and Written Opinion for International Application No. PCT/US2016/035348, mailed Jul. 27, 2016, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/035349, mailed Jul. 27, 2016, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/035350, mailed Aug. 17, 2016, 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/035351, mailed Aug. 10, 2016, 15 pages. |
Internetperils, Inc., “Control Your Internet Business Risk,” 2003-2015, 3 Pages, [Retrieved on Apr. 21, 2016], Retrieved from the Internet: URL: https://www.internetperils.com. |
Ives H.E., et al., “An Experimental Study of the Rate of a Moving Atomic Clock,” Journal of the Optical Society of America, Jul. 1938, vol. 28, No. 7, pp. 215-226. |
Janoff C., et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated on Nov. 14, 2015, Part 1 of 2, 350 Pages. |
Janoff C., et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated on Nov. 14, 2015, Part 2 of 2, 588 Pages. |
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015. |
Joseph D., et al., “Modeling Middleboxes,” IEEE Network, Sep./Oct. 2008, pp. 20-25. |
Juels A., “RFID Security and Privacy: A Research Survey,” Feb. 2006, IEEE Journal on Selected Areas in Communications, vol. 24, No. 2, pp. 381-394. |
Kalyanasundaram B., et al., “Using Mobile Data Collectors to Federate Clusters of Disjoint Sensor Network Segments,” IEEE, International Conference on Communications, Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 2013, pp. 1496-1500. |
Kent S., et al., “Security Architecture for the Internet Protocol,” Network Working Group, Nov. 1998, 67 Pages. |
Kerrison A., et al., “Four Steps to Faster, Better Application Dependency Mapping—Laying the Foundation for Effective Business Service Models,” BMCSoftware, 2011, 12 Pages. |
Kim M-S., et al., “A Flow-based Method for Abnormal Network Traffic Detection,” Institute of Electrical and Electronics Engineers—IEEE, 2004, pp. 599-612. |
Kraemer B., “Get to Know Your Data Center with CMDB,” TechTarget, [Retrieved on Apr. 19, 2016], Apr. 5, 2006, 3 pages, Retrieved from the Internet: URL: http://searchdatacenter.techtarget.com/news/1178820/Get-to-know-your-data-center-with-CMDB. |
Kubernetes Blog, “Borg: The Predecessor to Kubernetes,” Apr. 23, 2015, 2 pages, Retrieved from URL: https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes/. |
Kubernetes IO, “Kubernetes Components,” Aug. 28, 2020, 4 pages, Retrieved from URL: https://kubernetes.io/docs/concepts/overview/components/. |
Kubernetes IO, “Nodes,” Jan. 12, 2021, 6 pages, Retrieved from URL: https://kubernetes.io/docs/concepts/architecture/nodes/. |
Kubernetes IO, “Pods,” Jan. 12, 2021, 5 pages, Retrieved from URL: https://kubernetes.io.docs/concepts/workloads/pods/pod/. |
Kubernetes IO, “What is Kubernetes?,” Oct. 22, 2020, 3 pages, Retrieved from URL: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. |
LAB SKU: “VMware Hands-on Labs—HOL-SDC-1301,” Lab Overview, 2013, [Version Mar. 21, 2014-Jul. 9, 2016] Retrieved from URL: http://docs.hol.vmware.com/HOL-2013/hol-sdc-1301_html_en/, Uploaded in 2 Parts, 118 Pages. |
LAB SKU, “VMware Hands-on Labs—HOL-SDC-1301 Version: Mar. 21, 2014-Jul. 9, 2016,” VMWare, 2013, part 1 of 2, 59 Pages, [Retrieved on Apr. 21, 2016] Retrieved from URL: https://docs.hol.vmware.com/HQL-2013/holsdc-1301_html_en/. |
LAB SKU, “VMware Hands-on Labs—HOL-SDC-1301 Version: Mar. 21, 2014-Jul. 9, 2016,” VMWare, 2013, part 2 of 2, 59 Pages, [Retrieved on Apr. 21, 2016] Retrieved from URL: https://docs.hol.vmware.com/HQL-2013/holsdc-1301_html_en/. |
Lachance M., “Dirty Little Secrets of Application Dependency Mapping—www.itsmwatch.com,” Dec. 26, 2007, pages. |
Landman Y., et al., “Dependency Analyzer,” JFrog Wiki, Feb. 14, 2008, 1 Page, [Retrieved on Apr. 22, 2016] Retrieved from URL: http://frog.com/confluence/display/DA/Home. |
Lee S., “Reducing Complexity of Large-Scale Network Configuration Management,” Ph.D. Dissertation, Carniege Mellon University, Pittsburg, PA, May 2010, 200 Pages. |
Li A., et al., “Fast Anomaly Detection for Large Data Centers,” IEEE Global Telecommunications Conference (GLOBECOM), Dec. 2010, 6 Pages. |
Li B., et al., “A Supervised Machine Learning Approach to Classify Host Roles on Line Using Sflow,” In Proceedings of the First Edition Workshop on High Performance and Programmable Networking, Association for Computing Machinery—ACM, New York, USA, Jun. 18, 2013, pp. 53-60, Provided in IDS dated Apr. 27, 2016. |
Liu T., et al., “Impala: A Middleware System for Managing Autonomic, Parallel Sensor Systems,” In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, New York, United States of America, Jun. 11-13, 2003, 12 Pages. |
Lorenzo G.D., et al., “EXSED: An Intelligent Tool for Exploration of Social Events Dynamics from Augmented Trajectories,” IEEE 14th International Conference on Mobile Data Management (MDM), Jun. 3-6, 2013, vol. 1, pp. 323-330. |
Lu Z., et al., “Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks on Chip,” IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Apr. 16-18, 2008, 6 Pages. |
Matteson R., “DEPMAP: Dependency Mapping of Applications Using Operating System Events,” A Thesis, Master's Thesis, California Polytechnic State University, Dec. 2010, 115 pages. |
Merriam-Webster, “Definition of Database,” Merriam-Webster Dictionary, 2018, 4 Pages. |
Miller N., et al., “Collecting Network Status Information for Network-Aware Applications,” Proceedings IEEE INFOCOM, 2000, vol. 2, pp. 641-650. |
Moe J., et al., “Understanding Distributed Systems via Execution Trace Data,” Proceedings of the 9th International Workshop on Program Comprehension, Toronto, Canada, May 12-13, 2001, 8 Pages. |
Nagarajan R., et al., “Approximation Techniques for Computing Packet Loss in Finite-buffered Voice Multiplexers,” IEEE Journal on Selected Areas in Communications, 1991, 10 pages. |
Natarajan A., et al., “NSDMiner: Automated Discovery of Network Service Dependencies,” Proceedings IEEE INFOCOM, Orlando, FL, 2012, 9 Pages. |
Navaz A.S.S., et al., “Entropy Based Anomaly Detection System to Prevent DDoS Attacks in Cloud,” International Journal of Computer Applications (0975-8887), Jan. 2013, vol. 62, No. 15, pp. 42-47. |
Neverfail, “Neverfail IT Continuity Architect,” 2015, 6 Pages, Retrieved on [Apr. 22, 2016], Retrieved from the Internet: URL: https://web.archive.org/web/20150908090456/ http://www.neverfallgroup.com/products/it-continuity-architect. |
Nilsson D.K., et al., “Key Management And Secure Software Updates In Wireless Process Control Environments,” In Proceedings of the First ACM Conference on Wireless Network Security (WiSec '08), ACM, New York, NY, USA, Mar. 31-Apr. 2, 2008, pp. 100-108. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2016/035348, mailed Dec. 14, 2017, 7 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2016/035349, mailed Dec. 14, 2017, 7 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2016/035350, mailed Dec. 14, 2017, 11 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2016/035351, mailed Dec. 14, 2017, 11 pages. |
Nunnally T., et al., “P3D: A Parallel 3D Coordinate Visualization for Advanced Network Scans,” IEEE International Conference on Communications (ICC), Jun. 9-13, 2013, pp. 1-6, Retrieved from the Internet: URL: www2.ece.gatech.edu. |
O'Donnell G., et al., “The CMDB Imperative: How to Realize the Dream and Avoid the Nightmares,” Chapter 4, The Federated CMS Architecture, Prentice Hall, Feb. 19, 2009, 44 pages. |
Ohta K., et al., “Detection, Defense, and Tracking of Internet—Wide Illegal Access in a Distributed Manner,” 2000, 16 pages, [Retrieved on May 9, 2016], Retrieved from Internet: URL: https://www.isoc.org/inet2000/cdproceedings/1f/1f_2.htm. |
Online Collins English Dictionary: “Precede Definition and Meaning,” 1 Page, [Retrieved on Apr. 9, 2018]. |
Opentracing IO, “The OpenTracing Semantic Specification,” 8 pages, Retrieved on Jul. 5, 2023, from URL: https://opentracing.io/docs/. |
Pathway Systems International Inc., “How Blueprints does Integration,” Apr. 15, 2014, 9 Pages, [Retrieved on Apr. 27, 2016], Retrieved from the Internet: URL: http://pathwaysystems.com/company-blog/. |
Pathway Systems International Inc., “What is Blueprints?,” 2010-2016, 1 Page, [Retrieved on Apr. 27, 2016], Retrieved from the Internet: URL: http://pathwavsystems.com/blueprints-about/. |
Popa L., et al., “Macroscope: End-Point Approach to Networked Application Dependency Discovery,” CoNEXT'09, Dec. 1-4, 2009, Rome, Italy, 12 pages. |
Prasad K.M., et al., “An Efficient Detection of Flooding Attacks to Internet Threat Monitors (ITM) using Entropy Variations under Low Traffic,” Computing Communication Networking Technologies (ICCCNT 12), Jul. 26-28, 2012, 11 Pages. |
Sachan M., et al., “Solving Electrical Networks to Incorporate Supervision in Random Walks,” In Proceedings of the 22nd International Conference on World Wide Web Companion (WWW '13 Companion), International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, May 13-17, 2013, pp. 109-110. |
Sammarco M., et al., “Trace Selection for Improved WLAN Monitoring,” In Proceedings of the 5th ACM Workshop on HotPlanet (HotPlanet '13), ACM, New York, NY, USA, Aug. 16, 2013, pp. 9-14. |
Sandholm T., et al., “MapReduce Optimization Using Regulated Dynamic Prioritization,” ACM, Jun. 15-19, 2009, pp. 299-310. |
Sardella A., “Securing Service Provider Networks: Protecting Infrastructure and Managing Customer Security,” Juniper Networks, Inc., White Paper, Dec. 2006, pp. 1-19. |
Senel F., et al., “Optimized Interconnection of Disjoint Wireless Sensor Network Segments Using K Mobile Data Collectors,” IEEE International Conference on Communications (ICC), 2012, 5 pages. |
Sherri S., et al., “A Chipset Level Network Backdoor: Bypassing Host-Based Firewall & IDS,” ACM 2009, pp. 125-134. |
Shneiderman B., “Network Visualization by Semantic Substrates,” Visualization and Computer Graphics, IEEE Transactions on Visualization and Computer Graphics, Sep./Oct. 2006, vol. 12 (5), pp. 733-740. |
Sigelman B.H., et al., “Dapper, A Large-Scale Distributed Systems Tracing Infrastracture,” Google Technical Report dapper-2010-1, Apr. 2010, 14 Pages, Retrieved from the Internet: URL: https://research.google/pubs/pub36356/. |
Templeton S.J., et al., “Detecting Spoofed Packets,” IEEE, Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX'03), 2003, pp. 1-12. |
Theodorakopoulos G., et al., “On Trust Models and Trust Evaluation Metrics for Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications, Feb. 2006, vol. 24, No. 2, pp. 318-328. |
Thomas R., “Bogon Dotted Decimal List,” Version 7.0, Team Cymru NOC, Apr. 27, 2012, 5 Pages. |
“Top 4 Strategies to Mitigate Targeted Cyber Intrusions,” Cyber Security Operations Centre, Australian Government Department of Defence, Intelligence and Security, Jul. 2013, Retrieved from URL: http://www.asd.aov.au/infosec/tom-mitiqations/top-4-strategies-exolained.html, 42 Pages. |
Voris J., et al., “Bait and Snitch: Defending Computer Systems with Decoys,” Columbia University Libraries, Department of Computer Science, 2013, 25 pages. |
Wang R., et al., “Learning Directed Acyclic Graphs via Bootstrap Aggregating,” Jun. 9, 2014, 47 pages, Retrieved from Internet: URL: http://arxiv.org/abs/1406.2098. |
Wang Y., et al., “A Network Gene-Based Framework for Detecting Advanced Persistent Threats,” 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Nov. 2014, IEEE, pp. 97-102. |
Witze A., “Special Relativity Aces Time Trial, Time Dilation Predicted by Einstein Confirmed by Lithium Ion Experiment,” Nature, Sep. 19, 2014, 3 Pages. |
Woodberg B., “Snippet from Juniper SRX Series,” O'Reilly Media, Inc, Rob Cameron Publisher, Jun. 17, 2013, 1 page. |
Zatrochova B.Z., “Analysis and Testing of Distributed NoSQL Datastore Riak,” Brno, May 28, 2015, 2 Pages. |
Zatrochova B.Z., “Analysis and Testing of Distributed NoSQL Datastore Riak,” Masaryk University, Faculty of Informatics, Brno, Spring, 2015, 76 Pages. |
Zeng S., et al., “Managing Risk in Multi-node Automation of Endpoint Management,” IEEE Network Operations and Management Symposium (NOMS), 2014, 6 Pages, Retrieved from URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6838295. |
Crisan D., et al., “Datacenter Applications in Virtualized Networks: A Cross-Layer Performance Study”, IEEE Journal on Selected Areas in Communications, vol. 32, No. 1, Retrieved on Oct. 1, 2023, Published on Jan. 1, 2014, pp. 77-87. |
European Search Report in European Patent Application No. 23176492.9, dated Oct. 6, 2023, 5 Pages. |
Suo K., et al., “vNetTracer: Efficient and Programmable Packet Tracing in Virtualized Networks”, 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Jul. 2-6, 2018, pp. 165-175. |
Wang J.Y., et al., “Continuous Data Collection in Wireless Sensor Networks through PNC and Distributed Storage”, 2007 International Conference on Wireless Communications, Networking and Mobile Computing, 2007, pp. 2568-2571. |
Zhang D., et al., “Packet Loss Measurement and Control for VPN based Services,” Proceedings of IEEE Instrumentation and Measurement Technology Conference, May 17-19, 2005, vol. 3, 5 Pages. |
Zhang Y., et al., “CANTINA: A Content-Based Approach to Detecting Phishing Web Sites,” May 8-12, 2007, pp. 639-648. |
“A Cisco Guide to Defending Against Distributed Denial of Service Attacks,” Cisco Systems Incorporated, San Jose, California, [Last Visited May 3, 2016] Retrieved from URL: http://www.cisco.com/web/about/security/intelligence/guide_ddos_defense.html, 34 Pages. |
Al-Fuqaha A., et al., “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communication Surveys Tutorials, Fourth Quarter, Nov. 18, 2015, vol. 17, No. 4, pp. 2347-2376. |
Ananthanarayanan R., et al., “Photon: Fault-tolerant and Scalable Joining of Continuous Data Streams,” Proceedings of the ACM SIGMOD International Conference on Management of Data, New York, USA, Jun. 22-27, 2013, pp. 577-588. |
Aniszczyk C., “Distributed Systems Tracing with Zipkin,” Twitter Blog, Jun. 7, 2012, 3 Pages, [Retrieved on Jan. 26, 2021] Retrieved from URL: https://blog.twitter.com/engineering/en_us/a/2012/distributed-systems-tracing-with-zipkin.html. |
Arista Networks, Inc., “Application Visibility and Network Telemtry Using Splunk,” Arista White Paper, Nov. 2013, 9 Pages. |
Author Unknown, “Blacklists Dynamic Blacklists Reputation: Understanding Why the Evolving Threat Eludes Blacklists,” Retrieved from Internet: URL: www.dambala.com, Retrieved Aug. 31, 2017, 9 pages, Dambala, Atlanta, GA 30308, USA. |
Author Unknown, “Blacklists Dynamic Reputation: Understanding Why the Evolving Threat Eludes Blacklists,” Dambala, Atlanta, Georgia, United States of America, Retrieved Aug. 31, 2017, 9 Pages. |
Aydin G., et al., “Architecture and Implementation of a Scalable Sensor Data Storage and Analysis System Using Cloud Computing and Big Data Technologies,” Journal of Sensors, vol. 2015, Article 834217, Feb. 2015, 11 Pages. |
Ayers A., et al., “TraceBack: First Fault Diagnosis by Reconstruction of Distributed Control Flow,” Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation-PLDI '09, Jun. 12-15, 2005, vol. 40, No. 6, 13 pages. |
Baah G.K., et al., “The Probabilistic Program Dependence Graph and Its Application to Fault Diagnosis,” IEEE Transactions on Software Engineering, IEEE Service Center, Los Alamitos, CA, US, Jul./Aug. 2010, vol. 36, No. 4, pp. 528-545, ISSN 0098-5589, XP011299543. |
Backes M., et al., “Data Lineage in Malicious Environments,” IEEE, 2015, pp. 1-13. |
Baek K-H., et al., “Preventing Theft of Quality of Service on Open Platforms,” Workshop of the 1st International Conference on Security and Privacy for Emerging Areas in Communication Networks, 2005, 12 Pages, Retrieved from URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1588319. |
Bayati M., et al., “Message-Passing Algorithms for Sparse Network Alignment,” ACM Transactions on Knowledge Discovery from Data, vol. 7, No. 1, Article 3, Mar. 2013, 31 Pages. |
Berezinski P., et al., “An Entropy-Based Network Anomaly Detection Method,” Entropy, vol. 17, Apr. 20, 2015, Retrieved from URL: www.mdpi.com/journal/entropy, pp. 2367-2408. |
Berthier R., et al., “Nfsight: Netflow-based Network Awareness Tool,” In Proceedings of the 24th International Conference on Large Installation System Administration, USENIX Association, Berkeley, CA, USA, 2010, 16 Pages. |
Bhuyan D., “Fighting Bots and Botnets,” In Proceedings of the International Conference on i-Warfare and Security, Academic Conferences Limited, 2006, pp. 23-28. |
Blair D., et al., U.S. Appl. No. 62/106,006, filed Jan. 21, 2015, entitled “Monitoring Network Policy Compliance,” 22 Pages. |
Bosch G., “Virtualization,” 2010, 33 pages. |
Bosch G., “Virtualization,” Modified on Apr. 2010 by Davison B., 33 Pages. |
Brahmi H.I., et al., “Improving Emergency Messages Transmission Delay in Road Monitoring Based WSNs,” 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC), 2013, 8 Pages, [Retrieved on Aug. 31, 2021]. |
Breen C., “Mac 911: How to Dismiss Mac App Store Notifications,” Macworld, Mar. 24, 2014, 3 Pages. |
Brocade Communications Systems, Inc., “Chapter 5 Configuring Virtual LANs (VLANs),” Jun. 2009, 38 bages. |
Chandran M., et al., “Monitoring in a Virtualized Environment,” GSTF International Journal on Computing, Aug. 2010, vol. 1, No. 1, 6 Pages. |
Chari S., et al., “Ensuring Continuous Compliance Through Reconciling Policy with Usage,” Proceedings of the 18th ACM Symposium on Access Control Models andTechnologies, NewYork, United States of America, Jun. 12-14, 2013, pp. 49-60. |
Chen X., et al., “Automating Network Application Dependency Discovery: Experiences, Limitations, and New Solutions,” 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI'08), USENIX Association, Berkeley, California, United States of America, retrieved Aug. 30, 2017, pp. 117-130. |
Choi C.H., et al., “CSMonitor: A Visual Client/Server Monitor for CORBA-based Distributed Applications,” Proceedings of 1998 Asia Pacific Software Engineering Conference, Taipei, Taiwan, Los Alamitos, CA, USA, Dec. 2-4, 1998, 8 Pages, DOI:10.1109/APSEC.1998.733738, ISBN 978-0-8186-9183-6, XP010314829. |
Chou C.W., et al., “Optical Clocks and Relativity,” Science, vol. 329, Sep. 24, 2010, pp. 1630-1633. |
Cisco Systems, “Cisco Network Analysis Modules (NAM) Tutorial,” Cisco Systems, Inc., Version: 3.5, Accessed web page Oct. 13, 2015, 2006, 320 pages. |
Cisco Systems Inc: “Addressing Compliance from One Infrastructure: Cisco Unified Compliance Solution Framework,” 2014, 3 Pages. |
Cisco Systems, Inc., “CCNA2 v3.1 Module 1 WANs and Routers,” Cisco.com, May 14, 2018, 26 pages. |
Cisco Systems, Inc., “CCNA2 v3.1 Module 2 Introduction to Routers,” Cisco.com, Jan. 18, 2018, 23 pages. |
Cisco Systems Inc: “Cisco 4710 Application Control Engine Appliance Hardware Installation Guide,” Nov. 2007, 66 Pages. |
Cisco Systems, Inc., “Cisco Application Control Engine (ACE) Troubleshooting Guide—Understanding the ACE Module Architecture and Traffic Flow,” Mar. 11, 2011, 6 Pages. |
Cisco Systems, Inc., “Cisco Application Dependency Mapping Service,” Data Sheet, 2009, 5 pages. |
Cisco Systems Inc: “Cisco Application Visibility and Control,” At-A-Glance, Oct. 2011, 2 Pages. |
Cisco Systems Inc: “Cisco Data Center Network Architecture and Solutions Overview,” Feb. 2006, 19 Pages. |
Cisco Systems, Inc., “Cisco IOS Configuration Fundamentals Configuration Guide: Using Autoinstall and Setup,” Release 12.2, first published Apr. 2001, last updated Sep. 2003, 32 pages. |
Cisco Systems Inc: “Cisco, Nexus 3000 Series NX-OS Release Notes, Release 5.0(3)U3(1),” Feb. 29, 2012, 16 Pages, Part No. OL-26631-01. |
Cisco Systems, Inc., “Cisco, Nexus 5000 Series and Cisco Nexus 2000 Series Release Notes,” Cisco NX-OS Release 5.1 (3)N2(1b), NX-OS Release 5.1(3)N2(1a) and NX-OS Release 5.1 (3)N2(1), Sep. 5, 2012, Part No. OL-26652-03 CO, Current Release: NX-OS Release 5.1(3)N2(1b), 24 pages. |
Cisco Systems Inc: “Cisco Remote Integrated Service Engine for Citrix NetScaler Appliances and Cisco Nexus 7000 Series Switches Configuration Guide,” Last modified Apr. 29, 2014, 78 Pages. |
Cisco Systems Inc., “Cisco Tetration Platform Data Sheet,” Cisco, Updated Mar. 5, 2018, 21 Pages. |
Cisco Systems, Inc., “Cisco VN-Link: Virtualization-Aware Networking,” A Technical Primer, 2009, 9 Pages. |
Cisco Systems, Inc., “Cisco VPN Client User Guide for Windows,” Release 4.6, Aug. 2004, 148 pages. |
Cisco Systems Inc: “New Cisco Technologies Help Customers Achieve Regulatory Compliance,” White Paper, 1992-2008, retrieved on Aug. 31, 2017, 9 Pages. |
Cisco Systems Inc: “Nexus 3000 Series NX-OS Fundamentals Configuration Guide, Release 5.0(3)U3(1): Using PowerOn Auto Provisioning,” Feb. 29, 2012, 10 Pages, Part No. OL-26544-01. |
Cisco Systems Inc: “Quick Start Guide, Cisco ACE 4700 Series Application Control Engine Appliance,” Software Version A5(1.0), Sep. 2011, 138 Pages. |
Cisco Systems Inc: “Routing and Bridging Guide, Cisco ACE Application Control Engine,” Software Version A5 1.0), Sep. 2011, 248 Pages. |
Cisco Systems, Inc., “VMWare and Cisco Virtualization Solution: Scale Virtual Machine Networking,” Jul. 2009, pp. 1-4. |
Cisco Technology Inc: “Cisco IOS Software Release 12.4T Features and Hardware Support,” Feb. 2009, 174 Pages, Retrieved from URL: http://www.cisco.com/c/en/us/Qroducts/collateralhos-nx-os-softwarehossoftware-releases-12-4-t/product bulletin_c25-409474.html. |
Cisco Technology Inc., “Lock-and-Key: Dynamic Access Lists,” Updated Jul. 12, 2006, Retrieved from URL: http://www/cisco.com/c/en/us/suppor/docs/security-ypn/lock-key/7604-13.html, 16 Pages. |
Number | Date | Country | |
---|---|---|---|
20230040556 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
62171899 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15045205 | Feb 2016 | US |
Child | 17819888 | US |